N
N

N

HAL

open science

Takeaways of Implementing a Native Rust UDP
Tunneling Network Driver in the Linux Kernel

Amélie Gonzalez, Djob Mvondo, Yérom-David Bromberg

» To cite this version:

Amélie Gonzalez, Djob Mvondo, Yérom-David Bromberg. Takeaways of Implementing a Native Rust
UDP Tunneling Network Driver in the Linux Kernel.
ming Languages and Operating Systems, Association for Computing Machinery, Oct 2023, Koblenz,

Germany. 10.1145/3623759.3624547 . hal-04235526

HAL Id: hal-04235526
https://hal.science/hal-04235526v1
Submitted on 10 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

PLOS 2023 - 12th Workshop on Program-


https://hal.science/hal-04235526v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Takeaways of Implementing a Native Rust UDP
Tunneling Network Driver in the Linux Kernel

Amélie Gonzalez
Univ. Rennes - Inria - CNRS - IRISA
Rennes, France
amelie.gonzalez@inria.fr

Djob Mvondo
Univ. Rennes - Inria - CNRS - IRISA
Rennes, France
barbe-thystere.mvondo-

Yérom-David Bromberg
Univ. Rennes - Inria - CNRS - IRISA
Rennes, France
david.bromberg@inria.fr

djob@inria.fr

Abstract

C is the primary programming language used in the Linux
kernel. Recently, the Linux developer community oversaw
the experimental addition of Rust into the kernel’s build
system. Networking is one of the areas often mentioned
when discussing the adoption of Rust. In networking, both
perfect memory management and performance are critical.

In this paper, we present a Rust UDP tunneling driver
for Linux, which provides UDP encapsulation between two
peers. We use this driver to discuss design considerations
of writing Rust networking code for Linux. We then com-
pare the performance of our driver against a similar driver
written in C. We find that our Rust driver performs slightly
worse on a gigabit link for both latency (+0.1906%, p-value =
1.464e—15) and throughput (—0.00090%, p-value = 6.004e—5).
We then discuss potential causes for that loss.

1 Introduction

Since its creation by Denies Ritchie in 1972, C has remained
the standard programming language for the development
of operating systems. It was created with the goal of reduc-
ing the amount of assembly used for programming UNIX.
C gives developers access to low-level functionality, like
bitwise operators, pointers management, manual memory
management, and inline assembly. However, improper usage
of C is known to lead to unwanted memory issues.

The most representative example of using C for an oper-
ating system is the Linux kernel, which also features some
assembly language code. It also showcases the issues around
writing C source code: dangling pointers, pointers used after
free, leaked memory, are all issues that have been found in
Linux in particular [6, 27] for decades. Linux is not alone in
that respect, but despite its rigorous peer-review process for
patch submission, errors still end up into the code base.

Other languages have emerged since C such as Rust, which
provides access to similar, low-level operations while also
imposing strict verification of its memory safety model at
compile-time, and handling as much memory management
as possible for its developer. It benefits from being a compiled
language, while restricting the potential damage stemming
from improper memory management.

Rust is a contender in the realm of programming system
languages. Operating systems have already been written

with it (Redox [29], Tock [21], RedLeaf [26], Theseus [4]),
and it can be used in Linux for driver development since ver-
sion 6.1-rc1. Rust has been used to explore the development
of Linux drivers for storage devices [16], or direct rendering
media [23]. Another area of interest for Rust usage is net-
working; network drivers allocate and deallocate chunks of
memory according to inbound and outbound packets that
fly between the kernel and network cards at extremely high
speeds. Maintaining performance, all the while avoiding
memory handling errors, is critical, and encourages using
a language like Rust. These kinds of errors may have cata-
strophic consequences: they may either freeze portions of
the kernel, or kill it entirely [15].

In this paper, we evaluate the use of Rust against that of
C for networking drivers in Linux, notably in terms of per-
formance impact. We focus our study on the development
of a UDP tunneling driver. Developing such a driver has the
advantage of requiring no hardware considerations. At the
same time, UDP tunneling is a key building block of tech-
nologies such as virtual private networks. UDP is preferred
for tunneling over TCP to avoid TCP-over-TCP retransmis-
sions snowballing, or “TCP meltdown”. UDP is also simpler
of a transmission protocol, as it performs its task with “best
effort” guarantees.

