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Abstract
A method is proposed for optical characterisation of materials, which is a very important
input for realistic channel simulation based on Monte‐Carlo Ray‐Tracing algorithms. This
original approach consists first of all in carrying out some measurements of the optical
power received after propagation in the environment containing the materials sought,
using a simple and low‐cost experimental setup. In a second step, this approach is based
on an optimization algorithm. It takes as input the optical power measurements made,
associated with the parameters of the measurement environment, such as the positions or
properties of the sensors. This algorithm searches for the parameters of the material
reflection models, minimising the difference between the optical measurement and the
simulation. Two cost functions are studied to perform this search and showed that the
correlation measure is the more robust one. To avoid uncertainties in the real input data,
this approach is discussed using only a virtual configuration with well‐controlled input
data and thus a virtual measurement obtained by simulation. The results show that this
method produces a correct estimate of the Bidirectional Reflectance Distribution
Function (BRDF) albedos, provided that the chosen BRDF models correspond well to
the reflection behaviour of the materials, and that the materials have a significant influ-
ence on the measured optical power.
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1 | INTRODUCTION

Optical Wireless Communication (OWC) is a promising tech-
nology constituting an alternative or a complementary solution
for future wireless radio‐frequency networks, especially in in-
door environments with Visible Light Communication (VLC)
systems [1–3]. The main interest of VLC is to add a new wireless
communication capability to lighting devices. Furthermore,
OWC also offers numerous advantages, including immunity to
electromagnetic interference, enhanced transmission security
and a large unregulated bandwidth.

To evaluate communication performance in OWC
context, the mainly used tools are based on Monte‐Carlo
Ray‐Tracing (MCRT) algorithms, which, from a 3D
geometrical model of the propagation environment, the

optical characteristics of emission and reception sensors and
the optical properties of the materials compute the line‐of‐
sight (LOS) and multi‐reflected contributions between the
source and the receiver [4] to assess the propagation channel
in realistic environments. The 3D environment can be easily
modelled with a low set of surfaces for very simple config-
urations [5] or with Computer‐Aided Design tools in case of
more complex geometry [6]. The radiation patterns of optical
sources can be modelled by simple analytical models as the
conventional Generalised Lambertian one [7] or by experi-
mental datasets provided by numerical simulation or mea-
surement [8].

The Bidirectional Reflectance Distribution Function
(BRDF) models the reflection properties of materials [9]. It is
defined at a surface point x with local normal vector n! as the

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the
original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

© 2023 The Authors. IET Optoelectronics published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Optoelectron. 2023;17:149–161. wileyonlinelibrary.com/journal/ote2 - 149

https://doi.org/10.1049/ote2.12098
https://orcid.org/0000-0002-8226-1145
mailto:pierre.combeau@univ-poitiers.fr
https://orcid.org/0000-0002-8226-1145
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://ietresearch.onlinelibrary.wiley.com/journal/17518776
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fote2.12098&domain=pdf&date_stamp=2023-07-03


ratio between the reflected radiance dLr x; ωr
�!� �

in direction
ωr
�! over the received radiance Li x;ωi

!� �
from direction ωi

!:

R x;ωi
!; ωr
�!� �

¼
dLr x; ωr

�!� �

Li x;ωi
!� �

ωi
! ⋅ n!
�
�

�
�dωi
!: ð1Þ

Hence, it gives the spatial distribution of the reflected
optical power. The conventional Lambertian model is the most
used BRDF in the literature. Given as a constant value cor-
responding to the surface's albedo, it models a perfectly diffuse
surface.

Unfortunately, the albedo values are poorly known and
only a few set of data are provided in the literature for only
some materials and wavelengths [10–13]. These fragmentary
data are not sufficient to describe all materials that appear into
all possible simulation environments. Furthermore, it was
showed in Refs [14, 15] that reflection properties of materials
can significantly impact the communication performance,
especially with low albedo. Therefore, in the context of OWC,
the optical characterisation of materials is needed.

Based on an experimental setup, the measurement of the
complete BRDF can be a solution. This requires measurements
in all directions on the hemisphere covering the sample at a
fixed angular pitch. For this, a system of articulated trays and
arms carrying the optical sensors and the material sample is
often required. Although relatively accurate, these systems have
the disadvantage of requiring expensive sensors, such as a
gonio‐reflectometer [16] or a fibre spectrometer [17], and small
samples of each material. Thus, the exhaustive characterisation
of all the materials is difficult to envisage in a given
environment.

