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Abstract
We derive the predicted time dilation of delocalized atomic clocks in an optical lattice setup in the
presence of a gravitational field to leading order in quantum relativistic corrections. We investigate
exotic quantum states of motion whose relativistic time dilation is outside of the realm of classical
general relativity, finding a regime where 24Mg optical lattice clocks currently in development
would comfortably be able to detect the special-relativistic contribution to the quantum effect (if
the technical challenge of generating the necessary states can be met and the expected accuracy of
such clocks can be attained). We find that the gravitational contribution, on the other hand, is
negligible in this setup. We provide a detailed experimental protocol and analyse the effects of
noise on our predictions. We also show that the magnitude of our predicted quantum time dilation
effect remains just out of detectable reach for the current generation of 87Sr optical lattice clocks.
Our calculations agree with the predicted time dilation of classical general relativity when
restricting to Gaussian states.

1. Introduction

Time dilation is one of the key predictions of the special theory of relativity, being central to its experimental
validation [1]. It was first observed in 1938 via its contribution to the Doppler shift in the spectrum of
hydrogen atoms accelerated to speeds on the order of magnitude of 10−3c [2]. Einstein’s principle of
equivalence between acceleration and gravity implies that the latter also leads to time dilation, a prediction
which was first observed on Earth in 1960, over a distance of 22.56 m [3]. Since then, the incredible accuracy
of modern optical clocks has drastically decreased the scales over which time dilation is detectable. In 2010,
time dilation was observed between optical clocks moving at relative velocities on the order of 10−8c, and
over a height difference of 33 cm [4]. Recently, gravitational redshift was observed within a sample of atoms
on the single-mm scale [5], leading to the exciting prospect that it may soon be detectable on the length scale
of the wavefunction itself. In [6], a prescription was given for calculating the time dilation in this regime,
i.e. for clocks whose velocities and positions are subject to quantum indeterminacy, leading to the prediction
of a novel quantum-interference effect. In this work, we study the feasibility of observing this effect in
state-of-the-art atomic clocks.

There has been much theoretical work on a quantum theory of spacetime in the last century (see e.g. [7,
8]), but there has been comparatively little experimental progress to guide the way, with the notable
exception of certain phenomenological results [9]. Given the extreme regimes at which a full theory of
quantum gravity is expected to be necessary, it may be fruitful to instead investigate low-energy effects
combining relativity and quantum mechanics. There are numerous experiments and phenomena where both
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quantum and gravitational effects manifest together (see e.g. [10] and references therein), which can be
described by simply combining quantum theory and relativity (or even Newtonian gravity, e.g. [11]).

Going a step further, a recent approach consists of quantizing the mass defect associated with the internal
states of a moving body, resulting in a coupling between its internal and motional degrees of freedom [12,
13]. This coupling leads to novel predictions such as a gravitational decoherence [14] (not to be confused
with the Diósi–Penrose model [15, 16]) and time-dilation-induced effects in atom interference
experiments [13, 14, 17]. Moreover, the model has been applied in the Page–Wootters formalism [18], and is
predicted to affect spontaneous emission rates [19] and atomic spectra [20].

The effect of a quantized mass defect in the time dilation experienced by atomic clocks has been
considered in [21–24]. In [6], it was shown that this quantization implies the existence of quantum
interference effects in the average time dilation observed for certain states of motion (see also [18]). In that
analysis, the clocks were freely-falling, in contrast with the spatial confinement of modern state-of-the-art
clocks.

Here we examine the potential for the interference effect to be observed in optical lattice clocks, which are
ideal due to both their ultra-high precision [25–27], and the degree of control of their spatial degrees of
freedom [28–32]. We consider 24Mg optical lattice clocks (and 87Sr in appendix E), providing upper bounds
on decoherence rates required in order to observe the discrepancy with high confidence. Our numerical
results show that the discrepancy could be detectable by a next-generation 24Mg optical lattice clock with a
relative accuracy of 10−19, which are under development and will likely be in operation in the near future
[33–36] (assuming that such clocks attain the accuracy that they are expected to), opening the door for the
quantized-mass-defect model to be subject to experimental scrutiny. We find that the quantum effect on
time dilation is dominated by the motion of the clock in the trap, while the effect on the gravitational
contribution to time dilation is negligibly small.

We begin by laying out the theoretical model in section 2, before describing our proposed experimental
protocol in section 3, and then finally analyse the effect of noise in section 4.

2. Theoretical model

2.1. Relativistic quantum clocks
In this section we lay out the theoretical model and its application to atomic clocks. It will set the stage for
section 3 where we devise experimental protocols.

Consider a point-like classical particle with rest massm, position x= (x,y,z), and momentum
p= (px,py,pz), subject to some (e.g. optical) potential U(x). Following from the energy-momentum relation
in a weak gravitational field and low-energy limit, the Hamiltonian function in the rest frame of a laboratory
on the Earth’s surface is given by (see appendix A)

H=mc2 +mgz+
p2

2m
+U(x)+O

(
c−2
)
, (1)

where z is the particle’s height and g is the Earth’s surface gravity, and where O(c−n) denotes terms
proportional to c−n, as well as higher orders. The particle’s proper time has the line element
dτ =

√
gµνdxµdxν , given here by

dτ =

(
1+

gz(t)

c2
−
(
p2
)
(t)

2m2c2

)
dt+O

(
c−4
)
. (2)

After a duration T in the laboratory frame, the particle experiences the proper time

τ = T+ I0, (3)

where

I0 :=
1

mc2

ˆ T

0
dt1

(
mgz(t1)−

(
p2
)
(t1)

2m

)
. (4)

Here z(t1) and p(t1) are governed by the Poisson bracket

dp

dt
=−{H,p} , dx

dt
=−{H,x} . (5)

Now let us consider the particle as a point-like clock, with an inner clock degree of freedom denoted by
subscript c, in addition to the above kinematic degrees of freedom, denoted by subscript k. We obtain the
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quantized Hamiltonian in three steps. First, denoting the internal energy associated with the clock degree of
freedom by Hc, we account for the associated mass-defect (i.e. mass-energy equivalence) by making the
replacementmc2 →mc2 +Hc. Second, we expand the energy-momentum relation, keeping O(c−2) and
O(c−4) terms but neglecting O(c−6) terms in the Hamiltonian. Finally, we replace all observables by
operators. More details can be found in appendix A. We thus obtain

Ĥ= Ĥk + Ĥc +
Ĥc

mc2
⊗ V̂k +

Ĥ2
c

m2c4
⊗ Ŵk, (6)

where

Ĥk =mc2 +mgẑ+
p̂2

2m
+ Û(x̂)+O

(
c−2
)
, (7)

V̂k =mgẑ− p̂2

2m
+O

(
c−2
)
, (8)

Ŵk =
p̂2

2m
. (9)

Note that the O(c−2) terms in Ĥk includes terms proportional to mg2z2

c2 , p4

m3c2 and
gzp2

mc2 , and that the O(c−2)

terms in V̂k and the O(c0) term in Ŵk correspond to the O(c−4) terms in equation (6), specifically g2z2Hc

c4 ,
p4Hc

m4c4 ,
gzp2Hc

mc4 , and p2H2
c

m3c4 ; see appendix A for details. For brevity, we do not write them explicitly here, and we

will later show that these O(c−2) terms in Ĥk and V̂k do not contribute to the lowest order correction to the
measured time; see equations (28) and (29).

Since the clock degree of freedom couples with the kinematic degrees of freedom, its time is affected by its
motion and vice versa. In an optical lattice clock, the clock degree of freedom remains coherent much longer
than the kinematic degrees of freedom, see e.g. [37, 38]. We therefore only consider decoherence processes
via the kinematic degrees of freedom, modelling the system by the Lindblad equation (see e.g. [39]):

d

dt
ρ= Fc (ρ)+Fk (ρ)+Fint (ρ) , (10)

where

Fc (ρ) =−i
[
Ĥc,ρ

]
, (11)

Fk (ρ) =−i
[
Ĥk,ρ

]
+Lk (ρ) , (12)

Fint (ρ) =−i

[
1

mc2
Ĥc ⊗ V̂k +

1

m2c4
Ĥ2

c ⊗ Ŵk,ρ

]
, (13)

Lk (ρ) =
1

2

∑
i

2L̂iρL̂
†
i − L̂†i L̂iρ− ρL̂†i L̂i. (14)

Here {Li}i are the Lindblad operators describing the effect of environmental noise on the kinematic degree of
freedom. Suppose that the initial state ρ0 is a product state between clock degrees of freedom and kinematic
degrees of freedom

ρ0 = ρc,0 ⊗ ρk,0. (15)

We regard the non-correlating parts Fc and Fk as the unperturbed evolution and the correlating part Fint as
the perturbative evolution. The Lindblad equation can be expanded in terms of ρ=

∑
n

1
mnc2n ρ

(n) where ρ(n)

is order O(c−2n). This leads to the coupled equations

d

dt
ρ(0) −Fc

(
ρ(0)
)
−Fk

(
ρ(0)
)
= 0, (16)

d

dt
ρ(1) −Fc

(
ρ(1)
)
−Fk

(
ρ(1)
)
= − i

[
Ĥc ⊗ V̂k,ρ

(0)
]
, (17)

d

dt
ρ(2) −Fc

(
ρ(2)
)
−Fk

(
ρ(2)
)
= − i

[
Ĥc ⊗ V̂k,ρ

(1)
]

− i
[
Ĥ2

c ⊗ Ŵk,ρ
(0)
]
. (18)

3
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The solution is derived in appendix B. We further introduce I1 and I2 which will allow us to quantify the
expectation value and variance of time dilation respectively, when the clock runs for a duration T in the lab
frame

I1 :=
1

mc2

ˆ T

0
dt1Tr

(
V̂k [t1]ρk,0

)
(19)

=
1

mc2

ˆ T

0
dt1

(
mg〈ẑ [t1]〉−

〈(p̂2) [t1]〉
2m

)
, (20)

I2 :=
2

m2c4

ˆ T

0
dt2

ˆ t2

0
dt1Tr

((
V̂k [t2 − t1] V̂k

)
ρk [t1]

)
, (21)

where we have reserved square brackets for the evolution of a density matrix ρ and operator O in the
interaction picture by

ρ [t] := etFk (ρ) , Ô [t] := etF
†
k

(
Ô
)
, (22)

respectively. One can easily find the analogy between equations (4) and (20) by replacing variables such as
z(t1) and p2(t1) with expectation value of observables such as 〈ẑ[t1]〉 and 〈p̂2[t1]〉.

2.2. Relativistic effects in atomic clocks
The clock transition in an atomic clock can be well-modelled by a two-level system whose ground (excited)
state is denoted by |g〉 (|e〉 respectively) and we thus write the clock Hamiltonian as

Ĥc =
1

2
h̄ω0σ̂z. (23)

The clock-transition frequency ω0 of the atom is compared with the frequency ω of a very stable laser. Any
detected difference in frequency is cancelled on the fly by adjusting the laser frequency accordingly. The end
result is a high quality time signal from the laser. This comparison may be done via the Ramsey experiment
[40], for example, whereby the atom initially in its ground state |g〉 is prepared in the |g〉+ |e〉 state by a
π
2 -pulse, then allowed to evolve freely for a duration of T, before another π

2 -pulse is applied and then finally
measured in the energy basis. In the absence of relativistic effects, this results in Ramsey fringes described by

Pr(|e〉) = 1

2
(1+ pcos((ω−ω0)T)) , (24)

where ω0 is the centre of the fringes and p (which is usually a function of ω−ω0) is their contrast. In order to
minimize the variance in the estimate of ω0, the laser frequency is tuned to the two maximal gradient points
either side of the fringe centre at ω ≈ ω0. (The other maximas of the cosine are reduced by a smaller p-value.)
Under such optimal conditions, the variance of the estimation of ω0 is proportional to T−2p−2. Relativistic
effects, however, lead to a shift of the fringe centre to ω̃0, and a decreased contrast p̃, and thus an increased
variance σ̃2

0 . Moreover, as we show in appendix C, equation (24) still holds but with the replacements

ω0T 7→ ω̃0T= ω0 (T+ I1) , (25)

p 7→ p̃= 1− ω2
0

2

(
<(I2)− I21

)
, (26)

σ0 7→ σ̃0 ∝ T−2p̃−2. (27)

where we have assumed p≈ 1 for ω ≈ ω0.
In order to find the lowest order relativistic corrections to ω̃0T and p̃, we rewrite equations (19) and (21),

using ρ(n)k and V(n)
k to denote theO(c−2n) terms in ρk and Vk, arising from equations (7) and (8) respectively:

I1 =
1

mc2

ˆ T

0
dt1Tr

((
V̂(0)
k [t1] +

V̂(1)
k [t1]

mc2
+ . . .

