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ABSTRACT 

The growth hormone/insulin growth factor-1 axis is a key endocrine system that exerts 
profound effects on metabolism by its actions on different peripheral tissues but also in the 
brain. Growth hormone together with insulin growth factor-1 perform metabolic adjustments, 
including regulation of food intake, energy expenditure, and glycemia. The dysregulation of 
this hepatic axis leads to different metabolic disorders including obesity, type 2 diabetes or 
liver disease. In this review, we discuss how the growth hormone/insulin growth factor-1 axis 
regulates metabolism and its interactions with the central nervous system. Finally, we state 
our vision for possible therapeutic uses of compounds based in the components of this hepatic 
axis. 
 
Keywords: GH, IGF-1, energy balance, brain, liver.  
 
Abbreviations: 
ARC Hypothalamic arcuate nucleus 

AgRP Agouti-related peptide 

BAT Brown adipose tissue 

bGH Bovine growth hormone 

CNS Central nervous system 

GH Growth hormone 

GHR Growth hormone receptor 

GHRLD Liver-specific deletion of growth hormone receptor 

hGH Human growth hormone 

IGF-1 Insulin growth factor-1 

IGFBPs Insulin growth factor binding proteins  

IGF-1R Insulin growth factor-1 receptor 

NAFLD Non-alcoholic fatty liver disease 

NASH Non-alcoholic steatohepatitis 

NEFA Non esterified fatty acid 

NPY Neuropeptide Y 

mGH Mouse growth hormone 

ob/ob mice Leptin deficient mice 

POMC Proopiomelanocortin 

rhIGF-1 Recombinant human IGF-1 

SS Somatostatin 

T2DM Type 2 diabetes mellitus 

Tg Transgenic 

WAT White adipose tissue 
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1. Introduction 

Obesity is reaching pandemic proportions in the world and becoming a major social, 

economic and health problem [1, 2]. The increased incidence of this condition has precipitated 

comorbidities such cardiometabolic disease, type 2 diabetes mellitus (T2DM) and liver 

diseases, including non-alcoholic fatty liver disease and non-alcoholic steatohepatitis 

(NAFLD/NASH), that negatively impacts public health globally [3, 4].  

One critical factor in the development of obesity is dysregulated feeding behaviour, a 

complex process regulated mainly by the central nervous system (CNS) according to 

homeostatic and hedonic drives [5, 6]. In the hypothalamus the arcuate nucleus (ARC) is the 

main neuronal core involved in homeostatic response, integrating information about the levels 

of nutrients and hormones in the periphery, and modulating the energy balance accordingly 

[7, 8]. The ARC is composed of two antagonistic neuronal populations, the neuropeptide 

Y/Agouti-related peptide (NPY/AgRP) neurons that induce a positive energy balance [9], and 

proopiomelanocortin (POMC) neurons that in turn induce a negative energy balance [10]. 

Both neuronal types are involved in the regulation of food intake, energy expenditure and 

nutrient partitioning. However, not all of the neuronal signals that control feeding behaviour 

originate in the brain; some are produced in the gastrointestinal tract or in the liver and these 

signals are transmitted to the brain. 

In line with this, the experiments performed in the early 1960s by the group of Russek laid the 

grounds for the hepatostatic theory, which proposed that signals produced by the liver may 

contribute to changes in feeding behaviour [11]. The hepatostatic theory originated from the 

observation of a more pronounced decrease in food intake in dogs after direct administration 

of glucose into the liver of compared to systemic administration of glucose [12, 13]. However, 

recent experimental data has contributed to increasing knowledge and led to a more refined 

theories [14, 15].  



4 
 

The liver is a master metabolic organ that integrates peripheral nutrient status to control 

proper energetic homeostasis. Endocrine factors such as insulin, growth hormone (GH), and 

glucagon transmit information on the peripheral energetic status to the liver, but this organ 

also integrates signals directly from the nutrients themselves. Another relevant signal is the 

insulin growth factor-1 (IGF-1), a crucial factor in the control of metabolism, that is regulated 

by the action GH in the liver. In this review, we describe how the GH-IGF-1 axis controls 

energy balance and how metabolic actions may be induced by the activity of these factors in 

the CNS.  

