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Operando wide-field optical microscopy imaging yields a wealth of information about the reactivity of metal interfaces, yet the data are often unstructured and challenging to process.

In this study, we harness the power of unsupervised machine learning (ML) algorithms to analyze chemical reactivity images obtained dynamically by reflectivity microscopy in combination with ex situ scanning electron microscopy to identify and cluster the chemical reactivity of particles in Al alloy. The ML analysis uncovers three distinct clusters of reactivity from unlabeled datasets. A detailed examination of representative reactivity patterns confirms the chemical communication of generated OH -fluxes within particles, as supported by statistical analysis of size distribution and finite element modelling (FEM). The ML procedures also reveal statistically significant patterns of reactivity under dynamic conditions, such as pH acidification. The results align well with a numerical model of chemical communication, underscoring the synergy between data-driven ML and physics-driven FEM approaches.

Introduction

In recent years, there has been a growing trend in the application of machine learning (ML) algorithms for image processing in natural sciences, including biology, physics, and, most recently, chemistry. [1][2][3] The use of ML has proven to be a powerful tool for more efficient, accurate, and reliable data analysis, with examples ranging from extracting patterns in large and unstructured datasets to anomaly detection, identifying objects and features in images, image denoising and reconstruction. [2][3][4][5] Image analysis is typically done using a supervised method, which involves manually labeling training data. [6] However, this approach can be costly and time-consuming and can introduce bias from the training data. An alternative approach, which is less commonly used but gaining popularity, is to apply unsupervised ML methods that do not require manual input. [7,8] The majority of the practical examples in science of unsupervised image analysis often come from biology and related bioinformatics fields, [9][10][11][12] while other fields are barely considered and still waited to be explored. This work showcases a practical application of unsupervised ML in surface science, leveraging the analysis of optical datasets from an operando reflection-based microscope (RM). The ability to predict material reactivity through such methods can have significant socio-economic implications for improving material durability and increasing energy efficiency. [13] RM is a label-free optical imaging technique that utilizes the local changes in the refractive index of the imaged interface to reveal various (electro-)chemical phase conversions. [14][15][16][17][18][19][20][21][22] This technique is particularly useful for detecting bubble formation, changes in surface film thickness and roughness, and ion intercalations. [16,18,[23][24][25][26][27] RM is widely employed in the field of surface science, both as a standalone method and in combination with other local techniques such as nanopipet approaches. [28][29][30] RM has high temporal and spatial resolution, allowing for measurements with a resolution of approximately 200 nm and acquisition rates up to kHz in a wide field (mm) range. [14,25] However, the generation of large optical datasets also poses significant challenges in processing feature-rich optical images. One common approach is the use of machine vision procedures that employ computer algorithms. [4,[31][32][33][34] While these methods are automated, they can be subject to human bias and may require finetuning of empirical parameters. In this study, we propose an efficient unsupervised machine learning framework for fully automated analysis of reflective videos obtained from the operando monitoring of the local electrochemical degradation by aqueous solution of Al alloy of 6061 series as a model system.

Al alloys consist of particles, ranging from nm to µm in size, of foreign elements embedded within an Al matrix. [35][36][37] When exposed to an electrolytic solution, these particles initiate multiple localized electrochemical reactions across a large surface area, making Al alloys a suitable model system for the development of pattern recognition algorithms. In our recent study, [38] utilizing correlative techniques such as optical (reflectivity, fluorescence) microscopies, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX), we observed that all particles within an Al6061 alloy drive pH basification through the reduction of oxygen (ORR) and evolution of hydrogen (HER), leading to localized dissolution and precipitation of films. These film evolution patterns are primarily defined by the overlapping of OH -diffusion fields between adjacent particles, also referred to as interparticle chemical communication. [39][40][41][42][43] In contrast to previous work, this study demonstrates that increasing the average distance between particles and incorporating Cl -into the conductive electrolyte results in accelerated film dissolution and enhanced chemical communication, but now within individual micrometric particles, i.e. showing intraparticle reactivity patterns. Complementary finite element modeling (FEM) was also employed to provide further insight. This research offers a case study of unsupervised ML applied to the field of surface science and highlights the synergistic relationship between data-driven and physics-driven approaches.

Results and Discussion

Quantification of film evolution over particles

The investigation of intraparticle communication within individual micrometric particles requires using a correlative microscopy approach using sub-micrometer spatial resolution imaging techniques i.e., sub-particle resolution imaging (Figure 1, see also the supplementary material (SI-1) for experimental details). The surface of a mirror polished Al6061 sample was initially analyzed using SEM and EDX. The sample was then placed in a corrosive electrolyte of 5 mM NaCl (neutral pH) in the optical setup (Figure 1a). Note, no external electrochemical perturbations were imposed on the system. Instead, the sample was allowed to freely corrode, forming localized galvanic cells around the particles within the Al matrix (Figure 1b). The sample underwent primary oxidation, forming a 10 nm surface film of Al oxides/hydroxides (denoted as Al(OH)3 for simplicity in Figure 1b). This process was monitored dynamically and operando by RM, by illuminating the sample surface with a blue light (490 nm wavelength) through a ×40 water immersion objective and recording maps (at 5 Hz) of the dynamic changes in light reflected by the sample surface and collected onto a CCD camera. In this section, we conducted a manual analysis of a small fraction (8.5 × 6 µm 2 ) of the optically screened region. In the subsequent section, we will expound on an automated analysis of the entire wide-field optical footage (187 × 180 µm 2 ).

The presence of particles is visible in both optical and SEM images (Figure 1c) as regions of dark contrast compared to the surrounding Al matrix. EDX analysis shows that the particles are rich in Si and are composed of the SiO2 phase, as reported in our previous work. [38] It should be noted that Fe-rich particles were also observed in some areas of the sample (SI-2). However, since there was no significant evolution of surface films over Fe-rich particles within the time frame of the experiment (as shown in SI-2 and previous work [38] ), only the reactivity over Si-rich particles will be discussed in the main text.