In order to avoid this problem, an original approach is
proposed in this article to determine the BRDF's parameters
and so to characterise the materials. It uses a controlled envi-
ronment with faces composed of distinct materials, whose
reflective properties have to be characterised. A low‐cost,
standard and well‐known Light Emitted Diode is added into

the environment as well as a set of standard and known re-
ceivers (photodiodes), distributed in orientation and position.
This approach first consists in measuring the optical power
each receiver received, generating a reference signal. Secondly,
it uses MCRT simulations feeding a global iterative optimiza-
tion algorithm to converge the simulated and the reference
signal. Starting from random data, at each iteration, the pro-
posed optimization algorithm tries different sets of BRDF's
parameters.

The novelty of this approach dedicated to OWC context
lies in the combination of an optimization algorithm with an
MCRT tool to adjust the BRDF's parameters, for the first time
to our knowledge.

This paper is organised as follows. Section 2 presents the
overall principle of the proposed method. Section 3 details the
considered optimization algorithm. Section 4 provides initial
results as a proof of concept of the proposed approach, on the
basis of a purely numerical validation using a virtual measure
obtained from simulation, and using three different test con-
figurations. Finally conclusions and perspectives are provided
in Section 5.

2 | PRINCIPLE'S OVERVIEW

The proposed system for optical characterisation of materials
relies on the following three tools (cf. Figure 1):

� A measurement system of received optical power over a set
of receivers.

� An optimization algorithm to estimate the unknown
BRDFs' parameters.

� A lightwave propagation simulation software based on
MCRT algorithms [18, 19].

Notice that the geometrical environment shown in Figure 1
is the Hospital room used in Section 4, but any other kind of
indoor ones could be used instead.

F I GURE 1 Optical characterisation system's principle.
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The inputs of the system are: the sensors' characteristics,
the 3D geometrical data of the propagation environment, the
set of measurements realized at each of the receivers distrib-
uted in the real environment. The estimated parameters of the
BRDFs are the outputs of the system.

Using MCRT simulations, the optimisation algorithm esti-
mates the parameters of the searched BRDFs using a similarity
evaluation between the simulated and measured signals. This
evaluation relies on a specific function called cost function.

3 | OPTIMIZATION ALGORITHM

The aim of any optimization method is to evaluate the optimal
set of parameters that optimises a cost function. In this paper's
context, this set is the BRDF's parameters.

Many optimization techniques are proposed in the litera-
ture. Conventional methods relying on gradient descent require
the derivative of the cost function. In our approach, the
simulated signal is based on Monte Carlo methods and is
therefore not given as an analytical expression. Hence, it is not
possible to apply such a descent technique. Furthermore, the
method must provide the global optimum of the cost function,
but not a local one. Consequently, this paper uses a genetic
algorithm, which is a stochastic optimization method repro-
ducing natural selective without requiring the derivative of any
function, and that explores the full parameter space. In similar
application contexts, genetic algorithms have already shown
their efficiency [20, 21] and their ability to converge towards
the global optimum. The synoptic of the proposed genetic
algorithm is presented in Figure 2.

The algorithm is randomly initialised with a list of ele-
ments, forming a first population. Each element is composed
of all BRDF parameters. For each element of this population,
an MCRT simulation is performed and then the cost function
is evaluated. From these evaluations, a new population is
created using three genetic operators: first selection, then
crossing and finally mutation. The cost of these new elements
is evaluated using a new MCRT simulation and the cost
function. The former and new populations are then merged
using a fourth operator, called fusion, which keeps only the
best elements. The genetic algorithm iterates this cycle until a
maximum number of iterations is reached or an acceptable
solution is found.

3.1 | Search domain

All the BRDFs considered in this paper are Lambertian,
defined as follows:

R x;ωi
!; ωr
�!� �

¼
ρ
π
; ð2Þ

where ρ is the albedo, x the reflection point, ωi
! and ωr

�! the
incident and reflection directions. The search domain corre-
sponding to the range of possible albedo's values is [0,1].

3.2 | Initialisation

Any element of a population is a vector (ρ1, …, ρn) having n
coordinates, corresponding to the albedos of the n materials in
the environment. Stratified sampling [22] is used to ensure a
homogeneous distribution of elements in the element space. For
example, with 6 different materials present in a controlled
environment, then using 2 strata per ρ, the population is formed
of 26 = 64 elements, or 36 = 729 elements using 3 strata.

3.3 | Evaluation of the cost function

The optimization algorithm relies on a criterion called the cost
function to estimate the level of similarity between the refer-
ence (measured) signal and the simulated signal. This article
uses two conventional criteria representing the two different
families of similarity measurement between two signals:

� The Normalised Root Mean Square Error (NRMSE) is a
measure of dispersion similar to the Root Mean Square
Error, while facilitating the comparison between signals of
different scales.

