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Abstract
We examine a new general machine learning model for binary classification by considering
the expected weighted output of a parameterized predictor, where the weighting belongs
to an RKHS of functions over the parameters. This weighting can be learned using various
algorithms. One of them is Stochastic Functional Gradient Descent (SFGD), which itera-
tively samples a parameter and some training data, and calculates an approximation of the
functional gradient of the loss. Using the stability properties of the algorithm, we show that
convergence is guaranteed, under mild assumptions, with rate O(1/

√
m) on the number of

examples needed for learning. Further theoretical analysis, based on the Rademacher com-
plexity of the proposed class of predictors, provides a similar bound on the generalization
error. We also present three alternate learning algorithms, and a procedure for pruning the
model using the Lasso. We prove an error bound for the resulting sparse predictor. Finally,
we run experiments using simple instantiations of the model to showcase its usability, and
compare the learning algorithms among one another, and to the state of the art.
Keywords: Reproducing kernel Hilbert space, functional gradient, stochastic gradient
descent, random features, kernel methods

1. Introduction

The simplest but not least important group of machine learning models consists of linear
predictors. Linear predictors are easy to optimize, and simple to analyze, i.e. derive theo-
retical guarantees of their prediction performance. Kernel methods, such as Support Vector
Machines (SVMs) (Steinwart and Christmann, 2008), and Kernel Ridge Regression (Vovk,
2013), build upon linear predictors using the kernel trick to easily produce highly complex
predictors. These methods are powerful, but have an algorithmic complexity which is cubic
in the amount of training data, meaning that they scale poorly to Big Data.

A popular way of circumventing this weakness of kernel methods is to approximate the
kernel via random features (called random feature methods, see e.g. Rahimi and Recht (2008,
2009)). Indeed, it can be shown that any kernel can be expressed as the expected value of
some simple random variable (Hein and Bousquet, 2004). A large enough sample will yield
high fidelity, and the learning algorithm will only have linear complexity in the size of the
dataset. However, there are downsides to this approach. The approximation might require
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a prohibitively large sample, and the algorithmic complexity is a function of this sample
size, leading to impractical learning times when a high accuracy is needed. In general,
random feature methods also work poorly when the input space is high-dimensional. On the
theoretical side, there is also the fact that the predictors obtained from approximating the
kernel in this way do not actually belong to the intended class (the RKHS of the kernel),
but only to the approximating class, leading to an approximation error between the classes.

In this paper, we introduce a new model which aims at addressing some of these short-
comings of random feature methods. Most importantly, the model does not need to be
approximated, since it can be calculated exactly (under some conditions). This removes any
loss of accuracy due to an imprecise approximation, and enables working directly within the
target class of predictors, rather than an approximation class. It also changes the geometry
of the predictor space in interesting ways, such as allowing for a simple, natural pruning
method.

Perhaps the most interesting aspect of the model we propose is its generality. It is a
highly flexible model, in that it can be instantiated using a variety of high-level parameters.
(More precisely, an instantiation is a tuple (W,K, p, ϕ), where W is a parameter space, K
is a kernel, p is a probability distribution on W and ϕ is a base predictor. Any combination
of these four parameters will yield a different space of predictors.) In this paper, we only
scratch the surface of what this model can accomplish. Leveraging this flexibility appears to
be a significant challenge, however, due to a requirement for calculating complex integrals.
It is the most important aspect of the model to be further investigated.

We provide four different algorithms for learning the model. The most theoretically
interesting is called Stochastic Functional Gradient Descent (SFGD). It is an iterative al-
gorithm with convergence rate of O(1/

√
m) on the number of examples needed for learning

(under mild assumptions). We also provide a bound on the generalization error based on
the Rademacher complexity of the proposed class of predictors, valid for any learning algo-
rithm. These theoretical results are obtained using less stringent assumptions than Rahimi
and Recht (2009), which is an improvement over a longstanding state-of-the-art result.

Finally, we run experiments using simple instantiations of the model to showcase its
usability. Prediction accuracy is equal or better than Rahimi and Recht (2009), and ties the
state of the art on some datasets. These results clearly show that the model and algorithm
are viable machine learning tools, though further work is needed to extract the full potential
of the model.

The paper is structured as follows. We begin in Section 2 by recalling basic notions and
notations of functional analysis and machine learning. We summarize the work of Rahimi
and Recht (2009) in Section 3. Next, we define the model and its theoretical properties in
Section 4, including some examples of model instantiations in Section 4.5. We present four
learning algorithms in Section 5. We describe in Section 6 how to prune the model, and
prove bounds on the error of the resulting sparse predictor. We prove theoretical guarantees
in Section 7: a bound on the generalization error in Section 7.1, based on the Rademacher
complexity of the class of predictors, and a bound on the rate of convergence of Algorithm 1
in Section 7.2, using the stability properties of the algorithm. We also compare these results
to Rahimi and Recht (2009) in Section 7.3. Finally, we present experimental results in
Section 8, demonstrating the soundness of the model and learning algorithms.
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2. Basic notions

We begin in Section 2.1 by recalling the main notions and definitions of supervised machine
learning, and establish the notation to be used in the remainder of the paper. Then, we
recall core definitions of functional analysis in Section 2.2, and give a summary description
of reproducing kernel Hilbert spaces in Section 2.3. In Section 2.4, we present the notion of
the functional gradient, which is crucial to the working of the learning algorithms.

2.1 Machine learning

Consider some instance space X , and a label space Y ⊆ R. A predictor or hypothesis
is a function h : X → Y (we will equivalently write h ∈ YX , where YX is the space of all
functions from X to Y). We are in the presence of a classification problem when Y is
a discrete, usually finite set. The most basic and important type of classification problem,
which we focus on in this paper, is binary classification, when Y contains only two labels.
In that case, we can always write Y = {−1, 1} to simplify equations.

We call a pair (x, y) ∈ X ×Y an example. A sample or training set is a sequence or
set of examples S = {(xi, yi)}mi=1 ⊂ (X × Y)m. A learning algorithm A takes some sample
S as input, and outputs a predictor A(S) ∈ RX . The goal is for this predictor to satisfy
some notion of accuracy, and the algorithm will achieve this by optimizing some criteria
over the training set. To this end, we define a loss to be a function ℓ : R × Y → [0,∞).
Given some predictor h, we can calculate the loss value on example (x, y) as ℓ(h(x), y). This
value can be seen as a penalty for predicting h(x) when the correct value is y. Common
examples are the 0-1 loss ℓ(h(x), y) := 1[ sign(h(x)) ̸= y] and the square loss, defined as
ℓ(h(x), y) := (h(x)− y)2.

We define the empirical risk of the predictor on the sample S as:

LS(h) :=
1

m

m∑
i=1

ℓ(h(xi), yi). (1)

Furthermore, we suppose that all examples have been sampled i.i.d. from some data gener-
ating probability distribution D over X × Y. This allows us to define the true risk of the
predictor h as:

LD(h) := E
(x,y)∼D

[ℓ(h(x), y)]. (2)

In the binary classification setting, we denote the classification error of h as:

L01D (h) := E
(x,y)∼D

1[ sign(h(x)) ̸= y], (3)

and its empirical classification error as:

L01S (h) :=
1

m

m∑
i=1

1[ sign(h(xi)) ̸= yi]. (4)

2.2 Functional analysis

We denote scalar products (or inner products) on a linear space X as ⟨·, ·⟩ : X×X → R.
For some operator Λ : X → Y , we will often write Λx instead of Λ(x). The norm of a linear
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operator is defined as:
∥Λ∥ := sup

x∈X:∥x∥X=1
∥Λx∥Y . (5)

The operator is said to be bounded if its norm is finite. Note also that a linear operator
is continuous if and only if it is bounded. In the special case where Y = R, an operator Λ :
X → R is called a functional. The following theorem applies to bounded (i.e. continuous)
linear functionals.

Theorem 1 (Riesz representer theorem) Consider a Hilbert space H, and a bounded
linear functional L : H → R. There exists a unique h ∈ H such that ∀α ∈ H, Lα = ⟨α, h⟩H.
This element h is the representative of the functional L.

This theorem simply states that bounded linear functionals in a Hilbert space can be written
as a scalar product. This is a surprisingly powerful result. It forms the basis for understand-
ing reproducing kernel Hilbert spaces, as we will see in the next section.

(See e.g. Atkinson and Han (2005) for more details on functional analysis.)

2.3 Reproducing kernel Hilbert spaces

Formally, a reproducing kernel Hilbert space (RKHS) over some vector space W is
a Hilbert space H ⊂ RW of real-valued functions of W which has the property that the
evaluation functionals are continuous. This means that for any w ∈ W, the functional
Lw : H → R defined by Lw(α) := α(w) is continuous. By the Riesz representer theorem,
there exists for all w ∈ W a unique element Kw ∈ H such that

α(w) = Lw(α) = ⟨α,Kw⟩H , ∀α ∈ H. (6)

Because Kw is itself a function of W, we can apply it to some other u ∈ W, and reapply the
Riesz representer theorem, which gives us:

Kw(u) = Lu(Kw) = ⟨Kw,Ku⟩H . (7)

We define the reproducing kernel of the RKHS H as the function:

K(w, u) := Kw(u) = ⟨Kw,Ku⟩H . (8)

As we can see from the definition of the kernel, the element Kw exactly corresponds to the
function K(w, ·) :W → R. For clarity, we will use this new notation from now on.

The reproducing kernel calculates the scalar product between two elements w, u ∈ W
following the embedding (w, u) 7→ (K(w, ·),K(u, ·)) into H. Importantly, it is not neces-
sary to calculate this embedding explicitely, which would be impossible when H is infinite-
dimensional. In fact, the Moore–Aronszajn theorem (see e.g. Berlinet and Thomas-Agnan
(2011)) states that any positive definite symmetric (PDS) function K :W ×W → R is the
reproducing kernel of an RKHS H of real-valued functions of W, and every function α ∈ H
can be written as a sum or a convergent series of the form:

α =
∞∑
i=1

aiK(wi, ·), (9)
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for some real coefficients (ai)
∞
i=1 and some {wi}∞i=1 ⊂ W. Finally, given this representation

for the elements in H, the scalar product can also be written as a sum (or series). For some
α, β ∈ H that can be written as α =

∑∞
i=1 aiK(wi, ·) and β =

∑∞
i=1 biK(ui, ·), the scalar

product is equal to:

⟨α, β⟩H =

∞∑
i=1

∞∑
j=1

aibjK(wi, uj). (10)

2.4 Functional gradient

The usual notion of gradient (crucial for gradient descent algorithms) can be generalized to
functionals. Consider some normed spaces X and Y . An operator Λ : X → Y is Fréchet
differentiable at x ∈ X if and only if there exists a bounded linear operator A : X → Y
such that:

Λ(x+ z) = Λx+Az + o(∥z∥), z → 0. (11)

See Definition 5.3.1 of Atkinson and Han (2005). We call A the Fréchet derivative of Λ
at x. If Λ is a bounded linear operator, then it is its own Fréchet derivative.

Notice that when Λ is a functional, in other words when Y = R, the Fréchet derivative
A is a bounded linear functional. If X is a Hilbert space, then the Riesz representer theorem
applies, allowing us to write A as a scalar product of the form:

Az = ⟨z,∇xΛx⟩X , (12)

for some ∇xΛx ∈ X. Equation (11) becomes:

Λ(x+ z) = Λx+ ⟨z,∇xΛx⟩X + o(∥z∥), z → 0. (13)

We call ∇xΛx the functional gradient of Λ at x.
The functional gradient is a well-defined object, but it often cannot be used in practice,

due to the infinite complexity of representing arbitrary functions. A notable exception is
when the input space X is an RKHS, in which case the functional gradient sometimes admits
an analytical form, which can be calculated exactly in finite time. The following lemmas
present the functional gradient of the evaluation functionals and the squared norm in an
RKHS.

Lemma 2 Consider an RKHS H of kernel K over a vector spaceW. The functional gradient
of the evaluation functional Lw(α) := α(w) for some fixed point w ∈ W is:

∇αLw(α) = ∇αα(w) = K(w, ·).

Proof Notice that α(w) = Lw(α) = ⟨α,K(w, ·)⟩ is a bounded linear functional. As men-
tioned above, a bounded linear functional is its own Fréchet derivative. By comparing to
Equation (12), we can immediately conclude that the functional gradient of the evaluation
functional must be its representer K(w, ·).

Lemma 3 Consider an RKHS H and α ∈ H. Then ∇α∥α∥2H = 2α.
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Proof Let ε > 0 and β ∈ H, with ∥β∥H = 1. We have:

∥α+ εβ∥2H = ⟨α+ εβ, α+ εβ⟩H
= ⟨α, α⟩H + 2 ⟨α, εβ⟩H + ⟨εβ, εβ⟩H
= ∥α∥2H + ⟨2α, εβ⟩H + ε2∥β∥2H
= ∥α∥2H + ⟨2α, εβ⟩H + ε2.

Comparing this to Equation (13), we can conclude that the functional gradient is 2α.

3. Previous work

The model introduced in the next section of this paper most closely resembles the work
of Rahimi and Recht (2009), a longstanding state-of-the-art in the field of random feature
methods. Given a parameter space W and feature function ϕ(w, x), as well as a probability
distribution p on W, Rahimi and Recht (2009) define the following class (cf. Equation (6)
of Rahimi and Recht (2009)):

Fp :=

{
x 7→ E

w∼p
[α(w)ϕ(w, x)]

∣∣∣∣ ∥α∥L∞(W) ≤ C
}
, (14)

and requires supw,x |ϕ(w, x)| ≤ 1. Since the functions in Fp can’t be represented or calculated
exactly, Rahimi and Recht (2009) also define the following approximation class:

F̂w :=

{
x 7→ 1

T

T∑
t=1

atϕ(wt, x)

∣∣∣∣∣ ∀t, |at| ≤ C
}
, (15)

for some (w1, . . . , wT ) which have been randomly sampled according to distribution p. Fur-
ther assuming that the loss is ρ-Lipschitz, the main result of Rahimi and Recht (2009) states
that the output f̂ of their Algorithm 1 is such that:

LD(f̂)− min
f∈Fp

LD(f) ≤ O

((
1√
m

+
1√
T

)
ρC

√
log

1

δ

)
, (16)

with probability 1 − 2δ on the choice of training set and parameters (w1, . . . , wT ). We
compare this to our results in Section 7.3.