)
ρk,0

)
, (28)

and

I2 =
2

m2c4

ˆ T

0
dt2

ˆ t2

0
dt1 Tr

((
V̂(0)
k [t2 − t1] +

V̂(1)
k [t2 − t1]

mc2
+ . . .

)

×

(
V̂(0)
k +

V̂(1)
k

mc2
+ . . .

)(
ρ
(0)
k [t1] +

ρ
(1)
k [t1]

mc2
+ . . .

))
.

(29)

4
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The lowest order of I1 and of I2 only contains ρk,0 and V̂(0)
k . Equation (25) immediately shows that the lowest

order of ω̃0T contains only ρk,0 and V̂(0)
k . In equation (26), the lowest order of I21 does not cancel with that of

<(I2) in general, as the former is the square of the expectation of an operator and the latter is the expectation
of the square of the same operator when the evolution is unitary, as is shown in appendix B. Moreover,

equation (26) shows that the lowest order of p̃ contains only ρ(0)k and V̂(0)
k . In conclusion, it is sufficient to

only take into account O(c0) terms in equations (7) and (8) respectively.
Note that the proper time of a classical clock can be recovered when the kinematic state is Gaussian. As is

seen from equations (4) and (20), one can obtain equation (3) from equation (25) by replacing expectations
of operators 〈ẑ[t1]〉 and 〈(p̂2)[t1]〉 with the classical functions z(t1) and (p2)(t1). For a pure kinematic state
with Gaussian distributed amplitudes specified by initial mean position z(0), and mean momentum p(0)
with variance σ2

p(0), this corresponds to replacing 〈ẑ[t1]〉 by z(t1) and 〈(p̂2)[t1]〉 by p(t1)2 +σ2
p(t1).

2.3. Quantum effects on the relativistic time dilation
To go beyond the classical relativistic time dilation and examine quantum effects, we will distinguish between
two cases, corresponding to two different initial kinematic states: the case of preparing a spatial quantum
superposition ρk,0,qtm, and the case of a spatial classical mixture ρk,0,cls:

ρk,0,qtm = |ψ〉〈ψ|, |ψ〉=
√
K
(
cosθ|ψ1〉+ eiϕ sinθ|ψ2〉

)
, (30)

ρk,0,cls = cos2 θ|ψ1〉〈ψ1|+ sin2 θ|ψ2〉〈ψ2|, (31)

where |ψ1〉, |ψ2〉 are Gaussian states [41] with different initial mean position and momentum; K is a
normalisation constant. Our usage of states with Gaussian-distributed amplitudes is motivated by
experimental conditions; we will show in section 3 how such states and their superposition or mixture can be
prepared. The two cases will yield different time dilations. We use the notation I1 7→ I1,qtm, I2 7→ I2,qtm,
ω̃0 7→ ω̃0,qtm and p̃ 7→ p̃qtm when evaluating the case of a quantum superposition, and similarly I1 7→ I1,cls,
I2 7→ I2,cls, ω̃0 7→ ω̃0,cls and p̃ 7→ p̃cls in the case of the classical mixture. The discrepancy between the
relativistically shifted frequencies in the two cases is denoted

ω̃0,coh := ω̃0,qtm − ω̃0,cls. (32)

By preparing two atomic clocks in parallel with the two different initial states, one can investigate when this
shift is experimentally detectable via equation (24). Let us first define three quantities

∆1,coh := I1,qtm − I1,cls, (33)

∆2
2,qtm := <

(
I2,qtm

)
− I21,qtm, (34)

∆2
2,cls := <(I2,cls)− I21,cls. (35)

The quantity∆1,coh is related to the discrepancy in clock times. Note that because ρ0,k,qtm and ρ0,k,cls differ by
a constant matrix, the coefficients of the linear contributions of relativistic effects in I1,qtm and I1,cls also differ
by a constant. Thus their difference,∆1,coh, is linear in relativistic effects. Meanwhile,∆2

2,qtm is related to the
contrast p̃qtm and thus to the increase in variance of the transition frequency in the quantum superposition
case. Similarly,∆2

2,cls is related to p̃cls and thus to the increase in variance in the classical mixture case. This
correspondence holds not only for atomic clocks, but also for the idealized clocks discussed in appendix D.
Let us now express the frequency discrepancy and the fringe contrasts in terms of these variables. The
discrepancy is

ω̃0,coh =
∆1,coh

T
ω0, (36)

including a gravitational term (proportional to the ratio of differences in gravitational potential energy with
mc2) and a motion term (proportional to the ratio of kinetic energies withmc2); see e.g. equation (20). In the
following, we do not explicitly neglect either term, though we will find that the motional term dominates in
our setting. The fringe contrasts in equation (24) in the two cases are then

p̃qtm = 1− ω2
0

2
∆2

2,qtm, (37)

p̃cls = 1− ω2
0

2
∆2

2,cls. (38)

5
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Using relation equation (27), the variances satisfy

σ̃2
0,qtm ∝ 1

T2
+
ω2
0

T2
∆2

2,qtm, (39)

σ̃2
0,cls ∝

1

T2
+
ω2
0

T2
∆2

2,cls. (40)

Under the usual assumptions of the addition-of-quadratures rule for standard deviations, we have

σ̃2
0,coh = σ̃2

0,qtm + σ̃2
0,cls, (41)

thus obtaining

σ̃2
0,coh ∝

2

T2
+
ω2
0

T2
∆2

2,cq, (42)

where∆2
2,cq =∆2

2,qtm +∆2
2,cls. Because the proportionality factor depends on how the Ramsey

interferometry is implemented, we will provide estimates for∆2
2,cq rather than σ̃

2
0,coh directly.

The condition to detect the discrepancy can be expressed as

ω̃0,coh ⩾ σ̃0,coh, (43)

for atomic clocks. For idealized clocks, interested readers may refer to appendix D for further discussion.

3. Experimental protocol

3.1. State preparation
We propose an experimental protocol based on an optical lattice clock, since they afford the highest accuracy,
as well as permitting the high level of control required for the preparation of different kinematic states. Such
a clock relies on an optical potential to confine the atoms, which depends on their electronic state |n〉 and
position x̂, as well as the frequency ω and the polarization p of the optical field. It is convenient to express the
optical potential in the basis |n〉:

Û=
∑
n

Un (x̂) |n〉〈n|. (44)

Suppose that an atom is in the electronic state |n〉 and that the optical field has one frequency ω but two
polarizations (left ö and right œ circularly polarized light), then the optical potential that the atom feels is
given by [42, 43],

Un (x̂) =
1

4

∑
p∈{ö,œ}

αn (ω,p) |Ep (x̂) |2, (45)

where αn(ω,p) is the polarizability of the atom and is dependent on n, ω and p. In a one-dimensional optical
lattice, the optical potential is a one-dimensional standing wave:

Un (x̂) =−Un,max cos
2 kẑ. (46)

Atoms are usually confined in a deep optical lattice in order to reduce the recoil shift and the Doppler shift
and increase the accuracy [44]. Therefore, the potential can be expanded around a minimum point, giving
the harmonic oscillator approximation,

Un (x̂)≈
1

2
mω2

n,zẑ
2 −Un,max, (47)

where ωn,z =
√

2Un,max

m k. The optical lattice is also aligned parallel to the gravitational field, which suppresses

the hopping between sites and improves the accuracy [45].
We choose coherent states |α〉 and | −α〉 (which are Gaussian [41]) for |ψ1〉 and |ψ2〉 in the spatial

superposition and the spatial mixture, i.e. equations (30) and (31). There are two reasons to choose coherent
states here. One is that they are the most classical choice in the sense that they have a non-negative Wigner
function and saturate the position-momentum uncertainty relation. More importantly, they can be prepared
easily in the experiment. With the harmonic oscillator approximation, the ground state of the deep optical
lattice is the vacuum state. Coherent states can be prepared by displacing the vacuum state, for example with

6
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Figure 1. The energy diagram of the desired atom in our general protocol. The line width corresponds to the transition strength.
The line colors indicate the relative energies of the transitions e.g. the blue line has a higher frequency than the green line.

a state-dependent optical lattice [46]. An atom prepared in such a state will oscillate, resulting in time
dilation due to both motion and gravitational redshift. Note that since the optical potential depends on the
electronic state, atoms in two different electronic states can be subject to different optical lattices. Suppose
that there are two electronic states |g〉 and |e〉 for which the polarizability in equation (45) satisfies

α|g⟩
(
ω,σ+

)
> α|e⟩

(
ω,σ+

)
, (48)

α|g⟩
(
ω,σ−)< α|e⟩

(
ω,σ−) , (49)

and consider two coinciding optical lattices induced by lasers with σ± polarizations respectively. An
appropriate phase modulation of the σ± lasers can displace the optical lattices in two opposite directions.
Atoms in |g〉 and |e〉 are mainly subject to optical lattices induced by σ+ and σ−-polarized lasers respectively,
and thus move along with the corresponding optical lattice in two opposite directions. In such a
state-dependent optical lattice, the spatial ground states induced by the σ±-polarized lasers are the respective
coherent states | ±α〉 of the original optical lattice.

To prepare the superposition of coherent states given in equation (30), one can first prepare atoms in the
spatial ground state and a superposition of |g〉 and |e〉, then state-dependently displace and replace the lattice.
After that, the desired stated is achieved by measuring in the {|g〉+ |e〉, |g〉− |e〉} basis and post-selecting the
|g〉− |e〉 outcome. To prepare the mixture, one can follow the same method, except measure in the {|g〉, |e〉}
basis and do not post-select.

Another important technique is electron shelving [47]. Suppose that there are a stable energy eigenstate
|g〉 and an unstable energy eigenstate |f〉, and that |f〉 spontaneously decays to |g〉. Let an atom be in |g〉. We
induce the transition between |g〉 and |f〉 with a strong laser. The atom will jump up to |f〉 due to the laser but
will soon jump down to |g〉 due to the spontaneous decay of |f〉 repeatedly. In each cycle, the atom scatters
one photon. Scattered photons lead to two results. One is the possibility to detect these photons, from which
we infer that the atom is in |g〉. Another is the transfer of the kinematic momentum and energy from
photons to the atom, from which the atom can gain enough energy to escape from the optical lattice. We will
make use of the first to measure the state of the atom and the second to remove atoms in a given state from
the optical lattice. Both applications can be found in [48].

In practice, there is usually no direct transition between |g〉 and |e〉. In that case, a Raman transition via a
third level, is required for the transition between |g〉 and |e〉. Interested readers may refer to [49] for a general
description for the Raman transition with one and multiple intermediate states.

3.2. A protocol for detecting the quantum discrepancy
We now describe our proposed experimental protocol in general, before applying it in the specific case of a
24Mg clock in the following section (and a 87Sr clock in appendix E). The atom is required to have an energy
structure as in figure 1. Two stable states denoted by |s1,2〉 are used for the clock transition. Preferably, the
transition between |s1〉 and |s2〉 is forbidden, which means that the natural linewidth of the transition is
narrow. Two meta-stable states denoted by |m1,2〉 are used for the state-dependent optical lattice. We require
that transitions between |m1〉 and |m2〉 and |s1〉 and |m1〉 are possible. Since all states involved in these two
transitions are either stable or meta-stable, they are likely to be weak. In addition, two unstable states
denoted by |u1,2〉 are used for measurements, post-selection and spontaneous decay. Strong transitions
between |s1〉 and |u1〉 and |s1〉 and |u2〉 are needed. Moreover, weak transitions between |m1〉 and |u1〉 and
|m2〉 and |u1〉 are also required.

Our protocol is shown in figure 2, and proceeds as follows:

7
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Figure 2. The scheme of our protocol. Steps 4a and 5a corresponds to a clock with a superposition as input and Step 4b and Step
5b to a clock with a mixture as input.

• Step 0, atoms are loaded into optical lattices induced by lasers at themagicwavelengthwithσ± and initialized
to stable states |s1〉.

• Step 1, a π-pulse excites atoms from the stable state |s1〉 to the meta-stable state |m1〉.
• Step 2, a π

2 -pulse induces the transition between meta-stable states |m1〉 and |m2〉 and prepares the super-
position |m1〉+ |m2〉.

