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Space-time observation of the dynamics of soliton collisions in a recirculating optical fiber
loop
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Abstract

We present experiments performed in a recirculating fiber loop in which we realize the single-shot observation of the space and
time interaction of two and three bright solitons. The space-time evolutions observed in experiments provide clear evidence of a
nearly-integrable nonlinear wave dynamics that can be easily interpreted within the framework of the inverse scattering transform
(IST) method. In particular collisions between solitons are found to be almost perfectly elastic in the sense that they occur without
velocity change and with only a position (time) shift quantitatively well described by numerical simulations of the integrable
nonlinear Schrödinger equation. Additionally our experiments provide the evidence that the position (time) shifts arising from the
interaction among three solitons are determined by elementary pairwise interactions, as it is well known in the IST theory.
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1. Introduction

The conditions under which an intense electromagnetic beam
can produce its own dielectric waveguide and propagate with-
out spreading were examined by Chiao et al. as early as 1964 in
Ref. [1]. In 1973, Hasegawa and Tappert pointed out that non-
linearity of the index of refraction could indeed compensate the
pulse broadening effect of chromatic dispersion in low-loss op-
tical fibers leading to undistorted propagation of short pulses.
In particular, they theoretically and numerically investigated
propagation of light pulses using the one-dimensional nonlinear
Schrödinger equation (1D-NLSE) both in normal and anoma-
lous dispersion regimes [2, 3]. Following this, Mollenaueur et
al. experimentally reported for the first time in 1980 the propa-
gation of solitons in a single-mode optical fiber [4].

The discovery of the optical soliton immediately led to many
attempts at applications in ultra-high-speed fiber communica-
tions, see Ref. [5] for a recent historical review on this sub-
ject. Many works have been realised to construct and to study
all-optical transmission systems in which fiber losses are com-
pensated by optical amplification, see e.g. Ref. [6, 7, 8, 9, 10]
for relevant monographs and reviews that are available on this
subject. In particular Mollenauer and Smith carried out pio-
neering experiments on long distance optical communications
using solitons [11]. They developed a fiber loop system into
which a bit stream is loaded and recirculates, thereby simulat-
ing propagation over very large distances using a few hundred
kilometers of fiber. Recirculating fiber loops are systems where
the concept of all optical soliton transmission by periodic am-
plifications has been investigated in details [12] and where soli-
ton propagation has been achieved over distances as large as
one million kilometers [13].

From a physical point of view, solitons can be described as
nonlinear wavepackets that propagate without changing shape,

thanks to a balance between nonlinearity and dispersion of the
wavepacket. From a mathematical point of view, solitons repre-
sent specific solutions of some nonlinear dispersive partial dif-
ferential equations (PDEs), such as the 1D-NLSE, which are
integrable and can be solved using the inverse scattering trans-
form (IST) method. In the IST theory of the 1D-NLSE, a fun-
damental soliton is parameterised by its amplitude and velocity,
each of these parameters being encoded into a single complex
discrete eigenvalue λ1 of the associated Zakharov-Shabat scat-
tering problem [14, 15, 16, 7]. Due to the integrabillity of the
1D-NLSE, the discrete eigenvalue λ1 is a constant of the evolu-
tionary motion, which means that it is preserved with the prop-
agation distance in an optical fiber experiment. A fundamen-
tal soliton in the 1D-NLSE is also characterized by its position
in space and by its phase. In the IST theory, these phase and
position parameters, which generally change with the evolu-
tion variable, are encoded in a complex coefficient C1 termed
norming constant [14, 17]. Noteworthy, the concepts of the
IST theory are now used in optical fiber communication where
the nonlinear Fourier transform (NFT), originally introduced as
eigenvalue communication [18], is now used for optical data
processing and fiber transmission, see. e.g. Ref. [19].