Figure 1 Correlative microscopy approach used in this study (further details can be found SI-1). (a) The setup for operando optical observation of the mirror-polished (< 40 nm roughness [38] [START_REF] Puigdomenech | Chemical Equilibrium Diagrams[END_REF] (soluble species taken into account: Al 3+ , Al(OH)2 + , Al(OH)3, Al(OH)4 -, Al13O4(OH)24 7+ , Al2(OH)2 4+ , Al3(OH)4 5+ , AlOH2 + ; solid species: Al(OH)3(s), AlOOH(s), Al2O3(s)). Pathway (1) corresponds to the film precipitation and pathway (2) to the film dissolution observed in the related regions in the optical movies. (d) A reconstructed map of rates of local film evolution deduced from the optical movie is presented.

The scale bars are 2 µm.

Si-rich particles are galvanically coupled to the less noble Al matrix and serve as centers for the generation of OH -due to ORR and HER (Figure 1b) (as reported in ref. [38] using fluorescence microscopy). The pH gradients control the dynamics of surface film evolution, as illustrated from the Al(III)-pH diagram in Figure 1c (bottom right). Experimentally, the insitu transformation of surface films is quantified from optical movies of reflectivity changes (Figure 1c, top left), taken at a 5 Hz acquisition rate over 20 seconds in this work. Example curves of normalized reflectivity changes in Figure 1c (top right) demonstrate a linear change in light intensity, which was converted into relative thickness of the surface film based on the Fresnel equation (as detailed in SI-1). An increase in the thickness of surface films was attributed to the precipitation of Al(OH)3 films (pathway 1 in Figure 1c), while a decrease was attributed to the formation of soluble Al(OH)4 -(pathway 2 in Figure 1c). The rate of surface film evolution was defined as the slope of the film relative thickness evolution and optical movies were converted into maps of rates of film evolution (Figure 1d).

The blue regions in Figure 1d correspond to areas of Al(OH)3 precipitation, the red regions correspond to film dissolution, and the white regions indicate that the film is unchanged during the whole experiment, with the extent of film dissolution ranging from -0.3 nm/s to 0.3 nm/s. Overall, the dominating color in the map of film evolution is light red, indicating the gradual dissolution of surface films over the Al matrix. This finding is consistent with prior literature which has reported on the degradation of aluminum in a NaCl environment. [17,[START_REF] Kosari | [END_REF][46][47] The corrosive effect of Cl -ions can promote the release of Al 3+ , which can subsequently result in local acidification of the pH due to Al 3+ hydrolysis and ultimately, the dissolution of the surface film. Areas over particles are visible as blue regions, mostly within the edge of the particles, with regions of intense red areas located in the center of the particles. Such difference in behavior within different regions of the particle surface are likely related to the pH gradients over a single particle. In the following sections, we will discuss this phenomenon in detail, providing an unsupervised statistical analysis of particle reactivities.

It is worth noting that scratches from polishing and small defects, visible as dark lines and spots in both optical and SEM images (Figure 1c), are also evident in the map of film evolution as different shades of blue (Figure 1d). This indicates that precipitation of surface films occurs in these areas, more likely due to the generation of OH -over these regions (observed with fluorescence microscopy in our previous work [38] ) that should compensate for local pH acidification due to hydrolysis of Al 3+ ions.

Unsupervised clustering of particle activities

The wide-field videos contain a large amount of unstructured but valuable information that cannot be efficiently treated with conventional data processing algorithms. In this section, we describe a novel pipeline for automated analysis of the complete wide-field image (187 × 180 µm 2 ) with the aim of identifying patterns of reactivity across particle areas. The routine extensively utilizes unsupervised machine learning algorithms, such as K-means and principal component analysis (PCA), as well as OpenCV libraries (Figure 2).

In the first step (Figure 2), a single frame of the optical video was used to find coordinates and extract images of individual particles. This was done through automated image segmentation and image thresholding, which allowed for the extraction of the positions of all 155 particles on the Al interface. Then, the local optical intensities within the images of individual particles were normalized and converted to local rates of surface film conversion with the aid of the Fresnel equation, as described in Figure 1. In the second step, we flattened the image matrix into a 1D array and performed dimensionality reduction using PCA to visualize our 155 images in 2D. Prior to flattening, we interpolated the images of each individual particle to a uniform size of 30×30 pixels to exclude particle size as a criterion for clustering. To identify different patterns present in our data, we used K-means clustering for the original reactivity images. Using the elbow method, we determined the optimal number of clusters to be 3, as shown in Figure 2 (step 2). For each cluster, we identified its representative pattern corresponding to the cluster centroid, which is formed by the mean values for all pixels. We observed that centroids 2 and 3 represented similar reactivity images of particles, with a blue region on the particle periphery and a red area in the center. Based on this similarity, we merged clusters 2 and 3 into a single category (labeled as category 2 in Figure 2). In contrast, the reactivity pattern observed for centroid 1 was markedly distinct, with a blue region present across almost the entire surface of the particle. We attributed this to a separate category labeled as 1.

It is important to note that some images in category 1 (Figure 2, step 3) display a light red color in the middle of the particle area. However, the intensity and area coverage of this red region are significantly lower compared to those of the red region in the middle of the particles from category 2. Our approach utilizes an automated ML algorithm for the assignment of particle type, which ensures that the process is unbiased and based solely on the automated score. Upon manual verification, the percentage of falsely identified images in categories 1 and 2 was found to be 8 % and 6 %, respectively, demonstrating satisfactory accuracy. All images of the presented categories and technical details of the pipeline routine can be found in SI-3, along with a reference to the original python code.

Role of the particle size in intraparticle communication

For a majority of particles, clustered in category 2, the reactivity maps shown in Figure 2 reveal regions of opposite reactivity within the same particle, with a preferred precipitation behavior along the edge of the particle and preferred dissolution at the center of the particle (blue vs red areas). The aim of this section is to discuss the physical origin of such opposite reactivities. This is analyzed through a typical example of particle detailed in Figure 3. A first comparison is made, in Figure 3a, between the initial optical image of the particle and its reactivity map. The inset of Figure 3a presents the spatial distribution of the reflectivity and reactivity along the same cross-section of the particle. The position of the particle in the optical image is marked by a decrease in reflectivity, which is attributed to the lower reflection of the SiO2 surface in comparison to the surrounding Al surface. If some local changes in reflectivity are detected along the particle image, the reflectivity steadily decreases along the cross-section. On the contrary the reactivity shows stronger local variations, with apparently no correlation between rate of film evolution and local reflectivity.

