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Abstract: Radiomics is a discipline that involves studying medical images through their digital
data. Using “artificial intelligence” algorithms, radiomics utilizes quantitative and high-throughput
analysis of an image’s textural richness to obtain relevant information for clinicians, from diagnosis
assistance to therapeutic guidance. Exploitation of these data could allow for a more detailed
characterization of each phenotype, for each patient, making radiomics a new biomarker of interest,
highly promising in the era of precision medicine. Moreover, radiomics is non-invasive, cost-effective,
and easily reproducible in time. In the field of oncology, it performs an analysis of the entire tumor,
which is impossible with a single biopsy but is essential for understanding the tumor’s heterogeneity
and is known to be closely related to prognosis. However, current results are sometimes less accurate
than expected and often require the addition of non-radiomics data to create a performing model. To
highlight the strengths and weaknesses of this new technology, we take the example of hepatocellular
carcinoma and show how radiomics could facilitate its diagnosis in difficult cases, predict certain
histological features, and estimate treatment response, whether medical or surgical.

Keywords: radiomics; artificial intelligence; precision medicine; hepatocellular carcinoma

1. Introduction

At the time of precision and personalized medicine, new biomarkers are needed to
better understand disease profiles and improve diagnosis accuracy and precise prognosis.
Radiomics is an emerging field that uses artificial intelligence technology to extract, analyze,
and interpret medical imaging data. Taking the example of hepatocellular carcinoma (HCC),
we will show its promise, results, and limits. First, we will define radiomics, and then we will
see, with a selection of studies, how a radiomics analysis of data from Computed Tomography
(CT), Magnetic Resonance Imaging (MRI), and Positron emission tomography–computed
tomography (PET-CT) is applied to HCC.

2. What Is Radiomics?

Artificial intelligence (AI) is currently experiencing major developments, particularly
in healthcare. AI refers to the use of computer algorithms to mimic the cognitive functions
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of the human brain, i.e., tasks that require memory, judgment, and understanding but
also learning, as AI integrates the results of previous experiments to better solve the next
experiment [1]. The current growth of artificial intelligence in healthcare is explained by the
need to obtain useful and relevant information from the increasing amount of data available
for each patient. Analysis of this large set of biological data, incomplete from human
intelligence alone, requires the use of powerful computers. Big data are also present in
medicine in the so-called -omics disciplines: Genomics, for example, evolved from genetics
after it became fast and cheap to sequence entire genomes. Proteomics, which studies
the molecular details of proteins, and metabolomics for metabolites are other examples.
In medical imaging, image acquisition equipment is becoming more and more powerful
(3 Tesla MRI, high-resolution CT), but the considerable amount of digital data collected is
not sufficiently exploited by the human eye. Using the machine’s analytical capabilities,
radiomics has become a supplementary tool to radiology: while the human eye performs
a qualitative analysis of the image (shapes, sizes, enhancement profiles, density, etc.), the
machine is able to extract and exploit a large number of quantitative features. Exploitation
of this new information could, therefore, provide relevant information for physicians
regarding diagnosis, prognosis, and treatment decisions [2]. Since 2012, this discipline has
experienced exponential interest from the scientific community, as shown by the increasing
number of publications on the subject (Figure 1) [3]. Indeed, radiomics could help us
glean novel insights from medical images, which we can only infer by postulating that
the pixels may be arranged in patterns that, once quantified, could signify an event of
clinical relevance to both physician and patient. Further, the radiomics research carried
out so far probably reflects only a small part of the information that can be provided by
the analysis of such a large amount of data, limited by the computational capabilities of
currently available graphics cards (GPUs: Graphic Processing Units).
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Radiomics fits perfectly with the current desire to precisely describe each pathology
on an individual scale [4]. In oncology, particularly, the physician has numerous tools
to accurately identify his patient’s tumor and will have even more in the future (Next-
Generation Sequencing, research on the specific expression of a key cellular receptor, etc.).
This practice of precision medicine is naturally suitable for the use of holistic models,
integrating radiomics features as well as demographic, clinical, biological data, etc. [2].
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Characterization of Intra-Tumoral Heterogeneity