As originally noted in the pioneering work by Zabusky and
Kruskhal, solitons in nonlinear wave systems described by in-
tegrable PDEs exhibit the remarkable property that they retain
their shape, amplitude and velocity upon interactions with other
solitons [20]. The process of elastic collision between two soli-
tons occurs without energy exchange between them. It has
been studied experimentally in great detail in many physical
systems [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. In
particular, the elastic collision between two individual solitons
parametrised by discrete eigenvalues λ1 and λ2 is accompanied
by phase/position shifts that can be measured far outside the



interaction region for each soliton. As it is well known in the
IST theory, a soliton with the spectral parameter λ1 that inter-
acts with another soliton with the spectral parameter λ2 expe-
riences a position shift ∆1↔2 that only depends on λ1 and λ2:
∆1↔2 = ∆(λ1, λ2), and not on the position and phase parameters
that are encoded in the norming constants C1 and C2 associated
with each soliton [15, 16, 7]. In an interaction process involving
three solitons with spectral (IST) parameters λ j ( j = 1, 2, 3), the
IST theory predicts that the total position shift ∆1↔(2,3) experi-
enced by the soliton with the spectral parameter λ1 is equal to
the algebraic sum of the shifts accumulated during the paired
collisions: ∆1↔(2,3) = ∆1↔2 + ∆1↔3 [14]. This fundamental
property that solitons exhibit particle-like properties with elas-
tic, pairwise interactions arises from the integrable nature of the
PDE describing their evolution in space and time.

Beyond regular solitons that are localised structures sitting
on zero background, the 1D-NLSE supports a broad class of
solutions referred to as breathers or solitons on finite back-
ground which includes the so-called Akhmediev, Peregrine and
Kuznetsov-Ma breathers [33]. The interaction of such breather
waves features an even richer dynamics that has been investi-
gated experimentally in several domains including fiber optics
and hydrodynamics systems [34, 35, 36].

In this paper, we present experiments performed in a recir-
culating fiber loop in which we observe the interaction in space
and time of some small ensembles composed of two or three
bright solitons. Despite the presence of weak dissipation oc-
curring over propagation, the observed dynamics is found to be
nearly integrable, which means that soliton collisions are found
to be nearly elastic without significant changes of their veloci-
ties due to the interactions with other solitons. Considering the
collision between two bright solitons, we observe that their rel-
ative phase determines the shape of the field in the interaction
region where their overlap is significant. On the other hand,
the position (time) shift measured far outside the interaction re-
gion only depends on the amplitudes and velocities of the two
solitons without being influenced by the phase-dependent dy-
namics of the field in the interaction region. Considering the
interaction between three bright solitons, we observe that the
position shift depends on the spectral IST parameters (ampli-
tude and velocity) of the solitons without depending on their
position and phase parameters. The space-time behaviours ob-
served in the experiments are reproduced quantitatively well by
numerical simulations of the 1D-NLSE. The space-time evolu-
tions recorded in the experiments provide the clear evidence of
almost perfectly integrable nonlinear wave dynamics that can
be easily interpreted within the framework of the IST theory.

2. Experimental setup

The principle of operation of the experimental setup is
schematically depicted in Fig. 1(a). It is essentially similar to
the one reported in Ref. [37, 38, 39] and used for experimen-
tal investigations of the nonlinear stage of modulation instabil-
ity of a plane wave in various configurations. A continuous
wave field from a narrow-band laser at 1555 nm is temporally
shaped using a combination of 20 GHz bandwidth electro-optic

(intensity) modulator (I-EOM) and phase modulator (ϕ-EOM).
A 12.5 GHz arbitrary waveform generator (AWG) drives the
I-EOM to generate a train of short pulses and synchronously
drives the ϕ-EOM to imprint a linear phase across each pulse
with an alternating sign of the slope. Using this synchronous
phase modulation scheme, the group velocity of each pulse can
be controlled in an accurate way.

In the experiments reported in the present paper, the phase
modulation is designed in such a way that adjacent pulses have
opposite velocities in order to trigger their collision at the de-
sired propagation distance. After the modulation stage, the
wave field is amplified to reach Watt-level peak power and
chopped down by an acousto-optic modulator (not shown for
clarity) to create a 1 µs-long signal burst at a 20 Hz repetition
rate which is used as input of the recirculating optical fiber loop.