4. RKHS weightings of functions

In this section, we introduce a new mathematical model. It takes the form of an operator
Λ, which takes as input an RKHS function α, and outputs a predictor Λα. The model
and hypothesis class are defined in Section 4.1. Because of the importance of the operator
norm in the theoretical guarantees of Section 7, we examine in detail the operator norm of
Λ in Section 4.2. Then, we define all the assumptions that we make in Section 4.3. We
calculate the functional gradient of the loss functionals in Section 4.4. Finally, we give
explicit examples of instantiations of the model, with formulas for calculating the output,
in Section 4.5.
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4.1 Model definition

LetW be a parameter space, and X the instance space. Let ϕ :W×X → R be some function,
which we will refer to as the base predictor. We can for example take W = X = Rn,
and use ϕ(w, x) = sign(⟨w, x⟩) (see the examples of Section 4.5). Let p be a probability
distribution over W. We define the operator Λ : RW → RX as:

Λα := E
w∼p

[α(w)ϕ(w, ·)]. (17)

In other words, we have the following for all x ∈ X :

Λα(x) := E
w∼p

[α(w)ϕ(w, x)]. (18)

This operator transforms a weight function α over W into a predictor Λα over X . How-
ever, calculating the prediction for a given x requires solving the expectation of Equa-
tion (18). To ensure that this model is well-defined (the expectation must always exist and
be finite), we need to constrain the space of allowable weight functions (and add some fur-
ther assumptions, which we will explore further below). We will pay special interest, though
not exclusive, to the case where Λ operates on an RKHS.

Let’s therefore consider K : W ×W → R a positive definite symmetric (PDS) kernel
over W. Denote H the RKHS of kernel K. We call the tuple (W,K, p, ϕ) an instantiation
of the model, and define the following class of predictors:

ΛH :=
{
Λα
∣∣∣ α ∈ H} =

{
x 7→ Λα(x) := E

w∼p
[α(w)ϕ(w, x)]

∣∣∣∣ α ∈ H} . (19)

It will be useful for theoretical guarantees to limit the norm of the weight function α ∈ H.
Therefore, for some constant B > 0, we also define the set:

HB :=
{
α ∈ H

∣∣∣ ∥α∥H ≤ B}, (20)

and the following class of predictors:

ΛHB :=
{
Λα
∣∣∣ α ∈ H, ∥α∥H ≤ B}. (21)

For practical, computationally viable purposes, the weight function α ∈ H will be ex-
pressed as a finite sum:

α =
T∑
t=1

atK(wt, ·), (22)

for some real coefficients (at)t≥1 and {wt}t≥1 ⊂ W. (In practice, {wt}t≥1 will be sampled
from distribution p, and the coefficients (at)t≥1 will be learned.) The output of the model
can be rewritten as:

Λα(x) := E
w∼p

[α(w)ϕ(w, x)]

= E
w∼p

[
T∑
t=1

atK(wt, w)ϕ(w, x)

]

=
T∑
t=1

at E
w∼p

[K(wt, w)ϕ(w, x)]. (23)

7
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To calculate this prediction exactly, the expectation:

E
w∼p

[K(u,w)ϕ(w, x)] (24)

must admit an analytical form for all u ∈ W and x ∈ X . We give examples in Section 4.5.
In the next section, we explore under what conditions the operator Λ is continuous by

upper bounding its norm. This will ensure that the model is well-defined, and give us useful
results for deriving our theoretical guarantees in Section 7. Indeed, it is important that finite
movements in weight function space have finite effect in predictor space, so that learning
algorithms can converge.

4.2 Norm of the operator

A crucial quantity, which appears in most guarantees that we show in Section 7, is the
operator norm of Λ. The following theorem upper bounds that norm.

Theorem 4 Consider an instance space X , a parameter space W, a function ϕ :W×X →
R, an RKHS H ⊂ RW of kernel K, a distribution p over W and the operator Λ defined by:

Λα := E
w∼p

[α(w)ϕ(w, ·)].

Consider the constant defined by:

κ := sup
x∈X

√
E

w∼p

[
∥ϕ(w, x)K(w, ·)∥2H

]
= sup

x∈X

√
E

w∼p
[K(w,w)ϕ(w, x)2]. (25)

Suppose that κ is finite. Then Λα ∈ L∞(X ) for all α ∈ H. Furthermore, the constant:

θ := sup
x∈X

∥∥∥∥ Ew∼p
[ϕ(w, x)K(w, ·)]

∥∥∥∥
H
= sup

x∈X

√
E

w∼p
E
u∼p

[K(u,w)ϕ(u, x)ϕ(w, x)] (26)

is well-defined and we have:

∥Λ∥ := ∥Λ∥H→L∞(X ) ≤ θ ≤ κ. (27)

Proof The ultimate goal is to show that ∥Λ∥ ≤ θ ≤ κ. This can be achieved by showing
that ∥Λα∥∞ ≤ θ∥α∥H ≤ κ∥α∥H for any α ∈ H. To do this, we show that |Λα(x)| ≤ θ ≤ κ
for all x. Let’s begin by showing that ∥Λ∥ ≤ κ. Consider any α ∈ H and x ∈ X . We have:

|Λα(x)| =
∣∣∣∣ Ew∼p

[α(w)ϕ(w, x)]

∣∣∣∣
≤ E

w∼p

[
|α(w)ϕ(w, x)|

]
= E

w∼p

[
|⟨α,K(w, ·)⟩H ϕ(w, x)|

]
(Reproducing property)

≤ E
w∼p

[
∥α∥H∥K(w, ·)∥H|ϕ(w, x)|

]
(Cauchy–Schwartz inequality)

= E
w∼p

[
∥K(w, ·)∥H|ϕ(w, x)|

]
∥α∥H

≤
√
E

w∼p

[
∥ϕ(w, x)K(w, ·)∥2H

]
∥α∥H (Jensen inequality)

≤ κ∥α∥H.

8
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Therefore Λα is a bounded function of x, and we have ∥Λ∥ := ∥Λ∥H→L∞(X ) ≤ κ. Addition-
ally, we can observe that Λα(x), seen as an operator from H to R (mapping α to Λα(x)), is
a bounded linear functional of norm at most κ. The Riesz representer theorem applies, and
tells us that we can write:

Λα(x) = ⟨α,ψ(x)⟩H , (28)

for some ψ(x) ∈ H. In fact, we have:

ψ(x) = E
w∼p

[ϕ(w, x)K(w, ·)], (29)

since, by the linearity of the scalar product in H and of the expectation, we can write:

Λα(x) := E
w∼p

[α(w)ϕ(w, x)]

= E
w∼p

[⟨α,K(w, ·)⟩H ϕ(w, x)]

=

〈
α, E

w∼p
[ϕ(w, x)K(w, ·)]

〉
H

= ⟨α,ψ(x)⟩H . (30)

Using the Cauchy–Schwartz inequality, we have:

|Λα(x)| ≤ ∥α∥H∥ψ(x)∥H = ∥ψ(x)∥H =

∥∥∥∥ Ew∼p
[ϕ(w, x)K(w, ·)]

∥∥∥∥
H
≤ θ. (31)

This shows that ∥Λ∥ ≤ θ. Finally, we need to show that θ ≤ κ. This is a direct consequence
of Jensen’s inequality:

θ = sup
x∈X

∥∥∥∥ Ew∼p
[ϕ(w, x)K(w, ·)]

∥∥∥∥
H

≤ sup
x∈X

E
w∼p

[
∥ϕ(w, x)K(w, ·)∥H

]
≤ sup

x∈X

√
E

w∼p

[
∥ϕ(w, x)K(w, ·)∥2H

]
= κ.

We give examples in Section 4.5 of the values of θ and κ for two different instantiations of
the model. A recurring pattern is that θ is more difficult to calculate, but yields a much
tighter bound on the operator norm of Λ.

4.3 Assumptions

The theoretical results in this paper use some or all of the following assumptions:

Assumption 1 (A1). Consider some instance space X , an instantiation (W,K, p, ϕ) of
the model such that the constant κ defined in Equation (25) is finite, H the RKHS of
kernel K, the operator Λ defined by Equation (17) and the predictor class ΛHB defined by
Equation (21).
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Assumption 2 (A2). Consider a label space Y ⊆ R and let D be the data generating
distribution over X × Y.

Assumption 3 (A3). Suppose the loss ℓ : R × R → [0,∞) is ρ-Lipschitz, and can be
written as ℓ(z, y) = ℓ(yz).

Assumption 4 (A4). Suppose the loss ℓ : R×R→ [0,∞) is convex and differentiable in
its first argument. We denote ℓ′(z, y) := ∂ℓ

∂z (z, y) the partial derivative with regard to the
first argument.

4.4 Unbiased approximation of the functional gradient

Iterative learning algorithms for the model of Equation 17 require an approximation of
the gradient at each iteration. In this section, we calculate the functional gradient of the
empirical risk functional (see Equation (1)) with regard to the model of Equation (17). We
start with the following lemma, which gives the functional gradient of the model evaluation
at a single point x ∈ X .

Lemma 5 Assume A1. Then ∇αΛα(x) = ψ(x) := Ew∼p [ϕ(w, x)K(w, ·)].

Proof See Equation (28).

We can use Lemma 5, the linearity of the gradient, as well as the chain rule, to calculate
the gradient of the empirical risk functional. We do this in the next theorem.

Theorem 6 Assume A1, A2 and A4. Suppose we have a sample S ⊆ (X × Y)m. Then:

∇α(LS(Λα)) = E
w∼p

[
1

m

m∑
i=1

ℓ′(Λα(xi), yi)ϕ(w, xi)K(w, ·)
]
. (32)

Proof We have:

∇α(LS(Λα)) =
1

m

m∑
i=1

∇αℓ(Λα(xi), yi) (Linearity of the gradient)

=
1

m

m∑
i=1

ℓ′(Λα(xi), yi)∇αΛα(xi) (Chain rule)

=
1

m

m∑
i=1

ℓ′(Λα(xi), yi) E
w∼p

[ϕ(w, xi)K(w, ·)] (Lemma 5)

= E
w∼p

[
1

m

m∑
i=1

ℓ′(Λα(xi), yi)ϕ(w, xi)K(w, ·)
]
. (Linearity of the expectation)

We will see in Section 7, for example in Theorem 10, that the theoretical guarantees depend
on the norm of the weight function α, namely ∥α∥H. Because of this, it is wise to add a
regularization term λ

2∥α∥
2
H (with λ > 0) to the empirical risk in order to control this norm

while learning. We therefore define the regularized empirical risk:

LregS (Λα) := LS(Λα) +
λ

2
∥α∥2H, (33)

10
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By the linearity of the gradient, and Lemma 3, we have that:

∇αLregS (Λα) = ∇αLS(Λα) +∇α
λ

2
∥α∥2H = ∇αLS(Λα) + λα. (34)

Because the functional gradients of Equations (32) and (34) are expectations over the choice
of w, they are difficult objects to work with in practice. However, we can easily extract
unbiased approximations of the gradients through simple random sampling. Indeed, consider
the regularized empirical risk functional LregS (Λα). By sampling some parameter u according
to distribution p, and a data batch s uniformly (with replacement) from S, we can define
the following unbiased approximation for the functional gradient ∇αLregS (Λα):

v(α, u, s) :=

 1

|s|
∑

(x,y)∈s

ℓ′(Λα(x), y)ϕ(u, x)

K(u, ·) + λα. (35)

This approximation is indeed unbiased since, by Equations (32) and (34), we get that:

E
u∼p

E
s∼U(S)|s|

[v(α, u, s)] = ∇αLregS (Λα). (36)

We show in Section 5 how to use this gradient approximation to learn the model.

4.5 Examples of instantiations of the model

The model of Equation (17) needs to be instantiated by choosing values for (W,K, p, ϕ).
This is a very flexible model, and as such, the possibilities are wide. In this section, we
present two generic instantiations of the model that can be used out of the box for any
problem where X ⊆ Rn. These are some of the simplest instantiations possible, using basic
choices for (W,K, p, ϕ) such as a Gaussian distribution p or the sign function as the base
predictor ϕ. This allows calculating the analytical form for the expectation:

E
w∼p

[K(u,w)ϕ(w, x)], (37)

required to calculate the model in practice (see Equation (23)), as well as the exact value
for κ (Equation (25)) and an upper bound for θ (Equation (26)). All of these values are in
Table 1. (The calculus is in the appendix). In natural language:

1. Instantiation 1 considers the Gaussian distribution and kernel, and the sign function
as the base predictor.

2. Instantiation 2 considers decision stumps as the base predictor. Each parameter w ∈
W is a tuple containing a variable index, and a threshold value. The distribution is
uniform on the index, and Gaussian on the threshold value. The kernel is Gaussian
on the threshold value.

The range of possible instantiations is virtually infinite, but each one requires rather heavy
calculus to find the value for the expectation Ew∼p [K(u,w)ϕ(w, x)]. This is a vast area for
further work, but for the purpose of this introductory paper, we will limit ourselves to these
two simple instantiations.

11
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Instantiation 1 Instantiation 2

W Rn {1, . . . , n}× R
K(u,w) exp

(
−∥u−w∥22

2γ2

)
1[u1 = w1] exp

(
− (u2−w2)2

2γ2

)
p N (0, σ2I) U({1, . . . , n})×N (0, σ2)
ϕ(w, x) sign(⟨w, x⟩) sign(xw1 − w2)

Ew∼p [K(u,w)ϕ(w, x)]
(
1 + σ2

γ2

)−n/2
e

−∥u∥22
2σ2+2γ2 erf

(
⟨u′,x⟩√
2ζ∥x∥2

)
ζ
σne

−u22
2σ2+2γ2 erf

(
xu1−u′

2√
2ζ

)
κ 1 1

θ ≤
(
1 + 2σ2

γ2

)−n/4
≤ 1√

n

(
1 + 2σ2

γ2

)−1/4

Table 1: Two instantiations of the model. Note that ζ is defined by the relationship 1
2ζ2

=

1
2γ2 + 1

2σ2 , and u′ is obtained from u by the transformation u′ :=
(
1 + γ2

σ2

)−1
u.