We implemented a native Rust UDP tunneling driver in
Linux, by extending proposals for code providing access to
networking features in Rust for Linux'. We then evaluated
this driver against another version, written in C. We eval-
uated both throughput and latency for both drivers over
a gigabit duplex link. Our results suggest that Rust suffers
from a very slight performance penalty when compared to
C, while remaining very close from its level of performance.
The Rust driver transfers an average of 914.78 Mbps with
an average latency of 127.1 ps, while the C driver transfers
915.79 Mbps for an average latency of 126.8 pus.

2 Background

We will first discuss the use of Rust as a systems program-
ming language, followed by a presentation of the experimen-
tal project which brought support for it in Linux, and, finally,
the features we targeted for our driver, in the original Linux

1Code available at https://gitlab.inria.fr/WIDE/linux-rust-tunnel-driver, tag
plos23-driver


https://gitlab.inria.fr/WIDE/linux-rust-tunnel-driver

kernel C code. For the sake of remaining legible, we will not
delve too deeply into the behavior of Rust. Readers already
familiar with the language can focus on its integration in
Linux, while others will benefit from our explanation of the
core memory safety rules of Rust.

2.1 Rust for Systems Programming

Rust [11, 17] promises to address the memory safety prob-
lems of previous programming languages by combining two
concepts baked into its type system: ownership and borrow-
ing. The owner of a memory allocation (a structure, enumera-
tion, scope of code, ...) oversees its initialization, destruction
(as soon as the compiler deems it possible), and may move the
ownership to another owner. It can also provide references
to the owned allocation, which may allow modifications or
not. The enforcement of memory safety relies on tracking
the lifetime of all allocations at compile-time, and checking
that at no time there exists a mutable reference alongside
any other reference, mutable or not, to the same allocation.

Rust also provides traits: sets of properties a type can
implement, which guarantee to the compiler, that said type
behaves a certain way. For example, the Copy trait guarantees
that a byte-per-byte copy of a memory allocation of a type
that implements it will results in an identical copy of the
previous allocation being created. Traits can be combined
with generics to provide these features in combination with
other types that can, themselves, verify certain constraints.
If you implement Add<T: Foo> over a type Bar, you provide
an implementation of addition between your type and any
type that implements the trait Foo.

There is however a caveat to Rust’s safety when program-
ming operating systems and drivers. Since an operating sys-
tem performs operations such a Direct Memory Access or
context switching, there must remain within the code base
of a Rust operating system a fraction of source code that
cannot comply with compiler checks [22]. Another exam-
ple is memory-mapped I/O operations: an operating system
will have to write at arbitrary addresses in the memory to
interact with hardware. In order for developers to perform
such operations, Rust has an unsafe keyword. Programmers
mark functions or blocks of code with unsafe to tell the
compiler to forego compile-time memory safety checks. In
these situations, as long as unsafe code is guaranteed to be
sound by the developer, all other safety guarantees of the lan-
guage are preserved. This is one of the challenges that comes
with programming using unsafe in Rust: only unsafe code
is known to be able to cause memory problems, but those
could manifest somewhere else, including safe code [28].

2.2 Rust for Linux

The Rust API provided in Linux combines core Rust language
code for primitive types and standard types implemented
by Rust for Linux developers, as well as abstractions built
around regular C kernel code called through FFI. Bindings to

Amélie Gonzalez, Djob Mvondo, and Yérom-David Bromberg

[ \j E\ Other Subsystem |
LDﬁnvers I ! Abstractions I

- Abstraction layer -

4
| Kernel Rust Abstractions
‘\ (Structures, traits, enums, constants) |

inding
UAPI, Constants, Enums, Structures, |
e __ Methods, etc._ _ _ _ _ _ _ B

Figure 1. Schematic View of Interactions Between Rust Drivers,
Rust Abstractions, and Original Linux C Code

that C code are mechanically generated using bindgen [8].
These bindings are then called through unsafe Rust code
encapsulated in abstractions that provide features for the
Rust side of the kernel. In Figure 1, which summarizes this
mechanism, we can see a divide between the Rust and C sides
of Linux kernel code. Features need to be exposed as bind-
ings, and we have to manually add code in the abstraction
layer before Rust drivers can use them. Otherwise, driver
developers would need to interact directly with unsafe code,
which could negate the safety benefits of Rust.