The fiber loop itself is mostly composed of ∼ 5 km of sin-
gle mode fiber (SMF) closed on itself by a 90/10 fiber coupler.
The coupler is arranged in such a way that 10 % of the signal is
initially injected in the loop and 90 % of the intra-loop power
is recirculating. The optical signal circulates in the clockwise
direction and at each roundtrip, 10 % of the circulating power is
extracted and directed towards a photodetector (PD) coupled to
a fast sampling oscilloscope leading to an overall 32 GHz detec-
tion bandwidth. Experimental data are recorded with the oscil-
loscope at a sampling rate of 160 GSa/s. They consist in a suc-
cession of sequences (one per roundtrip) that are subsequently
processed numerically to construct single shot space-time dia-
grams showing the wavefield dynamics. Note that in addition
to the short pulses, the input signal contains flat-top pulses of
durations ranging from 500 ps to 10 ns (not illustrated in Fig. 1)
that are used as reference markers for post-processing synchro-
nisation and power calibration. Importantly, the losses accumu-
lated over one circulation in the fiber loop are partially compen-
sated using a counter-propagating Raman pump coupled in and
out of the loop via wavelength division multiplexers (WDMs).
As illustrated in Fig. 1(b) which shows the normalised evolu-
tion of the power in a typical experimental run, this enables
reduction of the effective exponential power decay rate of the
circulating field to αeff ∼ 1.92 × 10−4 km−1 or equivalently
∼ 0.000 84 dB/km. This value can be normalised with respect
to the typical nonlinear length of the experiments presented in
this work which is LNL = 1/(γP0) = 14.7 km (see caption of
Fig. 2 for the values of the parameters). Accordingly, the losses
expressed in unit of nonlinear length is αeffLNL = 2.8 · 10−3.

As already mentioned in Sec. 1, recirculating fiber loops rep-
resent useful platforms for the research and development of
long-haul transmission systems. In configurations typically im-
plemented in the context of optical communications, the fiber
loop system is usually first loaded with a bit stream which sub-
sequently circulates over a given number of roundtrips before
the detection/diagnostic of the optical field is made. The ar-
chitecture of such loop systems is based on the use of several
optical switches that must be appropriately activated at the load-
ing, circulating and detection stages, see e.g. Ref. [40]. Such a
fiber loop device has been recently used for the space-time ob-
servation of Fermi-Pasta-Ulam-Tsingou recurrence in a long-
haul optical fiber transmission system [41]. In contrast with
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Figure 1: (a) Principle of operation of the experimental setup. (b) Normalised evolution of the circulating optical power computed from the experimental recording
from which data presented in Fig. 2 are extracted. Light blue dots are experimental values calculated at each roundtrip and the black dashed line is the exponential
fit giving αeff ∼ 1.92 × 10−4 km−1. cw: Continuous Wave, I-EOM: Intensity-Electro-Optic Modulator, ϕ-EOM: Phase-Electro-Optic Modulator, EDFA: Erbium
Doped Fiber Amplifier, WDM: Wavelength Division Multiplexer, PD: Photodetector, OSC: Oscilloscope.

these loops incorporating optical switches, our system is based
on a fiber coupler which is used both to inject and to extract
light, thereby using an architecture similar to that proposed in
Ref. [42]. The recirculating fiber loop shown in Fig. 1(a) has
the strong advantage of allowing real-time periodic recording
of the evolution of the temporal dynamics of a signal at each
roundtrip. In other words, our experimental setup permits the
reconstruction of the spatiotemporal dynamics of a signal in
single shot, which enables the observation of the dynamics of
non-repetitive events.

3. Collision of two solitons

Using the experimental system described previously, we con-
trol with a satisfying accuracy the process of collision be-
tween individual solitons and observe the associated spatiotem-
poral dynamics in single shot. Firstly, we designed the pulses
launched in the fiber loop to have a typical duration of 35.7 ±
0.9 ps FWHM and a peak power of 101 ± 4 mW in such a way
that their initial shape is compatible with fundamental soli-
tons. However, the soliton generation process is not perfect
and our initial pulses unavoidably contain some radiative (non-
solitonic) content. Importantly, owing to the slight variations of
the pulses parameters from shot to shot, the phase difference be-
tween adjacent pulses is not controlled in the experiment. The

synchronous phase modulation imprints a linear phase slope to
each pulse which results in a relative velocity difference be-
tween adjacent pulses that can be translated in relative linear
drifts ∆V ∼ 1.2 ± 0.04 ps/km or equivalently a frequency de-
tuning ∆ f = ∆ω/(2π) = ∆V/(2π |β2|) ∼ 8.62 ± 0.3 GHz. This
is calculated a posteriori by measuring and fitting the trajec-
tories of the solitons in the reconstructed spatiotemporal dia-
grams. A single experimental recording features several tens
of soliton collisions from which the fluctuations given above
are estimated. The input signal is engineered such that colli-
sions occur after a propagation distance of ∼ 3000 km which
allows the initial radiative content of the pulses to be cleared
out (see the collision window in Fig. 1(b)). That way, we ensure
that the collisions involve almost purely solitonic pulses with a
limited contribution from dispersive waves. The characteristics
of the temporal shape of the pulses are calculated via fitting
with sech2 functions (see caption of Fig.2 for the expression)
250 km before collision and are as follows: P0 = 55.3 ± 8 mW,

T0 = 19.9 ± 3 ps which gives N =
√
γP0T 2

0/|β2| = 1.11 ± 0.1
[43].