 

2. Growth hormone. 

Growth hormone (GH), also known as somatotropin, is an amino acid peptide of 191 aa and a 

molecular weight of 22.650D that is released from the anterior pituitary somatotrophs [16-18]. 

GH secretion is regulated mainly by two hypothalamic hormones, the growth hormone-

releasing hormone and somatostatin (SS), also refereed as growth hormone-inhibiting 

hormone [19, 17, 20]. In addition to these canonical regulators, the gastric hormone ghrelin 

(GH-releasing peptide) is also an endogenous and strong GH secretagogue [21-24]. Ghrelin 

binds and activates its receptor, the growth hormone secretagogue receptor 1a, in the 

hypothalamus to induce GH secretion [25, 26] 

GH binds to the GH receptor (GHR), a member of the class I cytokine receptor family, and an 

amino acid dimeric receptor with an extracellular domain, a single-pass transmembrane 

domain, and a cytoplasmic intracellular domain [27]. The GHR is located mainly in 

epiphyseal plates in long bones and spine, liver, muscles, and adipose tissue [28, 18, 20]. GH 

binding to its receptor leads to activation of several intracellular signal cascades, including 

mitogenic signaling through Janus kinase signal transducers and activators of transcription, 
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mitogen-activated protein kinase, phosphoinositide-3-kinase/Protein kinase B/mammalian 

target of rapamycin pathways and phospholipase C/Protein kinase C [29, 30].  

GH presents a pulsatile secretion pattern, with phases of sudden release (dark phase), 

separated from each other by periods when there is no discharge.  

 

2.1. Metabolic actions of GH: 

GH is a pleiotropic hormone that, in addition to regulate linear growth has important 

biological functions such as the regulation of metabolism (Figure 1). In the following sections 

we describe the relationship of GH with some metabolic diseases. 

 

2.1.1 GH and obesity: 

 
GH is an anabolic hormone with an important impact on body weight and insulin 

homeostasis. Despite its name, there is an inverse relationship between body weight and GH 

levels in rodents [31, 32]. Moreover, humans with defective expression of GH receptor (GHR, 

Laron’s syndrome) and GHR knockout (GHR-/-) mice are obese, with reduced IGF-1 levels 

and increased insulin sensitivity [33-36]. Conversely, transgenic (Tg) mice expressing the 

bovine GH gene (bGH) are characterized by increased IGF-1 levels, accelerated growth, 

increased lean body mass and decreased white adipose tissue (WAT) mass [37, 38]. 

Moreover, genetic models of obesity, such as leptin deficient (ob/ob) mice, and obese humans 

have lower levels of circulating GH [39, 31, 40, 41]. Notably, GH increase lipolysis in 

adipocytes and enhance triglyceride secretion from the liver. Since GH directly influences fat 

mass by promoting lipolysis and preventing lipogenesis, obese patients have compromised 

GH-directed lipolytic and anti-lipogenic actions[34]. Thus, GH has a clear impact on body 

weight because of its action on lipid metabolism. 
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2.1.2. GH and NAFLD/NASH: 

In line with these outcomes, other reports link the lipolytic effects of GH with the liver 

(Extensive reviewed in [42]). In this regard, diet-induced fatty liver is associated with reduced 

circulating GH [43]. Consistently, the liver-specific deletion of GHR (GHRLD) in mice 

results in a marked decrease in serum IGF-1 levels, significant increases in fat mass and 

serum lipids, and severe hepatic steatosis associated with systemic insulin resistance [44, 45]. 

Moreover, the rescue of GHR signalling in the liver of GHRLD mice completely restored 

hepatic triglycerides and glucose tolerance. In contrast, infusion of recombinant human IGF-1 

(rhIGF-1) failed to correct hepatic steatosis, although circulating GH was restored to normal, 

indicating an IGF-1-independent effect of GH in hepatic steatosis[44]. These outcomes are 

also observed in humans, with patients with Laron´s syndrome or hypopituitary adults with 

growth hormone deficiency exhibiting NAFLD [46-48, 45]. In agreement patients with 

acromegaly have lower levels of hepatic steatosis [49, 50]. 