• Step 3, we adiabatically displace optical lattices induced by σ± toward opposite directions to realize state-
dependent optical lattices and diabatically replace them after that, yielding |m1〉|α〉+ |m2〉|−α〉.

In the following, we split Step 4 and Step 5 into two cases: case a for the kinematic superposition in
equation (30),

• Step 4a, another π
2 -pulse induces the transition between |m1〉 and |m2〉 and prepares |m1〉(|α〉− |−α〉)+

|m2〉(|α〉+ | −α〉).
• Step 5a, we transit atoms in |m1〉 to |s1〉 via |u1〉 and clear atoms in |m2〉 by electron shelving. To be concrete,
we first apply a laser inducing the transition from |m2〉 to |u1〉 and a strong laser inducing the transition
between |s1〉 and |u2〉 to realize electron shelving. That is, atoms in |m2〉 first transit to |u1〉, quickly decay
to |s1〉 via spontaneous emission and then cycle between |s1〉 and |u2〉. During electron shelving, atoms
originally in |m2〉 are cleared while atoms in |m1〉 remain unchanged. After that, a π-pulse then excites
atoms in |m1〉 to |u1〉. These atoms quickly decay to |s1〉 via spontaneous emission and we obtain the spatial
superposition |s1〉〈s1| ⊗ (|α〉− |−α〉)(〈α| − 〈−α|).

and case b for the mixture in equation (31),

• Step 4b, atoms in |m1〉 are excited to |u1〉 by a π-pulse and then spontaneously decay to |s1〉.
• Step 5b, atoms in |m2〉 are excited to |u1〉 by another π-pulse and again spontaneously decay to |s1〉. These
steps result in the spacial mixture |s1〉〈s1| ⊗ (|α〉〈α|+ | −α〉〈−α|).

Both cases follow the same last step:

• Step 6, we perform the ordinary interrogation and detection procedure of an optical lattice clock. A typical
interrogation procedure consists of a Ramsey experiment to compare the frequency of the laser and the clock
transition, in which atoms freely evolve for some duration T in the laboratory frame. A typical detection
procedure consists of a measurement in the basis of |s1〉 and |s2〉 with electron shelving.

8
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Figure 3. The energy diagram of the 24Mg atom. Each state is labeled by its electronic state 2S+1LJ. The line color corresponds the
transition light color, and the width of the line corresponds to the strength of the transition.

3.3. Application to a 24Mg clock
Clock-specific protocols can be divided into two categories: optical lattice clocks based on bosons, e.g. 24Mg
[34–36] and 88Sr [50], and on fermions, e.g. 87Sr [37] respectively. We consider 24Mg and 87Sr optical lattice
clocks to illustrate typical optical lattice clocks with bosons and fermions respectively. Since 24Mg are
currently in development [33–36] and yield the most promising results as far as detectability is concerned,
we present them here, while 87Sr are relegated to appendix E.

Figure 3 shows the relevant energy diagram of 24Mg which is bosonic and has zero nuclear spin (and
therefore no hyperfine splitting). This results in a simple electronic structure but at the same time a difficulty
in finding enough states for all operations because of the limited number of states. 1S0 is used as the lower
stable state |u1〉. In Step 0 to Step 5, we treat 3P0 and 3P2 as meta-stable states |m1〉 and |m2〉 respectively. In
Step 4 and Step 5, we treat 3P1 and 1P1 as unstable states |u1〉 and |u2〉. In Step 6, 3P0 is used as the upper
stable state |s2〉. The transition between 1S0 and 3P2 (the clock transition), though strictly speaking
forbidden, is induced applying by a strong magnetic field [35, 36, 44]. Transitions between 3P2 and 3P0, 3P2
and 3P1 as well as 3P0 and 3P1 are realized by Raman transitions via 3S1. Although the natural linewidth of
3P1 is rather narrow, an atom in 3P1 does spontaneously decay to 1S0 in a timescale much smaller than the
lifetime of 3P0. Besides, due to the use of 3P0 as |m1〉 in Step 0 to Step 5 and |s2〉 in Step 6, we must
additionally clear atoms in 3P0 by electron shelving between Step 5 and Step 6. This is possible by pumping
atoms from 3P0 to 3S1 while re-pumping atoms from 3P1 and 3P2 to 3S1.

3.4. Numerical analysis
We now evaluate and numerically simulate our results for the experimental protocols with the aim of
obtaining predictions for the discrepancy and the increase in variance in equations (33)–(35). For an optical
atomic clock, the transition frequency between the ground state and the excited state has to be a constant
with respect to different spatial positions (in the absence of time-dilation effects). Thus the clock works at the
magic wavelength, whereby the energy shift due to the external electric fields of both energy levels are the

same to leading order [37]. We thus replace Un,max and ωn,z =
√

2Un,max

m k with Umax and ωz =
√

2Umax
m k

respectively. We write equation (47) in terms of creation and annihilation operators:

â :=
1√
2zs

(
ẑ+

g

ω2
z

+
i

mωz
p̂z

)
, (50)

â† :=
1√
2zs

(
ẑ+

g

ω2
z

− i

mωz
p̂z

)
, (51)

where zs :=
√

h̄
mωz

. We can then derive an expression for the total Hamiltonian in equation (6), for the case

of relativistic atoms in a one-dimensional optical lattice by substituting equations (47), (51) and (50) into
equations (7)–(9), thus obtaining

Ĥk = h̄ωz

(
â†â+

1

2

)
− mg2

2ω2
z

, (52)

V̂k

mc2
= Cg

(
â+ â†

)
−Cr +Ck

(
â2 + â†

2 − 2â†â− 1
)
, (53)

Ŵk

m2c4
=−Cg

(
â2 + â†

2 − 2â†â− 1
)
, (54)

9
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where Cg :=
gzs√
2c2
, Cr :=

g2

ω2
z c

2 and Ck :=
h̄ωz
4mc2 .

We first consider the noiseless case by setting the Lindblad operators {Li} to zero in equation (14), and
examine the effect of noise later, in section 4. The time evolution of polynomials of creation and annihilation
operators in the noiseless case is derived in appendix F.1. Then,

V̂k [t]

mc2
= Cg

(
âe−iωzt + h.c.

)
−Cr −Ck +Ck

((
â2e−i2ωzt + h.c.

)
− 2â†â

)
. (55)

With V̂k[t] in hand, we can compute I1 and I2 according to equations (19) and (21) by setting

ρk,0,qtm =
1

1+Ci

(
cosθ|α〉+ eiϕ sinθ| −α〉

)
·
(
cosθ〈α|+ e−iϕ sinθ〈−α|

)
, (56)

ρk,0,cls = cos2 θ|α〉〈α|+ sin2 θ| −α〉〈−α|. (57)

where α= α0eiφ and Ci := e−2α2
0 sin2θ cosϕ. We split I1 into I1,l which is an integration of non-oscillating

terms and I1,o which is an integration of oscillating terms (see appendix G.1). The ratio between them is
given by

I1,l
I1,o

∝ ωzT. (58)

For our protocol, typical parameters are the frequency of the harmonic oscillator ωz = 105 Hz and the
interrogation time of the Ramsey experiment T= 1 s, and thus ωzT≈ 105 [44]. Therefore, we can only keep
I1,l:

I1 ≈−
(
Ck

(
2〈â†â〉+ 1

)
+Cr

)
T, (59)

where 〈 · 〉= Tr( ·ρk,0). Similarly, we split I2 into I2,q which is an double integration of non-oscillating terms
and I2,o which is a double integration of oscillating terms (see appendix G.1). The ratio between them is

I2,q
I2,o

∝ ωzT. (60)

Again we can only keep I2,q and obtain

I2 ≈ 4C2
k〈 â†

2
â2〉T2 +(Cr +Ck)

2T2

+ 4Ck (Cr + 2Ck)〈â†â〉T2.
(61)

Plugging in initial states ρk,0,qtm in equation (30) and ρk,0,cls in equation (31), one finds

I1,qtm = −(Cr +Ck)T− 2Ck
1−Ci

1+Ci
α2
0T, (62)

I2,qtm = (Cr +Ck)
2T2 + 4C2

kα
4
0T

2 + 4Ck (Cr + 2Ck)
1−Ci

1+Ci
α2
0T

2, (63)

and

I1,cls = −(Cr +Ck)T− 2Ckα
2
0T, (64)

I2,cls = (Cr +Ck)
2T2 + 4C2

kα
4
0T

2 + 4Ck (Cr + 2Ck)α
2
0T

2. (65)

Recall the discrepancy∆1,coh and the increase in variance in the quantum superposition case and the classical
mixture case∆2

2,qtm and∆2
2,cls respectively defined in equations (33)–(35). We obtain

∆1,coh = 4Ck
Ci

1+Ci
α2
0T, (66)

∆2
2,qtm = 16C2

k
Ci

(1+Ci)
2α

4
0T

2 + 4C2
k
1−Ci

1+Ci
α2
0T

2, (67)

∆2
2,cls = 4C2

kα
2
0T

2. (68)

Here, we highlight that the discrepancy is dominated by the motional rather than the gravitational time

dilation, as∆1,coh is proportional to Ck coming from p̂2

2m in Vk rather than Cg coming frommgẑ in Vk. This is
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Figure 4. The discrepancy∆1,coh between the quantum superposition case and the classical mixture case and the increase in
variance∆2

2,qtm +∆2
2,cls of this discrepancy (see equations (36) and (42)) versus the displacement d respectively for a 24Mg clock.

The parameters are λMg = 468 nm, Umax,Mg = 300Er,Mg, ϕ = π, θ = π
4
and T= 1 s. Note that d=

√
2zsα, i.e. d= 10 nm

corresponds to α= 0.395 for the 24Mg clock here.

because, as the position of the atom oscillates, the gravitational time dilation also oscillates, leading to a
negligible contribution. Ignoring motion in the xy-plane, the average time-dilation effect is then determined
by the quantum version of the v2/c2 term appearing in the classical Lorentz factor, i.e.

⟨
p̂2z (t)

m2c2

⟩
cls

= 4Ck

(
α2
0 cos(2ωzt− 2φ)+α2

0 +
1

2

)
, (69)

for the classical mixture, and ⟨
p̂2z (t)

m2c2

⟩
qtm

=

⟨
p̂2z (t)

m2c2

⟩
cls

− 8α2
0Ck

Ci

1+Ci
(70)

for the quantum superposition. This is the origin of the discrepancy accumulated over time, according to
equation (66), and its magnitude is determined by α2

0Ck
Ci

1+Ci
. Recalling that Ck =

h̄ωz
4mc2 and

Ci = e−2α2
0 sin2θ cosϕ, we see that ϕ = π and θ = π

4 are optimal choices for maximising the discrepancy.
Furthermore, one must choose a value of α0 that is, of course, nonzero, but small enough that the
exponential decrease of Ci (corresponding to the decrease in interference due to the decreasing overlap
between components of the superposition) does not render the discrepancy negligible.

Recalling equations (36) and (42), we now calculate∆1,coh and∆2
2,cq for both

24Mg and 87Sr optical
lattice clocks. A 24Mg optical lattice clock works at the magic wavelength λMg = 468 nm [33]. The trap depth

is chosen as Umax,Mg = 300Er,Mg, where the recoil energy of 24Mg is Er,Mg =
2π2 h̄2

mMgλ2
Mg
. The interrogation time is

set to T= 1 s. The displacement d is the half of the maximal distance between centers of two coherent states
| ±α〉 where α and d are related by d=

√
2zsα, and d= 10 nm corresponds to α= 0.395 for the 24Mg clock

here. Figure 4 illustrates∆1,coh and∆2
2,cq with respect to the displacement d for the 24Mg optical lattice

clock. The figure for the 87Sr optical lattice clock can be found in appendix E.
It can be seen from figure 4 for 24Mg (and figure 8 in appendix E for 87Sr) that the discrepancy is

significant enough to be detected and that the increase in variance is still tolerable at a small displacement.
This suggests that the discrepancy is in principle detectable. 87Sr clocks have a relative accuracy of 10−18 to
10−19 [27], and the next-generation 24Mg clocks are expected to exceed 87Sr clocks in accuracy due to the
avoidance of certain systematic effects such as the AC Stark shift by room-temperature blackbody radiation
[33] or the vector and tensor lattice shifts [44] as well as a shortened dead time between two subsequent
measurements [44]. The relative discrepancy for the 87Sr clock is 10−21 (see appendix E), which seems not
practical to detect with state-of-art Sr clocks. However, the relative discrepancy for the 24Mg clock is of
10−19, and is therefore in principle detectable in the next generation 24Mg clocks. The observed time dilation

in this case corresponds to an average value of v2

c2 on the order of 10−19 in both the classical and quantum
cases, according to equations (70) and (69). For comparison, the time dilation measured in [4] corresponds

to v2

c2 ∼ 10−16.
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4. Noise tolerance

The effect of noise can also be taken into account within our scheme. We will consider the effects of
amplitude and phase damping, as well as diffusion [51].