� The Pearson Correlation Coefficient (PCC) is a measure of
the linear correlation between two sets of data.

3.3.1 | Normalised root mean square error

According to a given population, the global NRMSE is defined
as follows:

NRMSE ¼ min
i∈ 1;…;NPop½ �

NRMSEif g ð3Þ

where NPop is the population's size, and the error NRMSEi of
the ith element of the population is as follows:

NRMSEi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
NRx

XNRx

j¼1

SimiðjÞ − Ref ðjÞ
Ref ðjÞ

� �2
s

; ð4Þ

where Ref and Simi are, respectively, the reference and the
simulated channel's gains (expressed in Watt) for each of the
NRx receivers.F I GURE 2 Proposed genetic algorithm's synoptic.
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3.3.2 | Pearson correlation coefficient

According to a given population, the global PCC is defined as
follows:

PCC ¼ max
i∈ 1;…;NPop½ �

PCCif g ð5Þ

where the correlation coefficient PCCi of the ith element of the
population is in the following:

PCCi ¼

PNRx

j¼1
ΔSimiðjÞΔRef ðjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PNRx

j¼1
ΔSimiðjÞð Þ

2P
NRx

j¼1
ΔRef ðjÞð Þ

2

s ð6Þ

where ΔSimiðjÞ ¼ SimiðjÞ − Simi, ΔRef ðjÞ ¼ Ref ðjÞ − Ref ,
Simi and Ref are the mean values of Simi and Ref, respectively,
considering NRx receivers. PCCi varies from −1 to 1; a value of
0 means no correlation, and −1 and +1 correspond to a com-
plete linear correlation, negative and positive, respectively.

3.3.3 | From cost function to population's score

The optimization relies on a global score defined as follows:

NSi ¼
Si

max
k∈ 1;…;NPop½ �

Skf g
; ð7Þ

where Si depends on the chosen cost function:

� Since NRMSE represents the dispersion measurement, the
best score is obtained when it tends to 0. Hence, with
NRMSE, the score is defined as follows:

Si ¼
1

NRMSEi
: ð8Þ

� On the contrary, PCC represents a correlation between two
signals, obtained when PCCi tends to 1. Hence, with PCC,
the score is defined as follows:

Si ¼ PCCi: ð9Þ

3.4 | Selection

The selection is described in Algorithm 1. In the current
population (Elements), it consists in choosing a subset of
NbSelected elements (Selected). It corresponds to a given per-
centage (SelectedPer) of the population and is obtained in two
steps. In the first one, to ensure that in the crossing step, a part
of the most performing elements are considered, the set made
of the BestSelected elements is selected, corresponding to the
BestSelectedPer percentage of the best elements.

The second step tries to avoid convergence to a local min-
imum. It uses simulated annealing to ensure a significant
probability P(T) of selecting bad elements, especially during the
first iterations. Using the image of temperature in physics Tj, the
temperature reduces according to Tj = T1. r j, where T1 is the
initial temperature and 0 < r < 1 is the diminution rate. From T1

and TnbIter obtained at the last iteration nbIter, r is evaluated
such that:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

TnbIter

T1
nbIter

s

; T1 > TnbIter: ð10Þ

Applying this principle, the probability P(T) decreases as
the number of iterations j increases (cf. Figure 3).

The population's diversity must be ensured over the gen-
erations in order to explore the element space as broadly as
possible. The mutation and crossing operators help to assure
this objective.

Algorithm 1 Selection algorithm.

Algorithm 2 Crossing algorithm.

F I GURE 3 Element's choice probability versus its score and according
to the temperature T.
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3.5 | Crossing

Algorithm 2 describes the crossing step. From former popu-
lation Selected, it uses some parents randomly chosen to
generate new elements called children.

More precisely, the algorithm starts from a couple of
parents p1 = (ρ1,1, ρ2,1, …, ρn,1) and p2 = (ρ1,2, ρ2,2, …, ρn,2)
randomly chosen from Selected. Then, it generates a child
c = (ρ1, ρ2, …, ρn), uniformly choosing between ρk,1 and ρk,2
for each ρk value. This process is repeated to produce NPop
children. Notice that the same parents can be chosen many
times during the whole crossing process.

Algorithm 3 Mutation algorithm of a child ρk value.