In Rust, the conventional way to hide unsafe from end-
users of your code is through abstractions. Abstractions wrap
your unsafe code and perform conversions and checks [7].
This is especially useful for unsafe code performing foreign
function interface (FFI) calls.

Linux C code cannot be verified by the Rust compiler. Rust
drivers which use the safe interface provided by abstractions
have to trust that the underlying C code and the abstractions
are not faulty. As long as the C code is safe, and unsafe
Rust in the abstractions sound, all other Rust code should
be safe [28]. If abstractions are unsound, they might cause
memory errors in the Rust drivers. If the C code mishan-
dles memory, it needs to be fixed for the sake of the whole
kernel. Fixing errors in C then returns both the C and Rust
code to stability. In Linux, Rust developers are forced by
style conventions to write a comment, above every unsafe
block, about why their unsafe blocks are sound. Type in-
variants and unsafe function safety prerequisites must also
be documented with comments.

Currently, the Rust for Linux (RFL) community focuses
on abstractions for core kernel features such as file-system
access [25], media peripherals [1], data structures [24], etc.

At the time our work began, none of the few networking
abstractions available provided features we required. The
available abstractions only allowed to write simple network
filters and create TCP sessions.

2.3 Linux and its Network Stack

Memory safety is critical in the net subsystem. Network
drivers and the network stack have to manipulate packets



Takeaways of Implementing a Native Rust UDP Tunneling Network Driver in the Linux Kernel

as memory on the NIC, and later as memory in the kernel in
the form of socket buffers. Improper handling could lead to
out of bounds access, use-after-free errors, etc. These errors
have catastrophic consequences in Linux, usually leading
to kernel bugs (an entire subsystem going offline) at best,
or kernel panics (entire and sudden crash of the operating
system) at worse [15].

Network tunnels are a key building block to create more
complex network topology, such as virtual private networks
(VPNs), so that computers which do not share a common
network can still communicate over a shared, virtual, private
network. Currently, the wireguard Linux kernel module pro-
vides VPN functionality using the WireGuard protocol [9].

3 Our Driver and Its Abstractions

As a first step in the exploration of the performance of Rust
for native network drivers in Linux, we implemented a UDP
tunneling driver written in Rust. Abstractions were neces-
sary to provide these features in Rust. Since we wanted to
write a UDP tunneling driver that is efficient, we decided
to base our structure on WireGuard’s kernel module. Wire-
Guard is a state-of-the-art VPN protocol [9], and its kernel
implementation has been thoroughly tested and checked.

3.1 Abstractions

In order to write the drivers, abstractions had to be incorpo-
rated on top of the source code made available by the RFL
community. We based our work on the October 2022 pull
request by Tomonori Fujita [14]. who added a few methods
to the wrapper around Linux’s network device structure,
and a stub for the network device operation factory. We only
used and expanded said stub. Approximately 2500 more lines
of Rust code were needed, for a total of under 4000 lines
added in the rust sub-directory. We wrote 45 new wrapper
structures, traits and enumerations in order to write our UDP
tunneling network driver.

While we could consider upstreaming this work to the
Linux kernel, the current policy is to merge code only if it
has a user (i.e. a driver). For a driver to be accepted, it needs
to provide features not already present in the kernel. We
consider that this proof of concept driver does not fit the re-
quirements to be upstreamed, and therefore the abstractions
made alongside it cannot be either.

3.2 Initialization

When a C module is loaded, the kernel executes a callback
provided in the module declaration that performs all initial-
ization tasks. In Rust, this is represented as a method to be
declared for the implementation of the trait Module over
a type. That type is understood to represent your module,
and is instantiated once when your module is loaded by
the kernel, and dropped when the module is unloaded. The

R W N

pub fn register_locked(&mut self) -> Result {
to_result (unsafe
bindings :: register_netdevice (self.0.get())
b
}

Listing 1. Device Registration Method

implementation of the Drop trait is the idiomatic Rust equiv-
alent to a C module exit callback. The RFL community has
already provided foundations for module declaration that
implement basic Linux API in Rust in an idiomatic fashion.
Here, we give examples of how we adapted this philosophy
while designing our driver and abstractions.