Interestingly, the identification of differences between humans and mice is important to 

translational research. In line with this, the development of sophisticated mice models such 

the chimeric mice with humanized livers [51] may be of particular interest for assessing the 

role of GH on liver diseases. For example, mouse GH (mGH) cannot bind to human GHR 

(hGHR) in the liver of the humanized mouse due to species differences. However, treating 

these mice with human growth hormone (hGH) ameliorated fatty liver development [52]. 

Therefore, this mouse model will be useful tool for investigating the mechanism of the action 

of hGH on human hepatocytes in vivo as well as the role of GH in the onset of 

NAFLD/NASH. 

 

2.1.3. GH and diabetes mellitus: 

GH has also been described as a diabetogenic agent with the ability to increase hepatic 

glucose production [53]. GH influences glucose homeostasis by negatively affecting insulin 
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sensitivity, leading to a compensatory increase in insulin secretion that predisposes patients to 

diabetes. It has recently been reported that GH might also stimulate insulin secretion by 

directly affecting the function of pancreatic β cells in both animals and humans [54, 55]. 

 

2.2. GH targets the brain to mediate energy balance 

 

Several studies have linked the action of GH in the brain to energy balance (For review see 

[56]). For example, GHR is widely expressed in the ARC [57] and GH-deficient or GHR-

knockout (-/-) mice exhibit reduced formation of AgRP and POMC projections to 

postsynaptic targets [58]. Brain-specific GHR-deficient mice exhibited increased body 

weight, mostly due to excessive lean mass [59] possibly due impaired GH negative feedback. 

Consistently, GH overexpression in the CNS results in hyperphagia-induced obesity 

associated with insulin resistance and dyslipidaemia [60]. 

More specific studies with conditional mutant mouse models in specific neuronal populations 

reinforce these arguments. For example, GHR deletion in POMC cells blunts the glucoprivic 

hyperphagia following 2-deoxy glucose administration [61]. Also, genetic GHR inhibition in 

AgRP or POMC neurons decreases the density of the neuronal projections to other 

hypothalamic neurons[62]. In addition, pharmacological or genetic central activation of GH 

signalling triggers the expression of AgRP neurons in mice [59] and fish [63] and 

concomitantly increases food intake while reducing energy expenditure. Consistently, GH 

administration in humans increases the levels of plasmatic AgRP protein levels, and this 

effect is reversible after pharmacological GH inhibition [64]. While mice with specific 

deletion of GHR in AgRP neurons are comparable to wild type animals in ad libitum 

conditions, the mutant mice showed reduced activation of AgRP neurons after acute or 

chronic food deprivation [59]. Additionally, the impairments induced by the lack of GH 

signalling in the AgRP neurons are extensive to brown adipose tissue (BAT) thermogenesis 
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and energy expenditure under chronic starvation conditions in those mice[59]. Interestingly, 

the increase in food intake associated with low glucose levels is blunted in GHR-AgRP (-/-) 

mice compared to the intake by the control mice. In addition, the treatment with an antagonist 

of GH as pegvisomant, prevented the decrease in glucose levels and the decline in energy 

expenditure associated with chronic food restriction. Altogether, these findings point to a key 

role of GH signalling in AgRP neurons in the induction of metabolic responses to preserve the 

proper energy balance during times of famine.  

 

2.3. Therapeutic action of GH: 

 

Since GH is a potent lipolytic hormone and an inverse relationship has been reported between 

GH and body weight in mice and humans, therapies aimed to activate GH activities has been 

suggested as a possible therapeutic target against obesity.  

In this sense, a vaccine against SS, the main negative regulator of GH has been developed 

with interesting results in preclinical models. Specifically, SS vaccination reduces around 

10% of body weight in mice fed high fat diet [65]. In line with this, a clinical study shown 

modest reduction of fat mass and a mild increase in lean mass in obese individuals after a 

long-term treatment with GH [66].  Accordingly, therapies aimed to activate GH levels are 

proposed to alleviate NAFLD in a context of obesity. For example, GH administration lead to 

a significant reduction in liver fat content in obese patients with NAFLD [67, 68]. 

Interestingly, currently there are two clinical trials which results are not published yet, 

studying the action of the GH stimulation on subjects with NAFLD (NCT02217345; 

NCT03375788).  