3.6 | Mutation

Algorithm 3 describes the mutation step. The objective is to
potentially modify each child generated during the crossing
step. For a given child, this algorithm modifies each of its
BRDF’ parameter ρk with probability PM. When ρk has to be
mutated, the algorithm does a Gaussian sampling using Al-
gorithm 4. Gaussian sampling uses the former ρk as mean
value, while its standard deviation σ is a follows:

σ ¼
1
4
: 1 −

j − 1
nbIter

� �b

; ð11Þ

where j is the number of iterations of the optimization algorithm,
and b is an empirically fixed global parameter. The principle is to
ensure a good exploration of the space of elements during the
first iterations, then to reduce the size of this space as the ele-
ments get closer to the solution. In practice, this consists in
progressively reducing σ so as to reduce the average changes
brought about by the mutations, as the iterations progress.

It is worth noting a problem that can arise with this mutation
method: sampling can produce a new ρk outside the [0,1] albedo
space. This problem is illustrated in Figure 4 with two examples
where the ρk parameters of values 0.1 and 0.9 have to bemutated
with σ = 0.2: in both cases, the probability of sampling a ρ0k value
lower than 0 and higher than 1, respectively, is quite high. To
overcome this problem, a rejection sampling mechanism is used
to restrict the sampled value ρk to [0…1]. This method gua-
rantees a correct Gaussian probability distribution.

3.7 | Fusion

From the population of iteration j and the new population
composed of the elements generated after mutation, the fusion

consists in generating the elements of the population used at
iteration j + 1. The aim is to retain the NPop best elements of
both populations. To do so, this step first consists in evaluating
the scores of the elements of the population generated after
the mutation step. This is done by estimating the channel gain
for each receiver using an MCRT simulation and then calcu-
lating their score using the cost function (see Figure 2). Then,
the elements of the two populations are merged and sorted by
decreasing order of scores. Finally, the first NPop are kept,
corresponding to the best NPop.

3.8 | Stop criteria

Two criteria can be taken into account to stop this optimisation
algorithm. The first is based on an accuracy threshold: the
algorithm is stopped when the best element reaches a target
value of the cost function. The second criterion consists in
stopping the algorithm after a fixed maximum number of it-
erations. We only consider the latter criterion to theoretically
validate the algorithm in the rest of this paper.

Algorithm 4 DoMutation(ρk).

4 | ALGORITHM VALIDATION

This section aims at validating the optimization algorithm
proposed in this paper. This algorithm is based on a signal
measured in an experimental environment and on simulations
performed in a virtual environment. The latter must be close
enough to the experimental environment to obtain the same
signal as the measured one. Hence, the validation relies onto
two different criteria:

1) The algorithm converges: does the simulation signal
converge to the measured one?

F I GURE 4 Sampling outside the albedo's definition domain.
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2) The algorithm converges to the global optimum: do the
found parameters correspond to the real ones?

Let us recall that the parameters, we search are BRDFs of
some materials (albedo).

To do this validation, we need to know all the parameters
from the experimental setup, including the searched ones. The
sole method to obtain these physical parameters is to measure
them. Unfortunately, the physical measurement of any physical
parameter can be a challenge especially for the searched ones
(albedo), and at best can be done with a margin of error. What
is the impact of these uncertainties on the optimization algo-
rithm convergence? In case of convergence, does the algorithm
converge to a global optimum or a local one?

To overcome these problems, we propose to simulate the
measurement, such that all the parameters involved in the
measurement are fully known and controlled, in order to be
able to discuss the validity of the optimisation algorithm
accurately. In the following, this simulated measurement is
called the virtual measurement.

Our validation is then based on the four following different
configurations, three with a same but simple geometrical
environment, and the last one with a more complex and
realistic geometry.

� Exact configuration: it is made such that the input data of
both the virtual measurement and the optimization algo-
rithm are perfectly known. The virtual environment data are
described in Figure 1, including the physical parameters of
the sensors, their location etc.

� Erroneous configuration 1: starting from the exact config-
uration, it introduces a controlled error onto the radiated
power of the transceiver.

� Erroneous configuration 2: starting from the exact config-
uration, it introduces a controlled error onto the trans-
mitter's orientation.

� Hospital configuration: a more complex geometrical envi-
ronment with pieces of furniture like a bed, sofa, wardrobe,
etc., and hence more BRDF to fit.

4.1 | Simulation configurations

The exact configuration is depicted in Figure 5 and Table 1.
Walls, ceiling and floor are made of specific materials, which
have to be characterised by the genetic algorithm. The refer-
ence signal corresponds to the optical power, which would be
measured on a set of receivers distributed inside the room. As
previously mentioned, in this first approach, we consider a
purely numerical validation by replacing measurement data
with virtual measurement based on our MCRT tool by
considering a maximum of 3 successive reflections and the
materials given in Table 1.