Amplitude damping can be modelled by the Lindblad operator

L̂a =
√
Γaâ, (71)

where Γa is the decay rate of the amplitude damping channel. A detailed derivation for the time evolution of
polynomials of the creation and annihilation operator can be found in appendix F.2. Then,

V̂k [t] = Cg

(
âe−iωzt + h.c.

)
e−

Γa
2 t −Cr −Ck +Ck

((
â2e−i2ωzt + h.c.

)
− 2â†â

)
e−Γat. (72)

We again compute I1. We consider the regime where T' Γ−1
a � ω−1

z , i.e. where the decay rate is much
slower than timescale associated with the trap frequency, and moreover, because we apply the measurement
when the effect of decoherence becomes non-negligible but not overwhelming, we further assume T≈ Γ−1

a .
In this case, I1 includes a damped oscillating term and a constant term, which we collectively call I1,o, and a
linear term and a slowly decaying term, which we collectively call I1,l. We will split I1 into I1,l which is an
integration of non-oscillating terms and I1,,o which is an integration of oscillating terms. (see appendix G.2).
The ratio is given by

I1,l
I1,o

∝ ωzT. (73)

By our assumption, we only keep I1,l. Thus we get

I1 =−(Ck +Cr)T− 2Ck〈â†â〉
1− e−ΓaT

Γa
. (74)

We can also compute I2. Here I2 is decomposed into two parts, I2,q which is a double integration of
non-oscillating terms and I2,o which is a double integration of oscillating terms (see appendix G.2). The ratio
between them is

I2,q
I2,o

∝ ωzT. (75)

We again only keep I2,q and obtain

I2 = 4C2
k〈 â†

2
â2〉1− 2e−ΓaT + e−2ΓaT

Γ2
a

+ 4Ck (Cr +Ck)〈â†â〉
T
(
1− e−ΓaT

)
Γa

+ 8C2
k〈â†â〉

1− e−ΓaT −ΓaTe−ΓaT

Γ2
a

+(Cr +Ck)
2T2.

(76)

Plugging in initial states ρk,0,qtm in equation (30) and ρk,0,cls in equation (31), we obtain

I1,qtm =−(Ck +Cr)T− 2Ck
1−Ci

1+Ci
α2
0
1− e−ΓaT

Γa
, (77)

I2,qtm = 4C2
kα

4
0
1− 2e−ΓaT + e−2ΓaT

Γ2
a

+ 4Ck (Cr +Ck)
1−Ci

1+Ci
α2
0

T
(
1− e−ΓaT

)
Γa

+ 8C2
k
1−Ci

1+Ci
α2
0
1− e−ΓaT −ΓaTe−ΓaT

Γ2
a

+(Cr +Ck)
2T2,

(78)

and

I1,cls = −(Ck +Cr)T− 2Ckα
2
0
1− e−ΓaT

Γa
, (79)

I2,cls = 4C2
kα

4
0
1− 2e−ΓaT + e−2ΓaT

Γ2
a

+ 4Ck (Cr +Ck)α
2
0

T
(
1− e−ΓaT

)
Γa

+ 8C2
kα

2
0
1− e−ΓaT −ΓaTe−ΓaT

Γ2
a

+(Cr +Ck)
2T2.

(80)
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Therefore

∆1,coh = 4Ck
Ci

1+Ci
α2
0
1− e−ΓaT

Γa
, (81)

∆2
2,qtm = 16C2

k
Ci

(1+Ci)
2α

4
0
1− 2e−ΓaT + e−2ΓaT

Γ2
a

+ 8C2
k
1−Ci

1+Ci
α2
0
1− e−ΓaT −ΓaTe−ΓaT

Γ2
a

,

(82)

∆2
2,cls = 8C2

kα
2
0
1− e−Γat −ΓaTe−ΓaT

Γ2
a

. (83)

From the above equations, we conclude that the amplitude damping channel will set an upper bound to the
expectation value and the variance of the quantum modification. Our results show that the amplitude
damping sets an upper bound of the discrepancy which is proportional to Γ−1

a . For a 24Mg optical lattice
clock with the same parameters defined previously, one should ensure Γa ≲ 1 Hz in order for the discrepancy
to reach 10−19.

Phase damping can be modelled by the Lindblad operator

L̂p =
√

Γpâ
†â. (84)

We again consider the regime where T' Γ−1
p � ω−1

z . Applying a similar method to that of the amplitude
damping channel, our derivation (see appendix G.3) shows that in this regime, it results in the same
equations as equations (66)–(68). Therefore, the phase damping does not adversely affect the ability to detect
the discrepancy.

The diffusion is considered similarly by setting

L̂d1 =
√
Γdâ, L̂d2 =

√
Γdâ

†. (85)

As before it is assumed that ω−1
z � Γ−1

d ' T. With exactly the same routine (see appendix G.4), we obtain

∆1,coh = 4Ck
Ci

1+Ci
α2
0T, (86)

∆2
2,qtm = 16C2

k
Ci

1+C2
i

α4
0T

2 +
8

3
C2
k
1−Ci

1+Ci
α2
0ΓdT

3 + 4C2
k
1−Ci

1+Ci
α2
0T

2 +
4

3
C2
kΓdT

3 +
2

3
C2
kΓ

2
dT

4, (87)

∆2
2,cls = 4C2

kα
2
0T

2 +
8

3
C2
kα

2
0ΓdT

3 +
4

3
C2
kΓdT

3 +
2

3
C2
kΓ

2
dT

4. (88)

Our results show that the diffusion increases the variance which is related to poly(ΓdT) ·T2. For a 24Mg
optical lattice clock with the same parameters defined previously, the ratio between the increase in variance
and the original variance is∼ 10−8 for Γd ∼ 1 Hz, which shows the accuracy of the clock does not decrease
significantly.

We also compute the discrepancy and the increase in variance with damping and diffusion for the 24Mg
optical lattice clock. The parameters are again set to λMg = 468 nm, Umax,Mg = 300Er,Mg, T= 1 s, ϕ = π,
θ = π

4 and d= 10 nm (α= 0.395). The computation was performed with Mathematica, where the library
QULIB was used [52]. We do not include dephasing because it alters neither the discrepancy nor the
variance. Results are plotted in figure 5.

5. Discussion

Our approach is founded on the widely-used quantized-mass-defect model [12–14, 18, 21–24, 53], which
assumes a certain formulation of the Einstein equivalence principle, i.e. equivalence between the rest, inertial
and gravitational internal energy, before quantizing the relevant quantities to operators. This particular
combination of quantum theory and relativity has never been tested, and may not agree with the predictions
of a ‘correct’ theory of quantum gravity. Our experimental protocol would function as a test of the
quantized-mass-defect model, with its prediction on time dilation of a quantum clock, allowing it to be
falsified in the case that the experiment does not agree with the theory.

Our approach probes this model for two different types of initial clock states: one for which no quantum
effects manifest in the clock time (i.e. the classical-mixture states), and one for which they do (i.e. the
quantum superposition case). In the former case, the quantized-mass-defect model gives rise to a purely
classical relativistic time dilation effect, but in the latter the model results in an interplay of a purely
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Figure 5. (a) The discrepancy∆1,coh and (b) the increase in variance∆2
2,cq (see equations (36) and (42)) versus decay rate and the

diffusion rate Γa and Γd respectively for a 24Mg clock, where the parameters are chosen as λMg = 468 nm, Umax,Mg = 300Er,Mg,
T= 1 s, ϕ = π, θ = π

4
and d= 10 nm (α= 0.395).

relativistic effect with a purely quantum one, namely the interference of matter waves. Nonetheless, general
relativity alone cannot realistically be expected to make a prediction for time dilation for the case of quantum
states with highly non-classical features since it is outside the purview of the model; proper time (and thus
time-dilation between observers) is a function of well-defined spacetime trajectories, which do not exist in
quantum theory (see e.g. [54, 55]).

While we have shown that the predicted accuracy of the next generation of optical clocks should be able
to detect the quantum effect in the time dilation (assuming that such clocks attain the accuracy that they are
expected to) [33–36], we have assumed that the technical challenge of generating the necessary exotic states
of motion can be achieved without sacrificing this accuracy, for example due to imperfect process fidelity, or
systematic errors induced by the delocalization of the clock. This is a nontrivial assumption, and represents a
serious technical challenge. Nonetheless, the in-principle possibility of detecting this result tells us that we
are very close to a regime where we can observe quantum effects in general relativistic time dilation, and may
serve as a motivation to the resolution of this challenge.

We have found that, despite the initial superposition is across different gravitational potentials, the
quantum effect on the clock’s gravitational time dilation is outweighed by the quantum effect on its time
dilation due to motion. Relativistic time dilation due to an optical clock oscillating in a trapping potential
has been observed in [4], and one can thus consider the effect as a quantum modification of that time
dilation, but with one clock superposed in two places instead of two different clocks. To have the
gravitational effect dominate instead of the kinematical effect, one might consider preventing the oscillation
by having the two components of the superposition trapped in different potentials. However, this requires
that the two components are in different electronic states, preventing them from interfering. The resulting
time dilation would thus be indistinguishable from a mixture, with the quantum discrepancy relying on the
fact that the two components interfere with each other. It remains to be seen whether the oscillatory motion
can be prevented in some other manner which does not destroy the interference, and thus the quantum effect
on the gravitational component of the time dilation.
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6. Conclusion

We have studied the feasibility of detecting quantum interference effects in the time dilation experienced by
an optical lattice clock. Our numerical analysis found that state-of-art or next-generation optical lattice
clocks may be capable of detecting the discrepancy between the quantum superposition case and the classical
mixture case, using either 87Sr or 24Mg. Although the electronic structure of 87Sr is more convenient, our
work demonstrates that state-of-the-art 87Sr clocks have a lower accuracy and a smaller interference effect
compared to next-generation 24Mg clocks, rendering such an experiment more difficult. Fortunately, in spite
of its unfavorable electronic structure, next-generation 24Mg clocks are predicted by our work to have a
higher accuracy and a larger discrepancy, and it is possible that the discrepancy can be detected. If such
experiments are carried out, one can compare the experiment results and the predictions of current
phenomenological quantum relativistic theories, providing a much-needed experimental signpost on the
path to a theory which fully incorporates quantum mechanics into our understanding of spacetime.
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Appendix A. Hamiltonian in the non-relativistic limit

In this section, we derive our system Hamiltonian in the low velocity and weak field limit. Here we follows
the routine in [12]. We restrict ourselves to a static spacetime with the metric denoted by gµν with signature
(+−−−). In that case, we have g00 = (g00)−1, and recall that g0i = gi0 = 0 and gij = gji for i, j = 1,2,3.
Consider that a point particle of massmrestc2 with a clock degree of freedom follows a world line xµ(t) and
has a four-momentum pµ(t). In the rest frame of the particle, the metric is g ′µν and the particle has a

four-momentum p ′
µ. In that case, we have g ′

00
= 1. The scalar product of the four-momentum is

coordinate-invariant

pµp
µ = p ′

µp
′µ . (A1)

Noting the rest energymrestc2 = p ′
0c and the energy H= p0c, we obtain

H=
√

−g00
(
c2pjp j −m2

restc 4
)
. (A2)

We now restrict ourselves to a weak field and low energy. We apply the post-Newtonian approximation.
Consider the frame of an observer at rest at infinity. Let the coordinate be x̃µ = (t,r), the metric is given by

g̃00 = 1+
2Φ

c2
+

2Φ2

c4
, (A3)

g̃ij =−δij
(
1− 2Φ

c2

)
. (A4)

where Φ =−GM
r and r= |r|. It can be transformed to the frame of an observer at rest at r= r0 on the earth

via

g00 =

(
1− Φ0

c2

)2

g̃00, (A5)

gij = g̃ij, (A6)
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where Φ0 =−gr0 is the gravitational potential on the earth and g= GM
r20

is the gravitational acceleration. Now

we expand the Hamiltonian near a point at r= r0 on the earth and let the z-axis be parallel to the radius at
this point. We further add the potential U the clock is subject to into the Hamiltonian, which is an approach
used in many works [21, 22, 24, 46, 56]. The resulting Hamiltonian is