Figure 2(e-h) shows the spatiotemporal dynamics of four dif-
ferent collisions recorded experimentally within a single exper-
imental run including a total of 50 collision events. Each col-
lision event is presented over a propagation distance range of
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Figure 2: Spatiotemporal dynamics of the collision of two identical solitons, impact of the phase difference. (a-d) Numerical simulations of the 1D-NLSE for
4 remarkable relative phase differences. (e-h) Corresponding experimental observations selected from a batch of 50 collisions. Vertical axis is shifted for direct
comparison since collisions actually occur after ∼ 3000 km of propagation. The color scale is common to all the presented results. Initial condition for the simulations
is of the form Ψ(t, z = 0) =

√
P0sech[(t − t0)/T0]e−i(∆ω/2)t +

√
P0sech[(t + t0)/T0]e+i((∆ω/2)t+∆ϕ), with P0 = 55.3 mW, β2 = −22 ps2/km, γ = 1.23 W−1 km−1,T0 =√

|β2 |/(γP0) ∼ 18 ps,∆ω/(2π) = 8.62 GHz, t0 = 168 ps.

500 km with the collision occurring after a propagation distance
that has been artificially shifted for simplicity around 250 km
(the actual collision occur after a propagation distance of ∼
3000 km inside the loop). It is noteworthy that this propagation
distance corresponds to 34 nonlinear lengths (LNL = 14.7 km).
The space-time diagrams in Fig. 2 are presented in a reference
temporal frame moving at a group velocity corresponding to
the mean group velocity of the two pulses, which results in col-
lisions that appear nearly symmetric with respect to the verti-
cal axis (t = 0). The relative phase between colliding solitons
not being controlled in the generation process, the interaction
region takes a different shape depending on this phase that is
randomly distributed between 0 and 2π.

We show in Fig. 2(a-d) numerical simulations of the 1D-
NLSE expressed with physical variables

i
∂Ψ

∂z
=
β2

2
∂2Ψ

∂t2 − γ|Ψ|
2Ψ, (1)

where Ψ is the complex envelope of the wavefield, β2 and γ the
group velocity dispersion and Kerr coefficients respectively, z
the longitudinal variable describing propagation distance, and t
the time in the reference frame introduced previously. We take
as initial conditions two well separated solitons

Ψ(t, z = 0) =
√

P0sech[(t − t0)/T0]e−i(∆ω/2)t

+
√

P0sech[(t + t0)/T0]e+i[(∆ω/2)t+∆ϕ],
(2)

with peak power P0 and frequency detuning ∆ω fixed to the
average value experimentally estimated before collision, their

typical duration T0 is set to the exact value leading to funda-
mental solitons (see parameters’ values in the caption of Fig. 2).
Spatiotemporal evolution for four particular values of ∆Φ are
illustrated: in-phase (∆Φ = 0) collision (a) is translated into a
strong peak of the optical intensity whereas the pattern result-
ing from out-of-phase (∆Φ = π) collision (c) creates the false
impression that solitons exactly bounce (or repel) each other
while they still actually pass through one another. Intermediate
phase differences ∆Φ = π/2 and 3π/2 respectively lead to simi-
lar evolutions where a peak optical intensity appears but shifted
towards the left (right) with respect to the collision center.

Experimental observations presented in Fig. 2(e-h) have been
respectively selected for their striking quantitative agreement
with the simulations illustrated above. Each of the experimental
realisations, not shown here for brevity, matches with numeri-
cal simulation with appropriate phase difference. This confirms
that we indeed realise the collision of solitonic pulses, the co-
herence of which is well preserved all along their interaction.
Note that numerical simulations do not take account of dissipa-
tion that is present in experiment but we stress that the counter-
propagating Raman amplification limits the power loss over the
500 km shown in Fig. 2(e-h) to less than 10 % which barely
affects the dynamics with respect to the conservative case.