Remarkably, the dissolution of the surface film is observed not only within the particle but also in its immediate vicinity (red region surrounding the particle in Figure 3a), extending up to < 1 µm to the Al surface with an absolute value of approximately -0.1 nm/s. This phenomenon, known as trenching in corrosion science, [17,36,[START_REF] Kosari | [END_REF]48] occurs due to the preferential dissolution of the Al matrix resulting from regions of stronger galvanic coupling (higher local current density) to a more noble particle. [17,36,[START_REF] Kosari | [END_REF]48,49] The spatial extent of trenching is in agreement with previous studies, while the absolute value of the film dissolution provides new information that is not directly accessible under typical corrosion conditions. Considering the local equivalence of anodic and cathodic current densities for the galvanic cell generated by a single particle, it is reasonable to anticipate that the spatial range of trenching will be similar to that of film precipitation over the particle. This suggests that the particle's size, and hence its geometry, may contribute to the local reactivity observed across its surface. To corroborate on such hypothesis, Figure 3b presents the size distribution of particles for both categories of particles. A comparison of the size of the two distributions shows that category 1 is limited to the smallest particles, ca. < 2 µm 2 , while category 2 shows a much wider distribution of particle sizes which can be as large as ca. 6 µm 2 . This suggests that a necessary (but not sufficient) condition for belonging to category 1 (no communication) is a surface area < 2 µm 2 implying a size threshold for particle to present surface film dissolution (marked as red in our notation). We recall that the entire area of the particle is cathodically active, producing OH -fluxes that control the surface film evolution according to the Al(III)-pH diagram (Figure 1c). Under the assumption of a constant normalized flux of OH -on the particle surface, the unique feature of larger particles is that they always possess higher pH values with the maximum located at the particle center. This is due to the higher degree of overlapping of OH -diffusion fields generated on larger surface areas, referred as intraparticle communication in this work. This provides a qualitative chemical explanation of the observed pattern of surface film evolution for particles in category 2.

Note that in contrast to our previous work where the interparticle communication was observed, [38] in this work, the averaged distance between particles was increased from ca. 2 µm to ca. 6 µm that should be responsible in the transposition of inter-to intraparticle communication, observed herein (SI-4).

In order to test the hypothesis of the influence of particle size on the pattern of surface evolution, a finite element model (FEM) was developed using COMSOL Multiphysics 5.5 software. The model considered circular disks of varying sizes generating identical normalized fluxes of OH -while the bulk pH was equal to 7. Additionally, the model assumed that the particles were covered with an Al(OH)3 film that could either precipitate or dissolve as a function of local pH. Technical details of the numerical calculations can be found in SI-5.

The absolute value of the OH -flux kinetics of the Al(OH)3 was not measured in this work, but values were chosen within the range reported in the literature and summarized in ref. [38] in order to qualitatively match the observed phenomenon.

The results of the simulations are given in Figure 3c. Starting from the edge of the particle a film deposition is observed. The film deposition is homogeneous for particle size up to 1.5 µm in diameter (< 2 µm 2 surface area). When the particle size increases from 1.5 µm to 2.5 µm in diameter (from 1.8 to 4.9 µm 2 area), the film deposition is localized on the edge of the particle while towards the center of the particle the deposition rate decreases towards either no deposition or a (red) region of slight film dissolution. Further increase in particle size from 2.5 µm to 2.7 µm results in an increase in the size of the red area as well as the absolute values of dissolution rates. These simulated data are in good qualitative agreement with the distribution of particle sizes in categories 1 and 2 as shown in Fig. 3b. A detailed analysis of the proposed model (SI-5) reveals that the extent of the dissolution region depends on the bulk pH for a given particle size. In the following section, we further investigate this dependence experimentally and numerically to provide more evidence for the mechanism of intraparticle communication.

Impact of pH acidification on intraparticle communication

After observing the reactivity of particles at neutral pH in 5 mM NaCl using wide-field optical technique, a few drops of concentrated H2SO4 were added to create a 10 mM H2SO4 solution.

After adjusting the focus for ca. 5 s, another optical movie was recorded for a duration of 20 s.

The images of individual particles were then extracted and converted into maps showing the rate of surface film evolution, using the same procedure as outlined in step 1 of The aim of this section was to identify descriptors that could indicate the extent of change between the two images and then cluster these descriptors accordingly. To achieve this, we computed the pixel-wise values of the local rates of surface transformation under both neutral and acidic pH conditions and generated a correlation matrix of the results (as shown in Figure 4, step 1, with some technical details provided in SI-3). In brief, we began by segmenting the squared image of the particle, including its surroundings (Figure 4, step 1). To accomplish this, an automated unsupervised ML technique was employed to partition the image, which had a continuous range of values, into a segmented image consisting of 5 of the most representative mean values. The middle value corresponded to 'no surface evolution' with a rate of 0, while two values represented high and moderate dissolution situations with rates less than 0, and two other values represented precipitation situations with rates greater than 0. We then plotted these mean values on the x-axis taken from the image at neutral pH and on the y-axis taken from the image at acid pH, creating a 5 by 5 matrix. We subsequently determined the number of pixels belonging to each distribution of mean values, normalized it by the total number of pixels, and placed it in the corresponding square of the correlation matrix.

We discuss briefly, with few examples, how to read and interpret the correlation matrix. The initial observation concerns the range of dissolution and precipitation rates on each axis which are distinct. For instance, the most negative value on the y-axis (acid pH) was -0.48 nm/s, while on the x-axis (neutral pH) it was -0.45 nm/s. The cell of the matrix with the coordinates (-0.45, -0.48) nm/s corresponds then to pixels of the segmented images having the highest dissolution rates in both neutral and acid pH. It indicates that these areas are subject to the same type of reaction (a dissolution) but with higher dissolution rates in acid than in neutral pH, as expected. Similarly, the opposite corner cell of the matrix with coordinates (0.26, 0.14) nm/s reflects regions with the highest precipitation rates. Again, this cell indicates that the pixels subjected to precipitation in neutral pH are also subjected to precipitation in acid pH but with a lower precipitation rate, also consistent with higher solubility of the Al surface films in more acidic environment (Figure 1c). All diagonal cells of the matrix can be analyzed similarly. They correspond to areas of the segmented image showing identical behavior between neutral and acid pH. The diagonal cells include 61 % of the pixels, meaning that 61 % of the particle image show similar trend in neutral and acid pH.