H=mrestc
2 +mrestgz+

p2

2mrest
+U+O

(
c−2
)
, (A7)

where O(c−2) terms consist of mrestg
2z 2

c2 , p4

m3
restc

2 ,
gzp2

mrestc2
and other higher order terms. As we show in

equations (28) and (29) and arguments thereafter, O(c−2) terms do not contribute to the leading order of
our results, and hence they are not written explicitly here. Now, assuming that the particle includes some
internal structure, namely a clock degree of freedom with corresponding energy Hc, we can decompose
mrestc2 to include the mass defect corresponding to this energy [12], i.e.

mrestc
2 =mc2

(
1+

Hc

mc2

)
. (A8)

We also refer to terms proportional to mg2z2

c2 , p4

m3c2 ,
gzp2

mc2 ,
gzHc

c2 and p2Hc

m2c2 as O(c
−2) terms, g2z2Hc

c4 , p
4Hc

m4c4 ,
gzp2Hc

mc4 , and
p2H2

c
m3c4 as O(c−4) terms, and other higher order terms as O(c−6). We preserve O(c−2) terms and O(c−4) terms
but ignore O(c−6) terms while expanding equation (A7) with equation (A8). By re-arranging all the terms

according to their common factors Hc
mc2 and

H2
c

m2c4 , one obtains

H=mc2 +Hk +Hc +
Hc

mc2
Vk +

H2
c

m2c4
Wk, (A9)

where

Hk =mgz+
p2

2m
+U+O

(
c−2
)
, (A10)

Vk =mgz− p2

2m
+O

(
c−2
)
, (A11)

Wk =
p2

2m
. (A12)

One should note that O(c−2) terms in equation (A7) only result in O(c−2) terms in equations (A10)–(A12)
after the expansion. Therefore, we are not neglecting O(c−2) and O(c−4) terms in equation (A9). Instead, we
keep all these terms compactly in Hk, Vk andWk in our calculation. Moreover, arguments in equations (28)
and (29) show that it is sufficient to only consider the explicitly written terms in equation (A9). To quantize
the framework, we replace observables with operators and obtain the quantized Hamiltonian

Ĥ= Ĥk + Ĥc +
Ĥc

mc2
⊗ V̂k +

Ĥ2
c

m2c4
⊗ Ŵk, (A13)

where Ĥk, V̂k and Ŵk corresponds to those in equations (A10)–(A12) with observables replaced by operators.

Appendix B. Perturbative calculations

In this section, we are using the notation of equation (22), i.e. square brakets are reserved for time evolution
of density matrices ρ[t] in the Schrodinger’s picture and that of operators Ô[t] in the Heisenberg’s picture.
Consider an inhomogeneous linear differential equation of a density matrix X[t]

d

dt
X [t]−Fc (X [t])−Fk (X [t]) = f(t) , (B1)

with the initial condition

X [0] = 0. (B2)

The above inhomogeneous linear differential equation can be solved with Green’s function method, see e.g.
[57]. We follow the same routine but slightly modify the formula. We first compute the function G(t, t ′)
which satisfies the homogeneous linear differential equation

dG

dt
(t, t ′)−Fc (G(t, t ′))−Fk (G(t, t ′)) = 0, (B3)
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with the initial condition

G(t ′, t ′) = f(t ′) . (B4)

Then the general solution of the original equation is given by

X [t] =

ˆ t

0
G(t, t ′)dt ′. (B5)

Now we rewrite equation (10) into

dρ

dt
−Fc (ρ)−Fk (ρ) =− i

mc2
[
Ĥc ⊗ V̂k,ρ

]
− i

m2c4
[
Ĥ2

c ⊗ Ŵk,ρ
]
. (B6)

Then we expand ρ into
∑

n
1

mnc2n ρ
(n). The zeroth order density matrix satisfies the homogeneous equation

dρ(0)

dt
−Fc

(
ρ(0)
)
−Fk

(
ρ(0)
)
= 0, (B7)

with the initial condition

ρ(0) [0] = ρc,0 ⊗ ρk,0. (B8)

The solution is

ρ(0) [t] = eFct (ρc,0)⊗ eFkt (ρk,0) . (B9)

The first and second order density matrix satisfies

dρ(1)

dt
−Fc

(
ρ(1)
)
−Fk

(
ρ(1)
)
=− i

[
Ĥc ⊗ V̂k,ρ

(0)
]
, (B10)

and

dρ(2)

dt
−Fc

(
ρ(2)
)
−Fk

(
ρ(2)
)
=−i

[
Ĥc ⊗ V̂k,ρ

(1)
]
− i
[
Ĥ2

c ⊗ Ŵk,ρ
(0)
]
, (B11)

with the initial condition

ρ(1) [0] = ρ(2) [0] = 0. (B12)

The solution is

ρ(1) [t] =− iĤcρ
(0)
c [t]⊗

ˆ t

0
dt1e

Fk(t−t1)
(
V̂kρ

(0)
k [t1]

)
+ h.c., (B13)

and

ρ(2) [t] = Ĥcρ
(0)
c [t]Ĥc ⊗

ˆ t

0
dt2

ˆ t2

0
dt1e

Fk(t−t2)
(
V̂ke

Fk(t2−t1)
(
ρ
(0)
k [t1] V̂k

))
+ h.c.

− Ĥ2
cρ

(0)
c [t]⊗

ˆ t

0
dt2

ˆ t2

0
dt1e

Fk(t−t2)
(
V̂ke

Fk(t2−t1)
(
V̂kρ

(0)
k [t1]

))
+ h.c.

− iĤ2
cρ

(0)
c [t]⊗

ˆ t

0
dt1e

Fk(t−t1)
(
Ŵkρ

(0)
k [t1]

)
+ h.c., (B14)

where we have used that the evolution of the clock state is unitary. By taking the partial trace, we obtain the
evolution of the reduced density matrix of the clock degree of freedom

1

mc2
ρ(1)c [t] =−iĤcρ

(0)
c [t] I1 + h.c., (B15)

and

1

m2c4
ρ(2)c [t] =

1

2

(
Ĥcρ

(0)
c [t]Ĥc − Ĥ2

cρ
(0)
c [t]

)
I2 − iĤ2

cρ
(0)
c [t] I ′2 + h.c., (B16)
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where

I1 =
1

mc2

ˆ t

0
dt1Trk

(
V̂kρ

(0)
k [t1]

)
, (B17)

I2 =
2

m2c4

ˆ t

0
dt2

ˆ t2

0
dt1Trk

(
V̂ke

Fk(t2−t1)
(
V̂kρ

(0)
k [t1]

))
, (B18)

I ′2 =
1

m2c4

ˆ t

0
dt1Trk

(
Ŵkρ

(0)
k [t1]

)
. (B19)

One should note that I1 and thus 1
mc2 ρ

(1)
c are of order 1

mc2 . Similarly, I2 and thus 1
m2c4 ρ

(2)
c are of order 1

m2c4 .
Another useful equality is

Trk
(
V̂ke

Fk(t2−t1)
(
V̂kρ

(0)
k [t1]

))∗
= Trk

(
V̂ke

Fk(t2−t1)
(
ρ
(0)
k [t1] V̂k

))
. (B20)

When the time evolution is unitary, we have

I1 =
1

mc2
Trk

((ˆ t

0
dt1V̂k [t1]

)
ρk,0

)
, (B21)

<(I2) =
1

m2c4
Trk

((ˆ t

0
dt1V̂k [t1]

)2

ρk,0

)
, (B22)

with which we conclude <(I2) does not cancel with I21 in general.

Appendix C. Atomic frequency standard

Here we provide a basic description of an atomic frequency standard which suffices for our purposes. A more
detailed description can be found in [58]. The Hamiltonian of a two-level atom is given by

Ĥc =
1

2
ω0σ̂z. (C1)

In this section, we only consider a perfect Ramsey experiment in which only relativistic effects are present,
ignoring other effects such as decay, collision, etc. Before considering the relativistic case, we first review the
case in which the atom is at rest. The atomic frequency standard compares the laser frequency and the

transition frequency, which can be performed by the Ramsey experiment. Let |ψ(0)
c (t)〉 and

ρ
(0)
c [t] = |ψ(0)

c (t)〉〈ψ(0)
c (t)| describe the zeroth order time evolution of the atomic state (which is also the time

evolution without relativistic effects). For simplicity, we assume that all laser pulses are short but strong such
that laser pulses can change the atomic state immediately. We use t− and t+ to denote the time before and
after the pulse at t, respectively. Initially the atom is prepared in

|ψ(0)
c

(
0−
)
〉= |ψc,0〉= |g〉. (C2)

Applying a π
2 -pulse at t= 0, the state of the atom is

|ψ(0)
c

(
0+
)
〉= 1√

2
(|g〉+ |e〉) . (C3)

After a period of free evolution, the state of the atom at time t in the rotating frame becomes

|ψ(0)
c (t)〉= 1√

2

(
|g〉+ e−i(ω0−ω)t|e〉

)
. (C4)

Now we apply a π
2 -pulse at time t=T. The state of the atom is

|ψ(0)
c

(
T−)〉= 1√

2

(
|g〉+ e−i(ω0−ω)T|e〉

)
, (C5)

before the pulse and

|ψ(0)
c

(
T+
)
〉= i sin

(ω0 −ω)T

2
|g〉+ cos

(ω0 −ω)T

2
|e〉, (C6)
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after the pulse. Finally, a measurement in the energy basis is performed. The probability of |e〉 is given by

Pr [|e〉] = 1

2
(1+ cos(ω−ω0)T) . (C7)

This corresponds to the ideal Ramsey experiment with maximal contrast. In reality, experiments can suffer
from noise, which results in a smaller contrast p

Pr [|e〉] = 1

2
(1+ pcos(ω−ω0)T) . (C8)

In principle, we can keep ω close to ω0 by continuously maximizing Pr[|e〉] with respect to ω. In practice, in
order to improve the accuracy, we will measure the maxima gradient points on both sides on the maxima
and take their average. The slope on these points are

d

dω
Pr [|e〉] = Tp

2
, (C9)

which means that the variance σ2
0 of ω0 depends on the variance σ2

|e⟩ of Pr[|e〉] by

σ2
0 =

4

T2p2
σ2
|e⟩, (C10)

σ2
|e⟩, however, depends on the experimental condition of the atomic frequency standard, which is out of the

scope of this paper. Therefore, we will instead write

σ2
0 ∝

1

T2p2
. (C11)

Now consider that the two-level atom moves and experiences a gravitation field. We preserve the expansion

of ρc[t] =
∑

n
1

mnc2n ρ
(n)
c [t] up to the order of O(c−4). We again apply π

2 -pulses at t= 0 and t=T respectively.
Substituting equations (B15), (B16) and (C4) into ρc[t], we obtain the state of the atom at time t

ρc [t]≈ p̃|ψ̃c〉〈ψ̃c|+(1− p̃)Ic, (C12)

where

|ψ̃c (t)〉=
1√
2

(
|g〉+ e−i(ω̃0−ω)t|e〉

)
, (C13)

and

ω̃0t= ω0 (t+ I1) , (C14)

p̃= 1− ω2
0

2

(
(<(I2)− I21

)
. (C15)

Similarly, the lowest order of ω̃0 contains
Vk
mc2 , and the lowest order of p̃ contains V2

k
m2c4 ; it is sufficient to keep

O(c0) terms and omit O(c−2) terms in Hk and Vk. By comparison between equations (C4) and (C12), the
process with relativistic effects can be seen as a mixture of the process without relativistic effects but with
modified frequency ω̃0 with a probability of p̃, and a completely depolarizing process with a probability of
1− p̃. Therefore, the probability of |e〉 up to the order of O(c−4) is given by

P̃r [|e〉] = 1

2
(1+ p̃cos((ω̃0 −ω)T)) . (C16)

In this case, the variance σ̃0 of ω̃0 is

σ̃2
0 ∝

1

T2p̃2
. (C17)

Comparing variances of perfect experiments with still atoms in a flat space and with moving atoms in a
curved space which are proportional to T−2 and T−2p̃ respectively, the increase in variance is

σ̃2
0 −σ2

0 ∝
ω2
0

T2

(
(<(I2)− I21

)
. (C18)
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Now we distinguish between the quantum superposition case and the classical mixture case. We denote the
quantities in the quantum superposition case with ω̃0 7→ ω̃0,qtm, p̃ 7→ p̃qtm , I1 7→ I1,qtm and I2,qtm and in
classical mixture case with ω̃0 7→ ω̃0,cls, p̃ 7→ p̃cls, I1 7→ I1,cls and I2,cls. Let the discrepancy ω̃0,coh between two
cases be

ω̃0,coh = ω̃0,qtm − ω̃0,cls. (C19)

The discrepancy and the contrasts can be written in terms of∆1,coh,∆2
2,qtm and∆2

2,cls in equations (33), (34)
and (35) as

ω̃coh =
ω0

T
∆1,coh, (C20)

p̃qtm = 1− ω2
0

2
∆2

2,qtm, (C21)

p̃cls = 1− ω2
0

2
∆2

2,cls, (C22)

from which equations (36) and (42) can be derived, as is shown in the main text.