It is now well established that a tumor is not composed of a homogeneous set of
the same cancer cells but rather of the coexistence of multiple sub-clonal populations,
both morphologically and in terms of their molecular expression. We, therefore, speak of
intra-tumoral heterogeneity, in contrast to inter-tumoral heterogeneity, which refers to the
variations that exist between tumors of different individuals [5]. It has been found that
the greater the heterogeneity, the more guarded the prognosis [6]. Friemel et al., in 2015,
analyzed 23 HCC surgical specimens and showed that 83% of them were heterogeneous,
both in terms of morphology (architecture, intracellular fat or bile content) as well as
molecular expression or mutational profiles [7]. Nevertheless, a proper assessment of this
heterogeneity is only possible with a full tumor tissue sample and is not achievable with a
biopsy alone. Yet, it represents a challenge for precision medicine, with direct therapeutic
consequences; if a mutation identified as predominant in the biopsy sample is minor in the
whole tumor, the specific treatment of this mutation will not be effective, especially if we
consider that another mutation, predominant in the tumor but not identified by the biopsy,
is actually inhibiting the treatment that was believed to be specific. Aerts et al. performed
the first radiomics study in 2012, involving the analysis of lung and upper aerodigestive
tract cancer CT scans. In addition to showing that radiomics data can be associated with
prognostic information, they confirmed that certain radiomics features varied according to
different gene expression profiles within the same tumor and were, thus, able to capture
intra-tumoral heterogeneity [8].

Unlike a biopsy, which only allows for the exploration of a sample, radiomics performs
an analysis of the whole tumor. It, therefore, seems to be a useful tool for appreciating
the degree of heterogeneity present within a tumor, particularly hepatocellular carcinoma.
In addition, radiomics offers the advantage over biopsy of being non-invasive and easily
repeatable over time, at different stages of the management of a cancer patient. Neverthe-
less, it has been shown that numerous radiomics features are dependent on tumor volume,
which are, therefore, not usable in longitudinal studies, during which tumor volumes will
change with the course of the disease or following therapy [9].

Beyond human clinical studies, patient-derived tumor xenografts (PDXs), which
are cancer models made by the implementation of cells from a patient’s tumor into an
immunodeficient mouse, recapitulate the heterogeneity of human tumors well [10], which
can be operated by radiomics, as shown by Shoghi et al., who identified robust radiomics
features from PDXs [11].

3. Conducting a Radiomics Study

A radiomics study consists of developing a retrospective predictive model of an event
of interest from radiomics data extracted from a cohort of patients prior to the event
occurring [2]. The first step of the study is to identify a cohort and define the event of
interest, which must be relevant and have a significant impact on patient care. The next
step is to select the imaging technique (CT, MRI, PET-CT, etc.) and to identify the Region Of
Interest (ROI) where the radiomics data will be extracted. Typically, the ROI corresponds
to the primary tumor, but it can sometimes be its metastasis or, more exceptionally, a
healthy tissue area surrounding the tumor, the peritumoral area, where it is supposed
that cellular events participating in the aggressiveness of the tumor’s growth can occur.
Radiomics analysis of this peritumoral area could, thus, provide a good indication of
tumor aggressiveness.

The tumor must, therefore, be segmented for each patient, using either a semi-
automatic or manual method. However, the manual approach is more time-consuming
and less reproducible [2]. Software that performs semi-automatic segmentation identifies
the margins of the tumor in an identical manner, regardless of the tumor analyzed, in
contrast to human operators who may judge the tumor limits differently. Nevertheless,
the semi-automatic method still requires human intervention to adjust the tumor margins
when the boundaries are too blurry [12]. In the case of manual segmentation, delimita-
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tion of each tumor can be performed several times by the same operator or by different
operators to evaluate the inter- and intra-observer reproducibility of the extracted features.
However, the delineation between tumor lesions and normal liver can be made difficult
by the heterogeneity of HCC lesions, in particular in the case of radiomics on PET-CT
due to the variable Fluorodeoxyglucose (FDG) uptake by HCC. Blanc-Durand et al., thus,
proposed to analyze the entire liver (including the tumor within the liver) when performing
a radiomics study by PET-CT. Using, mainly, two textural features (strength and variance),
they developed a predictive score for progression-free survival and overall survival after
transarterial Yttrium90 radioembolization (90Y-TARE) for unresectable HCC. Even after
stratification by Barcelona Clinic Liver Cancer (BCLC) stage and tumor size, the score
differentiated a low-risk group (median progression-free survival (PFS) at 11.4 months (95%
CI: 6.3–16.5 months), median overall survival (OS) at 20.3 months (95% CI: 5.7–35 months))
from a high-risk recurrence group (median PFS at 4.0 months (95% CI: 2.3–5.7 months),
median OS at 7.7 months (95% CI: 6.0–9.5 months). The authors suggested that a radiomics
analysis of the whole liver could, through a balance of normal liver tissue and tumor
burden, provide prognostic information for HCC patients treated with 90Y-TARE [13].