Our driver declares a type in its top-level file that repre-
sents the module itself, which will simply hold the declara-
tion of a Router NetLink type: an interface family you can
define in a driver with custom implementation of operations
such as interface creation, deletion, queue number gathering,
and so on. These operations are useful for drivers that want
to provide features not backed immediately by hardware,
such as virtual private networks, TUN, TAP, etc.

To provide the set of functions that define a RTNL type for
our driver, we use the concept of traits in Rust, by creating a
trait called LinkOperations which is implemented for one
of our types. The trait handles fully abstracting away all
bindings from Rust users, only exposing data types that are
abstractions around the argument types used in the C version
of these callbacks. The implementer type is then passed to
a factory type, which will perform the work of creating a
descriptor in memory, and register it with the C kernel APL
We hold an instance of the factory specialized over our RTNL
implementer type to show that the registration is effective.

Before an interface can be shown to users of the system,
it has to register itself to the kernel. We use one of the RTNL
callback functions we just declared to perform that operation,
through a wrapping around Linux’s register_netdevice.
We name that wrapper method Device: :register_locked
(indicating that an environment lock for RTNL data is locked
before the method is called). Device configuration methods
can be created by wrapping around C bindings, and simply
extracting arguments, as shown in Listing 1. Methods like
to_result are made available by the foundation work of RFL
developers. Here, it helps transform errno error numbers to
a Rust Result enumeration. We aimed to remain idiomatic
in our driver to comply with the RFL project coding style.

3.3 Network Interface Private Data

Every network interface in Linux can have an area of mem-
ory allocated when it is initially created, for the purpose
of storing its own information. That area of memory lies
at the first 32-byte aligned address beyond the net_device




ISR R

let wrap = unsafe {dev.get_priv_data::<Data>()?};

let pref = wrap.initialize_with (Data::new(dev))?;
// Or, if sure that initialization happened
let pref = unsafe {wrap.assume_initialized ()};

Listing 2. Access to the Private Data Area in Rust

structure, and takes the size declared in the RTNL descrip-
tor registered for our type. It can be accessed in C with
netdev_priv(), which returns a pointer.

In our Rust driver, we use that memory area to store vari-
ous information about the peer at the other end of our tunnel,
as well as a buffer of socket buffers received and waiting to
be processed. Accessing that memory area comes with chal-
lenges in Rust. We need to return a mutable reference to a
memory area of an unconstrained size at an arbitrary ad-
dress, that may or may not have been initialized. Our RTNL
Rust trait declares an associated type constrained to imple-
ment the Sized trait (indicating a size known at compile
time), which is used to determine the size of private area
allocation. We then use a structure called NetPrivateData
which can be generic over any Sized type, and wraps around
the pointer returned by netdev_priv. In the driver, we then
decide whether or not to initialize the area with an instance
of the private data type, or assume initialization. Because we
cannot ensure that the area is already initialized, or that a
zeroed memory area (since the entire area is zero-allocated
by the kernel) makes sense for the Rust private data type,
both of these operations are unsafe. They require that the
driver programmer make an informed and conscious deci-
sion to use a potentially uninitialized area, as well as what
type they provide. An example is given in Listing 2.

In our driver, we know that our access and usage of the de-
vice’s private data area is safe because the kernel guarantees
the order in which RTNL, and other callbacks are called, and
we can guarantee that initialization of the memory area hap-
pens (and does not fail) before it is used in the next callbacks.
This is also true in for network drivers written in C.

3.4 Processing Socket Buffers

Linux’s network system manipulates packets through a struc-
ture called socket buffers, which contains metadata parsed
from packet data, and various pointers to a memory area
that contain the actual contents of the packet. Manipulation
of said pointers allow drivers to rewrite and cut parts of a
packet, such as headers.

The networking API grants network drivers access to
socket buffer through pointers. The Rust pendant is a muta-
ble reference to a socket buffer abstraction structure created
from a pointer at the abstraction border. Said structure ref-
erence is passed in the data path of our driver, and wrapper
methods help us manipulate the data buffer pointers to re-
move encapsulation headers at reception.

Amélie Gonzalez, Djob Mvondo, and Yérom-David Bromberg

The current implementation of that abstraction in the
kernel: :net module means we cannot drop socket buffers
(as happens upon errors detected in the data path) as easily as
we would in C. Rust’s type system prevents us from dropping
a instance of an object through a reference to it, which is all
that is available to drivers in the data path.