Appendix D. Idealized clocks

An idealized clock in the non-relativistic limit is defined by its commutator between two observables, a time
operator Tc and the Hamiltonian Hc, and the clock state itself |ψIdeal(t)〉,

−i
[
T̂c,Ĥc

]
|ψIdeal (t)〉= |ψIdeal (t)〉, (D1)

for all time t and |ψIdeal(t)〉, the time evolved initial state according to the clock Hamiltonian Hc. We will
make use of the property that

eiĤctT̂ce
−iĤct = T̂c + tI. (D2)

The idealized clock can be mimicked quite well by a quasi-ideal clock. For more details of both idealized
clocks and quasi-ideal clocks, readers may refer to [6, 59]. We consider the expectation value
〈T̂c〉(t) = Tr(T̂cρc[t]) and the variance σ2

c (t) = Tr(T̂2
cρc[t])−Tr(T̂cρc[t])2 of the time operator. For a

confined idealized clock described by equation (6), we expand ρc[t] =
∑

n
1

mnc2n ρ
(n)
c [t] and preserve terms up

to the order of O(c−4). Substituting equations (B15) and (B16) into 〈T̂c〉 and σ2
c and making use of

equation (D2), we obtain the expectation value and the variance

〈T̂c〉(t) = 〈T̂c〉(0)+ t+ I1, (D3)

σ2
c (t) = σ2

c (0)+<(I2)− I21 +(=(I2)+ 2I ′2)
(
〈
[
T̂c,Ĥc

]
〉(0)− 2〈T̂c〉(0)〈Ĥc〉(0)

)
, (D4)

where I1, I2 and I ′2 are defined in equations (B17)–(B19), and 〈Ô〉(0) = Tr(Ôρc,0). Since the lowest order of

〈T̂c〉 contains V̂k
mc2 , and the lowest order of σ2

c contains
V̂2
k

m2c4 and
Ŵk
m2c4 , it is sufficient to keep O(c0) terms and

omit O(c−2) terms in Ĥk, V̂k and Ŵk. Now we distinguish between two cases with different initial kinematic
state. One is the case of preparing a spatial quantum superposition ρc,qtm in equation (30), and we replace

〈T̂c〉 7→ 〈T̂c〉qtm, σ2
c 7→ σ2

c,qtm, I1 7→ I1,qtm, I2 7→ I2,qtm and I ′2 7→ I ′2,qtm. The other is the case of preparing a

spatial classical mixture ρ0,cls in equation (31), and we replace 〈T̂c〉 7→ 〈T̂c〉cls, σ2
c 7→ σ2

c,cls, I1 7→ I1,cls,

I2 7→ I2,cls and I ′2 7→ I ′2,cls. We will denote the discrepancy 〈T̂c〉 between these two cases and the variance σ2
coh

of the discrepancy by

〈T̂c〉coh (t) = 〈T̂c〉qtm (t)−〈T̂c〉cls (t) , (D5)

σ2
coh = σ2

c,qtm +σ2
c,cls. (D6)

We also explicitly write down 〈T̂c〉coh and σ2
coh

〈T̂c〉coh =∆1,coh, (D7)

σ2
coh =∆2

2,qtm +∆2
2,cls + 2〈T̂2

c〉(0)− 2〈T̂c〉(0)2 +
(
〈
{
T̂c,Ĥc

}
〉(0)− 2〈T̂c〉(0)〈Ĥc〉(0)

)(
Σ2,qtm +Σ2,cls

)
,

(D8)
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Figure 6. (a) The discrepancy ⟨T̂c⟩ (orange) and the standard deviation σcoh,i (blue) for an ideal clock. The discrepancy is
detectable when the orange surface is above the blue one. (b) The difference between the discrepancy and the standard deviation
δ = ⟨T̂c⟩−σcoh,i for an ideal clock. The discrepancy is detectable when δ is positive. The parameters are the same as the clock in
the main text, i.e. λMg = 468 nm, Umax,Mg = 300Er,Mg, T= 1 s, ϕ = π, θ = π

4
and d= 10 nm (α= 0.395).

where Σ2,qtm = =(I2,qtm)+ 2I ′2,qtm, Σ2,cls = =(I2,cls)+ 2I ′2,cls, and∆1,coh,∆2
2,qtm and∆2

2,cls are given in
equations (33)–(35). The variance σ2

coh can be decomposed into a clock-state-independent term σ2
coh,i and a

clock-state-dependent term σ2
coh,d given by

σ2
coh,i =∆2

2,qtm +∆2
2,cls, (D9)

σ2
coh,d = σ2

coh −σ2
coh,i. (D10)

We regard the clock-state-independent term σ2
coh,i as a more general term of the discrepancy of relativistic

time dilation than the clock-state-dependent term σ2
coh,d, and thus pay more attention on the former.

We compute and plot the discrepancy 〈T̂c〉coh and the clock-state-independent standard deviation σcoh, i
with respect to decoherence rate for the idealized clock with the same parameters as in the main text, i.e.
λMg = 468 nm, Umax,Mg = 300Er,Mg, T= 1 s, ϕ = π, θ = π

4 and d= 10 nm (α= 0.395), in figure 6.

Appendix E. Protocol for 87Sr Optical lattice clock

The relevant energy diagram of the 87Sr is shown in figure 7 [42, 44, 60, 61]. 87Sr is a fermion. It has a
non-zero nuclear spin, and therefore a much more complicated electronic structure than 24Mg due to the
hyperfine splitting. This feature complicates experimental procedures, but it also provides enough states for
operations such as electron shelving and cooling.

Figure 7. The energy diagram of the 87Sr atom. Each state is labeled by both its electronic state 2S+1LJ and its hyperfine state
(F,mF). The line color corresponds to the transition light color and the line width corresponds to the transition strength.

Let us first describe how to adapt the general protocol into the 87Sr protocol. 87Sr atoms have to be
identified with not only fine states but also hyperfine states. An additional magnetic field has to be applied in
order to have a well-defined hyperfine state. We mention that the direction of the magnetic field is not
necessarily the same as the direction of the optical lattice. The |F= 9

2 ,mF =
9
2 〉 states

1S0 and 3P0 are used as
stable states |u1〉 and |u2〉 respectively. The |F= 11

2 ,mF =
11
2 〉 and |F= 13

2 ,mF =
13
2 〉 states of

3P2 are used as
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Figure 8. The discrepancy∆1,coh between the quantum superposition case and the classical mixture case and the increase in
variance∆1,coh of the quantum superposition case and the classical mixture case versus the displacement d respectively for a 87Sr

clock. The parameters are λSr = 813 nm, Umax,Sr = 300Er,Sr, ϕ = π, θ = π
4
and T= 1 s. Note that d=

√
2zsα, and d= 10 nm

corresponds to α= 0.227 for the 87Sr clock here.

meta-stable states |m1〉 and |m2〉 respectively. The |F= 11
2 ,mF =

11
2 〉 state of

1P1 is used as the unstable state
|u1〉 and any hyperfine state of 1P1 can be used as the unstable state |u2〉.

The transitions between these states are specified by not only the frequency but also the polarization of
the laser, in order to transit between correct hyperfine states. We will denote the right and left handed
circular polarized laser with the wave vector parallel to the magnetic field by the σ±

R laser respectively. One
should not confuse σ±

R which describes the laser inducing the transition with σ± which describes the laser
inducing the optical lattice. We will denote the linear polarized laser with the wave vector perpendicular to
the magnetic field by the π laser. The Raman transition from |F= 9

2 ,mF =
9
2 〉 of

1S0 to |F= 13
2 ,mF =

13
2 〉 of

3P2 can be realized by a laser between |F= 9
2 ,mF =

9
2 〉 of

1S0 and |F= 11
2 ,mF =

11
2 〉 of

3P1 with σ
+
R

polarization, a laser between |F= 11
2 ,mF =

11
2 〉 of

3P1 and |F= 11
2 ,mF =

11
2 〉 of

3S1 with π polarization and a
laser between |F= 13

2 ,mF =
13
2 〉 of

3P2 and |F= 11
2 ,mF =

11
2 〉 of

3S1 with σ
−
R polarization. The Raman

transition between two hyperfine states of 3P2 can be realized by a laser between |F= 13
2 ,mF =

13
2 〉 of

3P2
and |F= 11

2 ,mF =
11
2 〉 of

3S1 with σ
−
R polarization and a laser between |F= 11

2 ,mF =
11
2 〉 of

3P2 and
|F= 13

2 ,mF =
13
2 〉 of

3P2 with π polarization. The Raman transition from |F= 13
2 ,mF =

13
2 〉 of

3P2 to
|F= 11

2 ,mF =
11
2 〉 of

1P1 can be realized by a laser between |F= 13
2 ,mF =

13
2 〉 of

3P2 and |F= 13
2 ,mF =

13
2 〉 of

1D2 with π polarization and a laser between |F= 13
2 ,mF =

13
2 〉 of

1D2 and |F= 11
2 ,mF =

11
2 〉 of

1P1 with σ
−
R

polarization. Similarly, the Raman transition from |F= 11
2 ,mF =

13
2 〉 of

3P2 to |F= 11
2 ,mF =

11
2 〉 of

1P1 can
be realized by a laser between |F= 11

2 ,mF =
11
2 〉 of

3P2 and |F= 11
2 ,mF =

11
2 〉 of

1D2 with π polarization and
a laser between |F= 11

2 ,mF =
11
2 〉 of

1D2 and |F= 11
2 ,mF =

11
2 〉 of

1P1 with π polarization. |F= 11
2 ,mF =

11
2 〉

of 1P1 can only spontaneously decay to |F= 9
2 ,mF =

9
2 〉 of

1S0, which keeps atoms spin-polarized, i.e. in the
same hyperfine state. Thus |F= 11

2 ,mF =
11
2 〉 of

1P1 is the only suitable hyperfine state of 1P1 for |u1〉. As for
|u2〉, all hyperfine states are suitable for measurements because we do not need to keep atoms spin-polarized
after measurements.