The second key observation pertains to matrix cells that lie outside the matrix diagonal, as these cells represent regions showing varying reactivity between neutral and acid pH. As the most pertinent example, we describe and interpret the 2 nd column from the left, corresponding to regions of moderate dissolution of -0.27 nm/s at neutral pH. A significant number of pixels (12 %) in the 2 nd column belong to the high dissolution rate of -0.48 nm/s at acid pH revealing the expansion of the surface film dissolution over Al matrix upon acidification. The 3 cells below the diagonal ((-0.27, 0), (-0.27, 0.02) and (-0.27, 0.14) nm/s) account for 7 % of pixels, and they indicate the areas of an opposite effect, namely favorable precipitation (or disfavored dissolution) at acid pH. The 3 rd and 4 th columns from the left, which represent no surface evolution and moderate precipitation, respectively, also show a similar effect, as can be seen from the important filling of the cells of the matrix below the diagonal. The overall trend of higher filling of the cells below the diagonal is consistent with the reactivity maps, which show a decrease in the extent of the red color within the particle as it transitions from neutral to acid pH.

In summary, the correlation matrix is a valuable tool as it reflects the degree of reactivity change between neutral and acid pH in a precise and quantitative manner. It can be used to quantify and cluster reactivity transitions. Furthermore, the overall shape of the matrix can reveal apparently counter-intuitive conclusions, such as the fact that while more acidic conditions may yield an overall dissolution of the substrate, the particles may actually be more prone to precipitation.

In the second step (Figure 4, step 2), we visualize pattern changes upon acidification by using dimensionality reduction with PCA on the correlation matrices described above. We then perform clustering using the K-means algorithm with the number of clusters equal to 2, as identified by the elbow method, similarly to Figure 2. Figure 4 (step 2) shows the images that are closest to the centroids of the defined clusters. We use this approximation because the true centroids are correlation matrices that cannot be converted back to images of reactivity. The ML analysis of the data indicates that the (pseudo) centroids 1 and 2 display a similar pattern of reactivity, in which the red region inside the particle decreases in size and intensity at acidic pH values.

To confirm the suggested trend, using the same kinetic formalism for Al hydroxides formations, the simulation of the particle reactivity pattern has been recomputed and compared for neutral and acid pH solutions (Figure 4, step 3). The decrease in the extent of dissolution (red) regions in the particle center is consistent with the numerical model (Figure 4, step 3) developed in the previous section. We also provide the comparison between simulated and experimental 2D profiles to confirm that acidification leads consistently to an increase in the rate of film formation (SI-6). The decrease in bulk pH results in a decrease in pH over the center of the particle, which in turn disfavors the formation of soluble Al(OH)4 - (pathway 2 in Figure 1c) and favors the formation of Al(OH)3 film (pathway 1 in Figure 1c).

In conclusion, chemical communication between particles can exhibit varying behavior based

on experimental conditions and particle distribution. The intensity of diffusive fluxes between particles decreases with increasing distance, leading to a decline in interparticle communication. Our studies on Al6061 alloy (herein and ref. [38] ) showed that a distance increase from 2 µm to 6 µm was sufficient to inhibit interparticle communication and promote intraparticle communication. Automated image analysis was crucial in detecting this trend, as it may have gone unnoticed using traditional manual methods.

Conclusion

In this study, we adapted unsupervised ML algorithms to analyze the reactivity patterns from wide-field reflection-based optical microscopy of individual Si-rich particles during the immersion of Al6061 alloy interface in 5 mM NaCl. The analysis uncovered two distinct patterns: (1) homogeneous precipitation of a surface film over the particles and (2) the presence of an area in the particle center where the surface film was dissolving. The largest particles consistently displayed pattern 2, which was attributed to higher pH values in the particle center as a result of overlapping generated OH -diffusion fields within a single particle. This phenomenon, known as intraparticle chemical communication, is sensitive to bulk pH and was less pronounced after pH acidification. The experimental results of unsupervised ML clustering were rationalized through FEM simulations, highlighting the synergy of the two approaches in extracting knowledge from data-rich experimental datasets. This novel approach offers invaluable insights into microscale reactivity patterns, advancing materials selection and design, and paving the way for enhanced durability and energy efficiency across various applications. 

where Δ𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴 (𝑡𝑡) -𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴 (𝑡𝑡 = 0). We assumed that the layer formed at the Al surface is pure Al(OH)3, reported as the most thermodynamically stable phase. [5] Under this assumption, a 1 nm change in δ corresponds to 0.1 % light intensity change for Al/Al(OH)3/H2O interface deduced from equation 2 and following constants at λ = 490 nm: 𝑛𝑛 𝐴𝐴 𝐴𝐴𝐴𝐴 = 0.46+4.69i, [6] 𝑛𝑛 𝐴𝐴 𝐴𝐴𝐴𝐴(𝑂𝑂𝑂𝑂) 3 = 1.67 [7] and 𝑛𝑛 𝐴𝐴 𝑂𝑂 2 𝑂𝑂 =1.33. [6] In our previous work, we provided the analysis of sensitivity of the calibration factor as a function of refractive index variations of surface films, showing that the calibration factor should not vary more than 0.5 -2 times if surface films are composed not only Al(OH)3 but also commonly found Al2O3, AlO(OH) species. [1] Altogether, this provides confidence in the optical model and defines limits in the estimation of absolute values of surface film thickness.