In order to compromise on that restriction, we imple-
mented manual drop methods that would free the structure
on the kernel side through a mutable reference. This violates
the invariant placed on our socket buffer abstraction: “during
the lifetime of an instance, the underlying kernel structure
must exist and contain a valid socket buffer”. The driver
tested at the time of submission had no safeguard against
a reuse of the abstraction’s reference after a drop call, we
return from the data path in our driver to avoid reuse. This
leaves the type invariant still violated, as the abstraction
instance remains valid and potentially usable by other parts
of the program.

An actual solution to that issue would involve passing the
socket buffer abstraction as an owned instance to functions
in the data path. This is possible in one way;, if we define the
wrapper to contain a pointer to the C socket buffer, instead of
being a Rust representation of the C socket buffer structure.
Functions in the data path therefore have access to an owner
instance (which contains the C pointer), which they are free
to drop. For functions branching out from the main chain of
function calls, the instance ownership can be moved to these
functions, which would then return the instance back if it
has not been dropped. Another option for auxiliary functions
is to obtain a mutable reference, and return a code signaling
to the instance owner (i.e. the main data path caller function)
that the socket buffer must be dropped. An improved version
of our driver will test this design approach.

Socket buffers show how Rust’s type system forces devel-
opers of safe wrappers to carefully consider the way data is
handled, and how difficult that design step can be.

4 FEvaluation

We will present the final rounds of evaluation against the
current version of the driver, our setup, results, and inter-
pretation. The evaluation will cover performance in terms
of network latency and throughput for our Rust driver, a C
implementation, and the link they use for tunneling.

4.1 Evaluation Setup

We used two Intel NUCs, model NUC71i7BNH, connected to
a Cisco Catalyst 2960-S switch with category 5.E RJ45 ca-
bles. They each have 4 Intel Core i7-7567U CPUs, paced at
3.50 GHz. Their NIC is an Intel Corp. Ethernet Connection
1219—V, revision 21. The link is negotiated as 1000 Base-T
full duplex. We used a build of Linux 6.3.9, based on the
configuration of Linux 4.15.0-197-generic available for



Takeaways of Implementing a Native Rust UDP Tunneling Network Driver in the Linux Kernel

Points outside
95% interval

Interface Mean Min Max o

Baseline 1222 117 127 1.10 176
C 1268 120 132 137 273
Rust 127.1 121 134 134 176
Values computed over n = 4000 latency mean
measurements.

Table 1. Latency Measurements in Microseconds

Ubuntu 18.04.6. The configuration was updated with de-
fault values and we enabled Rust and our modules. Our tree
is based on RFL’s rust branch (commit bc22545f).

Performance tests consist of a latency test and a through-
put test. Latency is measured with the netperf [18] util-
ity’s TCP_RR test over 100 runs consisting of 5 seconds of
warmup with the ping command from the iputils suite
(version iputils-s20161105), 60 seconds of measurement,
and 5 seconds of cooldown. The mean latency, 50%, 90% and
99% percentiles are taken each run. Throughput is measured
with netperf’s TCP_STREAM test, with the same number of
runs, structured the same way. Average throughput is mea-
sured each run. For latency, netperf reports percentiles with
three significant figures, but keeps five to compute the mean.
We round that mean to only keep three significant figures.
Throughput means are kept at five significant figures as
given by netperf, considering that it gives a precision to the
tens of kilobits per second. We do not run download tests in
both directions because our setup is symmetric.

As for our drivers, we argue that our C and Rust drivers
are comparable for the following reasons: the Rust driver
makes use of the same C Linux networking API provided by
Linux, but wrapped in safe abstractions. When writing the C
driver, we simply called the same methods wrapped for the
Rust side, in the same order, for the same processing steps.

4.2 Benchmark Results

In out experiments, the baseline represents performance of
the link used to connect both test devices.