To help the genetic algorithm, the reference signal has to be
significantly impacted by all the materials composing the envi-
ronment. To achieve this, we consider a set of receivers whose
respective locations tend to be uniformly distributed over a

sphere centred on a reference location indicated in Table 1. They
are oriented according to the radius of the sphere, fixed to 20 cm
to set the receivers' locations. However, a conventional random
uniform sampling leads to a concentration of receivers on given
zones of the sphere's surface, while some other areas are empty
of point (cf. Figure 6a for 128 receivers). If more receivers point
to a specific zone, and that few ones (maybe 0) point to other
zones, the impact on the reference signal of the corresponding
materials will be high and low respectively. Consequently, it will
be difficult for the genetic algorithm to estimate well thematerial
parameters of surfaces having low impact on both reference and
simulated signals. To avoid this problem, we consider the
deterministic Fibonacci [23] sampling method, which always
provides the same distribution of locations onto the sphere, for
a given number of samples, while minimising the discrepancy,
that is, themaximumdistance between any couple of receivers to
the set of locations (cf. Figure 6b for 128 receivers). In this study,
the impact of this parameter onto the genetic algorithm is
analysed by considering between 1 and 20 receivers.

F I GURE 5 Simulation environment for the first three configurations.

TABLE 1 Parameters of the exact configuration propagation
environment.

Parameters Values

Room size 5 � 5 � 3 m

Surfaces' BRDFs model Lambertian

Tx location (2.5, 2.5, 2.99)

Tx orientation (0, 0, −1)

Tx power 1 W (normalised)

Tx geometrical shape/area Circular/1 cm2

Rxs reference location (2.5, 2.5, 1.5)

Rxs geometrical shape/area Circular/1 cm2

FoV of the receivers 60°

ρ of ceiling/floor 0.8/0.3

ρ of east/west/south/north walls 0.4/0.7/0.5/0.9
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Previous works have highlighted the bad knowledge of the
emitted optical irradiance of conventional LEDs, which can
vary by a factor from 2 to 5 due to differences in
manufacturing processes [15]. To analyse its corresponding
impact onto the genetic algorithm convergence to the global
optimum, we propose the Erroneous configuration 1: based
on the Exact configuration, it multiplies its emitted optical
irradiance by a factor of 2.

Another parameter that is difficult to measure is the
orientation of sensors. To quantify its impact on the genetic
algorithm convergence, the Erroneous configuration 2 mod-
ifies the orientation of the transmitter by 10°, starting from the
Exact configuration. More precisely, its orientation is given by
the vector {0, −0.174, −0.985}.

While the first three configurations share the same geom-
etry and BRDF, to explore the robustness of the method in
more complex scenarios, we use a fourth configuration with a
different and more complex environment. This configuration
is called Hospital configuration and is shown in Figure 1. It
contains 8 different BRDF, and some pieces of furniture: a bed
with a mattress and a bed structure, a sofa, a wardrobe, a
bedside table, a TV, an oxygen block up to the bed and of
course the room. Each of these elements has one corre-
sponding BRDF (cf. Table 2).

4.2 | Genetic algorithm configuration

The results presented in Section 4.3 have been obtained by
configuring the genetic algorithm as follows:

� Global parameters: nbIter = 100, NPop = 64.
� Selection: BestSelectedPer = 5%, SelectedPer = 50%,

NbSelected = SelectedPer ⋅ NPop, T1 = 10, TnbIter = 0.1.
� Mutation: PM = 0.5, b = 1.

4.3 | Results and discussion

The proposed optimization algorithm is stochastic since it
depends on the initial population and on the numerous
random sampling needed for the selection/crossing/mutation

steps. Then, every run leads to different initial populations and
different crossed/mutated ρ values. Nevertheless, all these runs
should tend to the same result when the iteration number
tends to infinity. This results in the maximum score we can
expect for the given input parameters. Let us recall that the
score depends on the cost function that tends to zero using
NRMSE and 1 using PCC.

This section presents the simulation results for the four
introduced configurations, showing the evolution of both the
cost functions (excepting Hospital configuration that uses PCC
only) and the best population's element according to the
number of considered receivers and for 10 runs.

4.3.1 | Exact configuration

Figures 7 and 8 show the evolution of the cost functions
NRMSE and PCC versus the iteration numbers for 10
different runs. The curves tend to 0 and 1, respectively, indi-
cating that the genetic algorithm seems to converge as previ-
ously mentioned.