As exposed in the introduction, a remarkable feature of soli-
tons is that they emerge unaltered from their pairwise interac-
tion although their relative phase difference drastically impacts
the exact dynamics of the collision as confirmed by the experi-
ments presented Fig. 2. However, the collision is accompanied
by a time shift that is solely parametrised by the IST spectral
parameters of the individual solitons (amplitude and velocity).
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Figure 3: Experimental observation of collision-induced soliton shift in (a-b)
balanced and (c-d) imbalanced configurations. The space-time diagrams are
plotted in the reference frame of the right soliton for clarity. (a, c) Temporal
traces extracted from the top of the space-time diagrams with sech2 fits super-
imposed. Vertical dashed white lines in (b) and (d) highlight the linear trajecto-
ries of the soliton before collision. Insets in (b) and (d) show the same collisions
in the temporal reference frame that travels at the mean group velocity of the
two pulses.

Our experiments enable clear observation of the collision-
induced temporal shift as presented in Fig. 3. We first take the
case of the collision between balanced solitons (i.e. solitonic
pulses with comparable amplitudes) similar to those illustrated
in Fig. 2 and focus on the temporal shift experienced by one of
the soliton. To do so, it is convenient to operate a change of tem-
poral reference frame to one that travels at the group velocity of
the soliton under consideration. That way, the latter appears as
following a straight vertical trajectory when not interacting with
other solitons. This operation is done numerically a posteriori
for ease of visualisation and does not modify the physics of the
system. Figure 3(b) shows the space-time dynamics of a col-
lision in the same conditions as in Fig. 2 but plotted in the ref-
erence frame of the right (steady) soliton. The vertical dashed
white line emphasises the trajectory of the soliton before colli-
sion. After collision with the left (moving) soliton, it has clearly
experienced a temporal shift towards negative times of the or-

der of the soliton’s width while retaining almost perfectly its
velocity close to zero after the interaction, thus demonstrating
that the observed collision is of elastic nature.

The temporal trace recorded ∼ 250 km after the collision
is shown in Fig. 3(a) in which the collision-induced shift is
marked by the arrows. The two pulses are well fitted by sech2

functions (dashed lines) whose parameters still confirm their
solitonic nature. Note that the signal exhibit significant noise
due to the rather small optical power detected in single shot (we
recall that less than 10 % of the circulating power is detected so
the ∼ 50 mW peak power indicated in Fig. 3(a) correspond ef-
fectively to pulses of less than ∼ 5 mW peak power incident on
the photodiode). In this configuration, the moving soliton also
experiences a shift of almost the same magnitude but opposite
sign (as visible in the inset showing the same collision in the
reference frame that travels at the mean group velocity of the
two pulses).

As previously mentioned, we have recorded 50 similar reali-
sations of this scenario of collision which allows us to evaluate
an average shift of the solitons with a certain error interval. To
do so, we extracted from the spatiotemporal diagrams the lin-
ear trajectories of the two solitons before and after interaction
for each realisation. The collision-induced shift is then calcu-
lated from the parameters of the linear trajectories. Note that
parameters of each collisions (amplitude, duration of the soli-
tons and their relative velocities) are slightly different such that
the expected temporal shift also varies from shot to shot. Also,
care must be taken since small changes of solitons’ velocity are
detected between before and after collision which is a conse-
quence of weak non-integrability of our system. This prevents
straightforward estimation of the temporal shift which is for-
mally defined at asymptotically long propagation distance from
the interaction [14, 15]. To limit the impact of this velocity
change, we estimated the shift 75 km after the point of maxi-
mum interaction (marked by the horizontal dotted white line)
which is sufficiently large for the solitons to separate but not
too much for the change of velocity to dramatically alter the
measurement of the shift. Using this methodology, the aver-
age temporal shift measured is 29.1 ± 4.2 ps. For comparison,
numerical simulations of the 1D-NLSE taking account of the
realistic variation of all the relevant parameters give a shift of
30.7 ± 0.9 ps. Eventhough our experimental estimation is asso-
ciated to a larger uncertainty, it remarkably agrees with realistic
prediction from the integrable 1D-NLSE model.

To complement the result shown in Fig. 3(a-b), we present
an example of a so-called imbalanced collision, i.e. a col-
lision between solitons of significantly different peak power.
The spatiotemporal evolution of the pulses plotted in the ref-
erence frame moving at the velocity of the weakest soliton is
shown in Fig. 3(d) and exhibit a similar dynamics as the one de-
scribed previously. For this particular realisation, the weak soli-
ton clearly experiences a large temporal shift and keeps its ve-
locity, demonstrating once again that the observed imbalanced
collision is of elastic nature. The inset in Fig. 3(d) additionally
illustrates that the weak soliton emerges from the collision with
a larger shift than the strong one.
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4. Three solitons interaction

In this last section, we report experiments on the interaction
process between three solitons. In this configuration, the IST
theory predicts that the total shift experienced by one of the soli-
ton is the algebraic sum of the shifts acquired over the paired
collisions. The result of the interaction between three solitons
is thus fully determined by the three constitutive pairwise col-
lisions. Importantly, the relative positions and phase of each
soliton before the interaction do not influence the time shift that
are measured well after the interaction among the three solitons.