5. Learning the model

Multiple learning algorithms can learn the model of Equation (18). We present four of them
in the following sections.

5.1 Stochastic functional gradient descent

Assuming that the loss ℓ is convex, we can apply a stochastic gradient descent algorithm
using the gradient approximation given by Equation (35), with updates at iteration t of the
form:

α← α− ηtv(α,wt, st), (38)

for some stepsize ηt, and be guaranteed to converge to the optimal solution. In fact, LregS (Λα)
is λ-strongly convex in α, by convexity of ℓ and linearity of Λα. We therefore propose using
a stochastic functional gradient descent algorithm for λ-strongly convex functions, similar to
the one found in Section 14.4.4 of Shalev-Shwartz and Ben-David (2014). See Algorithm 1
for the pseudocode and Theorem 11 for a convergence guarantee.

The weight function α learned this way will take the form:

α =
T∑
t=1

atK(wt, ·), (39)

for some real coefficients (a1, . . . , aT ) and where (w1, . . . , wT ) are the sampled parameters
(assuming α = 0 ∈ H is the first iterate), meaning that the weight function will always
remain an element of the RKHS H. This allows us to use Equation (23) to calculate the
predictions.

The bottleneck of Algorithm 1 is the projection step. Calculating the norm
∥∥∥α(t− 1

2
)
∥∥∥
H

can be done in O(t2), as it involves doing a matrix multiplication using the t × t Gram
matrix of the parameters at iteration t. Over T iterations, the projection step therefore
costs O(T 3) in computation time. However, a simple optimization can reduce this cost by a

12
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Algorithm 1 Stochastic functional gradient descent for learning the weight function
input Instantiation (W,K, p, ϕ), λ > 0, B > 0, number of iterations T , sample S, batch

size |s|
α(0) ← 0 ∈ H
for t = 1, . . . , T do

Sample st ∼ U(S)|s|
Sample wt ∼ p
ηt ← 1

λt

vt ← v
(
α(t−1), wt, st

)
(see Equation (35))

α(t− 1
2
) ← α(t−1) − ηtvt

α(t) ← min

(
1, B∥∥∥α(t− 1

2 )
∥∥∥
H

)
α(t− 1

2
) (projection step)

end for
output ᾱ := 1

T+1

∑T
t=0 α

(t)

factor of T to O(T 2), in line with the rest of the algorithm. Indeed, notice that the update
formula is:

α(t− 1
2
) ← α(t−1) − ηtvt. (40)

Referring back to Equation (35) and using the shorthand bt :=
(

1
|st|
∑

(x,y)∈st ℓ
′(Λα(x), y)ϕ(wt, x)

)
,

this can be rewritten as:

α(t− 1
2
) ← α(t−1) − ηt

(
btK(wt, ·) + λα(t−1)

)
= (1− ηtλ)α(t−1) − ηtbtK(wt, ·). (41)

Considering the squared norm, we have:∥∥∥α(t− 1
2
)
∥∥∥2
H
=
∥∥∥(1− ηtλ)α(t−1) − ηtbtK(wt, ·)

∥∥∥2
H

= (1− ηtλ)2
∥∥∥α(t−1)

∥∥∥2
H
− 2(1− ηtλ)ηtbt

〈
α(t−1),K(wt, ·)

〉
H
+ η2t b

2
t ∥K(wt, ·)∥2H

= (1− ηtλ)2
∥∥∥α(t−1)

∥∥∥2
H
− 2(1− ηtλ)ηtbtα(t−1)(wt) + η2t b

2
tK(wt, wt). (42)

Calculating α(t−1)(wt) is in O(t), and K(wt, wt) takes constant time to compute (with regard
to t). Therefore, one only needs to keep in memory the norm of the previous iterate, which
is essentially costless, to reduce the learning time of the algorithm from O(T 3) to O(T 2).

5.2 Optimal stepsize of the gradient descent

From Theorem 6, we see that the unbiased approximation of the functional gradient of the
regularized empirical risk with regard to some weight function α for a sampled parameter u
is simply a scalar multiple of K(u, ·) plus λα:

∇αLregS (Λα) ≈ −ηK(u, ·) + λα, (43)

for some η ∈ R. Setting

α′ := α+ ηK(u, ·)− λα = (1− λ)α+ ηK(u, ·), (44)

13
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we can consider minimizing the regularized empirical risk with regard to the weight η:

argmin
η
LregS (Λα′) = argmin

η
LS(Λα′) +

λ

2

∥∥α′∥∥2
H. (45)

Assuming the loss ℓ is convex and differentiable, we can find the optimal η by finding where
the derivative with regard to η is 0. We have the following partial derivatives:

d

dη
Λα′(x) =

d

dη

(
E

w∼p
[((1− λ)α(w) + ηK(u,w))ϕ(w, x)]

)
= E

w∼p
[K(u,w)ϕ(w, x)], (46)

d

dη
LS(Λα′) =

1

m

m∑
i=1

[
d

dη
ℓ(Λα′(xi), yi)

]

=
1

m

m∑
i=1

[
ℓ′(Λα′(xi), yi)

d

dη
Λα′(xi)

]

=
1

m

m∑
i=1

[
ℓ′(Λα′(xi), yi) E

w∼p
[K(u,w)ϕ(w, xi)]

]
, (47)

d

dη

∥∥α′∥∥2
H =

d

dη
∥(1− λ)α+ ηK(u, ·)∥2H

=
d

dη

(
(1− λ)2∥α∥2H + 2η(1− λ) ⟨α,K(u, ·)⟩+ η2∥K(u, ·)∥2H

)
=

d

dη

(
2η(1− λ)α(u) + η2K(u, u)

)
= 2(1− λ)α(u) + 2ηK(u, u). (48)

The derivative of the regularized empirical risk is therefore:

d

dη
LregS (Λα′) =

d

dη
LS(Λα′) +

λ

2

d

dη

∥∥α′∥∥2
H

=
1

m

m∑
i=1

[
ℓ′
(
Λα′(xi), yi

)
E

w∼p
[K(u,w)ϕ(w, xi)]

]
+ λ(1− λ)α(u) + ληK(u, u),

(49)

where:

Λα′(xi) = Λ((1− λ)α+ ηK(u, ·))(xi)
= (1− λ)Λα(xi) + ηΛK(u, ·)(xi).

While the root of Equation (49) will in general not have an analytical expression due to the
nonlinearity of the loss, root finding algorithms can solve the problem numerically with good
precision relatively quickly. This allows calculating the optimal stepsize for any convex loss.
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This gives rise to a new learning algorithm for the model (see Algorithm 2), which consists
of greedily adding the new parameters (w1, . . . , wT ) and calculating at each iteration the
weights (a1, . . . , aT ) which optimally reduce the regularized empirical risk. This learning
algorithm has a O(mT 2) time complexity, the same as Algorithm 1, but requires fewer
iterations in order to reach a small empirical risk, as seen in the experiments of Section 8.

Algorithm 2 Optimal Stepsize Descent for learning the weight function
input Instantiation (W,K, p, ϕ), λ > 0, number of iterations T , sample S, batch size |s|
α(0) ← 0 ∈ H
for t = 1, . . . , T do

Sample st ∼ U(S)|s|
Sample wt ∼ p
Get ηt by finding the root of Equation (49) (calculated with S = st)
αt ← αt−1 + ηtK(wt, ·)

end for
output αT

Remark. Algorithm 2 uses batches to approximate the gradient, in order to accelerate
learning. It is important to keep a large enough batch size, as optimizing Equation (45) on
too few examples can overfit the batch, and fail to generalize to the entire dataset.

5.3 Least squares fit of the random features

Many Random Feature Methods first generate a large number of random parameters accord-
ing to the sampling distribution, then learn the weight coefficients by analytically solving a
convex optimization problem (Rahimi and Recht, 2009; Huang et al., 2006). This is possible
when using the squared loss ℓ(h(x), y) := 1

2(h(x)− y)
2. We can use this same idea.

To understand how to achieve this, first recall that the model can be written as:

Λα(x) :=
T∑
t=1

at E
w∼p

[K(wt, w)ϕ(w, x)], (50)

from some array of parameters (w1, . . . , wT ) and vector of coefficients a = (a1, . . . , aT ). We
can define the operator φ, which embeds an instance x into a higher dimensional space:

φ(x) :=

(
E

w∼p
[K(w1, w)ϕ(w, x)], . . . , E

w∼p
[K(wT , w)ϕ(w, x)]

)⊤
.

The output of the model is then simply a linear function in the embedding space:

Λα(x) :=
T∑
t=1

at E
w∼p

[K(wt, w)ϕ(w, x)] = ⟨a, φ(x)⟩ , (51)

For some sample S = {(xi, yi)}mi=1, the regularized empirical squared loss is:

LregS (Λα(x)) :=
1

2m

m∑
i=1

(⟨a, φ(xi)⟩ − yi)2 +
λ

2
∥α∥2H. (52)
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Denoting Φ := (φ(x1), . . . , φ(xm))⊤ ∈ Rm×T , y := (y1, . . . , ym)⊤, and G the Gram matrix
of the parameters (w1, . . . , wT ), we can simplify:

LregS (Λα(x)) =
1

2m
∥Φa− y∥22 +

λ

2
a⊤Ga. (53)

The minimizer a ∈ RT of this expression is the solution to the linear problem:(
Φ⊤Φ+mλG

)
a = Φ⊤y. (54)

Solving the linear system of Equation 54 requires O(T 3) operations, which is slower than
the O(T 2) required by Algorithm 1. On the other hand, solving the linear system yields
the optimal weights for minimizing the regularized empirical loss, requiring fewer sampled
parameters to get the same accuracy. See Figure 1 in Section 8.

Algorithm 3 Least squares fit of the weight function coefficients
input Instantiation (W,K, p, ϕ), λ > 0, number of parameters T , sample S of size m

Sample (w1, . . . , wT ) ∼ pT
Calculate the matrix Φ ∈ Rm×T , where Φit := Ew∼p [K(wt, w)ϕ(w, xi)]
Calculate the matrix G ∈ RT×T , where Gij := K(wi, wj)
Get (a1, . . . , aT ) by solving Equation (54)

output α :=
∑T

t=1 atK(wt, ·)

5.4 Lasso fit of the random features

We can replace the Tikhonov regularizer λ
2∥α∥

2
H in Equation (53) by the ℓ1 regularizer on

the norm of the coefficients, λ∥a∥1, giving us the new minimization objective:

Lℓ1S (Λα(x)) =
1

2m
∥Φa− y∥22 + λ∥a∥1. (55)

The solution a of this problem can be obtained by applying the Lasso algorithm (Hastie
et al., 2015). By the nature of minimizing with an ℓ1 regularizer, the vector of coefficients
a obtained this way will be sparse, which is an interesting advantage.

Algorithm 4 Lasso fit of the weight function coefficients
input Instantiation (W,K, p, ϕ), λ > 0, number of parameters T , sample S of size m

Sample (w1, . . . , wT ) ∼ pT
Calculate the matrix Φ ∈ Rm×T , where Φit := Ew∼p [K(wt, w)ϕ(w, xi)]
Get (a1, . . . , aT ) by minimizing Equation (55) using the Lasso

output α :=
∑T

t=1 atK(wt, ·)
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6. Pruning the model

Unlike fixed-sized models, such as neural networks, which do not grow with the number of
iterations, the sum of Equation (23), reproduced here:

Λα(x) =
T∑
t=1

at E
w∼p

[K(wt, w)ϕ(w, x)],

can have a limitless number of terms. Since this number impacts the computational com-
plexity of learning, as well as the memory footprint of the model, we can be interested in
being able to prune the model, similarly to how Algorithm 4 naturally outputs a model
with few terms. We can indeed use the properties and structure of the model to concentrate
α into its most salient components—thus pruning the sum. The sparsity of the resulting
model also increases its interpretability.

Given a weight function α =
∑T

t=1 atK(wt, ·), the task is to find some β =
∑T

t=1 btK(wt, ·)
which shares its parameters {wt}Tt=1 with α and leads to (almost) the same predictions, but
where a large number of the coefficients {bt}Tt=1 are zero.

The first step is to notice that the difference in error between predictors Λα and Λβ can
be upper bounded as a function of ∥α− β∥H. We encapsulate this in the following lemma.

Lemma 7 Assume A1, A2, A3. Consider any α, β ∈ H. Then:

|LD(Λα)− LD(Λβ)| ≤ ρθ∥α− β∥H. (56)

Proof We have:

|LD(Λα)− LD(Λβ)| =
∣∣∣∣ E
(x,y)∼D

[ℓ(Λα(x), y)− ℓ(Λβ(x), y)]
∣∣∣∣

≤ E
(x,y)∼D

[
|ℓ(Λα(x), y)− ℓ(Λβ(x), y)|

]
≤ ρ E

(x,y)∼D

[
|Λα(x)− Λβ(x)|

]
(ℓ is ρ-Lipschitz)

≤ ρ E
(x,y)∼D

[
∥Λ(α− β)∥L∞(X )

]
≤ ρ∥Λ∥∥α− β∥H (Definition of ∥Λ∥)
≤ ρθ∥α− β∥H. (Theorem 4)

If ∥α− β∥H < ε
ρθ , then |LD(Λα)− LD(Λβ)| < ε. Therefore, one way to achieve our objective

is to minimise ∥α− β∥H with a constraint on the number of nonzero coefficients in β. This
can be framed as a simple least squares regression problem with ℓ1 regularization by first
denoting a = (a1, . . . , aT ) and b = (b1, . . . , bT ) the vectors of coefficients which define α
and β, and G := (K(wi, wj))

T
i,j=1 the Gram matrix of the parameters (w1, . . . , wT ). Then,

because the scalar product in H is given by:

⟨α, β⟩H :=

T∑
i=1

T∑
j=1

aibjK(wi, wj), (57)
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we can write:

∥α− β∥2H = ⟨α− β, α− β⟩H

=
T∑
i=1

T∑
j=1

(ai − bi)K(wi, wj)(aj − bj)

= (a− b)⊤G(a− b). (58)

Because K is a positive definite symmetric kernel, we can assume that G is a positive
definite matrix.1 It can thus can be written as G = U⊤U for some upper triangular matrix
U obtained by the Choleski decomposition of G. By replacing G = U⊤U in Equation (58),
we get the following expression:

∥α− β∥2H = (a− b)⊤G(a− b)
= (a− b)⊤U⊤U(a− b)
= ∥Ua− Ub∥22. (59)

We can therefore prune the model by using the Lasso (see Equation 2.5 of Hastie et al.
(2015)) to solve:

min
b∈RT

1

2T
∥Ua− Ub∥22 + λLasso∥b∥1, (60)

for some parameter λLasso > 0.
The parameter λLasso is a lever to control the compromise between the number of nonzero

coefficients in b and the norm ∥α− β∥H. In fact, we can use Theorem 11.2 of Hastie
et al. (2015) to guide the choice for λLasso. This theorem states that, in our situation, the
minimizer b of Equation (60) will be such that:

∥α− β∥2H = ∥Ua− Ub∥22 ≤ 12T∥a∥1λLasso. (61)

If:

λLasso ≤
ε2

12Tρ2θ2∥a∥1
, (62)

then we will have |LD(Λα)− LD(Λβ)| < ε (by Lemma 7). This value of the parameter
of the Lasso will ensure minimal degradation of the prediction accuracy. It is, however, a
highly conservative value which will, in practice, yield limited pruning.