Conversely, immunological or pharmacological approaches that are capable of inhibit GH 

signalling represent a promising approach to facilitate weight loss and improve the efficacy of 
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obesity treatments, by possibly preventing compensatory decreases in energy expenditure 

during food restriction [69-71]. For example, a vaccine targeting ghrelin, a potent GH 

secretagogue with orexigenic activity [72], has been developed but however with mixed 

results. Whereas an anti-ghrelin antibodies has been shown to be effective in the induction of 

energy expenditure in mice and pigs [73-75], in humans no weight loss has been shown in 

clinical trials despite a strong anti-ghrelin immunological response [69, 76, 77].  

 

Another line of research proposed the use of SS and its analogues for the treatment of specific 

obesity states associated with hyperinsulinemia. As we commented before, SS is a potent GH 

inhibitor but suppresses the secretion of other hormones such as insulin or glucagon [78]. 

Several studies have shown that SS and its analogues (octreotide and lanreotide) may limit 

insulin release and consequently decrease adipogenesis and weigh gain [70, 71]. Some 

clinical trials, both in children and adults, have recently examined the possible usefulness of 

the administration of SS analogues in  hyperinsulinemic states [71, 79, 80]. Octreotide has 

been found to be effective in reducing hyperinsulinemia and body weigh in children’s 

associated with hypothalamic obesity such as craniopharyngiomas [71, 81]. Similar results 

were obtained in adult obese people but in this case the effect over body weight is less 

effective than in children’s  [79, 82, 83]. 

Thus, seems that SS and its analogues has potentially therapeutic use against obesity by 

reducing insulin secretion in children with hypothalamic obesity and in adults with 

hyperinsulinemic obesity.   

There is currently no clear explanation for the controversial findings regarding the strategy of 

inhibit or activate GH signaling, but it is believed that the processes that involves metabolic 

regulation are highly complex and that this may sometimes lead to counterintuitive findings.  
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Since GH is also the primary inducer of IGF-1 expression in the liver, and since together with 

insulin these anabolic hormones exert potent metabolic effects, we focus on the metabolic 

actions of IGF-1 in the following section. 

 

3. Insulin growth factor 1: 

IGF-1 is produced mainly in the liver by the action of GH [84, 85]  and circulates bound to 

insulin growth factor binding proteins (IGFBPs), which act as transport proteins, modulate 

IGF-1 bioavailability, prolong its half-life, and regulate its activity in target tissues and 

clearance [86]. The human IGF1 gene is located on chromosome 12q23.2, consist of 6 exons 

of >84 kilobases, which, through alternative splicing from two promoters, generates multiple 

pre-propeptide transcripts [87]. IGF-I mediates its actions by binding to and activating the 

IGF1 receptor (IGF-1R), a ubiquitously expressed cell-surface tyrosine kinase receptor [88]. 

The IGF-1R gene consists of 21 exons of 315 kilobases and is located in chromosome 

15q26.3. The IGF-1R is synthesized as a single polypeptide precursor structurally similar to 

the insulin receptor [89]. IGF-1 activates the IGF-1R and induces receptor 

autophosphorylation activating multiple signal cascades such the phosphatidylinositol 3-

kinase/protein kinase B, RAS/RAF/MEK and Mitogen-Activated Protein 

Kinases/extracellular regulated kinase pathways [90]. 

 

3.1. Insulin growth factor-1 and its metabolic actions 

IGF-1 has several metabolic effects on lipid metabolism, glucose homeostasis, and insulin 

sensitivity (Figure 2). Therefore, in this section we state how the dysregulation of IGF-1 

levels affects these processes and thus its implication on the most common metabolic 

diseases.  
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3.1.1 IGF-1, obesity and liver disease: 

In line with the prominent role of IGF-I in lipid metabolism, this hormone has been linked to 

markers of metabolic syndrome, diabetes, insulin resistance, and obesity [91, 92]. Also, it is 

inversely correlated with body mass index [93]. Further, abnormal circulating IGF-1 levels 

are present in obese humans, as well as in animal models of obesity [91]; and circulating IGF-

1 inversely correlates to visceral fat mass [94, 95]. In addition, another study have reported 

that circulating IGF-1 correlates to increased adiponectin levels and reduced prevalence of 

metabolic syndrome [96], while the severity of liver steatosis seems to be inversely correlated 

with circulating IGF-1 levels [97]. This can in part be explained by the interference on IGF-1 

and insulin signalling of circulating non esterified fatty acids (NEFAs) once taken up by the 

liver and by their accumulation leading to hepatic steatosis.  