These features extracted from the ROI can be classified into different categories. The
first-order features globally describe the gray-level intensity distribution of the pixels. This
includes data from the histogram, which represents the pixel frequency (on the ordinate) as
a function of their intensity (on the abscissa): average and maximum intensity, spread, dis-
persion, asymmetry, etc. Second-order features, most frequently used in radiomics, describe
the distribution of pixel intensity, not globally as first-order features but by considering
the intensity of each pixel and its relation with its neighboring pixels. Figure 2 illustrates
two of the most used second-order features: the Gray-Level Co-occurrence Matrix (GLCM),
which describes the frequency of side-by-side appearance of two pixels of different gray
levels, and the Gray-Level Run-Length Matrix (GLRLM), which describes the frequency of
side-by-side appearance of two or more pixels of the same gray levels [12].
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Figure 2. Example of two second-order radiomics features, Gray-Level Run-Length Matrix (GLRLM)
and Gray-Level Co-occurrence Matrix (GLCM).

The artificial intelligence algorithm then analyzes these numerous parameters and
identifies those that are correlated to the occurrence of the event of interest. Once identified,
they are grouped to form a score or a predictive model. This model can then be improved to
enhance its predictive power by adding non-radiomics data, such as clinical, demographic,
or biological data [14]. Two cohorts can be constituted in order to test and validate the
model, which can be evaluated using the Area Under Receiver Operating Characteristic
(ROC) curve (AUC).

This validation step is essential and opens the possibility of generalizing the model
created to current clinical practice [3].

Figure 3 provides a diagram of the different stages of a radiomics study.
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Figure 3. Process of a radiomics study. After image acquisition, the ROI (Region Of Interest) is
segmented and features are extracted and analyzed to create the model, which can be combined with
biological, demographic data, etc.

4. Limitations

Although radiomics appears to be a promising tool in healthcare, several limitations
remain that hinder its widespread use in routine clinical practice. Models created in each
study cannot currently be compared since they do not follow a standardized protocol for
implementation. Imaging techniques (CT, MRI, PET-CT) are generally different between
studies: type of machine, voltage, acquisition time after contrast injection, etc.

To overcome this problem, Guiot et al. recommended that each author proposing a
radiomics model should provide a precise summary of the characteristics of the study:
acquisition process, ROI segmentation method, type of image processing, data filtration
device, etc. Ideally, the code translating the modeling methodology used should be avail-
able [3]. In order to provide a better framework for practices, Lambin et al. proposed a
quality score for radiomics studies, the Radiomic Quality Score [2]. It is based on 16 criteria
for evaluating the quality and reproducibility of a radiomics study and could allow for a
standardization of practices to make radiomics a tool for routine use.

More generally, artificial intelligence is currently limited by the excessive heterogeneity
in patient data, as algorithms are currently unable to compare data from different imaging
systems (MRI and CT scans, for example) and, more broadly, data from different disciplines
(radiological and biological).

Moreover, access to radiomics is currently limited: the software is specialized and
difficult to use. LIFEx, for example, a software program available in opensource, requires a
trained operator.

5. Radiomics in Practice: Example of Hepatocellular Carcinoma

Hepatocellular carcinoma is a frequent (782,000 new cases in 2012), severe (third
leading cause of cancer death, with 746,000 deaths in 2012), and singular tumor, whose
geographic distribution is closely related to risk factors: viral, alcoholic, and/or metabolic
liver diseases, with or without cirrhosis. Non-invasive diagnosis is possible with dynamic
imaging (MRI/CT) for nodules > 1 cm on cirrhotic liver, according to EASL/AASLD
criteria [15,16]. After being disregarded for about 20 years, biopsy is once again strongly
recommended for initial characterization of a suspected HCC lesion. However, the clinician
may not always have access to it, and a single biopsy alone is not sufficient to consider the
heterogeneity of the tumor and, consequently, its overall prognosis [17]. In addition, the
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clinician has numerous medical CT or MRI images whose analysis by radiomics can provide
valuable information concerning diagnosis, prognosis, or choice of treatment (Table 1).