To illustrate this, we designed a set of experiments where
three solitons of nearly the same amplitude (comparable to that
shown in Fig. 2) interact and we show the results in Fig. 4.
The velocity and initial position of the solitons are precisely
controlled to generate three distinct interaction scenarios. In
all cases, frequency detuning (relative velocity differences) be-
tween adjacent pulses is constant and equal to ∆ f ∼ 4.24 GHz
(∆V ∼ 0.59 ps/km). Also, because the total interaction between
the three solitons takes place over a larger span of distance we
engineered the input signal so that it occurs at shorter propaga-
tion distance compared to the previous experiments (centered
around 1000 km of propagation instead of 3000 km) which pro-
vides better control over the solitons parameters. This means
that a greater dispersive content is present in the interaction area
with respect to previous experiments. The dynamics of the soli-
tons is therefore visibly impacted by this interplay.

In the first case illustrated in Fig. 4(a), the solitons are ini-
tially equally spaced leading to an interaction that is very lo-
calised in space and time. In fact, individual pairwise colli-
sions are not distinguishable and the exact collision dynamics
depends on the relative phase differences between the three soli-
tons. This results in a greater complexity of the interaction re-
gion as compared to the dynamics associated with a two soliton
interaction pictured in Fig. 2. Noticeably, the central soliton
emerges almost unshifted from the interaction since in this con-
figuration, the shifts induced from the two indivual collisions is
in principle of the same magnitude but of opposite sign. The
two other solitons experience a total shift larger than those ob-
served in Fig. 3 because they both cumulate two shifts of same
sign. Also, it is clear that the velocity of the central soliton has
slightly changed during the interaction. The weak but non null
effective losses and the periodic evolution of the power imposed
by the recirculating loop configuration break the integrability
of the system to some extent and are involved in the slightly
inelastic features observed in the experiments.

If the in-between soliton is now initially slightly offsetted, the
interaction window expands and pairwise separable collisions
start to become apparent though individual trajectories still can-
not be identified as shown in Fig. 4(c). Again, the dynamics of
the interaction is highly sensitive to the relative phases between
the solitons. However, the central soliton comes out of the inter-
action quasi unperturbed in terms of position and velocity. Fi-
nally, for a large offset of the in-between soliton the three indi-
vidual pairwise collisions are perfectly identified (see Fig. 4(e))
and each exhibit a dynamics comparable to those reported in
Fig. 2 and 3. Paying specific attention to the in-between soli-

ton, the latter experiences a clear positive shift from the first
collision that is almost perfectly cancelled after the second col-
lision. This is overall remarkably translated by its broken but
straight trajectory. The experimental observations presented in
Fig. 4 illustrate qualitatively yet with a great level of details the
full complexity of the particle-like behaviour of solitons’ pair-
wise interaction.

5. Conclusion

In conclusion, a recirculating fiber loop has been used to re-
alize the single-shot observation of the interaction in space and
time of two and three bright solitons. To the best of our knowl-
edge, it is the first time in nonlinear fiber optics that the funda-
mental process of soliton collision is observed both in single-
shot (without averaging) and in space and time. In our experi-
ments, collisions between two solitons have been found to be al-
most perfectly elastic, without significant change in the velocity
of the solitons after their interaction. The position (time) shift
measured in experiments is quantitatively well described by nu-
merical simulations of the 1D-NLSE. Our experiments have
also provided the evidence that the position (time) shifts aris-
ing from the interaction among three solitons are determined
by the elementary pairwise interactions, as it is well known in
the IST theory.

The recirculating fiber loop is a weakly dissipative experi-
mental platform that is well adapted to the space-time observa-
tion of the evolution of solitons and solitary waves. We plan
to use it in the near future to investigate theoretical questions
behind the spectral theory of soliton gases [44, 45] and gener-
alized hydrodynamics, the hydrodynamic theory of many-body
quantum and classical integrable systems [46].
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