Ex-situ scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX) surface analysis of identical locations

Identical locations of optical images were retrieved in secondary electron images during SEM analysis with the aid of grid marked on the Al6061 surface. SEM and EDX analyses were performed on a Gemini SEM 360 from Zeiss, with an acceleration voltage of 10 kV and 5 kV correspondingly, and 60 µm aperture window. Spectra and elemental mappings were processed using the AZtec software. The alignment to a pixel precision of optical and SEM/EDX images were performed with the automated feature-based algorithms implemented in OpenCV library as described in our previous work. [8] 

SI-2 Optical observations over Fe-rich particles

We present an observation of a portion of the surface area where Fe-rich particles are present on the Al interface. These particles are noticeable as white contrast in SEM images or dark gray contrast in reflectivity images (Figure S2-1). Despite this, reactivity maps do not show any change over these Fe-rich particles, a result that has been previously observed in our prior research. [1] This is believed to be due to the presence of Fe surface films that are stable in basic pH conditions produced by ORR and HER at the surface (as detailed in ref. [1] ). A light blue color is observed over the Al matrix at the periphery of Fe-rich particles, which is indicative of precipitation of Al surface films. This can be attributed to pH basification in this region as a result of ongoing cathodic activity over the Fe-rich particle. 

SI-3 Unsupervised machine learning (ML) for data extraction

We utilized unsupervised ML algorithms throughout the process of data extraction. The utilization of unsupervised algorithms minimized the number of necessary empirical parameters, resulting in a fully automated, unbiased approach to data extraction. The technical details of the procedure, depicted schematically in Figures 2 and4 in the main text, are described below. The code for each step as well as the original data have been made available in the Zenodo repository (https://doi.org/10.5281/zenodo.8017645).

Step 1, Figure 2

: Extraction of positions of individual particles

The direct results of the optical experiments are maps of reflected light collected at a rate of 5 Hz and reconstructed into optical videos. The first frame of these videos was selected and used to identify the locations of particles, which were observed as regions of reduced intensity.

(Figure SI3-1a).

Figure SI3-1. Step-by-step procedure for particle location extraction: (a) obtain the first frame of the optical movie, (b) segment the image into two segments to identify particle areas, (c) further segment only the particle areas to differentiate between the two types of particles, and (d) identify the contours of the black contrast particles (Si-rich).

We have observed two distinct types of particles in optical movies and through SEM and EDX images. Traditionally, particle position extraction would involve manual definition of a threshold intensity value for each particle type. However, we have proposed a different method that is fully automated and eliminates the need for manual thresholding. The method is based on K-means clustering from the scikit-learn library and uses image segmentation. The first step is to segment the image into two segments that identify all particle areas without distinguishing them into Si-rich and Fe-rich (Figure SI3-1b). In the second step, we perform another segmentation, but only for the areas attributed to particles. This allows us to find the position of all particles, divided into two categories attributed to Si-rich and Fe-rich particles (Figure SI3-1c). Finally, we use the "findContours" function of the openCV library to extract the position of the found particle categories and visualize the found areas for a double check to confirm the accuracy of the algorithm (Figure SI3-1d).

We adopted an unsupervised clustering approach based on the combination of PCA and Kmeans algorithms to automatically exclude areas found in the optical movie that are not actual particles, but instead are surface defects (presumed to be scratches). The process involved interpolating images of all individual particles to 30×30 pixels squared images using the "resize" function of OpenCV library. The resulting 2D arrays were transformed into a 1D vector of 900 dimensions and then reduced to a 2-dimensional representation using PCA. The resulting images were then plotted in 2D space (as shown in Figure SI3-2), where some points were identified as outliers. These outliers were then clustered using K-means and found to be falsely identified particles. These were then removed from further analysis. Examples of images that were falsely attributed as particles are also shown.

Lastly, we utilize the determined coordinates of individual particles from the initial image to extract videos of the reactivities assigned to each individual particle. Subsequently, we convert this video into maps of the rate of film evolution through the utilization of the Fresnel equation, as detailed in SI-1.

Step 2, Figure 2

: Extraction of positions of individual particles

In order to eliminate the influence of particle size variation on the clustering process, we interpolated images of all individual particles to 30×30 pixel squared images using the "resize" function from the OpenCV library. The resulting 2D arrays were then transformed into a 1D vector of 900 dimensions (30×30 pixels) and further reduced to a 2-dimensional representation through PCA. The images were then plotted in a 2D space (as shown in Figure 2, step 2 in the main text). The presence of individual clusters was not as apparent in this representation as compared to Figure SI3-2, hence we employed the elbow method to determine the optimal number of clusters. This approach, commonly used in clustering analysis, involves plotting the distortion (or explained variation) as a function of the number of hypothetical clusters. The distortion decreases as the number of clusters increases, however after a certain point, adding additional clusters results in minimal decreases in distortion. In our case, the elbow analysis in Step 3, Figure 2

: Expert interpretation of clustering output

The examination of images categorized as 1 (Figure SI3-4) and 2 (Figure SI-5) demonstrates that the centroids of each cluster (as depicted in Figure 2, step 2) effectively represent the statistically significant features observed in each cluster. The majority of the images in category 1 display a nearly uniform blue color across the entire particle surface, whereas the images in category 2 exhibit a red circular region situated somewhere in the particle center. It is important to mention that although this is the case for most particles, a closer inspection reveals that a small number of particles within each category may be misclassified. For instance, in Figure SI3-4, particles 19, 37, 38, and 39 exhibit more similarities to category 2 than 1. Conversely, in Figure SI3-5, particles 3, 22, 34, and 39 could be categorized as 1 instead of 2. These minor deviations are a result of the statistical nature of the applied unsupervised ML procedure, indicating that certain instances may deviate from the overall pattern, but the overall trend is still accurately identified.

The clustering of the data in Figure 4, in which bulk pH was acidified and two images of the same particles were taken, before and after acidification, was conducted using a similar process to the one described above, with the exception of constructing the correlation matrix.

In the following section, we will provide a comprehensive description of this procedure.

Step 1, Figure 4: Correlation matrix

In this dataset, we have two images taken from the same location instead of just one. Our objective in this section was to identify a descriptor that would reflect the degree of change between the two images, and subsequently cluster these descriptors. To achieve this, we correlated the pixel-by-pixel values of the two images and displayed the results in the form of a correlation matrix (Figure SI3-6). The x-axis represents the values of the images before pH acidification, while the y-axis represents the values of the images after pH acidification. Before correlating the pixel-by-pixel values, we segmented each image into five bins of values using K-means clustering. The average value of each bin was then plotted on the axes of the correlation matrix.