 

3.1.2 IGF-1 and insulin sensitivity and glucose homeostasis 

Studies in humans showed that IGF-1 administration increased lipid oxidation, energy 

expenditure and improves insulin resistance [98-100], and these effects are believed to be due 

to IGF-1 suppression of insulin secretion, in turn leading to augmented lipolysis in adipose 

tissue and promotion of NEFA use in muscle and liver. IGF-1 promotes fatty acid transport in 

muscle [101, 99, 102] and its specific inhibition in this tissue causes severe consequences, 

such as insulin resistance and eventual development of diabetes[101]. Consistently low 

circulating IGF-1 levels are also associated with reduced insulin sensitivity [103], glucose 

intolerance, and T2DM [103-105]. In line with this, several studies linked the action of IGF-1 

and glucose homeostasis. For example, an epidemiological study revealed that patients with a 

polymorphism in the promoter region of the IGF-1 gene secreted 40% less IGF-1 than the 

control subjects [100, 106], were shorter and had increased prevalence of T2DM among the 

elderly [100, 107] . Moreover, another study supported the connection of IGF-1 and glucose 
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homeostasis by showing that exogenous administration of IGF-1 enhanced insulin sensitivity 

in healthy adults [108, 109] and in T2DM patients [100, 110, 111]. Notably, the low levels of 

circulating IGF-1 are independently associated with hyperglycaemia and insulin resistance in 

adults [112, 113].  

Consistent with human studies, mice heterozygous for genetically depleted IGF-1 develop 

glucose intolerance during fasting, whereas the homozygous hepatic IGF-1(-/-) mice show 

increased insulin resistance and glucose intolerance[114]. Further, liver-specific IGF-1 (-/-) 

mice developed muscle insulin resistance, showing an increase in insulin concentrations 

[115]. Interestingly, the glucose intolerance was ameliorated by administration of IGF-1 or 

the GHR antagonist pegvisomant [100, 116]. Importantly, the concomitant administration of 

IGF-1 and pegvisomant resulted in further enhancement of insulin sensitivity, suggesting that 

IGF-1, at supraphysiological doses, has important and independent effects on hepatic insulin 

sensitivity [100, 114]. In summary, IGF-1 enhances insulin sensitivity by suppressing insulin 

and GH secretion, and enhances insulin signalling indirectly by reducing NEFAs flux from 

the circulation to the liver and muscle. Hence, administration of IGF-1 at high doses typically 

results in hypoglycaemia, despite the improved downregulation of insulin concentrations in 

circulation [117, 118]. Since IGF-1 reduces serum GH levels by a feedback mechanism in the 

CNS, it may enhance insulin actions in the liver by suppressing the effects of GH on this 

organ [119]. Therefore, IGF-1 seems to indirectly modulate peripheral carbohydrate 

metabolism through suppression of GH and enhancement of insulin actions. To this, some 

experimental evidence suggests that some of these actions on carbohydrate metabolism are 

induced by the action of IGF-1 in the brain, as well. 
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3.2. IGF-1 action in the brain 

 

IGF-1 and IGF-R1 are expressed together in common brain areas, suggesting paracrine or 

autocrine activity [120]. By crossing the blood brain barrier, IGF-related peptides may also 

act in the brain, and IGF-1 can be found in the cerebrospinal fluid, in the hypothalamus, and 

in the hippocampus. Some studies reported an association of low serum IGF-1 levels and 

cognitive dysfunction but also demonstrated a correlation between endocrine IGF-1 levels and 

other brain-related functions, including protection against cognitive and neurosensory deficits, 

depressive-like symptoms, and neurodegeneration [121, 122]. Furthermore, IGF-1 

administration in the brain can improve insulin sensitivity in young animals and aged rats 