Fortunately, unlike typical applications of linear regression, the true regression vector
is already known; it is simply b = a.2 This allows us to calculate the norm ∥α− β∥H.
This value can then be inserted directly into Lemma 7 to obtain the true bound on the
error of Λβ, which will be tighter than the value ε guaranteed by taking λLasso as given by
Equation (62). If the bound is deemed small enough, the Lasso can be applied again with a
larger λLasso value, for better pruning. This process can be automated; all that is required is
a starting value for λLasso (for example using Equation (62)), and some stopping criterion.
We summarize all of this in Algorithm 5.

1. By the properties of RKHS, G is at least positive semidefinite. If the smallest eigenvalue of G is too
small or 0, adding a small (e.g. 10−8) multiple of the identity matrix to G will ensure that it is positive
definite, and will solve numerical instability problems that would have arisen otherwise.

2. In fact, this observation can be used to accelerate the convergence of the Lasso by using b = a as a warm
start for the algorithm.

18



RKHS Weightings of Functions

Algorithm 5 Model pruning using the Lasso
input A weight function α ∈ H to prune, a parameter λLasso (e.g. as given by Equa-

tion (62)), an acceptation criterion ACCEPT : H×H → {0, 1}.
β, βtemp ← α
while ACCEPT(α, βtemp) do
β ← βtemp

Get new βtemp by solving Equation (60).
λLasso ← 10λLasso

end while
output β

Nonetheless, Lemma 7 will remain a rather loose bound, since it considers the worst case
via Cauchy–Schwartz’s inequality, and will not, in general, adequately reflect the true risk of
Λβ. The following theorem is a probabilistic bound on the difference |LD(Λα)− LD(Λβ)|.
It uses a dataset to calculate a tighter guarantee with high probability. (The proof is in the
appendix.)

Theorem 8 Assume A1, A2, A3. Consider any α ∈ H. Then we have with probability
at least 1 − δ over the choice of S ∼ Dm that the following holds for all β ∈ H with
∥β − α∥H ≤ C:

LD(Λβ)− LD(Λα) ≤ LS(Λβ)− LS(Λα) +
ρθC√
m

(
2 +

√
2 log

1

δ

)
.

With this in mind, below is a list of possible ACCEPT functions that Algorithm 5 can use,
in increasing order of leniency (functions further down will yield higher pruning). All of
them use a user specified parameter ε > 0, the maximal acceptable degradation in accuracy.

• From Lemma 7:

ACCEPT(α, β) = TRUE if ρθ∥α− β∥H < ε. (63)

• From Theorem 8:

ACCEPT(α, β) = TRUE if LS(Λβ)− LS(Λα) +
ρθC√
m

(
2 +

√
2 log

1

δ

)
< ε.

(64)

• Simple comparison of the empirical risks:

ACCEPT(α, β) = TRUE if LS(Λβ)− LS(Λα) < ε. (65)

• Simple comparison of the empirical prediction accuracies (used for the experiments in
Section 8.2):

ACCEPT(α, β) = TRUE if L01S (Λβ)− L01S (Λα) < ε. (66)
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7. Theoretical guarantees

In this section, we demonstrate various theoretical guarantees of the model, most impor-
tantly a bound on the generalization error in the first section, and rate of convergence of
the stochastic functional gradient descent afterward. We then offer an in-depth comparison
to Rahimi and Recht (2009), a longstanding state-of-the-art in the field.

7.1 Bounding the generalization error using Rademacher complexity

We call the generalization error of a predictor the difference between its true risk and
its empirical risk. High generalization error is a result of overfitting, which is usually a sign
that the complexity of the class of predictors is inappropriately high. On the other hand,
knowing this complexity allows us to limit overfitting. Our first theorem upper bounds the
empirical Rademacher complexity of class ΛHB:

R̂S(ΛHB) :=
1

m
E

σ∼{±1}m

[
sup

Λα∈ΛHB

m∑
i=1

σiΛα(xi)

]
, (67)

and its expected Rademacher complexity:

Rm(ΛHB) := E
S∼Dm

[
R̂S(ΛHB)

]
. (68)

(See e.g. Shalev-Shwartz and Ben-David (2014) or Mohri et al. (2012) for a rigorous expo-
sition of the Rademacher theory for bounding the generalization error.)

Theorem 9 Given assumptions A1 and A2, we have for any sample S := {(xi, yi)}mi=1 ⊂
(X × Y)m that:

R̂S(ΛHB) ≤
Bθ√
m
, (69)

and:
Rm(ΛHB) ≤

Bθ√
m
. (70)

Proof Starting from the definition of the sample Rademacher complexity of ΛHB, we have:

mR̂S(ΛHB) := E
σ∼{±1}m

[
sup

Λα∈ΛHB

m∑
i=1

σiΛα(xi)

]

= E
σ

[
sup

α∈HB

m∑
i=1

σi ⟨α,ψ(xi)⟩H

]
(Equation (28))

= E
σ

[
sup

α∈HB

〈
α,

m∑
i=1

σiψ(xi)

〉
H

]

≤ E
σ

[
sup

α∈HB

∥α∥H

∥∥∥∥∥
m∑
i=1

σiψ(xi)

∥∥∥∥∥
H

]
(Cauchy–Schwartz)

= BE
σ

[∥∥∥∥∥
m∑
i=1

σiψ(xi)

∥∥∥∥∥
H

]
.
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We can then apply Jensen’s inequality to get:

mR̂S(ΛHB) ≤ BE
σ

[∥∥∥∥∥
m∑
i=1

σiψ(xi)

∥∥∥∥∥
H

]

≤ B

√√√√√E
σ

∥∥∥∥∥
m∑
i=1

σiψ(xi)

∥∥∥∥∥
2

H

 (Jensen)

= B

√√√√√E
σ

〈 m∑
i=1

σiψ(xi),

m∑
i=1

σiψ(xi)

〉2

H


= B

√√√√ m∑
i=1

m∑
j=1

⟨ψ(xi), ψ(xj)⟩HEσ [σiσj ]

= B

√√√√ m∑
i=1

∥ψ(xi)∥2H (Eσ [σiσj ] = 1[i = j])

≤
√
mBθ.

We get the expected Rademacher complexity of ΛHB by taking the expectation over the
choice of sample.

We see that the Rademacher complexity is characterized by two model-dependent constants.
The first is θ, which is defined by the instantiation of the model. The second is B, the max-
imal RKHS norm for the weight function, which acts as a hyperparameter of the algorithm,
and can be used to control overfitting. Using standard results (principally Theorem 3.1
of Mohri et al. (2012)), we can convert the Rademacher complexity of ΛHB into the follow-
ing uniform bound on the generalization error.

Theorem 10 Given assumptions A1, A2, and A3, and assuming that the loss ℓ takes values
in [0,M ], we have with probability at least 1−δ over the choice of S ∼ Dm that the following
holds for all Λα ∈ ΛHB:

LD(Λα) ≤ LS(Λα) +
2Bρθ√
m

+M

√
log 1

δ

2m
. (71)

Proof Assumption A3 and Theorem 9 allow us to use Talagrand’s lemma (Lemma 4.2 of
Mohri et al. (2012)) to get:

Rm(ℓ ◦ ΛHB) = E
(x,y)∼D

[
R̂S(ℓ ◦ ΛHB)

]
≤ ρ E

(x,y)∼D

[
R̂S(ΛHB)

]
≤ ρ E

(x,y)∼D

[
Bθ√
m

]
≤ Bρθ√

m
. (72)
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A straightforward application of Theorem 3.1 of Mohri et al. (2012) with this bound on
Rm(ℓ ◦ΛHB) gives us the result. (Note that Mohri et al. (2012) assumes that the loss takes
its values in [0, 1]. However, the proof of Theorem 3.1 of Mohri et al. (2012) can directly
be generalized to losses taking values in [0,M ] by adjusting the application of McDiarmid’s
inequality. The bounded difference condition will be satisfied with constant M

m rather than
1
m .)

The bound of Theorem 10 can be calculated in practice. It can be made as tight as possible
by choosingB := ∥α∥H a posteriori, where α is the weight function learned using Algorithm 1
or any other learning method. Note however that the bound suggests that B can only grow
as o(

√
m) in order to avoid overfitting. This justifies minimizing the regularized empirical

risk, in order to control the norm of the weight function.
For loss functions which are not naturally bounded by some constant M , Theorem 10

can still be used. By Theorem 4, predictors in ΛHB are bounded by Bθ, i.e. |Λα(x)| ≤ Bθ
for all x ∈ X and for all Λα ∈ ΛHB. It is generally easy to use this fact to derive a
maximal possible value for a given loss, especially in the binary classification setting, where
Y = {−1, 1}. In the case of the square loss:

ℓ(y′, y) := (1− yy′)2 = (y − y′)2. (73)

Since the model is bounded by Bθ, we can use M = (Bθ + 1)2.

7.2 Stability analysis of the stochastic functional gradient descent

The following theorem describes the convergence in expectation of Algorithm 1 with regard
to the number of examples in the sample, and the number of iterations. (The proof can be
found in the appendix.)

Theorem 11 Assume A1, A2, A3, A4. The output ᾱ of Algorithm 1 is such that:

E [LD(Λᾱ)]− min
Λα∈ΛHB

LD(Λα) ≤
2ρθB√
m

+ λB2 +
8ρ2

λm
+

(ρκ+ λB)2

2λT
(1 + log(T )), (74)

where the expectation is taken over the choice of sample and all sampled parameters and
batches (i.e. S ∼ Dm, (w1, . . . , wT ) ∼ pT , (s1, . . . , sT ) ∼ U(S)T×|s|). By choosing λ =√

8ρ2

B2m
, we obtain:

E [LD(Λᾱ)]− min
Λα∈ΛHB

LD(Λα) ≤
ρB√
m

√32 + 2θ +
m√
32T

(
κ+

√
8

m

)2

(1 + log(T ))


(75)

∈ O
(

1√
m

+

√
m

T
log T

)
.

This bound guarantees convergence to the optimal given enough data and iterations.
While it is a result on the expected risk, it can be turned into a probabilistic bound via
Markov’s inequality or other more sophisticated methods, such as the one given in exercise
13.1 of Shalev-Shwartz and Ben-David (2014).
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Note also that, in practice, it is easier to use Equation (74) rather than Equation (75),
since it allows using an arbitrary value for λ (chosen by cross-validation, for instance). It is
also slightly less constraining, due to the ability not to specify the maximal norm B before
learning, thus skipping the projection step of Algorithm 1 if desired while maintaining the
ability to calculate, a posteriori, a bound on the convergence (replacing B in Equation (74)
by the largest iterate norm).

7.3 Comparison with the Random Kitchen Sinks

In this section, we compare our hypothesis class, assumptions and theoretical results to Rahimi
and Recht (2009). Recall from Section 3 the two prediction classes from Rahimi and Recht
(2009), as well as the class introduced in this paper:

Fp :=

{
x 7→ Λα(x) := E

w∼p
[α(w)ϕ(w, x)]

∣∣∣∣ ∥α∥L∞(W) ≤ C
}
, (14)

F̂w :=

{
x 7→ 1

K

K∑
k=1

akϕ(wk, x)

∣∣∣∣∣ ∀k, |ak| ≤ C
}
, (15)

ΛHB :=

{
x 7→ Λα(x) := E

w∼p
[α(w)ϕ(w, x)]

∣∣∣∣ α ∈ H, ∥α∥H ≤ B} , (21)

Because the functions in Fp can’t be represented or calculated exactly, Rahimi and Recht
(2009) instead approximate the expectation by an average, giving rise to the class F̂w.

The predictors in Fp and ΛHB have the same form Λα(x) = Ew∼p [α(w)ϕ(w, x)]. (They
are a weighted expectation of the base predictor ϕ according to distribution p and a weight
function α.) Furthermore, looking at Equation (23):

Λα(x) =
T∑
t=1

at E
w∼p

[K(wt, w)ϕ(w, x)],

we see that the functions that can be represented in practice in ΛHB (when α is a finite
sum) have the same form as the predictors in F̂w, the approximation class of Rahimi and
Recht (2009), where ϕ(wk, w) has been replaced by Ew∼p [K(wk, w)ϕ(w, x)]. In fact, this
observation is what underlies Algorithms 3 and 4. Both algorithms solve a regularized least
squares problem, precisely like Rahimi and Recht (2009). However, the regularization term
itself is different. Whereas Rahimi and Recht (2009) regularize the euclidean norm of the
coefficients3, Algorithm 4 uses an ℓ1 regularizer, and Algorithm 3 regularizes the RKHS
norm of the weight function. This last regularizer is directly adapted to the form our model
takes, making it an interesting new aspect of our model.

The most crucial difference between the models is the provenance of the weight function.
In Fp, α must be a bounded function of W, whereas in ΛHB, we restrict α to the ball of
radius B of an RKHS. Let’s unpack the consequences of this difference.