Atoms loaded into an optical lattice can stay in arbitrary hyperfine state. Therefore, we have to
additionally spin-polarize atoms in Step 0, as is described in [62]. Suppose that initially atoms are in arbitrary
hyperfine states |F= 9

2 ,mF〉 state of 1S0. Atoms can be spin-polarized into |F= 9
2 ,mF =

9
2 〉 of

1S0 as follow. A
horizontal magnetic field is applied to atoms. A laser with circular polarization σ+

R transit atoms from
|F= 9

2 ,mF〉 of 1S0 to |F= 9
2 ,mF + 1〉 of 3P1. Meanwhile, atoms in |F= 9

2 ,mF + 1〉 of 3P1 spontaneously
decay to |F= 9

2 ,mF〉, |F= 9
2 ,mF + 1〉 and |F= 9

2 ,mF + 2〉 of 1S0.mF is thus increased by 1 in each cycle on
average until atoms reach |F= 9

2 ,mF =
9
2 〉 of

1S0, which is the dark state of the transition. Similarly, atoms
can be spin-polarized into |F= 9

2 ,mF =− 9
2 〉 of

1S0 by reversing the polarisation of the laser.
A 87Sr optical lattice clock has a magic wavelength at λSr = 813 nm [37]. The the trap depth is set to

Umax,Sr = 300Er,Sr, where Er,Sr =
2π2 h̄2

mSrλ2
Sr
is the recoil energy of 87Sr. The interrogation time is assumed to be

T= 1 s. We also set ϕ = π and θ = π
4 . The relation between∆1,coh and

√
∆2

2,qtm +∆2
2,cls with respect to the

displacement d can be found in figure 8. Again, d=
√
2zsα, and d= 10 nm corresponds to α= 0.227 for the

87Sr clock here.
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Appendix F. Evolution of operators under noise

F.1. Free evolution
The dual of the Lindblad equation for the amplitude damping channel can be written as

dÂ

dt
= iωz

[
â†â, Â

]
. (F1)

Due to the unitarity of free evolution, we have(
â†

m
ân
)
[t] =

(
â† [t]

)m
(â [t])n , (F2)

where

â [t] = âe−iωzt. (F3)

The solution of polynomials of the creation and annihilation operator is given by(
â†

m
ân
)
[t] = â†

m
ânei(m−n)ωzt. (F4)

F.2. Amplitude damping channel
The dual of the Lindblad equation of the amplitude damping channel can be written as

dÂ

dt
= iωz

[
â†â, Â

]
+

Γa

2

([
â†, Â

]
â− â†

[
â, Â
])
. (F5)

The expectation value and the variance only include polynomials of creation and annihilation operators in
the normal order of up to the fourth order. Therefore, we consider the time evolution of polynomials up to
the fourth order. For the first order, we assume that

â [t] = f11 (t) â. (F6)

We then get

df11
dt

â=−iωzf11â−
Γa

2
f11â, (F7)

and therefore

â [t] = âe−iωzt−Γa
2 t. (F8)

For the second order, we assume that (
â2
)
[t] = f22 (t) â

2, (F9)(
â†â
)
[t] = f21 (t) â

†â. (F10)

We then get

df22
dt

â2 =−2iωzf22â
2 −Γaf22â

2, (F11)

df21
dt

â†â=−Γaf21â
†â, (F12)

and therefore (
â2
)
[t] = â2e−2iωzt−Γat, (F13)(

â†â
)
[t] = â†âe−Γat. (F14)

As for the third order, we assume that (
â3
)
[t] = f33 (t) â

2, (F15)(
â†â2

)
[t] = f32 (t) â

†â2. (F16)
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We then get

df33
dt

â3 =−3iωzf33â
3 − 3

2
Γaf33â

3, (F17)

df32
dt

â†â2 =−iωzf32â
†â2 − 3

2
Γaf32â

†â2, (F18)

and therefore (
â3
)
[t] = â3e−3iωzt− 3

2Γat, (F19)(
â†â2

)
[t] = â†â2e−iωzt− 3

2Γat. (F20)

Finally, for the fourth order (
â4
)
[t] = f44 (t) â

2, (F21)(
â†â3

)
[t] = f43 (t) â

†â3, (F22)(
â†

2
â2
)
[t] = f42 (t) â

† 2
â2. (F23)

We then get

df44
dt

â4 =−4iωzf44â
4 − 2Γaf44â

4, (F24)

df43
dt

â†â3 =−2iωzf43â
†â3 − 2Γaf43â

†â3, (F25)

df42
dt

â†
2
â2 =−2Γaf42 â

† 2
â2, (F26)

and therefore (
â4
)
[t] = â4e−4iωzt−2Γat, (F27)(

â†â3
)
[t] = â†â3e−2iωzt−2Γat, (F28)(

â†
2
â2
)
[t] = â†

2
â2e−2Γat. (F29)

By observing the above solutions, we can find the general solution of polynomials of the creation and
annihilation operator (

â†
m
ân
)
[t] = â†

m
ânei(m−n)ωzt− 1

2 (m+n)Γat. (F30)

F.3. Phase damping channel
The dual of the Lindblad equation for the phase damping channel is given by

dÂ

dt
= iωz

[
â†â, Â

]
−

Γp

2

[
â†â,

[
â†â, Â

]]
. (F31)

For the first order, we assume that

â [t] = f11 (t) â. (F32)

We then get

df11
dt

â=−iωzf11â−
Γp

2
f11â, (F33)

and therefore

â [t] = âe−iωzt−
Γp
2 t. (F34)

For the second order, we assume that (
â2
)
[t] = f22 (t) â

2, (F35)(
â†â
)
[t] = f21 (t) â

†â. (F36)
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We then get

df22
dt

â2 =−2iωzf22â
2 − 2Γpf22â

2, (F37)

df21
dt

â†â= 0, (F38)

and therefore (
â2
)
[t] = â2e−2iωzt−2Γpt, (F39)(

â†â
)
[t] = â†â. (F40)

As for the third order, (
â3
)
[t] = f33 (t) â

3, (F41)(
â†â2

)
[t] = f32 (t) â

†â2. (F42)

We then get

df33
dt

â3 =−3iωzf33â
3 − 9

2
Γpf33â

3, (F43)

df32
dt

â†â2 =−iωzf32â
†â2 −

Γp

2
f32â

†â2, (F44)

and therefore (
â3
)
[t] = â3e−3iωzt− 9

2Γpt, (F45)(
â†â2

)
[t] = â†â2e−iωzt−

Γp
2 t. (F46)

Finally, for the fourth order, (
â4
)
[t] = f44 (t) â

4, (F47)(
â†â3

)
[t] = f43 (t) â

†â3, (F48)(
â†

2
â2
)
[t] = f42 (t) â

† 2
â2. (F49)

We then get

df44
dt

â4 =−4iωzf44â
4 − 8Γpf44â

4, (F50)

df43
dt

â†â3 =−2iωzf43â
†â3 − 2Γpf43â

†â3, (F51)

df42
dt

â†
2
â2 = 0, (F52)

and therefore (
â4
)
[t] = â4e−4iωzt−8Γpt, (F53)(

â†â3
)
[t] = â†â3e−2iωzt−2Γpt, (F54)(

â†
2
â2
)
[t] = â†

2
â2. (F55)

By observation, we conclude that(
â†

m
ân
)
[t] = â†

m
ânei(m−n)ωzt− 1

2 (m−n)2Γpt. (F56)
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F.4. Diffusion channel
The dual of the Lindblad equation for the diffusion damping channel is given by

dÂ

dt
= iωz

[
â†â, Â

]
− Γd

2

([
â,
[
â†, Â

]]
+
[
â†,
[
â, Â
]])

. (F57)

For the first order, we assume that

â [t] = f11 (t) â. (F58)

We then get

df11
dt

â=−iωzf11â, (F59)

and therefore

â [t] = âe−iωzt. (F60)

For the second order, we assume that (
â2
)
[t] = f22 (t) â

2, (F61)(
â†â
)
[t] = f21 (t) â

†â+ g21 (t) . (F62)

We then get

df22
dt

â2 =−2iωzf22â
2, (F63)

df21
dt

â†â+
dg21
dt

= Γdf21, (F64)

and therefore (
â2
)
[t] = â2e−2iωzt, (F65)(

â†â
)
[t] = â†â+Γdt. (F66)

As for the third order, (
â3
)
[t] = f33 (t) â

3, (F67)(
â†â2

)
[t] = f32 (t) â

†â2 + g32 (t) â. (F68)

We then get

df33
dt

â3 =−3iωzf33â
3, (F69)

df32
dt

â†â2 +
dg32
dt

â=−iωzf32â
†â2 − iωzg32â+ 2Γdf32â, (F70)

and therefore (
â3
)
[t] = â3e−3iωzt, (F71)(

â†â2
)
[t] = â†â2e−iωzt + 2Γdtâe

−iωzt. (F72)

Finally, for the fourth order, (
â4
)
[t] = f44 (t) â

4, (F73)(
â†â3

)
[t] = f43 (t) â

†â3 + g43 (t) â
2, (F74)(

â†
2
â2
)
[t] = f42 (t) â

† 2
â2 + g42 (t) â

†â+ h42 (t) . (F75)

We then get

df44
dt

â4 =−4iωzf44â
4, (F76)
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df43
dt

â†â3 +
dg43
dt

â2 =−2iωzf43â
†â3 − 2iωzg43â

2 + 3Γdf43â
2, (F77)

df42
dt

â†
2
â2 +

dg42
dt

â†â+
dh42
dt

= 4Γdf42â
†â+Γdg42, (F78)

and therefore (
â4
)
[t] = â4e−4iωzt, (F79)(

â†â3
)
[t] = â†â3e−2iωzt + 3Γdtâ

2e−2iωzt, (F80)(
â†

2
â2
)
[t] = â†

2
â2 + 4Γdtâ

†â+ 2Γ2
dt

2. (F81)

By observation, we conclude that

(
â†

m
ân
)
[t] =

(∑
k

m!n!

k! (m− k)! (n− k)!
Γk
dt

k â†
m−k

ân−k

)
· ei(m−n)ωzt. (F82)

Appendix G. Integration

In this section, we explicitly compute integrals I1 and I2 and explain how we deal with different terms in I1
and I2. As is explained in figure 2, we compute I1 and I2 following equations (19) and (21) by keeping V̂k and
ρk to the leading order (O(c0)). We also use the interaction picture where the operator changes but the state
does not (to the leading order)

I1 =
1

mc2

ˆ T

0
dt1Tr

(
V̂k [t1]ρk,0

)
, (G1)

I2 =
2

m2c4

ˆ T

0
dt2

ˆ t2

0
dt1Tr

((
V̂k [t2 − t1] V̂k

)
[t1]ρk,0

)
, (G2)

where

V̂k

mc2
= Cg

(
â+ â†

)
−Cr +Ck

(
â2 + â†

2 − 2â†â− 1
)
. (G3)

In order to compute the integration, we compute the time evolution of V̂k[t1] and
(
V̂k[t2 − t1]V̂k

)
[t1] by

making use of the time evolution of polynomials of â† and â, which are discussed in appendix F. We first put
V̂k into anti-normal ordering (creation operators on the left and annihilation operators on the right).
Observing that V̂k contains quadratic polynomials of â and â†, we then obtain V̂k[t1] and V̂k[t2 − t1] by
evolving polynomials of â and â† accordingly. We again put V̂k[t2 − t1]V̂k into anti-normal ordering.
Observing that V̂k[t2 − t1]V̂k contains quartic polynomials of â and â†, we finally obtain

(
V̂k[t2 − t1]V̂k

)
[t1]

by evolving polynomials of â and â† accordingly. V̂k[t1] and
(
V̂k[t2 − t1]V̂k

)
[t1] both contain oscillating terms

with respect to at least one of t1 or t2 and non-oscillating terms. After integration, the former is small
compared to the latter.

G.1. Free Evolution
For free evolution, the time evolution of relevant operators are

V̂k [t1] =
(
Cgâe

−iωzt1 +Ckâ
2e−i2ωzt1 + h.c.

)
−
(
Cr +Ck

(
2â†â+ 1

))
, (G4)(

V̂k [t2 − t1] V̂k

)
[t1] =

(
Cgâe

−iωzt2 +Ckâ
2e−i2ωzt2 + h.c.

)(
Cgâe

−iωzt1 +Ckâ
2e−i2ωzt1 + h.c.

)
−
(
Cgâe

−iωzt2 +Ckâ
2e−i2ωzt2 + h.c.

)(
Cr +Ck

(
2â†â+ 1

))
−
(
Cr +Ck

(
2â†â+ 1

))(
Cgâe

−iωzt1 +Ckâ
2e−i2ωzt1 + h.c.