[123, 124]. Therefore, IGF-1 acts centrally to regulate insulin sensitivity and reduces hepatic 

glucose production in rodents. In line with these findings, additional experimental evidence 

supports the description of IGF-1 action in the brain. Central IGF-1 administration decreases 

food intake in chicks [125, 126] by increasing the levels of hypothalamic POMC and the 

phosphorylated form of protein kinase B [125]. Furthermore, central administration of IGF-1 

decreased food intake in diabetic rats [127]. It is well known that the mechanism by which 

IGF-1 inhibits GH secretion in the pituitary involves the upregulation of hypothalamic SS 

[128]. Therefore, in the brain, IGF-1 seems to act not only to exert the negative feedback 

regulation of GH by its action on the pituitary but also regulates insulin resistance and food 

intake by its action in the hypothalamus. 

 

3.3. Therapeutic use of IGF-1 

Due to its importance in maintaining proper energy homeostasis, IGF-1 has been proposed as 

therapeutic agent for the treatment of different diseases. For example, IGF-1 analogues have 

been tested in clinical trials for the treatment of the short stature that is associated with GHR 

deficiency [129-131]. Furthermore, the use of rhIGF-1 (mecasermin) or an equimolar 
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combination of IGF-1 and insulin growth factor binding protein-3 (mecasermin rinfabate) are 

marketed for the treatment of severe primary IGF-1 deficiency. Phase II clinical trials showed 

that mecasermin rinfabate enhanced insulin resistance and the glycaemic index in the type 1 

diabetes mellitus and T2DM patients [131, 132]. Despite the clinical benefits, the safety of 

long-term administration of IGF-1 remains controversial due to several side effects, such as 

hypoglycaemia and loss of appetite [129, 133].  

Interestingly, recent findings suggests that other members of the IGF family such as IGFBPs 

could be useful therapeutic targets over metabolic disorders. Both IGFBP-1 and IGFBP-2 

have been positively correlated with insulin sensitivity in humans and data in animal’s models 

implicate its direct involvement in the molecular regulation of insulin signaling and adiposity 

(for review see [134]). 

 

4. Concluding remarks 

In this review, we covered the metabolic actions the GH/IGF-1 axis, and its effect on energy 

balance. These endocrine signals that convey or are released from the liver appear not only as 

key metabolic factors directly implicated in obesity, T2DM and NAFLD/NASH by their 

action in glucose and lipid metabolism, but also as regulators of food intake and body weight 

through their action on the CNS. It is important to note that some authors propose the use of 

IGF-1 therapies only in states of IGF-1 deficits; however, other authors suggest that the 

problems with IGF-1 applications are based on dosing issue because most of the studies that 

investigate IGF-1 biology have been done with supraphysiological doses [85]. Notably 

growing experimental evidence describing the metabolic actions of IGFBPs could boost the 

research focus in therapeutic potential of IGF-1 system against insulin resistance or states 

associated with higher adiposity such as obesity.  

On the other hand, the development of NASH models using chimeric mice may be of 

particular interest for assessing the efficacy and safety of new therapeutic agents involving 
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GH-IGF-1 axis [52]. In this regard, if we taking into account that GH levels decrease with 

age, leading to a GH deficiency that in turn precipitates the development of NAFLD, these 

mice will be useful tools for investigating the role of hGH in age-dependent onset of 

NAFLD/NASH.  

In conclusion, we highlight the activity of the hepatic GH-IGF-1 axis, as an interesting tool 

for the study and precise understanding of metabolic and liver diseases by its crosstalk with 

the brain. 
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Figure 1: Description of the metabolic actions elicited by GH. GH is released from the 

pituitary as a potent lipolytic agent however decreases insulin sensitivity and triggers hepatic 

glucose production, in turn leading to a diabetogenic state. Abbrevations used: GH: growth 

hormone; WAT: white adipose tissue 
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Figure 2: Description of the metabolic actions elicited by IGF-1. IGF-1 is released mainly 

from the liver and improves insulin sensitivity by suppression of insulin secretion, in turn 

leading to augmented lipolysis in adipose tissue and promotion of NEFA use in muscle and 

liver. Abbrevations used: CNS: central nervous system; GH: growth hormone; IGF-1: insulin 

growth factor-1; FFAs: free fatty acids; WAT: white adipose tissue. 
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