3. We point to an important fact, which is not necessarily obvious from a brief look at Rahimi and Recht
(2009). The algorithm that they use in their experiments is not their Algorithm 1, but rather they
analytically minimize the ℓ2 regularized version of their optimization objective.
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Consequence 1. As explained in Section 4, and exemplified in Table 1, the properties of
the RKHS allow calculating the model exactly through Equation (23), as long as α is a finite
sum and the expectation Ew∼p [K(wt, w)ϕ(w, x)] has an analytical form. This means that
the predictors Λα we work with are always within the target class ΛHB. This constrasts
Rahimi and Recht (2009), which can only use approximations of the functions in Fp. While
we do also technically work within an approximation class in practice (the set of all the
weight functions that can be written using the (w1, . . . , wT ) that have been sampled), this
approximation class is in fact a subset of ΛHB. Class ΛHB therefore forgoes the loss of
precision due to the approximation of its functions.

Consequence 2. The structure imparted by the RKHS also allows softening the condition
on ϕ. Where Rahimi and Recht (2009) require that ϕ(w, x) be bounded, class ΛHB only
supposes that κ2 := supxEw∼p

[
K(w,w)ϕ(w, x)2

]
is finite (see Section 4.2). This is a more

lenient condition, as κ can be finite despite ϕ being unbounded, which means that ϕ can be
chosen from a wider range of functions. This allows instantiating the model more flexibly,
allowing entirely new classes of predictors.

Consequence 3. Even when distribution p and base predictor ϕ are the same with both
models, the additional choice of a kernel K in our model creates a wider range of options.
For instance, if K is unbounded, then the functions of its RKHS (the weight functions α)
can also be unbounded4. Such a choice of kernel therefore gives us access to weight functions
that are disallowed in Rahimi and Recht (2009), which require ∥α∥L∞(W) ≤ C.

As we can see, class ΛHB presents advantages over Fp. The remaining task is to assess
the expressivity of ΛHB in comparison to Fp when they share the same distribution p and
base predictor ϕ. We do so in the next lemma.

Lemma 12 Assume A1, A2, A3. Further assume that supw,x |ϕ(w, x)| ≤ 1, and that K is
a universal kernel on L2(p) (the Gaussian or exponential kernels, for example, satisfy this
condition; see (Steinwart and Christmann, 2008)). Consider some Λα⋆ ∈ Fp. Then for all
ε > 0, there exists α ∈ H such that:

|LD(Λα⋆)− LD(Λα)| < ε. (76)

Proof Since K is universal, its RKHS H is dense in L2(p). Therefore, because α⋆ ∈ L2(p),
we can find α ∈ H such that:

∥α⋆ − α∥L2(p) :=

√
E

w∼p

[
|α⋆(w)− α(w)|2

]
<
ε

ρ
, (77)

4. Take for example K(w, u) := exp(⟨w, u⟩), and α = K(w, ·) for some w ∈ W = Rn. Then α is not bounded
as a function of W, since α(cw) = exp

(
c∥w∥22

)
→ ∞ when c → ∞.
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where ρ is the Lipschitz constant of the loss. Consequently, we have:

|LD(Λα⋆)− LD(Λα)| =
∣∣∣∣ E
(x,y)∼D

[
ℓ(Λα⋆(x), y)− ℓ(Λα(x), y)

]∣∣∣∣
≤ E

(x,y)∼D

[
|ℓ(Λα⋆(x), y)− ℓ(Λα(x), y)|

]
≤ ρ E

(x,y)∼D

[
|Λα⋆(x)− Λα(x)|

]
(ℓ is ρ-Lipschitz)

= ρ E
(x,y)∼D

[∣∣∣∣ Ew∼p

[
(α⋆ − α)(w)ϕ(w, x)

]∣∣∣∣]
= ρ E

(x,y)∼D

[∣∣∣⟨α⋆ − α, ϕ(·, x)⟩L2(p)

∣∣∣]
≤ ρ E

(x,y)∼D

[
∥α⋆ − α∥L2(p)

∥ϕ(·, x)∥L2(p)

]
(Cauchy–Schwartz)

≤ ρ E
(x,y)∼D

[
∥α⋆ − α∥L2(p)

]
(supω,x |ϕ(ω, x)| ≤ 1)

< ρ
ε

ρ

= ε.

Lemma 12 means that any predictor in Fp can be approximated accurately by the class ΛH.
There is not, however, a guarantee on how large the norm of the weight function might be
required to be.

Finally, Theorem 11 shows a convergence rate of O
(

1√
m

+
√
m
T log T

)
for Algorithm 1,

compared to O
(

1√
m

+ 1√
T

)
for Algorithm 1 of Rahimi and Recht (2009). When T is large

(commensurate to m), these bounds have the same complexity, up to a log factor. Further
work to derive a tighter bound is warranted, as well as bounds for the other algorithms,
especially Algorithms 3 and 4, which are similar to the algorithm of Rahimi and Recht
(2009), and perform better in practice, as we will see in the next section.

In short, the predictor class ΛHB examined in this work appears expressive and flexible,
though a direct comparison with Rahimi and Recht (2009) remains challenging, since the
different constraints provide different characteristics to the predictors, and neither method
appears unambiguously superior to the other. We do note that the particular form of the
predictors in ΛHB, with the weight function belonging to an RKHS, has the potential
to confer new advantages. For example, the choice of kernel could be a way to infuse
prior knowledge into the model. While universal kernels lead to highly expressive classes of
predictors, as seen in Lemma 12, this can also cause overfitting and be counterproductive.
One might instead want to use a kernel which is tailored to a specific problem, thus reducing
the complexity of ΛHB and the risk of overfitting, without actually sacrificing the prediction
accuracy. This is an open and promising avenue for further research.
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8. Experiments

In this section, we present three experiments for testing the model and its learning algo-
rithms. The first one (Section 8.1) compares the prediction accuracy and training time of all
four learning algorithms with regard to the sampling size T . The second (Section 8.2) tests
pruning the model. The third is a comparison to other models (AdaBoost and the original
Random Kitchen Sinks algorithm).

In every case, the algorithms used the mean square error as the learning loss, and the
regularization parameter λ was chosen through 5-fold cross-validation among the set:

{0.0000001, 0.000001, 0.00001, 0.0001, 0.001}.

The two iterative algorithms, Algorithm 1 and Algorithm 2, used a sample minibatch size
|s| of 50 to approximate the gradient. We also set B = 1000 for Algorithm 1. We’ve used
four datasets for these experiments, chosen for their different sizes and dimensionalities:

MNIST17. Digits 1 and 7 of the widely used handwritten digits recognition dataset.
Data is found at: http://yann.lecun.com/exdb/mnist/. This dataset has 13007 training
examples, and 2163 test examples. The dimensionality of the data is 784.

Adults. The task is to predict yearly income based on various information about an
individual. Data is found at: https://archive.ics.uci.edu/ml/datasets/adult. Note
that we changed all categorical variables (such as occupation, or native country) to numerical
variables via a one-hot-encoding scheme. This dataset has 32561 training examples, and
16281 test examples. After preprocessing, the dimensionality of the data is 108.

Breast Cancer. The task is to classify whether a cell sample corresponds to a malignant
cancer cell or not. Data is found at: https://archive.ics.uci.edu/dataset/17/breast+
cancer+wisconsin+diagnostic. The training set has 426 examples, and the test set has
143. Dimensionality is 30.

Skin Segmentation. The task is to classify whether an RGB value corresponds to a
skin or nonskin sample. Data is found at: https://archive.ics.uci.edu/ml/datasets/
Skin+Segmentation. The training set has 183792 examples, and the test set has 61265.
Dimensionality is 3.

The datasets were all scaled to have variance of 1 and mean of 0 on each variable, and
a dummy variable of value 1 was added to all instances of all datasets to simulate bias. For
the datasets which do not come as a (training set, test set) pair, the dataset was randomly
split on a 75:25 ratio. Additional implementation details can be found in the Appendix.
The full code can be found at https://github.com/gadub44/jmlr2023.

8.1 Comparison of the learning algorithms

In Figure 1, we compare the learning rates and training time of all four algorithms with re-
gards to the sampling size T (the number of sampled parameters). The results are expected:
the two algorithms which can directly optimize the coefficients (Algorithms 3 and 4) have
significantly better accuracy than the two iterative algorithms (Algorithms 1 and 2). The
Lasso fit appears to be the best algorithm, as it has equal or better performance than the
Least squares fit, but is faster. Between the two iterative algorithms, the Optimal stepsize
descent converges faster than SFGD, which is the obvious consequence of calculating bet-
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Figure 1: Comparison of four learning algorithms with regards to the number of sampled pa-
rameters: Stochastic Functional Gradient Descent (Algorithm 1), Optimal Stepsize
Descent (Algorithm 2), Least squares fit of the parameters (Algorithm 3), and Lasso fit
of the parameters (Algorithm 4). All four algorithms were tasked with learning the weight
function for Instantiation 1 on MNIST17. Every point is the average of 10 independently
seeded runs, with the standard deviation shown as a shaded area. The Lasso and Least
squares fit of the parameters clearly provide the best performance. The Least squares fit is
by far the fastest method.

Table 2: Prediction accuracy and pruning ratio of various algorithms on MNIST17. Lasso
fit is Algorithm 4 alone, while Least squares fit, Optimal stepsize descent and SFGD
are the respective algorithm followed by Algorithm 5 for pruning the learned model. ∥β∥H
is the norm of the weight function after pruning. In every case, T = 1000. Every line is the
average of 10 independently seeded runs.

L01S L01D %pruning pruning+L01S pruning+L01D ∥β∥H
algo

Lasso fit 0.006 0.009 63.99 0.006 0.009 1053.973
Least squares fit 0.007 0.007 59.90 0.007 0.009 248.396

Optimal stepsize descent 0.018 0.019 51.42 0.022 0.024 534.325
SFGD 0.025 0.027 73.40 0.027 0.029 310.779

ter coefficients at each iteration. However, the additional computation results in a longer
training time.

8.2 Pruning experiments

The different algorithms of Section 5 lead to different learned models, which can react
differently to the pruning method explained in Section 6. When the number of terms in
the model is important, it is best to use the learning and pruning method that lead to the
sparsest model possible. In Table 2, we examine the different pruning ratios that can be
obtained. The options are either to directly use Algorithm 4 (the Lasso fit of the coefficients)
to get a sparse model, or learn the model using Algorithm 1, 2 or 3, followed by Algorithm 5
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for pruning the model. The acceptation criterion used for Algorithm 5 was whether the
empirical 0-1 error degraded by at most ε, with ε = 0.01.

Expectedly, directly optimizing with the Lasso using an ℓ1 regularizer yields both a high
pruning ratio and an excellent prediction accuracy, though the Least squares fit followed by
pruning yields a very similar performance and pruning ratio. We do observe that the best
pruning was reached after using SFGD, but the performance was also the worst. The reason
for the high pruning ratio in that case can possibly be attributed to the ever decreasing
coefficients as the gradient descent progresses, which can more easily be set to 0.

8.3 Comparison to other models

Table 3 shows the prediction accuracy and training time of the model in comparison to
three well-known algorithms: AdaBoost, an RBF kernel SVM, and the Random Kitchen
Sinks algorithm.

AdaBoost achieves the best performance on adults, breast cancer and mnist, with
our model (the least squares fit using Instantiation 2) achieving similar accuracy on breast
cancer. SVM is the best algorithm on skin segmentation, with our model (the Lasso fit
using Instantiation 1) reaching comparable performance. Notably, our model outperforms
the Random Kitchen Sinks algorithm on all datasets (tying on mnist). This is most relevant
when using Instantiation 2, since it uses exactly the same distribution p and base predictor
ϕ as the RKS algorithm, meaning that the comparison is direct and shows that our model
can outperform Rahimi and Recht (2009).

The two algorithms tested for learning our model, Algorithms 3 and 4, achieve very
similar prediction accuracy. They do however have different properties on the other metrics.
Most importantly, the Lasso fit has a longer training time, especially on the large skin
segmentation dataset. The Least squares fit also consistenly leads to a lower generalization
bound. It can therefore considered to be the best learning algorithm for the model, except
when a sparse model is desired and a longer training time is acceptable.

As for the instantiations, Instantiation 1 leads to better performance on skin segmentation,
while Instantiation 2 is the best on adults and breast cancer. The performance of the
model therefore depends on both the instantiation and on the dataset. In fact, we can easily
imagine that some other instantiations of the model would have proven better for each of
these datasets, improving the empirical results.

Finally, we do notice that the guarantee offered by Theorem 10 appears loose, meaning
that further work to derive a tighter bound is warranted.

9. Future and limitations

This paper provides a first study of a new model, and several directions merit further
investigation. In particular, the following aspects appear to us to be the most important
issues.

Difficult integrals. While the model is flexible in theory, the expectation Ew∼p [K(u,w)ϕ(w, x)]
should ideally have an analytical form, as in Table 1, in order for the output of the model
to be calculated exactly via Equation (23). In practice, these integrals require rather hefty
calculus to solve, and might well not have an exact formula for a given instantiation of the
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Table 3: Performance comparison of the model to AdaBoost (AB), SVM and the Random
Kitchen Sinks (RKS) algorithm on various binary classification datasets. Instantiations 1
and 2 of the model (I1 and I2) were learned using Algorithm 3 (LS fit) and Algorithm 4
(Lasso fit) with T = 1000. LS and LD are the empirical and test mean square error.
L01S and L01D are the empirical and test classification errors. Rm is the right-hand side of
Equation (71), with δ = 0.05. Every line (except SVM) is the average of 10 independent
runs.