To check if the algorithm tends to the global optimum, we
statistically compare the ρ values of the best element after the
100 iterations to the objective ones by computing the mean
and standard deviation of the ρ values over the 10 runs.
Figures 9 and 10 show these data (crosses and vertical lines are
the mean and the standard deviation values respectively) over
10 runs according to the number of considered receivers,

F I GURE 6 Example of distribution of 128 receivers from (a) the
classical random uniform sampling and (b) the Fibonacci sampling.

TABLE 2 Parameters of the hospital configuration propagation
environment.

Parameters Values

Room size 2.83 � 3.79 � 2.07 m

Surfaces' BRDFs model Lambertian

Tx location (1.3, 2.0, 2.0)

Tx orientation (0, 0, −1)

Tx power 1 W (normalised)

Tx geometrical shape/area Circular/1 cm2

Rxs reference location (1.3, 1.3, 1.4)

Rxs geometrical shape/area Circular/1 cm2

FoV of the receivers 60°

ρ of room (ceiling/floor/east/west/south/north
walls)

0.7

ρ of wardrobe 0.6

ρ of mattress 0.4

ρ of sofa 0.3

ρ of TV 0.2

ρ of bed structure 0.9

ρ of oxygen block 0.5

ρ of bed side table 0.65

COMBEAU ET AL. - 155

 17518776, 2023, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ote2.12098 by C

ochrane France, W
iley O

nline L
ibrary on [10/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



considering NRMSE and PCC cost function, respectively.
From these curves, we can conclude that the ρ estimation is all
the more accurate when the number of receivers is high.
Whatever the cost function, a number of 11 receivers seem to
be sufficient to well estimate the 6 ρ in terms of mean values.
The algorithm's stability is also quite good since the standard
deviations are weak, except for the ceiling. The transmitter
being on the ceiling and radiating towards the floor, the con-
tributions reflected on the ceiling need at least two reflections,
while they need only one reflection for the floor and the walls.
Consequently, they carry less power when reflecting onto the
ceiling compared to the other surfaces, and therefore, should
have a smaller impact on the cost function, regardless of the
ceiling's ρ value.

Let us check this hypothesis by analysing Table 3 for
NRMSE. It shows the evolution of the cost function according
to extreme possible ρ values (0.1 and 0.9) for the ceiling and
the east wall, the other surfaces’ρ being fixed to expected
values. The cost function is first computed (row 1) considering
the reference signal (Ref) obtained for the ceiling's ρ value of
0.8 (cf. Table 1). In this configuration, the maximum cost
function's values (in red) are 0.082 and 0.171 for the ceiling and
the east wall, respectively, indicating a 2 times lower impact for
the ceiling, as expected. The second row of Table 3 shows the
cost function's values obtained for a reference signal computed
considering a ceiling's ρ value of 0.2. In this configuration, the
maximum cost functions' values (in red) are 0.092 and 0.246
for the ceiling and the east wall respectively, that is, a 2.5 times
lower impact for the ceiling. These results confirm that the
genetic algorithm has more difficulty in properly estimating the
ceiling's ρ value because of its lower impact onto the cost
function due to the geometrical configuration.

4.3.2 | Erroneous configuration 1

The evolution of the NRMSE cost function presented in
Figure 11 is different from that observed for the Exact
configuration. While the NRMSE value still decreases ac-
cording to the number of iterations, it seems to reach a limit of
about 1.62, far from the optimal value of 0, indicating that the
genetic algorithm has failed to converge. This analysis is
confirmed by Figure 12, which shows the reference signal (i.e.
the virtual measurement) compared to the estimated powers
received on each of the receivers over the 10 runs of the ge-
netic algorithm; theses curves are significantly different.

Consequently, the statistics of the ρ values of the best
element after 100 iterations are shown in Figure 13, high-
lighting the non‐convergence of the algorithm: the

F I GURE 7 Evolution of the best value of the cost function as a
function of the number of iterations (Exact configuration–NRMSE).

F I GURE 8 Evolution of the best value of the cost function as a
function of the number of iterations (Exact configuration–PCC).

F I GURE 9 Performance statistics according to the number of
receivers (Exact configuration–NRMSE).

TABLE 3 Surfaces' impacts on the NRMSE cost function.