5.1. Radiomics for Histological Diagnosis

Radiomics can be used to predict the precise diagnosis of a tumor, especially liver
tumors. In subjects without chronic liver disease, liver tumors with a large vascular contin-
gent may be difficult to characterize. Epithelioid angiomyolipoma is a vascular tumor with
a variable fat content that makes it difficult to distinguish from focal nodular hyperplasia
or hepatocellular carcinoma, two other blood-rich hepatic masses. Liang et al. studied
CT (n = 170) and MRI (n = 137) radiomics features of patients with suspected epithelioid
angiomyolipoma tumors. By comparing these features with the definitive histological
results from biopsy or surgery, they obtained a model that distinguishes epithelioid an-
giomyolipoma from other liver tumors, such as HCC or focal nodular hyperplasia. In the
validation cohort, the model from CT had an AUC of 0.879 and of 0.925 from MRI. After
adding age, sex, and maximum tumor diameter to the model, the AUC was 0.966 (CT) and
0.971 (MRI) [18].

In cirrhotic patients, hepatocellular carcinoma can be diagnosed in the case of a nodule
greater than 1 cm with a typical enhancement pattern. For nodules with a diameter between
1 and 2 cm, these non-invasive criteria have a specificity and a positive predictive value of
100% but a sensitivity of 71% [17]. Zhong et al. proposed a model to better differentiate
HCC from benign nodules when liver tumors are greater than or equal to 3 cm. It is a
model that combines radiomics features with the LI-RADS radiological classification [19],
offering strong diagnostic performance, with an AUC of 0.975, a sensitivity of 97.3%, and a
specificity of 97.7%. Without the addition of the LI-RADS classification, the radiomics model
alone had an AUC of 0.917, a sensitivity of 93.8%, and a specificity of 86.4%. The LIRADS
classification alone (without the addition of the radiomics features) had an AUC of 0.898, a
sensitivity of 93.8%, and a specificity of 81.8%. The combined model significantly improved
specificity (p = 0.030) and positive predictive value (p = 0.031) but did not significantly
increase sensitivity (p = 0.215) and negative predictive value (p = 0.188) compared to the
LI-RADS classification alone, showing that the contribution of radiomics here is modest
compared to previously validated non-artificial-intelligence-based classifications [20].

5.2. Radiomics for Prediction of HCC Outcome

Among curative HCC treatments, surgical resection, restricted to early stages without
significant portal hypertension, offers a 70% survival rate at 5 years, with a 70% recurrence
rate at 5 years [17]. Post-surgical recurrence is, therefore, a major problem that is difficult
to predict. It can be better assessed by non-radiomics models, using standard variables of
interest: gender, tumor size, multinodularity, ALBI score, and AFP level, allowing one to
distinguish three risk groups: low (20%), moderate (42%), or high risk (65%) [21]. Regarding
radiomics, Ji et al. proposed a model to predict postoperative HCC recurrence based on
preoperative radiomics data from 470 patients (divided into a training cohort:‘210 patients,
an internal validation cohort: 107 patients, and an external validation cohort: 153 patients)
after a median follow-up of 56 months. Again, this is a mixed predictive model, combining
radiomics data with clinical data: presence or absence of cirrhosis, radiological data: regular
or irregular tumor margins, and biological data: ALBI score and AFP level, to obtain a
better predictive power, with a time-dependent AUC of 0.803. The model allowed for a
classification of patients into three groups: low risk of recurrence (median time to recurrence
98.7 months), intermediate risk (median time to recurrence 28.3 months), and high risk
(median time to recurrence 6.4 months). The model was significantly better than other
widely used staging systems (BCLC, ERASL, HKLC, CLIP, AJCC TNM: p < 0.05 for all
models) [14].