LS LD Rm L01S L01D training time (s)
dataset algo

adults AdaBoost 0.130 0.133 6.585
LS fit w/ I1 0.488 0.487 61.4 0.157 0.155 0.863
LS fit w/ I2 0.429 0.429 7.0 0.147 0.146 0.737

Lasso fit w/ I1 0.454 0.454 >103 0.158 0.156 9.422
Lasso fit w/ I2 0.425 0.427 155.2 0.145 0.145 49.484

RKS 0.148 0.148 0.513
SVM 0.137 0.148 79.222

breast cancer AdaBoost 0.000 0.021 0.109
LS fit w/ I1 0.162 0.191 13.2 0.021 0.036 0.069

LS fit w/ I2 0.135 0.145 11.7 0.018 0.022 0.049
Lasso fit w/ I1 0.073 0.147 >105 0.012 0.043 0.872
Lasso fit w/ I2 0.087 0.158 853.9 0.009 0.035 0.768

RKS 0.000 0.076 0.029
SVM 0.014 0.035 0.004

mnist17 AdaBoost 0.000 0.005 38.527
LS fit w/ I1 0.057 0.061 >103 0.007 0.010 0.822
LS fit w/ I2 0.066 0.071 5.5 0.008 0.013 0.494

Lasso fit w/ I1 0.051 0.056 >104 0.007 0.010 18.259
Lasso fit w/ I2 0.054 0.059 112.8 0.006 0.010 24.711

RKS 0.007 0.012 0.325
SVM 0.000 0.010 6.635

skin segmentation AdaBoost 0.039 0.039 7.278
LS fit w/ I1 0.03 0.03 15.7 0.005 0.005 5.561
LS fit w/ I2 0.172 0.173 7.4 0.042 0.042 6.288

Lasso fit w/ I1 0.015 0.015 693.8 0.002 0.002 411.723
Lasso fit w/ I2 0.17 0.171 26.8 0.040 0.040 353.341

RKS 0.040 0.040 2.865
SVM 0.001 0.001 7.495
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model. In that case, these integrals can be approximated via Monte Carlo methods, at the
cost of computation time and accuracy.

Curse of dimensionality. Whenever the distribution p covers a high-dimensional
space, the model’s output tends to vanish to zero (as can be seen from the

(
1 + σ2/γ2

)−n/2

coefficient in Table 1). A commensurably large norm of the weight function could be re-
quired, leading to poor guarantees. Care needs to be applied when choosing the parameter
space W, kernel K, distribution p, and base predictor ϕ.

Multiclass classification. The method we have examined works in the binary clas-
sification setting. By using vector-valued reproducing kernel Hilbert spaces (Micchelli and
Pontil, 2005), it is possible to extend the model to vector-valued outputs, and the stochastic
functional gradient descent algorithm will be able to learn the weight function. However, the
theoretical guarantees we present in this paper do not apply to that context. New bounds
need to be derived.

Instantiating the model. We saw in Table 3 that different instantiations can lead to
different performance on different datasets. This means that the choice of instantiation is
crucial for solving a given problem. How to choose or construct the best instantiation for
the problem at hand is an important aspect to study.

In summary, the model we have introduced in this paper is usable in practice, and has
multiple valid learning algorithms, but its full potential has not yet been fully realized.
More work needs to be done in understanding how to choose or construct high performance
instantiations, especially in the case of high-dimensional data. Tighter theoretical guarantees
should also be developped. In addition to pursuing these avenues, we will continue seeking
ways of leveraging the RKHS structure of the weight function in order to extract out of the
model such properties as sparsity or interpretability, as we believe this to be the model’s
greatest strength.

10. Conclusion

In this paper, we examined a novel general machine learning model for binary classification.
We have shown how the model can be learned using stochastic functional gradient descent
(and other algorithms), and proved convergence guarantees using the stability properties of
the algorithm. We have also proven a bound on the generalization error of the proposed
class of predictors via Rademacher complexity theory. We have shown how the model can
be pruned using the Lasso, and demonstrated a bound on the error of the pruned predictor.
We ran experiments using simple instantiations of the model to showcase its usability.

This by no means constitutes a complete exploration of the applications and theoretical
properties of the model. Indeed, several challenges remain, such as understanding how to
successfully instantiate the model for a given problem, and how to leverage the model’s
flexibility despite a requirement on solving difficult integrals. It is yet unclear what family
of problems this model will excel at solving. We hope to use it in particular to build
interpretable predictors, which is crucial for the widespread societal adoption of artificial
intelligence solutions.
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Appendix A. Proofs

Theorem 8 Assume A1, A2, A3. Consider any α ∈ H. Then we have with probability
at least 1 − δ over the choice of S ∼ Dm that the following holds for all β ∈ H with
∥β − α∥H ≤ C:

LD(Λβ)− LD(Λα) ≤ LS(Λβ)− LS(Λα) +
ρθC√
m

(
2 +

√
2 log

1

δ

)
.

Proof First, notice that:

LD(Λβ) = LD(Λβ)− LD(Λα) + LD(Λα)

= E
(x,y)∼D

[
ℓ(Λβ(x), y)− ℓ(Λα(x), y)

]
+ LD(Λα). (78)

We can bound the expectation of Equation (78) using Rademacher theory. Define the
following class of functions:

Hα :=
{
(x, y) 7→ ℓ(Λβ(x), y)− ℓ(Λα(x), y)

∣∣∣ β ∈ H ∧ ∥β − α∥H ≤ C}. (79)

By Lemma 7 and the ρ-Lipschitzness of ℓ, we have:

|ℓ(Λβ(x), y)− ℓ(Λα(x), y)| ≤ ρ|Λβ(x)− Λα(x)|
≤ ρθ∥β − α∥H
≤ ρθC.

Therefore, the functions in Hα take their values in [−ρθC, ρθC]. By Theorem 3.1 of Mohri
et al. (2012) (generalized to losses taking values in [−M,M ]), we have with probability at
least 1 − δ on the choice of sample S ∼ Dm that the following expression is valid for all β
such that ∥β − α∥H ≤ C:

E
(x,y)∼D

[
ℓ(Λβ(x), y)− ℓ(Λα(x), y)

]
≤ 1

m

m∑
i=1

(
ℓ(Λβ(xi), yi)− ℓ(Λα(xi), yi)

)
+ 2Rm(Hα) + 2ρθC

√
log
(
1
δ

)
2m

= LS(Λβ)− LS(Λα) + 2Rm(Hα) + 2ρθC

√
log
(
1
δ

)
2m

.

(80)
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All that is left if to calculate the Rademacher complexity of Hα:

R̂S(Hα) = R̂S

({
(x, y) 7→ ℓ(Λβ(x), y)− ℓ(Λα(x), y)

∣∣∣ β ∈ H ∧ ∥β − α∥H ≤ C})
= R̂S

({
(x, y) 7→ ℓ(Λβ(x), y)

∣∣∣ β ∈ H ∧ ∥β − α∥H ≤ C})
(Lemma 26.6 of Shalev-Shwartz and Ben-David (2014))

≤ ρR̂S

({
Λβ
∣∣∣ β ∈ H ∧ ∥β − α∥H ≤ C}) (Talagrand’s lemma)

= ρR̂S

({
Λβ − Λα

∣∣∣ β ∈ H ∧ ∥β − α∥H ≤ C})
(Lemma 26.6 of Shalev-Shwartz and Ben-David (2014))

= ρR̂S

({
Λβ′

∣∣∣ β′ ∈ H ∧ ∥∥β′∥∥H ≤ C})
≤ ρθC√

m
. (Theorem 9)

By taking the expectation over S, we get Rm(Hα) =
ρθC√
m

.

Because the β resulting from solving Equation (60) is the one that we are interested in,
we can take C = ∥β − α∥H to get the tightest possible bound. Assembling Equations (78),
(80) and the Rademacher complexity of Hα, we obtain the following bound on the risk of
Λβ, valid with probability at least 1− δ over the choice of sample:

LD(Λβ) ≤ LD(Λα) + LS(Λβ)− LS(Λα) +
2ρθ∥β − α∥H√

m
+ 2ρθ∥β − α∥H

√
log
(
1
δ

)
2m

= LD(Λα) + LS(Λβ)− LS(Λα) +
ρθ∥β − α∥H√

m

(
2 +

√
2 log

(
1

δ

))
. (81)

Lemma 13 Consider some independent identically distributed variables (z1, . . . , zm) taken
from a Hilbert space. Then:

E

∥∥∥∥∥ 1

m

m∑
i=1

zi

∥∥∥∥∥
2
 ≤ E [∥z1∥2].
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Proof We have:

E

∥∥∥∥∥ 1

m

m∑
i=1

zi

∥∥∥∥∥
2
 =

1

m2
E

〈 m∑
i=1

zi,

m∑
j=1

zj

〉
=

1

m2

m∑
i=1

m∑
j=1

E
[
⟨zi, zj⟩

]
(Linearity)

≤ 1

m2

m∑
i=1

m∑
j=1

E
[
∥zi∥∥zj∥

]
(Cauchy–Schwartz)

=
1

m2

m∑
i=1

E [∥zi∥2]+∑
j ̸=i

E
[
∥zi∥

]
E
[
∥zj∥

] (Independence)

=
1

m2

m∑
i=1

[
E
[
∥z1∥2

]
+ (m− 1)

(
E
[
∥z1∥

])2]
(Identical distribution)

≤ 1

m2

m∑
i=1

[
E
[
∥z1∥2

]
+ (m− 1)E

[
∥z1∥2

]]
(Jensen)

= E
[
∥z1∥2

]
.

Theorem 11 Assume A1, A2, A3, A4. The output ᾱ of Algorithm 1 is such that:

E [LD(Λᾱ)]− min
Λα∈ΛHB

LD(Λα) ≤
2ρθB√
m

+ λB2 +
8ρ2

λm
+

(ρκ+ λB)2

2λT
(1 + log(T )), (82)

where the expectation is taken over the choice of sample and all sampled parameters and
batches (i.e. S ∼ Dm, (w1, . . . , wT ) ∼ pT , (s1, . . . , sT ) ∼ U(S)T×|s|). By choosing λ =√

8ρ2

B2m
, we obtain:

E [LD(Λᾱ)]− min
Λα∈ΛHB

LD(Λα) ≤
ρB√
m

√32 + 2θ +
m√
32T

(
κ+

√
8

m

)2

(1 + log(T ))

.
(83)

Proof First, consider any sample S and denote:

Aα(S) := argmin
α∈HB

(
LS(Λα) +

λ

2
∥α∥2H

)
, (84)

and:

A(S) := ΛAα(S) = argmin
Λα∈ΛHB

(
LS(Λα) +

λ

2
∥α∥2H

)
, (85)
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the regularized empirical risk minimizer. Then, write:

E [LD(Λᾱ)] =E [LD(Λᾱ)− LS(Λᾱ)]
+E [LS(Λᾱ)− LS(A(S))]
+E [LS(A(S))− LD(A(S))]
+E [LD(A(S))]. (86)

(Every expectation in this proof is over the sample and all sampled parameters and batches,
unless specified otherwise.) We can bound each of these terms separately. First, Lemma
26.2 of Shalev-Shwartz and Ben-David (2014) applied to Equation (72) gives us:

E
S∼Dm

[
sup

Λα∈ΛHB

(LD(Λα)− LS(Λα))

]
≤ 2Bρθ√

m
. (87)

Being a bound on the supremum, it is also valid for Λᾱ, independently of the sampled
parameters and batches, which gives us:

E [LD(Λᾱ)− LS(Λᾱ)] ≤
2ρθB√
m
. (88)

Next, the proof of Corollary 13.6 of Shalev-Shwartz and Ben-David (2014) can be modified
by swapping the two terms on the left-hand side of equation 13.11, which allows us to get :

E [LS(A(S))− LD(A(S))] = E
S∼Dm

[LS(A(S))− LD(A(S))] ≤
4ρ2

λm
. (89)

Also, Corollary 13.8 of Shalev-Shwartz and Ben-David (2014) directly gives us :

E [LD(A(S))] = E
S∼Dm

[LD(A(S))] ≤ min
Λα∈ΛHB

LD(Λα) +
λ

2
B2 +

4ρ2

λm
. (90)

Bounding the term E [LS(Λᾱ)− LS(A(S))] requires more work. We seek to apply Theorem
14.11 of Shalev-Shwartz and Ben-David (2014) to the regularized empirical risk LS(Λα) +
λ
2∥α∥

2
H, which is λ-strongly convex (by convexity of ℓ and linearity in α of Λα). At iteration t

of Algorithm 1, the subgradient (unbiased gradient approximation) is given by Equation (35):

vt := v(α(t−1), wt, st) :=

 1

|st|
∑

(x,y)∈st

ℓ′(Λα(t−1)(x), y)ϕ(wt, x)

K(wt, ·) + λα(t−1).

We need to bound E
[
∥vt∥2

]
. First, write:

ut := vt − λα(t−1) =
1

|st|
∑

(x,y)∈st

ℓ′(Λα(t−1)(x), y)ϕ(wt, x)K(wt, ·).
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For the purpose of finding an upper bound, we can assume that the batch size is 1, using
Lemma 13. Writing st = {(xt, yt)}, we have:

E
[
∥ut∥2

]
= E

∥∥∥∥∥∥ 1

|st|
∑

(x,y)∈st

ℓ′(Λα(t−1)(x), y)ϕ(wt, x)K(wt, ·)

∥∥∥∥∥∥
2

H


= E

[∥∥∥ℓ′(Λα(t−1)(xt), yt)ϕ(wt, xt)K(wt, ·)
∥∥∥2
H

]
≤ E

[
ρ2∥K(wt, ·)ϕ(wt, xt)∥2H

]
= ρ2E

[
K(wt, wt)ϕ(wt, xt)

2
]

≤ ρ2κ2. (91)

Next, because of the projection step in Algorithm 1, we have α(t−1) ∈ ΛHB for every t, i.e.∥∥α(t−1)
∥∥
H ≤ B. This allows us to write:

E
[
∥vt∥2

]
= E

[∥∥∥ut + λα(t−1)
∥∥∥2
H

]
≤ E

[(
∥ut∥H + λ

∥∥∥α(t−1)
∥∥∥
H

)2]
(Triangle inequality)

= E

[
∥ut∥2H + 2λ∥ut∥H

∥∥∥α(t−1)
∥∥∥
H
+ λ2

∥∥∥α(t−1)
∥∥∥2
H

]
≤ E

[
∥ut∥2H

]
+ 2λBE

[
∥ut∥H

]
+ λ2B2

≤ ρ2κ2 + 2λB

√
E
[
∥ut∥2H

]
+ λ2B2 (Jensen)

≤ ρ2κ2 + 2λBρκ+ λ2B2

= (ρκ+ λB)2.