Step 2, Figure 4: Finding (pseudo) centroids for each cluster

Having established the correlation matrices, we proceeded to conduct a clustering procedure similar to the one previously described for Figure 2. However, there is one particular aspect worth mentioning. The centroid of each cluster is represented by the correlation matrix, but since the exact pixel location information is lost when plotting the correlation matrix, it is not possible to revert the correlation matrix back to two images of the same location. To circumvent this limitation, we determined the coordinates of the centroid and manually identified the closest set of images relative to the centroid. These images are referred to as (pseudo) centroids, as they represent actual experimental images, rather than the true geometrical center of the cluster.

SI-4 Average distance between particles in alloy

In Figure SI4-1, we present a side-by-side comparison of two images featuring Al6061 interfaces to demonstrate that the average inter-particle distance has increased to approximately 6 µm, in contrast to our previous study where the average inter-particle distance was approximately 2 µm. [1] We also provide histograms which depict the count of neighboring particles within a 10 µm radius around each particle (Si-rich and Fe-rich) taken from the SEM images. This particular metric was previously employed in our earlier work to elucidate the mechanism of inter-particle communication. The comparison of the histograms for both scenarios reveals that the count of neighbors for all particles adheres to a Gaussian distribution, with a peak at 30-35 neighboring particles in our previous work, and 1-2 neighboring particles in the current study. This accentuates a less dense particle distribution in the current work. The Python code and the original SEM data used for the data representation in [1] and (b) the sample utilized in the current study, are provided alongside histograms depicting the number of neighboring particles within a 10 µm radius.

SI-5 Finite element method (FEM) simulations of intraparticle communication

The FEM model was constructed utilizing a 3D geometry with 2-dimensional axial symmetry, utilizing the COMSOL Multiphysics The simulation box is presented as a hemisphere with the line at the left corner presenting the flat particle surface. The surface of the particle was set to generate homogeneous flow of OH - at constant rate of 1.5×10 -4 mol/(m 2 s), representing local cathode where oxygen reduction reaction (ORR) or hydrogen evolution reactions (HER) occur. The rate of this constant was chosen in the range of values reported in the literature for Si-rich phases in Al alloys [9][10][11][12][13] that was already used in our previous work. [1] The ORR and HER reactions lead to local pH basification and dissolution or precipitation of Al(OH)3 film over particle surface:

𝐴𝐴𝐴𝐴 3+ + 3𝑂𝑂𝐻𝐻 -↔ 𝐴𝐴𝐴𝐴(𝑂𝑂𝐻𝐻) 3 (XX) 𝐴𝐴𝐴𝐴(𝑂𝑂𝐻𝐻) 3 + 𝑂𝑂𝐻𝐻 -↔ 𝐴𝐴𝐴𝐴(𝑂𝑂𝐻𝐻) 4 -

(XX)

The initial thickness of Al(OH)3 was set to 10 nm over particle surface as a boundary condition. Bulk concentrations of Al 3+ and Al(OH)4 -were set to 10 -6 M as a boundary condition on hemisphere surface and domain concentrations. Diffusion coefficients of all species were set to 10 -9 m 2 /s. We used "transport of diluted species" module to account for the

SI-6 Comparison of results simulated by FEM and experimental results

In this section, we present the cross-sections of both experimental and simulated data using the example of a single particle (Figure SI6-1). This is to reinforce our observation from the maps that acidification consistently leads to an increase in the rate of film formation. 

  ) Al6061 interface exposed to 5 mM NaCl is depicted. (b) A diagram of the optical signal generation during OH -production (from ORR and HER) over a Si-rich particle is induced by galvanic coupling between the particle embedded in the anodically active Al matrix. Incident light (Ei) is focused on the metal surface. The collected light includes the contributions of reflected light (Er) from the surface film and the metal. Their interference forms the basis for the quantification of local surface thickness changes via the Fresnel equations. (c) On the left, an example of operando optical movie from RM is shown, correlated with ex situ SEM and EDX analysis. The evolution of normalized (to t = 0 s) light reflectivities (1+∆R⁄R) in areas (1, marked as blue square) and (2, marked as red square) are depicted in the figure on the right top. 1+∆R⁄R values are converted to relative film thickness, depicted on the right y-axis. The slopes of curves (1-blue) and (2-red) define rates of film evolution. The bottom right presents a diagram of Al(III) stability as a function of pH calculated in HydroMeduza software

Figure 2 .

 2 Figure 2. Automated pipeline for reactivity pattern recognition (SI-3). Step 1: The positions of all individual particles (155 in total) were extracted from a wide-field optical movie (187 × 180 µm 2 with a resolution of 200 nm) and converted into maps of rates of film evolution. Step 2: PCA projection of 155 maps of rates colored according to the results of clustering. The centroid image (see definition in text) of each cluster is represented in the figure. Step 3: Cluster 1 was placed in category 1 (47 particles, 30% of the whole population). Cluster 2 and cluster 3 both demonstrate the presence of intraparticle communication and were therefore merged to form a single category (labeled as category 2) of 108 particles (70% of the whole population). The scale bars of individual particles are 1 µm.

Figure 3 .

 3 Figure 3. Size effect on intraparticle communication. (a) Comparison over a single particle of (left side) the map of the rate of film evolution, and (right side) the first optical reflectivity image of the same area. The scale bars are 1 µm. The insets at the bottom of the figure display the values along the dotted line in the center of each image. (b) Histogram of particle size distribution depending on the category it belongs: category 1 (red, no communication) and

Figure 2 .

 2 The output data includes two images of surface film evolution at both neutral and acidic bulk pH for the same 155 particles (as shown in Figure4, step 1).

Figure 4 .