Ceiling's ρ East wall's ρ

0.1 0.9 0.1 0.9

Reference ceiling's ρ = 0.8 0.082 0.012 0.099 0.171

Reference ceiling's ρ = 0.2 0.013 0.092 0.076 0.246
F I GURE 1 0 Performance statistics according to the number of
receivers (Exact configuration–PCC).
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optimization algorithm visibly leads to a local optimum but not
to the global one. It can be observed from Figure 12 some
peaks and troughs. For the troughs, the impact of albedo
change on the NRMSE is limited due to power close to 0, while
it could be important for peaks. Hence, NRMSE privileges the
peaks.

Conversely, the use of the PCC cost function keeps the
algorithm converging well as indicated by Figure 14 where
PCC values tend to 1. Indeed, Figure 15 shows that the
reference and estimated signals are almost superposed. This is
confirmed by the statistics of estimated ρ values depicted in

Figure 16: they are close to the objective albedos from 11
receivers.

4.3.3 | Erroneous configuration 2

In this configuration, the orientation of the transmitter is {0,
−0.174, −0.985}, corresponding to a 10° change. Figures 17
and 18 seem to both indicate a good convergence with cost
function values tending to 0 and 1, respectively. This first
observation is confirmed by the comparison between the
reference signal and the estimated ones based on NRMSE and

F I GURE 1 1 Evolution of the best value of the cost function as a
function of the number of iterations (Erroneous configuration 1–NRMSE).

F I GURE 1 2 Reference signal versus simulated signal (Erroneous
configuration 1–NRMSE).

F I GURE 1 3 Performance statistics according to the number of
receivers (Erroneous configuration 1–NRMSE).

F I GURE 1 4 Evolution of the best value of the cost function as a
function of the number of iterations (Erroneous configuration 1–PCC).

F I GURE 1 5 Reference signal versus simulated signal (Erroneous
configuration 1–PCC).

F I GURE 1 6 Performance statistics according to the number of
receivers (Erroneous configuration 1–PCC).
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PCC cost functions, depicted in Figures 19 and 20; these
curves appear to be well overlapped.

Nevertheless, the statistical analysis of the ρ values of the
best element after 100 iterations, shown in Figure 21 for
NRMSE and Figure 22 for PCC, indicates that in both cases,
the genetic algorithm converged to a local minimum, charac-
terised by a wrong set of estimated albedos.

4.3.4 | Hospital configuration

Based on the previous results, we focus on the PCC cost
function for this more realistic and complex configuration.
Presenting the evolution of the PCC values over the iterations,
Figure 23 still shows a good convergence of the cost function
that tends to 1. This result is confirmed by Figure 24 that

shows a very good overlapping between the reference signal
and the estimated one.

Finally, Figure 25 allows a more in‐depth analysis of the
performance of our method by showing the evolution of the
estimated albedo statistics over the considered number of

F I GURE 1 7 Evolution of the best value of the cost function as a
function of the number of iterations (Erroneous configuration 2–NRMSE).

F I GURE 1 8 Evolution of the best value of the cost function as a
function of the number of iterations (Erroneous configuration 2–PCC).

F I GURE 1 9 Reference signal versus simulated signal (Erroneous
configuration 2–NRMSE).

F I GURE 2 0 Reference signal versus simulated signal (Erroneous
configuration 2–PCC).

F I GURE 2 1 Performance statistics according to the number of
receivers (Erroneous configuration 2–NRMSE).

F I GURE 2 2 Performance statistics according to the number of
receivers (Erroneous configuration 2–PCC).
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receivers. The same observations as for the previous config-
urations can be made again. First of all, most of the albedos
can be correctly estimated (room, TV, mattress, sofa and bed
structure). However, some albedos are more difficult to obtain
and have a large standard deviation: those of the bedside table,
the oxygen block, and to a lesser extent, the wardrobe. As for
the ceiling in the previous configurations, it can be observed
that these pieces of furniture are either small compared to the

propagation environment or far away or poorly oriented from
the sensors. Their influence on the received optical power is
therefore imperceptible.

4.4 | Discussion

With a perfect knowledge of all the input data, the Exact
configuration proposed in Section 1 has shown that the ge-
netic algorithm is able of converging well towards the global
optimum with the two considered cost functions, namely,
NRMSE and PCC. Consequently, the albedo of each material
composing the experimental environment is well identified,
which validates the algorithm. Unfortunately, the precise
knowledge of all these input data is a difficult task to guarantee.
It is therefore important to analyse the impact of erroneous
input data onto the ability of the genetic algorithm to find the
correct values of the searched parameters, that is, the albedos.