Now, denote:
Applying Theorem 14.11 of Shalev-Shwartz and Ben-David (2014), we get:

E [LS(Λᾱ)− LS(A(S))] ≤ E
[
λ

2
∥ᾱ∥2H −

λ

2
∥Aα(S)∥2H

]
+

(ρκ+ λB)2

2λT
(1 + log(T )). (92)

We can simplify this expression by noticing that λ
2∥ᾱ∥

2
H −

λ
2∥Aα(S)∥2H is at most λ

2B
2 :

E [LS(Λᾱ)− LS(A(S))] ≤
λ

2
B2 +

(ρκ+ λB)2

2λT
(1 + log(T )). (93)

Inserting Equations (88), (89), (90) and (93) into Equation (86), we obtain the first part of
the theorem :

E [LD(Λᾱ)] ≤ min
Λα∈ΛHB

LD(Λα) +
2ρθB√
m

+ λB2 +
8ρ2

λm
+

(ρκ+ λB)2

2λT
(1 + log(T )). (94)
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Taking λ =
√

8ρ2

B2m
, we get the second part of the theorem :

E [LD(Λᾱ)] ≤ min
Λα∈ΛHB

LD(Λα) +
2ρθB√
m

+ λB2 +
8ρ2

λm
+

(ρκ+ λB)2

2λT
(1 + log(T ))

= min
Λα∈ΛHB

LD(Λα) +
2ρθB√
m

+ 2

√
8ρ2B2

m
+

√
B2m

32ρ2T 2

(
ρκ+

√
8ρ2

m

)2

(1 + log(T ))

= min
Λα∈ΛHB

LD(Λα) +
2ρθB√
m

+

√
32ρ2B2

m
+

√
ρ2B2

m

 m√
32T

(
κ+

√
8

m

)2

(1 + log(T ))


= min

Λα∈ΛHB

LD(Λα) +
ρB√
m

√32 + 2θ +
m√
32T

(
κ+

√
8

m

)2

(1 + log(T ))

.

Appendix B. Calculus

In this appendix, we present all the calculus required to calculate the expectation Ew∼p [K(u,w)ϕ(w, x)]
(Equation (24)), as well as upper bound the constant θ (Equation (26)).

Lemma 14 Consider a Hilbert space W. Let u,w ∈ W and a, b > 0. Then:

a∥w − u∥2 + b∥w∥2 = (a+ b)

∥∥∥∥w − a

a+ b
u

∥∥∥∥2 + ab

a+ b
∥u∥2.

Proof We have:

a∥w − u∥2 + b∥w∥2 = a∥w∥2 − 2a ⟨w, u⟩+ a∥u∥2 + b∥w∥2

= (a+ b)∥w∥2 − 2a ⟨w, u⟩+ a∥u∥2

= (a+ b)∥w∥2 − 2a ⟨w, u⟩+ a2

a+ b
∥u∥2 − a2

a+ b
∥u∥2 + a∥u∥2

= (a+ b)

[
∥w∥2 − 2

a

a+ b
⟨w, u⟩+ a2

(a+ b)2
∥u∥2

]
− a2

a+ b
∥u∥2 + a∥u∥2

= (a+ b)

∥∥∥∥w − a

a+ b
u

∥∥∥∥2 + ab

a+ b
∥u∥2.

Lemma 15 Consider a Hilbert space W. Let u,w,w0 ∈ W and a, b > 0. Then:

∥w − u∥2

a
+
∥w∥2

b
=

(
1

a
+

1

b

)∥∥∥∥w − 1

1 + a
b

u

∥∥∥∥2 + 1

a+ b
∥u∥2.
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Proof We have:

∥w − u∥2

a
+
∥w∥2

b
=

(
1

a
+

1

b

)∥∥∥∥∥w − 1

a
(
1
a + 1

b

)u∥∥∥∥∥
2

+
1

ab
(
1
a + 1

b

)∥u∥2 (Lemma 14)

=

(
1

a
+

1

b

)∥∥∥∥w − 1

1 + a
b

u

∥∥∥∥2 + 1

a+ b
∥u∥2.

Lemma 16 We have:

∫
Rn

e−a∥w−u∥2dw =
(π
a

)n
2
.

Proof This is the unnormalized integral of a Gaussian density with variance 1
2aI and mean

u.

Instantiation 1

Consider instantiation 1. We will work up to the full integral in Rn through a series of
lemmas.

Lemma 17 We have:

∫ ∞

−∞
e−(w−u)2/2γ2

sign(wx)dw =
√
2πγ sign(x) erf

(
u√
2γ

)
.
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Proof Applying an adequate change of variable causes the error function to appear:∫ ∞

−∞
e−(w−u)2/2γ2

sign(wx)dw

= sign(x)

∫ ∞

−∞
e−(w−u)2/2γ2

sign(w)dw

= sign(x)

(∫ ∞

0
e−(w−u)2/2γ2

dw −
∫ 0

−∞
e−(w−u)2/2γ2

dw

)
=
√
2γ sign(x)

(∫ ∞

−u√
2γ

e−t2dw −
∫ −u√

2γ

−∞
e−t2dw

)
(t := w−u√

2γ
, dw = dw√

2γ
)

=
√
2γ sign(x)

(∫ ∞

0
e−t2dw +

∫ 0

−u√
2γ

e−t2dw −
∫ 0

−∞
e−t2dw −

∫ −u√
2γ

0
e−t2dw

)

=
√
2γ sign(x)

(∫ 0

−u√
2γ

e−t2dw −
∫ −u√

2γ

0
e−t2dw

)

=
√
2γ sign(x)

(∫ u√
2γ

0
e−t2dw +

∫ u√
2γ

0
e−t2dw

)

= 2
√
2γ sign(x)

∫ u√
2γ

0
e−t2dw

= 2
√
2γ sign(x)

√
π

2
erf

(
u√
2γ

)
=
√
2πγ sign(x) erf

(
u√
2γ

)
.

Lemma 18 We have:∫
Rn

e−∥w−u∥2/2γ2
sign(⟨w, x⟩)dw =

(√
2πγ

)n
erf

(
⟨u, x⟩√
2γ∥x∥

)
.

Proof Calculate the integral using an orthonormal basis {v1, . . . , vn} of Rn such that
vn := x

∥x∥ . Write w = (w1, . . . , wn) in this new basis (i.e. wi := ⟨w, vi⟩ for all i), and
similarly (u1, . . . , un) for u. Under this change of coordinates, the integral becomes:∫
Rn

e−∥w−u∥2/2γ2
sign(⟨w, x⟩)dw

=

∫
R

∫
Rn−1

e−[
∑n−1

i=1 (wi−ui)
2+(wn−un)2]/2γ2

sign(wn∥x∥)dw1, . . . ,dwn−1dwn.
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We are left with a product of n independent integrals:∫
Rn

e−∥w−u∥2/2γ2
sign(⟨w, x⟩)dw

=

∫
Rn−1

e−
∑n−1

i=1 (wi−ui)
2/2γ2

dw1 . . . dwn−1

∫
R
e−(wn−un)2/2γ2

sign(wn∥x∥)dwn

=

∫
Rn−1

n−1∏
i=1

e−(wi−ui)
2/2γ2

dw1 . . . dwn−1

∫
R
e−(wn−un)2/2γ2

sign(wn∥x∥)dwn

=

n−1∏
i=1

∫
R
e−(wi−ui)

2/2γ2
dwi

∫
R
e−(wn−un)2/2γ2

sign(wn∥x∥)dwn.

For each i, Lemma 16 gives us:∫
R
e−(wi−ui)

2/2γ2
dwi =

√
2πγ.

Also, Lemma 17 gives us:∫
R
e−(wn−un)2/2γ2

sign(wn∥x∥)dwn =
√
2πγ erf

(
un√
2γ

)
.

Finally, since un = ⟨u,x⟩
∥x∥ , we have the result.

Theorem 19 Considering instantiation 1, we have:

E
w∼p

[K(u,w)ϕ(w, x)] =
(
1 + σ2

γ2

)−n/2
e

−∥u∥22
2σ2+2γ2 erf

(
⟨u′, x⟩√
2ζ∥x∥2

)
,

where ζ is defined by the relationship:

1

2ζ2
=

1

2γ2
+

1

2σ2
,

and:

u′ :=
(
1 + γ2

σ2

)−1
u.

Proof The proof is simply completing the square at the exponent and applying Lemma 18.
We have :

E
w∼p

[K(u,w)ϕ(w, x)] =
(

1√
2πσ2

)n ∫
Rn

e−∥w−u∥2/2γ2
e−∥w∥2/2σ2

sign(⟨w, x⟩)dw.

Lemma 15 gives us :

−∥w − u∥2/2γ2 − ∥w∥2/2σ2 = − 1

2ζ2

∥∥∥∥∥w −
(
1 +

γ2

σ2

)−1

u

∥∥∥∥∥
2

−
(

1

2σ2 + 2γ2

)
∥u∥2

= − 1

2ζ2
∥∥w − u′∥∥2 − ( 1

2σ2 + 2γ2

)
∥u∥2.
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Therefore, we have:

E
w∼p

[K(u,w)ϕ(w, x)] =
(

1√
2πσ2

)n

e−∥u∥2/(2γ2+2σ2)

∫
Rn

e−∥w−u′∥2/2ζ2 sign(⟨w, x⟩)dw.

Applying Lemma 18, we get:

E
w∼p

[K(u,w)ϕ(w, x)] =
(
ζ

σ

)n

e−∥u∥2/(2γ2+2σ2) erf

(
⟨u′, x⟩√
2ζ∥x∥

)
.

We obtain the final result by noticing that.(
ζ

σ

)n

=
(
1 + σ2

γ2

)−n/2
.

Before calculating θ, we start by a few lemmas.

Lemma 20 Consider σ > 0 and γ > 0. Then:∫
Rn

∫
Rn

e−∥u−w∥2/2γ2
e−⟨u,w⟩/σ2

dudw = (2π)n
(

γ2σ4

2σ2 − γ2

)n/2

. (95)

Proof∫
Rn

∫
Rn

e
− ∥u−w∥2

2γ2 e−
⟨u,w⟩
σ2 dudw =

∫
Rn

∫
Rn

e
− ∥t∥2

2γ2 e−
⟨t+w,w⟩

σ2 dtdw (t := u− w, dt = du)

=

∫
Rn

∫
Rn

e
− ∥t∥2

2γ2 e−
∥w∥2

σ2 e−
⟨t,w⟩
σ2 dtdw

=

∫
Rn

e−
∥w∥2

σ2

[∫
Rn

e
− ∥t∥2

2γ2 e−
⟨t,w⟩
σ2 dt

]
dw

=

∫
Rn

e−
∥w∥2

σ2

∫
Rn

e
−

∥∥∥∥t+ γ2w

σ2

∥∥∥∥2
2γ2 e

∥∥∥∥ γ2w

σ2

∥∥∥∥2
2γ2 dt

dw
=

∫
Rn

e−
∥w∥2

σ2 e

∥∥∥∥ γ2w

σ2

∥∥∥∥2
2γ2

∫
Rn

e
−

∥∥∥∥t+ γ2w

σ2

∥∥∥∥2
2γ2 dt

dw
=
(√

2πγ2
)n ∫

Rn

e−
∥w∥2

σ2 e

∥∥∥∥ γ2w

σ2

∥∥∥∥2
2γ2 dw.

Then, simplifying the exponent:

−∥w∥
2

σ2
+

∥∥∥γ2w
σ2

∥∥∥2
2γ2

= −∥w∥
2

2σ2

(
2− γ2

σ2

)
= −∥w∥

2

2σ2

(
2σ2 − γ2

σ2

)
= −∥w∥

2

2σ4
(
2σ2 − γ2

)
,
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we get: ∫
Rn

∫
Rn

e
− ∥u−w∥2

2γ2 e−
⟨u,w⟩
σ2 dudw =

(√
2πγ2

)n ∫
Rn

e−
∥w∥2

2σ4 (2σ2−γ2)dw

=
(√

2πγ2
)n(√

2π
σ4

2σ2 − γ2

)n

= (2π)n
(

γ2σ4

2σ2 − γ2

)n/2

.

Lemma 21 Consider σ > 0 and γ > 0. Denote In the identity matrix in Rn. Then:

E
w∼N (0,σ2In)

E
u∼N (0,σ2In)

[
e−∥u−w∥2/2γ2

]
=

(
1 +

2σ2

γ2

)−n/2

. (96)

Proof The expectation is a straightforward integral:

E
w∼p

E
u∼p

[K(u,w)] =
(

1√
2πσ2

)2n ∫
Rn

∫
Rn

e
− ∥u−w∥2

2γ2 e−
∥u∥2

2σ2 e−
∥w∥2

2σ2 dudw

=

(
1√
2πσ2

)2n ∫
Rn

∫
Rn

e
− ∥u−w∥2

2γ2 e−
∥u∥2

2σ2 e
⟨u,w⟩
σ2 e−

∥w∥2

2σ2 e−
⟨u,w⟩
σ2 dudw

=

(
1√
2πσ2

)2n ∫
Rn

∫
Rn

e
− ∥u−w∥2

2γ2 e−
∥u−w∥2

2σ2 e−
⟨u,w⟩
σ2 dudw

=

(
1√
2πσ2

)2n ∫
Rn

∫
Rn

e
− ∥u−w∥2

2ζ2 e−
⟨u,w⟩
σ2 dudw ( 1

2ζ2
= 1

2γ2 + 1
2σ2 = σ2+γ2

2σ2γ2 )

=

(
1√
2πσ2

)2n

(2π)n
(

ζ2σ4

2σ2 − ζ2

)n/2

(Lemma 20)

=

(
ζ2

2σ2 − ζ2

)n/2

=

(
2σ2

ζ2
− 1

)−n/2

=

(
2σ2

σ2
+

2σ2

γ2
− 1

)−n/2

=

(
1 +

2σ2

γ2

)−n/2

.
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Lemma 22 Considering instantiation 1, we have:

θ ≤
(
1 + 2σ2

γ2

)−n/4
. (97)

Proof We have:

θ2 = sup
x∈X
∥ψ(x)∥2H

= sup
x∈X

E
w∼p

E
u∼p

[K(u,w)ϕ(u, x)ϕ(w, x)]

≤ sup
x∈X

E
w∼p

E
u∼p

[|K(u,w)ϕ(u, x)ϕ(w, x)|]

= E
w∼p

E
u∼p

[K(u,w)]. (|ϕ(w, x)| = 1 for all w and x)

The result is given by Lemma 21 (and taking the square root).

Instantiation 2

Consider instantiation 2. Let’s calculate the expectation.