 4 Figure 4. Pipeline for the analysis of the evolution of particle reactivity upon acidification. (SI-3). Step 1: The rates of film evolution over all 155 individual particles are correlated pixel-by-pixel before and after pH acidification (via the addition of H2SO4 to a pH neutral solution of 5 mM NaCl). The outcome is presented as a correlation matrix (unique for each particle) where every cell represents the total number of pixels (shown in each cell in %) that possesses a given rate of film evolution at neutral pH (read on the x-axis) and a given rate at acid pH (read on the y-axis). Step 2: Results of the dimensionality reduction by PCA for correlation matrices of each particle colored according to clustering results. The particle at neutral and acid pH closest to the centroid of each cluster is shown and marked as (pseudo) centroid. Step 3: Numerical simulations are undertaken on the example of a particle with a diameter of 2.6 µm to reproduce the pattern extracted from clustering. The scale bars are 1 µm.
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Figure S2- 1 .

 1 Figure S2-1. (a) SEM image, (b) reflectivity image and (c) map of rate of film evolution of identical locations. The scale bars are 2 µm.

Figure SI3- 2 .

 2 Figure SI3-2. PCA reduced the particle image points in the form of a 2D representation, clustered with K-means algorithm and visualized in the plot with two different colors.Examples of images that were falsely attributed as particles are also shown.

Figure SI3- 3

 3 indicates that the number of clusters should be set to 3, as the most substantial decrease in distortion occurred when the number of clusters changed from 2 to 3. We would like to highlight that in addition to the combination of PCA and K-Means algorithms, we also explored other unsupervised ML techniques such as Uniform Manifold Approximation and Projection (UMAP), DBSCAN, OPTICS, Agglomerative clustering, Ward, Spectral Clustering, and others available in the scikit library. However, the combination of PCA and K-Means provided the most suitable results for our purposes.

Figure SI3- 3 .

 3 Figure SI3-3. Elbow plot of K-means particle clustering to define the optimal number of clusters. Examination of the centroids (representative images located at the geometric centers of each cluster in 2D space) showed two distinct patterns. Centroid 1 displayed uniform activity, while centroids 2 and 3 revealed a difference in activity between the center and the rest of the particle surface (Figure 2, step 2 in the main text). Based on this observation, we merged clusters 2 and 3 into category 2, and assigned cluster 1 to category 1. Representative images for each category are shown in Figure 2, with all images in the collection presented in Figure SI3-4 and Figure SI3-5. Upon manual verification, the percentage of falsely identified images in categories 1 and 2 was found to be 8 % and 6 % (all identified with red boxes in Figures SI3-4 and 5), respectively, demonstrating satisfactory accuracy.

Figure SI3- 4 .

 4 Figure SI3-4. All images of particle activities classified in category 1 (Figure 2, main text) with unsupervised K-means algorithm. Note that before clustering every original image was reduced to 30 × 30 pixels, what we see in the figure, and therefore, no scale is placed herein.The red boxes indicate the images that were falsely identified, according to manual verification.

Figure SI3- 5 .

 5 Figure SI3-5. All images of particle activities classified in category 2 (Figure 2, main text) with unsupervised K-means algorithm. Note that before clustering every original image was reduced to 30 × 30 pixels, what we see in the figure, and therefore, no scale is placed herein.The red boxes indicate the images that were falsely identified, according to manual verification.

Figure SI3- 6 .

 6 Figure SI3-6. Example of construction of correlation matrix

Figure

  //doi.org/10.5281/zenodo.8017645).

Figure SI4- 1 .

 1 Figure SI4-1. SEM images (secondary electron) of mirror-polished Al6061 samples, including (a) the sample used in our previous work[1] and (b) the sample utilized in the current study, are provided alongside histograms depicting the number of neighboring particles within a 10 µm radius.

  5.5 software, to analyze the steady-state transient behaviors of Al(OH)3 dissolution and precipitation processes on a single Si-rich particle as a function of particle size and bulk pH. The geometry of the simulation domain is presented in Figure S5-1.

Figure S5- 1 .

 1 Figure S5-1. The geometry of the simulation domain, obtained using Comsol software, is depicted in figure (a). The figure demonstrates the axis of symmetry and the implementation of meshing techniques. A zoomed-in view of the bottom-left portion, which encompasses the boundary of the particle surface, is presented in figure (b).

Figure S6- 1 .

 1 Figure S6-1. Comparison of experimental data (a) and data simulated by FEM (b) illustrating the evolution of particle reactivity upon acidification, complementing Figure 4 in the main text. Image (a) at the top presents an example of reactivity evolution as a map, with the dotted black line indicating the cross-section plotted in a graph at the bottom of the image. Image (b) at the top displays the simulated maps upon acidification, with a dotted white line indicating the cross-section that is plotted in a graph at the bottom of the image.
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SI-1 Experimental part

The experimental methodology is consistent with that previously documented in ref. [1] , and is restated in this document for ease of reading.

Sample preparation

The aluminum 6061-T6 alloy (Al6061) foil provided by Goodfellow was cut into a rectangular shape measuring approximately 20 mm × 6 mm and mounted on a carbon-based conductive mount (KonductoMet . The sample underwent a series of successive polishing steps using 320, 400, 600, and 1200 grit SiC, cooled with tap water, followed by a final polishing with a Presi TM cloth and 30 nm alumina suspension. The surface roughness of the sample, as determined through atomic force microscopy measurements, did not exceed 40 nm, as previously reported in ref. [1] . The sample was then cleaned in acetone and deionized water and left under atmospheric conditions for approximately one week to allow for the spontaneous formation of a ca. 10 nm layer of surface oxides/hydroxides. Despite using the same surface preparation procedure as reported in ref. [1] , differences in the average distribution of Fe-and Si-rich particles were observed at the interface (see below in SI-4). The surface was also marked with a grid using a scalpel to provide a visual reference for analysis. Just prior to the optical experiment, the sample was again cleaned with deionized water and dried.