Considering an erroneous transmitted optical power, Sec-
tion 2 has shown that using the NRMSE cost function does not
allow the genetic algorithm to converge, because the received
power is limited to positive values. Conversely, with the PCC
cost function, not only the genetic algorithm always converges,
but also it converges to the global optimum. Indeed, by using
PCC, the algorithm searches for a curve with a similar shape to
the reference signal, whatever its mean value. Hence, PCC is a
more robust cost function with respect to the uncertainty of
this type of input data.

Section 3 analysed the impact of a wrong orientation of the
transmitter. It showed that, whatever the cost function used, it
is impossible for the genetic algorithm to find the global op-
timum: it converges to a local minimum, leading to an erro-
neous set of albedos. To solve this configuration, it would be
necessary to introduce the orientation of the transmitter as a
new parameter sought in the genetic algorithm, but at the cost
of an increase in complexity. Another way would be to improve
the experimental setup to ensure a good parameterisation of
the optimization algorithm.

Finally, Section 4 has illustrated the behaviour of the
proposed method in the case of a more complex and realistic
propagation environment, that is, the Hospital configuration.
As for the simple previous environment, most of the materials
are well estimated, except the one of furniture having a small
area compared to the environment dimensions, or being far
from the sensors, leading to a weak impact on the received
optical power.

A further improvement for the optical characterisation of
certain materials, such as the ceiling in the Exact configuration,
but also more generally for the characterisation of a large
number of materials composing a realistic environment (as
Hospital environment), would be to use more receivers and
transmitters distributed in the environment, so that each ma-
terial has a significant impact on the reference/measured sig-
nals. This solution should also help to characterise materials
whose reflection behaviour follows a more complex BRDF
model characterised by several parameters, for example, Phong

F I GURE 2 3 Evolution of the best value of the cost function as a
function of the number of iterations (Hospital configuration–PCC).

F I GURE 2 4 Reference signal versus simulated signal (Hospital
configuration–PCC).

F I GURE 2 5 Performance statistics according to the number of
receivers (Hospital configuration–PCC).
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[19]. Both types of sensors could be mapped onto different 3D
printed spheres distributed in the environment, similar to our
first prototype shown in Figure 26.

This experimental setup is realised as follows. Each sensor
is mounted on a rectangular printed circuit board (PCB). The
3D model of the sphere carrying the sensors is first designed
under a 3D modelling software like Blender. The positions of
the sensors are calculated by the Fibonacci method presented
in Section 4.1. At these positions, the 3D model of the sphere
is drilled in order to insert the PCBs carrying the sensors.
These PCBs are screwed into the thickness of the 3D printed
sphere so that the active surface of the sensor is flush with the
outer surface of the sphere.

5 | CONCLUSION

This paper has proposed a new approach for optical charac-
terisation of materials composing indoor environment, based
first on measurement using a simple and low‐cost setup, and
then on numerical simulation from an MCRT tool, feeding a
genetic algorithm capable of fitting the simulated data to the
measured ones. This paper fully describes the different steps of
this algorithm, including two different cost functions to find
the optimal materials. These cost functions are the NRMSE
and the PCC.

To ensure that the input data are perfectly known, so that
the algorithm can be discussed accurately, this paper provided a
proof of concept by replacing measured data with simulated
data, leading to a purely numerical validation process. The
results showed that the optimization algorithm performs well

with these two cost functions, in the conditions of the pro-
posed environments: correct choice of BRDF models and
significant influence of each material onto the received optical
power.

Secondly, this paper attempted to add a controlled error in
the input data for two particularly difficult to acquire data: it
first considered an erroneous radiated power, and second an
erroneous orientation of the transmitter. For the first case,
NRMSE failed to obtain the right albedos, while PCC still
provides good results. For the second case, both cost functions
did not give the expected albedos, indicating that a good
measurement of the sensors' orientation should be guaranteed
or that a rotation matrix applied to the sensors should be
added to the parameters sought for the optimization.

Finally, this paper explores a more complex environment
with more materials and a more complex geometry with
some pieces of furniture. The conclusions drawn from the
three previous configurations are still valid: a good estimate
of BRDFs having a direct impact on the received optical
power and a poor estimate for the other BRDFs' albedo. A
direct extension of this work can be to fix the obtained
BRDF having a low standard deviation, then move the re-
ceivers closer to the not yet characterized materials to
perform a new measurement, and so on until all materials are
correctly characterised.

There exist many other future works, such as implementing
the measurement setup, studying the case of more complex
BRDFs, testing other cost functions and exploring the impact
of different parameters of the algorithm.

Finally, it will be necessary to study this method with real
measurements, not just virtual, in order to validate it as a valid
and inexpensive method for characterizing materials in OWC
systems.
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