)
+
(
Cr +Ck

(
2â†â+ 1

))2
, (G5)

where we have used equation (F2) for the evolution of â and â†. We can split V̂k[t1] in equation (G4) into
oscillating terms (first line) whose integration over t1 is denoted by I1,o and non-oscillating terms (second
line) whose integration over t1 is denoted by I1,l. After integration, the oscillating terms gain a factor ω−1

z
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while the non-oscillating terms gain a factor T. We work in the region where the interrogation time is much
longer than the oscillation period, ω−1

z � T. Therefore,

I1,l
I1,o

∝ ωzT, (G6)

where I1,o is negligible in our setting.
As an easy example, we demonstrate that the oscillating term is indeed negligible by explicitly calculating

the magnitude of the oscillating terms∆1,coh for the case without decoherence. For simplicity, we consider
the case where α is real. Substituting into equations (G1) and (G4)

ρk,0,qtm =
1

1+Ci

(
cosθ|α〉+ eiϕ sinθ| −α〉

)(
cosθ〈α|+ e−iϕ sinθ〈−α|

)
, (G7)

and

ρk,0,cls = cos2 θ|α〉〈α|+ sin2 θ| −α〉〈−α|, (G8)

we obtain

I1,qtm =
2Cgα

(1+Ci)ωz
(cos2θ sinωzT+Ci tanϕ (cosωzT− 1))−CkT−Cr T−Ckα

2 sin2ωzT

ωz
− 2Ck

1−Ci

1+Ci
α2T,

(G9)

and

I1,cls =
2Cgα

ωz
cos2θ sinωzT−CrT−CkT+Ckα

2 sin2ωzT

ωz
− 2Ckα

2T. (G10)

When including the oscillating terms,∆1,coh is given by

∆1,coh = I1,qtm − I1,cls =
Ci

1+Ci

(
2Cgα

ωz
(tanϕ(cosωzT− 1)− cos2θ sinωzT)+ 4Ckα

2T

)
. (G11)

One should note that because Ci ∝ cosϕ, δ1,coh is finite even if ϕ = π
2 . When excluding the oscillating terms,

∆1,coh is given by

∆1,coh = I1,qtm − I1,cls ≈ 4Ck
Ci

1+Ci
α2T. (G12)

Comparing equations (G11) to (G12), the oscillating terms we omitted in the main text are

δ1,coh =
2CiCgα

(1+Ci)ωz
(tanϕ(cosωzT− 1)− cos2θ sinωzT) . (G13)

We see that δ1,coh is upper bounded by

|δ1,coh|⩽
2CiCgα

(1+Ci)ωz
(2| tanϕ|+ |cos2θ|) . (G14)

By setting λMg = 468 nm, Umax,Mg = 300Er,Mg, ϕ = π
2 , θ =

π
8 and T= 1 s, (d=

√
2zsα, i.e. d= 10 nm

corresponds to α= 0.395 for the 24Mg clock here), we obtain δ1,coh ≲ 10−33 s, which is indeed negligible.
As can be seen in equation (G13), the oscillating terms we omitted is proportional to Cg, therefore, they

are due to the Cg(âe−iωzt + h.c.) term in equation (G4) and thus themgẑ term in equation (8). Because the
atoms confined in the optical lattice oscillates, the terms corresponding to the gravity also oscillates and fails
to accumulate with respect to time. This fact combining with the small coefficient, the time dilation due to
the gravity is not detectable.

Similarly, we split
(
V̂k[t2 − t1]V̂k

)
[t1] in equation (G5) into oscillating terms with respect to at least one of

t1 and t2 (first three lines) whose integration is denoted by I2,o and non-oscillating terms (fourth line) whose
integration is denoted by I2,q. After integration, the oscillating terms with respect to at least one of t1 or t2
gain either a factor ω−2

z or a factor ω−1
z T, while the non-oscillating terms gain a factor T2. Therefore, we

obtain using ω−1
z s� T

I2,q
I2,o

∝ ωzT, (G15)

where I2,o is again negligible. The integration thus results in equations (66)–(68), as is discussed
in section 3.4.
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G.2. Amplitude damping channel
For amplitude damping channel, the time evolution of relevant operators are

V̂k [t1] =
(
Cgâe

−(iωz+
1
2
Γa)t1 +Ckâ

2e−(i2ωz+Γa)t1 + h.c.
)
−
(
Cr +Ck

(
2â†âe−Γat1 + 1

))
, (G16)

(
V̂k [t2 − t1] V̂k

)
[t1] =

((
Cgâe

−(iωz+
1
2
Γa)t2 +Ckâ

2e−(i2ωz+Γa)t2
)(

Cgâe
−(iωz+

1
2
Γa)t1 +Ckâ

2e−(i2ωz+Γa)t1
)
+ h.c.

)
+C2

ge
−(iωz+

1
2
Γa )(t2−t1)

(
â†âe−Γat1 + 1

)
+C2

ge
(iωz− 1

2
Γa )t2−(iωz+

1
2
Γa )t1 â†â

+CgCke
−(iωz+

1
2
Γa)t2+i2ωzt1

(
â†

2
âe−Γat1 + 2â†

)
+CgCke

(iωz− 1
2
Γa)t2−(i2ωz+Γa)t1 â†â2

+CkCge
−(2iωz+Γa)t2+(iωz+

1
2
Γa)t1

(
â†â2e−Γat1 + 2â

)
+CkCge

(2iωz−Γa)t2−(iωz+
1
2
Γa)t1 â†

2
â

+C2
ke

−(i2ωz+Γz)(t2−t1)( â†
2
â2e−2Γat1 + 4â†âe−Γat1 + 2)+C2

ke
(i2ωz−Γz)t2−(i2ωz+Γz)t1 â†

2
â2

−Cge
−(iωz+

1
2
Γa)t2(Crâ+Ck(2â

†â2e−Γat1 + 3â))

−Cge
(iωz− 1

2
Γa)t2(Crâ

† +Ck(2 â
† 2

âe−Γat1 + â†))

−Cge
−(iωz+

1
2
Γa)t1(Crâ+Ck(2â

†â2e−Γat2 + â))

−Cge
(iωz− 1

2
Γa)t1(Crâ

† +Ck(2 â
† 2

âe−Γat2 + â†(2e−Γa(t2−t1) + 1)))

−Cke
−(i2ωz+Γa)t2(Crâ

2 +Ck(2â
†â3e−Γat1 + 5â2))

−Cke
(i2ωz−Γa)t2(Cr â

† 2
+Ck(2 â

† 3
âe−Γat1 + â†

2
))

−Cke
−(i2ωz+Γa)t1(Crâ

2 +Ck(2â
†â3e−Γat2 + â2))

−Cke
(i2ωz−Γa)t1(Cr â

† 2
+Ck(2 â

† 3
âe−Γat2 + â†

2
(4e−Γa(t2−t1) + 1)))

+ (Cr +Ck)(Cr +Ck(2â
†âe−Γa t1 + 2â†âe−Γa t2 + 1))+ 4C2

ke
−Γat2( â†

2
â2e−Γat1 + â†â), (G17)

where we have used equation (F30) for the evolution of polynomials of â and â†. We can split V̂k[t2 − t1] in
equation (G16) into oscillating terms (first line) whose integration over t1 is denoted by I1,o and
non-oscillating terms (second line) whose integration is denoted by I1,l. After integration, the oscillating
terms gain a factor ω−1

z while the non-oscillating terms gain either a factor T or a factor Γ−1
a . In real

experiments, one does not work in the regime where the quantum state has been destroyed, and thus set
ω−1
z � Γ−1

a ' T. Therefore, we obtain

I1,l
I1,o

∝ ωzT, (G18)

therefore I1,o is negligible. Similarly, we split
(
V̂k[t2 − t1]V̂k

)
[t1] in equation (G17) into oscillating terms with

respect to at least one of t1 or t2 (all but the last line) whose integration is denoted by I2,o and non-oscillating
terms (last line) whose integration is denoted by I2,q. After integration, the oscillating terms with respect to
at least one of t1 or t2 gain either a factor ω−2

z , a factor ω−1
z Γ−1

a or ω−1
z T, while the non-oscillating terms gain

a factor T2, Γ−1
a T or Γa. Therefore, under our condition that ω−1

z � Γ−1
a ' T

I2,q
I2,o

∝ ωzT, (G19)

therefore I2,o is negligible. The integration results in equations (81)–(83), as is shown in section 4.

G.3. Phase damping channel
For phase damping channel, the time evolution of relevant operators are

V̂k =
(
Cgâe

−(iωz+
1
2Γp)t1 +Ckâ

2e−(i2ωz+2Γp)t1 + h.c.
)
−
(
Cr +Ck

(
2â†â+ 1

))
, (G20)(

V̂k [t2 − t1] V̂k

)
[t1] =
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C2
gâ
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3
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kâ
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)
+
(
CgCkâ

3e−(iωz+
1
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5
2Γp)t1 + h.c.

)
+C2

g
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+CgCke
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(
â†

2
â+ 2â†

)
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3
2Γp)t1 (â†â2 + 2â

)
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2Γp)t1 â†

2
â
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+C2
ke

−(i2ωz+2Γp)(t2−t1)( â†
2
â2 + 4â†a+ 2)+C2

ke
(i2ωz−2Γp)(t2−t1) â†

2
â2

− (Cr +Ck)(Cgâe
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1
2Γp)t2 +Ckâ

2e−(i2ωz+2Γp)t2 + h.c.)

− (Cr +Ck)(Cgâe
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1
2Γp)t1 +Ckâ

2e−(i2ωz+2Γp)t1 + h.c.)

−CgCke
−(iωz+

1
2Γp)t2(â†â2 + â)−CgCke

(iωz− 1
2Γp)t2 â†

2
â

−CgCke
−(iωz+

1
2Γp)t1 â†â2 −CgCke

(iωz− 1
2Γpt1)( â†

2
â+ â†)

−C2
ke

−(i2ωz+2Γp)t2(â†â3 + 2â2)−C2
ke

(i2ωz−2Γp)t2 â†
3
â

−C2
ke

−(i2ωz+2Γp)t1 â†â3 −C2
ke

−(i2ωz+2Γp)t1( â†
3
â+ 2 â†

2
)

+ (Cr +Ck(2â
†â+ 1))2, (G21)

where we have used equation (F56) for the evolution of polynomials of â and â†. We split V̂k(t1) in
equation (G20) into oscillating terms (first line) whose integration over t1 is denoted by I1,o and
non-oscillating terms (second line) whose integration over t1 is denoted by I1,l. After integration, the
oscillating terms gain a factor of ω−1

z while the non-oscillating terms gain either a factor T or a factor Γ−1
p .

Because we work in the region where ω−1
z � Γ−1

p ' T, we obtain

I1,l
I1,o

∝ ωzT. (G22)

Therefore I1,o is negligible. Similarly, we split
(
V̂k[t2 − t1]V̂k

)
[t1] in equation (G21) into oscillating terms

with respect to at least one of t1 and t2 (all but the last line) whose integration is I2,o and non-oscillating
terms (last line) whose integration is I2,q. After integration, the oscillating terms gain either a factor ω−2

z , a
factor ω−1

z Γ−1
p or a factor ω−1

z T, while the non-oscillating terms gain a factor T2, Γ−1
p T or Γ−2

p . Using
ω−1
z � Γ−1

p ' T, we obtain

I2,q
I2,o

∝ ωzT. (G23)

As a result, we neglect I2,o. Integrating results in the same expressions as equations (66)–(68).

G.4. Diffusion channel
For diffusion channel, the time evolution of relevant operators are

V̂k =
(
Cgâe

−iωzt1 +Ckâ
2e−i2ωzt1 + h.c.

)
−
(
Cr +Ck

(
2â†â+ 2Γdt1 + 1

))
, (G24)(

V̂k [t2 − t1] V̂k
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2
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i2ωzt2−iωzt1( â†
2
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− (Cr +Ck(2Γd(t2 − t1)+ 1))(Cge
−iωzt1 â+Cke
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−iωzt1(2â†â2 + 4Γdt1â)
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2
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† 2
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2
)
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k(4 â
† 2
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(G25)

where we have used equation (F82) for the evolution of polynomials of â and â†. We split V̂k(t1) in
equation (G24) into oscillating terms (first line) whose integration over t1 is denoted by I1,o and

30



Quantum Sci. Technol. 9 (2024) 045052 Y Hu et al

non-oscillating terms (second line) whose integration over t1 is denoted by I1,l. Recall that we work in the
region where ω−1

z � Γ−1
d ' T, which means poly(ΓdT)' 1. After integration, the oscillating terms gain a

factor of poly(ΓdT) ·ω−1
z while the non-oscillating terms gain a factor poly(ΓdT) ·T. We thus obtain

I1,l
I1,o

∝ ωzT. (G26)

That means I1,o is negligible. Similarly, we split
(
V̂k[t2 − t1]V̂k

)
[t1] in equation (G25) into oscillating terms

with respect to at least one of t1 and t2 (all but the last two lines) whose integration is I2,o and non-oscillating
terms (last two lines) whose integration is I2,q. After integration, the oscillating terms gain either a factor
poly(ΓdT) ·ω−2

z , a factor poly(ΓdT) ·ω−1
z Γ−1

p or a factor poly(ΓdT) ·ω−1
z T, while the non-oscillating terms

gain a factor poly(ΓdT) ·T2. Using ω−1
z � Γ−1

d ' T and poly(ΓdT)' 1, we obtain

I2,q
I2,o

∝ ωzT. (G27)

We thus omit I2,o in further calculations. It is direct but cumbersome to compute the integration explicitly,
resulting in equations (86)–(88).
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