Lemma 23 Considering instantiation 2, we have:

E
w∼p

[K(u,w)ϕ(w, x)] = ζ

σn
e

−u22
2σ2+2γ2 erf

(
xu1 − u′2√

2ζ

)
,

where ζ is defined by the relationship:

1

2ζ2
=

1

2γ2
+

1

2σ2
,

and:

u′2 :=
(
1 + γ2

σ2

)−1
u2.
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Proof We have:

E
w∼p

[K(u,w)ϕ(w, x)] = E
w1∼U({1,...,n})

E
w2∼N (0,σ2)

[K(u,w)ϕ(w, x)]

=
1

n

n∑
i=1

E
w2∼N (0,σ2)

[
1[i = u1]e

−(w2−u2)2/2γ2
sign(xi − w2)

]
=

1

n
E

w2∼N (0,σ2)

[
e−(w2−u2)2/2γ2

sign(xu1 − w2)
]

=
1

n

1√
2πσ2

∫ ∞

−∞
e−(w2−u2)2/2γ2

e−w2/2σ2
sign(xu1 − w2)dw2

=
1

n
√
2πσ2

e
−u22

2σ2+2γ2

∫ ∞

−∞
e−(w2−u′

2)
2/2ζ2 sign(xu1 − w2)dw2

(Lemma 15)

=
e

−u22
2σ2+2γ2

n
√
2πσ2

[∫ xu1

−∞
e−(w2−u′

2)
2/2ζ2dw2 −

∫ ∞

xu1

e−(w2−u′
2)

2/2ζ2dw2

]

=
e

−u22
2σ2+2γ2

n
√
2πσ2

√
2ζ

∫ xu1−u′2√
2ζ

−∞
e−t2dw −

∫ ∞

xu1−u′2√
2ζ

e−t2dw


(t := w2−u′

2√
2ζ

, dw = dw2√
2ζ

)

=
ζ

σ

e
−u22

2σ2+2γ2

n
√
π

∫ 0

−∞
e−t2dw +

∫ xu1−u′2√
2ζ

0
e−t2dw −

∫ 0

xu1−u′2√
2ζ

e−t2dw −
∫ ∞

0
e−t2dw


=
ζ

σ

e
−u22

2σ2+2γ2

n
√
π

∫ xu1−u′2√
2ζ

0
e−t2dw −

∫ 0

xu1−u′2√
2ζ

e−t2dw

.
Finally, we have:

E
w∼p

[K(u,w)ϕ(w, x)] = ζ

σ

e
−u22

2σ2+2γ2

n
√
π

∫ xu1−u′2√
2ζ

0
e−t2dw −

∫ 0

xu1−u′2√
2ζ

e−t2dw


=
ζ

σ

e
−u22

2σ2+2γ2

n
erf

(
xu1 − u′2√

2ζ

)
.

Lemma 24 Considering instantiation 2, we have:

θ ≤ 1√
n

(
1 + 2σ2

γ2

)−1/4
. (98)
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Proof We have:

θ2 = sup
x∈X
∥ψ(x)∥2H

= sup
x∈X

E
w∼p

E
u∼p

[K(u,w)ϕ(u, x)ϕ(w, x)]

≤ sup
x∈X

E
w∼p

E
u∼p

[|K(u,w)ϕ(u, x)ϕ(w, x)|]

= E
w∼p

E
u∼p

[K(u,w)] (|ϕ(w, x)| = 1 for all w and x)

=
1

n2

n∑
i=1

n∑
j=1

E
w∼N (0,σ2)

E
u∼N (0,σ2)

[
1[i = j]e−(u−w)/2γ2

]
=

1

n2

n∑
i=1

E
w∼N (0,σ2)

E
u∼N (0,σ2)

[
e−(u−w)/2γ2

]
=

1

n2

n∑
i=1

(
1 + 2σ2

γ2

)−1/2
(See proof of Lemma 22)

=
1

n

(
1 + 2σ2

γ2

)−1/2
.

Appendix C. Details of experimentation

Lasso

Both Algorithms 4 and 5 use the Lasso. We’ve used the implementation of the Lasso found
in the scikit-learn package.5. Being a coordinate descent algorithm, the Lasso requires
us to specify a maximal number of iterations. We’ve allowed 5n iterations, where n is the
number of variables, meaning that each variable is seen up to 5 times. For Algorithm 5
specifically, because the unregularized minimizer of Equation (60) is simply b = a, we gave
this value as warm start to the algorithm to accelerate convergence. Finally, we gave the
Lasso a tolerance of 10−4.

Hyperparameter selection

Choosing the hyperparameters for instantiation 1 turns out to be a challenging task. The
values of the expectation for instantiation 1 (see Table 1 or Theorem 19) has an exponential
dependence on the dimensionality of the instance space, seen from the

(
1 + σ2/γ2

)−n/2

coefficient. To decide on reasonable values for the experiment of Section 8.3, we have opted
to use this coefficient to calculate γ from σ. Specifically, given some value for σ, and

5. https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
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c ∈ (0, 1), we can take:

γ =
σ√

c−2/n − 1
, (99)

in order to get
(
1 + σ2/γ2

)−n/2
= c. This is a rather rudimentary method for selecting the

hyperparameters of the model; a better way to do so likely exists, though requiring further
theoretical work to develop.

The problem resides mostly in the relationship between parameters σ and γ in high
dimensions. Because instantiation 2 considers stumps on individual variables, it does not
suffer from the curse of dimensionality. Reasonable parameter values were chosen directly
(see below).

In the end, we applied 5-fold cross-validation6 to find the best hyperparameters among
the following values (separately for each combination of instantiation, dataset, and random
seed):

Instantiation 1:

• σ = 1

• c ∈ {0.1, 0.5, 0.9}

• λ ∈ {0.0000001, 0.000001, 0.00001, 0.0001, 0.001}

instantiation 2:

• σ ∈ {0.01, 0.1, 1}

• γ ∈ {0.01, 0.1, 1}

• λ ∈ {0.0000001, 0.000001, 0.00001, 0.0001, 0.001}

We also chose the number of estimators (decision stumps) of AdaBoost in {10, 25, 50, 100, 150, 200}.
(We used the implementation of AdaBoost found in the scikit-learn package.7) We chose
the C parameter of SVM in {0.01, 0.1, 1, 10, 100}. (We used the implementation of SVM
found in the scikit-learn package.8)

Calculating the bounds

Theorem 10 is a uniform bound, and therefore does not depend on the actual value of B used
for training the model. To get the tightest possible bound, we can simply take B = ∥ᾱ∥H,
where ᾱ is the output of Algorithm 1. This is how we obtained the values in Table 3.

The theorem also uses the Lipschitz constant of the loss. In the case of the square loss,
we can use the boundedness of the model (|Λ(x)| ≤ θ∥α∥H) to get ρ ≤ 2(θ∥α∥H + 1).

6. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.
html

7. https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.
html

8. https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Reproducing the results

The code can be found at https://github.com/gadub44/jmlr2023. The experimental
results were achieved on a server running Ubuntu 20.04.5 LTS, with an Intel Core i7-5930K
CPU, and 64 GB of RAM. The code’s execution took a little over two weeks. We used
an up-to-date installation of Anaconda, as of April 2023. See http://anaconda.com for
information. To install Anaconda, run the following command to download the package:

wget https : // repo . anaconda . com/ arch ive /Anaconda3−2023.03−1−Linux−x86_64 . sh

Next, run the installer:

sudo sh Anaconda3−2021.05−Linux−x86_64 . sh

Once the installation is completed, update with conda to make sure all the relevant packages
are up-to-date:

conda update −−a l l

The package idx2numpy is also required (for loading the MNIST dataset). It can be installed
by running the command:

pip i n s t a l l idx2numpy

Finally, to reproduce our experiments, simply run the commands:

python fig_jmlr2023_algo_compar . py
python fig_jmlr2023_pruning . py
python f ig_jmlr2023_sota . py

in the /jmlr2023/ folder. This will generate the files:

• jmlr2023_pruning.csv in the /jmlr2023/results/ subfolder containing the results
used to generate Table 2, and jmlr2023_pruning.tex, the LaTex table itself, in the
/jmlr2023/tables/ subfolder.

• jmlr2023-algo-compar.csv in the /jmlr2023/results/ subfolder containing the re-
sults used to generate Figure 1, and the three subfigures can then be found in the
subfolder /jmlr2023/figures/.

• jmlr2023-sota0.csv in the /jmlr2023/results/ subfolder containing the results
used to generate Table 2, and jmlr2023-sota.tex, the LaTex table itself, in the
/jmlr2023/tables/ subfolder.

Note that all datasets are provided in the /jmlr2023/datasets/ folder, though the code
will automatically download them if they are absent.

Appendix D. Additional results

On the next pages, we have reproduced Table 2 and Table 3 with standard deviations.
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Table 4: Prediction accuracy and pruning ratio of various algorithms on MNIST17. Lasso fit is Algorithm 4 alone, while Least
squares fit, Optimal stepsize descent and SFGD are the respective algorithm followed by Algorithm 5 for pruning the
learned model. ∥β∥H is the norm of the weight function after pruning. In every case, T = 1000. Every line is the average of 10
independently seeded runs.

L01S L01D %pruning pruning+L01S pruning+L01D ∥β∥H
algo

Lasso fit 0.006 ± 0.001 0.009 ± 0.001 63.99 ± 13.66 0.006 ± 0.001 0.009 ± 0.001 1053.973 ± 264.878
Least squares fit 0.007 ± 0.001 0.007 ± 0.001 59.9 ± 0.91 0.007 ± 0.001 0.009 ± 0.001 248.396 ± 3.05

Optimal stepsize descent 0.018 ± 0.002 0.019 ± 0.002 51.42 ± 1.881 0.022 ± 0.003 0.024 ± 0.002 534.325 ± 9.74
SFGD 0.025 ± 0.003 0.027 ± 0.004 73.4 ± 3.367 0.027 ± 0.005 0.029 ± 0.005 310.779 ± 57.283
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Table 5: Performance comparison of the model to AdaBoost (AB), SVM and the Random Kitchen Sinks (RKS) algorithm on
various binary classification datasets. Instantiations 1 and 2 of the model (I1 and I2) were learned using Algorithm 3 (LS fit) and
Algorithm 4 (Lasso fit) with T = 1000. LS and LD are the empirical and test mean square error. L01S and L01D are the empirical
and test classification errors. Rm is the right-hand side of Equation (71), with δ = 0.05. Every line (except SVM) is the average
of 10 independent runs.

LS LD Rm L01S L01D training time (s)
dataset algo

adults AdaBoost 0.13 ± 0.0 0.133 ± 0.0 6.585 ± 0.065
LS fit w/ I1 0.488 ± 0.011 0.487 ± 0.011 61.4 ± 9.3 0.157 ± 0.0 0.155 ± 0.001 0.863 ± 0.013
LS fit w/ I2 0.429 ± 0.0 0.429 ± 0.0 7.0 ± 0.1 0.147 ± 0.0 0.146 ± 0.0 0.737 ± 0.01

Lasso fit w/ I1 0.454 ± 0.002 0.454 ± 0.002 >103 ± >103 0.158 ± 0.001 0.156 ± 0.001 9.422 ± 13.499
Lasso fit w/ I2 0.425 ± 0.002 0.427 ± 0.001 155.2 ± 139.9 0.145 ± 0.0 0.145 ± 0.001 49.484 ± 5.081

RKS 0.148 ± 0.003 0.148 ± 0.003 0.513 ± 0.007
SVM 0.137 0.148 79.222

breast cancer AdaBoost 0.0 ± 0.0 0.021 ± 0.0 0.109 ± 0.014
LS fit w/ I1 0.162 ± 0.0 0.191 ± 0.001 13.2 ± 0.1 0.021 ± 0.0 0.036 ± 0.002 0.069 ± 0.01
LS fit w/ I2 0.135 ± 0.007 0.145 ± 0.001 11.7 ± 2.9 0.018 ± 0.002 0.022 ± 0.002 0.049 ± 0.003

Lasso fit w/ I1 0.073 ± 0.032 0.147 ± 0.019 >105 ± >104 0.012 ± 0.005 0.043 ± 0.005 0.872 ± 0.277
Lasso fit w/ I2 0.087 ± 0.009 0.158 ± 0.009 853.9 ± >103 0.009 ± 0.003 0.035 ± 0.012 0.768 ± 0.261

RKS 0.0 ± 0.0 0.076 ± 0.02 0.029 ± 0.003
SVM 0.014 0.035 0.004

mnist17 AdaBoost 0.0 ± 0.0 0.005 ± 0.0 38.527 ± 0.199
LS fit w/ I1 0.057 ± 0.0 0.061 ± 0.0 >103 ± >103 0.007 ± 0.001 0.01 ± 0.0 0.822 ± 0.014
LS fit w/ I2 0.066 ± 0.002 0.071 ± 0.003 5.5 ± 0.3 0.008 ± 0.001 0.013 ± 0.001 0.494 ± 0.007

Lasso fit w/ I1 0.051 ± 0.002 0.056 ± 0.001 >104 ± >104 0.007 ± 0.001 0.01 ± 0.001 18.259 ± 4.446
Lasso fit w/ I2 0.054 ± 0.005 0.059 ± 0.006 112.8 ± 50.9 0.006 ± 0.001 0.01 ± 0.002 24.711 ± 3.45

RKS 0.007 ± 0.001 0.012 ± 0.001 0.325 ± 0.015
SVM 0.0 0.01 6.635

skin segmentation AdaBoost 0.039 ± 0.0 0.039 ± 0.0 7.278 ± 0.056
LS fit w/ I1 0.03 ± 0.0 0.03 ± 0.0 15.7 ± 0.1 0.005 ± 0.0 0.005 ± 0.0 5.561 ± 0.075
LS fit w/ I2 0.172 ± 0.0 0.173 ± 0.0 7.4 ± 0.0 0.042 ± 0.0 0.042 ± 0.0 6.288 ± 0.038

Lasso fit w/ I1 0.015 ± 0.0 0.015 ± 0.0 693.8 ± 195.8 0.002 ± 0.0 0.002 ± 0.0 411.723 ± 35.335
Lasso fit w/ I2 0.17 ± 0.002 0.171 ± 0.001 26.8 ± 23.9 0.04 ± 0.0 0.04 ± 0.0 353.341 ± 38.872

RKS 0.04 ± 0.0 0.04 ± 0.001 2.865 ± 0.091
SVM 0.001 0.001 7.495
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