In-situ reflective microscopy (RM)

The mirror-polished Al6061 sample was fixed at the bottom of a cylindrical, homemade cell, with a circular exposed surface area of approximately 50 mm 2 . The cell was then placed into a RM setup, with the light illumination and collection taking place from the top (Figure S1-1). The details of the in-house developed RM setup can be found in refs. [2,3] . In brief, the setup consisted of an Olympus microscope equipped with a water immersion objective (magnification ×40, 1.00-NA, Olympus LUMPlanFLN W) with a focus distance of approximately 3.3 mm, [4] and a 10-25VDC SVCam exo541MU3 CCD camera (SVS-Vistek GmbH, 4496×4504 pixels, 14 bit). The light source was a halogen white lamp filtered in the blue at 490 nm with an interference filter (spectral bandwidth of 20 nm), with a low intensity of approximately 2 mW cm -2 to prevent heating of the studied interface to approximately 10 -6 ⁰C during the experiment. The substrate was illuminated from the top by the blue light beam via the microscope objective, and the reflected light was collected by the same objective and sent to the CCD camera for real-time imaging. Before the experiment, the planarity of the analyzed surface area (10 -2 ⁰ precision) was achieved by minimizing the interference fringes using an interference Mirau objective (magnification ×10, CF Plan, Nikon). The Al6061 interface was then exposed to a distilled water medium (Millipore TM system, 18 MΩ×cm) by gently pouring 20 mL into the cell. After adjusting the focus in distilled water, image acquisition (at 5 Hz) was initiated, and a concentrated solution of 1 mL NaCl (analytical grade, VWR) was added to the distilled water to provide a final concentration of 5 mM NaCl. After 20 s, a concentrated solution of 1 mL H2SO4 (analytical grade, VWR) was added to the 5 mM NaCl solution to provide a final concentration of 10 mM H2SO4 + 5 mM NaCl. After adjusting the focus for approximately 5 s, another optical movie was recorded for 20 s. The image acquisition was stopped after approximately 45 s, and the substrate was removed and dried under an argon flow. The image processing procedure involved two steps. Initially, the reflectivity map was analyzed to identify four particles in each corner, and the intensity of reflectivity over these particles was fitted to a 2D Gaussian distribution. The maxima of the fit were subsequently extracted, and the frames were manually aligned such that the positions of the maxima for each particle did not vary by more than 1 pixel, thus reducing drift during image acquisition. Subsequently, the same particles were located on scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) images through a similar 2D Gaussian fitting procedure to align the in-situ reflectivity mapping (RM) and ex-situ SEM/EDX images with a precision of one pixel. The reflectivity maps were normalized based on the intensity of the first reflectivity image, and the change in the thickness of surface films was determined using the Fresnel model. All image analysis was performed using Python scripts available in Zenodo repository.

(https://doi.org/10.5281/zenodo.8017645)

Description of the Fresnel model for the conversion of reflectivity changes to the changes of surface film thickness. [2,3] In the case of a normal incidence, the light reflectivity (R) of an electromagnetic wave propagating in a medium A (characterized by its real index nA) reflecting on a plane substrate S (characterized by its complex refractive index nS), is the square of the modulus of the reflection coefficient and is given by eq. 1:

When an intermediate thin film of thickness δ (with refractive index nF) is formed between the substrate and the medium (such as an aluminum oxide/hydroxide film which is located between the Al6061 interface and the electrolytic solution), the expression of the light reflectivity can be expressed as

where λ is the wavelength of the incident light, 𝑖𝑖 = √-1, and 𝑟𝑟 𝐴𝐴𝐴𝐴 and 𝑟𝑟 𝐴𝐴𝐴𝐴 are the reflection coefficients at the medium A/surface film and surface film/substrate interfaces, respectively. The intensity of the reflected light as a function of time (Ir(t)) normalized by the light intensity at t=0 (Ir(0)) is then linked to the relative variation of the reflectivity as diffusive transport of generated species and "general form boundary partial differential equation" (PDE) module to account for dissolution/precipitation kinetics of surface film as described in ref. [1] . Briefly, PDE was added in the form of first order PDE: 𝜕𝜕𝜕𝜕{𝐴𝐴𝐴𝐴(𝑂𝑂𝐻𝐻) 3 } 𝜕𝜕𝑡𝑡 ⁄ = 𝑟𝑟, where 𝜕𝜕{𝐴𝐴𝐴𝐴(𝑂𝑂𝐻𝐻) 3 } is the surface concentration of Al(OH)3 and 𝑟𝑟 is the rate of its formation. 𝑟𝑟 was defined as 𝑟𝑟 = 𝑟𝑟 1 + 𝑟𝑟 2 where

𝜕𝜕 𝐴𝐴𝐴𝐴 , 𝜕𝜕 𝑂𝑂𝑂𝑂 and 𝜕𝜕 𝐴𝐴𝐴𝐴𝑂𝑂𝑂𝑂 4 are the solution activities of Al 3+ , OH -and Al(OH)4 -defined as their concentrations normalized by 1 M; 𝐾𝐾 ′ is the solubility constant of Al(OH)3, 𝐾𝐾 ′′ is the complexation constant of Al(OH)4 -, 𝑘𝑘 ′ and 𝑘𝑘 ′′ are the kinetic constants of reactions ( 3) and ( 4) correspondingly. 𝐾𝐾 ′ = 10 -33 and 𝐾𝐾 ′′ = 0.257 were retrieved from the database of chemical equilibrium software [5] while 𝑘𝑘 ′ = 4.5×10 27 mol/(m 2 s) and 𝑘𝑘 ′′ = 1.0×10 10 mol/(m 2 s) were taken from our previous work. [1] The initial concentration of 𝜕𝜕{𝐴𝐴𝐴𝐴(𝑂𝑂𝐻𝐻) 3 } was set to 3.1×10 -4 mol/m 2 that corresponds 10 nm surface oxide/hydroxide layer, taking into account the density of Al(OH)3 as 2.42 g/cm 3 .

We conducted two sets of simulations: (1) with the particle diameter ranging from 1.5 µm to 2.7 µm, while keeping the pH fixed at 7 to mimic a neutral 5 mM NaCl solution and (2) with the pH ranging from 7 to 2 at a fixed particle diameter of 2.6 µm, to simulate the acidification of the solution following the addition of 10 mM H2SO4. The pH of the solution was controlled by adjusting the concentration of OH -ions. The local concentration of OH -ions played a significant role in the development of surface films at the particle interface, as indicated by equations 1 and 2, and was supported by experimental findings discussed in the main text.