Microvascular invasion is one of the elements most correlated to the risk of postop-
erative recurrence of hepatocellular carcinoma [22]. Further, its presence could challenge
the indication for liver transplantation for HCC [23]. In order to predict the risk of HCC
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recurrence after surgery or transplantation, there is, therefore, an interest in non-invasively
detecting the microvascular invasion from the medical image before surgery. Specific MRI
criteria with the use of a specific contrast product have been proposed but have not been
implemented in routine practice [24]. By performing a radiomics analysis of the tumor and
the peritumoral area of 160 patients, Feng et al. proposed a model capable of predicting
the presence of microvascular invasion on a preoperative CT scan, which was attested by
the histological analysis of the surgical specimen. The peritumoral area analyzed was a
1 cm-thick ring around the tumor, which is probably the area where microvascular invasion
is most present and, thus, where radiomics features are most informative. Combining ra-
diomics features from the tumor and peritumoral area, the predictive performance is good,
with an area under the ROC curve of 0.83, a sensitivity of 90%, and a specificity of 75%.
However, in this case, a specific contrast agent for hepatobiliary imaging, Gd-EOB-DTPA,
was used for MRI, making HCC segmentation easier by sharpening margins on the image,
thus affecting the reproducibility of the model when other contrast agents are used [25].

Additionally, to predict microvascular invasion, Shi H et al. proposed a model using
radiomics data from both MRI and PET-CT images of 97 patients. The model performed well
in distinguishing the presence of microvascular invasion (AUC of 0.917 (95% CI: 0.824–0.970))
from its absence (AUC at 0.771 (95% CI: 0.578–0.905)). After integration into the model of
FDG-PET texture data, metabolic parameters (Standardized Uptake Value (SUV) max) and
MRI-specific parameters (apparent diffusion coefficient (ADC), hypovascular pattern on the
arterial phase of the injected MRI, non-regular tumor margins), the predictive performance
improved, with AUCs of 0.996 (95% CI: 0.939–1.000) and 0.953 (95% CI: 0.883–1.000). The
combined model was significantly better than the radiomics model alone on both the training
and validation cohorts [26].

5.3. Radiomics for Prediction of HCC Response to Therapy

The BCLC classification has become the reference for HCC staging, with treatment
options for each stage, considering the tumor burden as well as the underlying hepatocel-
lular function [27]. Nevertheless, it is not uncommon to experience a borderline situation
between two stages where the right choice of appropriate treatment is difficult to establish.
The advantages and disadvantages of one treatment option or another seem to be equiva-
lent. No subclassification [28] or score [29] clearly emerged to guide therapeutic decision
making for intermediate-stage HCC. Although the latest version of BCLC classification
incorporates morphology (diffuse or infiltrating), it can sometimes be difficult to choose
between chemo-embolization and systemic therapy [27]. Thus, Sheen et al. proposed a
radiomics model to predict non-response to chemo-embolization from the CT scans of
80 patients. Interestingly, the model is based on only two radiomics features, one corre-
sponding to the size of homogeneous areas with low gray levels and the other the size of
areas with less uniform gray levels; the risk of nonresponse to chemo-embolization was
greatest when the first was low and the second high, thus reflecting the poor prognosis of
tumor heterogeneity. By combining these two radiomics features (forming the Rad-score)
with the T stage of the TNM classification, the predictive model had an AUC of 0.95, a
sensitivity of 91%, and a specificity of 75%. The two radiomics features also showed good
predictive performance when combined with the bilobar or nonbilobar character of the
nodules (AUC 0.91) or with logAFP (Alpha-fetoprotein) (AUC 0.91) [30].

Immunotherapy, by inhibiting immune checkpoints, has changed the management of
patients with certain cancers, including locally advanced or metastatic HCC. Nevertheless, a
response to immunotherapy, which is highly effective when it occurs, cannot be obtained in
all patients. There is, therefore, a challenge to predict which patients will respond and, thus,
avoid potential side effects in others [31]. These equivocal results of immunotherapy could
be explained by inter-individual variability in tumor lymphocyte infiltration, which implies
that characterization of the tumor environment is an essential activity in the management
of these systemic therapies [32]. However, it requires the ability to analyze the entire tumor
tissue, which is not possible with locally advanced tumors. Chen et al. used radiomics to
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create a model to predict tumoral and peritumoral T-cell infiltration based on MRI and
CT scans of 207 patients undergoing surgery for HCC and on the observed T-cell density
based on the analysis of surgical resection specimens. A 1 cm-thick ring around the tumor
was also analyzed, combined or not with tumoral radiomics data. In the validation cohort,
the radiomics model using only tumoral features had an AUC of 0.640, a sensitivity of
53.9%, and a specificity of 61.4%. The radiomics model combining tumoral and peritumoral
features had an AUC of 0.899, a sensitivity of 92.3%, and a specificity of 72.7%. These values
were improved after the addition of biological data (AFP, Gamma-glutamyltransferase
(GGT) and Aspartate transaminase (AST)) that allowed for the combined model to achieve
an AUC of 0.934, a sensitivity of 84.6%, and a specificity of 84.1%. Radiomics could,
thus, be used as a biomarker for predicting the response to these innovative treatments.
However, its predictive performance is moderate when used alone, especially on the
tumoral area only [33].

Table 1. Main characteristics of the studies presented.

Authors (Ref) Objectives of the
Study

Imaging
Modality

Nmbr of
Patients

Geographical
Origin

Cause of Liver
Disease

Performance of
Radiomics

Model Alone

Performance of
Combined

Model

Blanc-Durand et al. [13]
Predict survival

after radio
embolization

PET-CT 47 Europe Alcool NC NC

Liang et al. [18]
Differentiate

hypervascular liver
tumors

CT
MRI

CT: 170
MRI: 137 China NC

AUC (CT): 0.879
AUC

(MRI): 0.925

AUC (CT): 0.966
AUC

(MRI): 0.971

Zhong et al. [20]

Differentiate
between HCC and

benign liver
nodules

MRI 150 China HBV
AUC: 0.917
Sens: 93.8%
Spe: 86.4%

AUC: 0.975
Sens: 97.3%
Spe: 97.7%

Ji et al. [14]
Predict

postoperative
recurrence

CT 470 China NC NC tdAUC: 0.803

Feng et al. [25]
Predict

microvascular
invasion

MRI 160 China HBV
AUC: 0.83
Sens: 90%
Spe: 75%

Radiomics
model only

Shi et al. [26]
Predicting

microvascular
invasion

MRI
PET-CT 97 China HBV

AUC
(MVI+): 0.917

AUC
(MVI−): 0.771

AUC
(MVI+): 0.996

AUC
(MVI−): 0.953

Sheen et al. [30]
Predict response to

chemo-
embolization

CT 80 Korea HBV NC
AUC: 0.95
Sens: 0.91
Spe: 0.75

Chen et al. [33] Predict response to
immunotherapy MRI 207 China HBV

AUC: 0.640
Sens: 53.9%
Spe: 61.4%

AUC: 0.934
Sens: 84.6%
Spe: 84.1%

Abbreviation: AUC = Area Under Curve, tdAUC = time dependent AUC, CT = Computed Tomography,
HBV = Hepatitis B Virus, MRI = Magnetic Resonance Imaging, MVI = Microvascular Invasion, NC = not
communicated, PET-CT = Positron emission tomography–computed tomography, Sens = Sensitivity, Spe = Speci-
ficity.

6. Conclusions

In healthcare, as in other fields, technological advances have drastically increased
the amount of available data. Medical imaging has been impacted by the new challenge
of using “big data”, which the human brain is incapable of processing exhaustively. The
emergence of “artificial intelligence” [34], which can analyze high-throughput quantitative
features from medical images, has resulted in the rise of radiomics. These advances provide
new information on patients and their pathologies and allow for a better characterization
and understanding of the various phenotypic presentations. A single cancer may have
different characteristics from one individual to another, with a direct therapeutic impact.
Moreover, within a cancerous tumor, a certain degree of heterogeneity can be found, related
to the prognosis, but not systematically quantifiable by a single biopsy, which does not
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reflect the entire tumor. The need, therefore, arises for new biomarkers, such as radiomics,
to better understand each phenotype and to achieve precision medicine.

Hepatocellular carcinoma is a complex and heterogeneous malignancy. Thus, the
diagnosis is sometimes difficult and the prognosis hardly predictable. Further, the ever-
increasing range of therapeutic options can make treatment choices even more challenging.
Studies conducted on this topic illustrate what radiomics can contribute by guiding the
physician from diagnosis to therapeutics. The models proposed in the literature are often
mixed, with clinical or biological data added to the radiomics features, illustrating the fact
that the exploitation of radiomics features alone is currently insufficient.

Moreover, a harmonization of radiomics practices is still required to make them
reproducible and generalizable, allowing for radiomics use in routine clinical practice. It
could then become a new low-cost, non-invasive biomarker that can be followed up over
time, providing valuable information to improve patient management.
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