Latency. Summarized results for the latency tests are pro-
vided in Table 1. These values are computed over the output
mean for each individual test run. For latency, lower is bet-
ter. Overall, the C and Rust drivers are very close to one
another in terms of latency, with only a slight gap of under
half a microsecond between their means. A t-test shows that
this difference is significant over our n = 4000 points, with
p-value = 1.464e—15. Our Rust driver has slightly worse min-
imal and maximal observed latency as well. The standard
derivation o is slightly higher for C by about 0.03 ns, but we
cannot reject the hypothesis of a statistical error (p = 0.9449).
We can therefore assume the latency distributions of both

Measured mean (n=4000) Measured p90 (n=4000)

g 170 4 1
G 130 A ’i i‘ 1601 l
= 150 19 I
g 1257 i T 140 g
5 120 ] T 1301 8
1048
Measured p50 (n=4000) Measured p99 (n=4000)
o 210
= 120 1 200 l i ;
3
£ ¢ ° 190 1 ? F
g 187 ® 180 g
& i T T 170 4 e
= 116 - ©
J o o [T § | |
Baseline C Rust Baseline C Rust

Figure 2. Latency Metrics for the C and Rust Drivers

Mean Min Max o
Baseline 934.30 930.95 934.39 7.97e-2
C 915.79 913.92 91593 8.15e-2

Rust 915.78 911.89 91592 1.03e-1
Table 2. Throughput Statistics in Mbps

Interface

drivers share the same standard derivation. Both drivers
are slower than the baseline. These results concord with
Figure 2, which shows that the trend for latency in Rust is
slightly higher than C, not only in terms of means, but also
medians, as well as 90" and 99th percentile. These results, in
particular the significant statistical difference observed for
latency means, suggests a slightly higher processing time
taken in the data path of our driver. That difference could
be attributed to poor programming on our part, as well as
the presence of some performance concerns observed by the
RFL community, which we discuss in subsection 4.3.

Throughput. Throughput measurements statistics pre-
sented in Table 2 show very close performance between
the Rust and C drivers. The last column of that table shows
the number of points in each category outside of the 95%
confidence interval.

The baseline interface has throughput values measured
between 930.95 Mbps and 934.39 Mbps. With abnormal val-
ues removed, the C driver transfers around 915.79 Mbps,
while the Rust driver is a bit behind, with only 915.78 Mbps
on average. The bitrate variation between both drivers is
around ten kilobits per second on average. Statistical testing
show that this difference is still significant (p = 6.004e—5).
We interpret this to mean that our Rust driver reaches the
same level of performance as the C one, but with a small



overhead of about 0.00090%. However, Rust usage in our
driver, whether from the language or our use of it, slows
down traffic ever so slightly.

Overall, our Rust driver, as a whole, is slower in both
latency and throughput.

4.3 Missing Bits & Limitations

One limitation identified in our tests is that a one gigabit per
second of throughput is not enough to put devices involved in
the test under stress. This was the best bare-metal hardware
available to us at the time. It is very clear to us that further
experiments must take place with better hardware.

Regarding our driver and its integration within Rust for
Linux, we discern problems existing with our current imple-
mentation (missing features, or shortcuts taken to counter
strict Rust typing), as well as known limitations of RFL as it
exists today.

Missing Features. It is currently impossible to delete an
interface created with our Rust driver. Reference counting is
improperly handled, as we do not delete all resources in the
private data area, including a counted reference to the device
itself. Any attempt will result in the kernel’s entire network
subsystem freezing while waiting for references to be freed.
We currently rely on shortcuts taken in the Rust driver code
because of time constraints. One of them is a cast from a
socket buffer reference to a pointer, which is converted back
through unsafe code later on. This shortcut was taken to get
around lifetimes of socket buffers and quickly put together
a working driver. While this stems from our trying to push
problems to later, it illustrates the fact that Rust’s strict se-
curity model may feel like an obstacle to programmers, who
may be tempted to use and abuse unsafe to bypass it.

Current limits of RFL. A limitation we can attribute to
using Rust in Linux is the use of unsafe in our driver for a di-
rect call to the binding of udp_tunnel_xmit_skb (a method
of the udp_tunnel kernel module). It is currently impossible
to write abstractions for udp_tunnel in the kernel crate of
the rust subsystem. Said crate is linked into the standalone
vmlinux kernel binary, while udp_tunnel and its method
stay alone in their own module binary file. The linker cannot
resolve the call to a binding to udp_tunnel_xmit_skb. The
only solutions appear to be either writing a kernel module
that uses bindings to provide abstractions to the C UDP tun-
neling module in Rust, or otherwise rewriting udp_tunnel
using Rust networking abstractions which do not exist at
the moment.

Furthermore, we can only empirically verify that our Rust
code is valid and provides the wanted features. While there is
existing work trying to create verification tools for unsafe
Rust [28], it is not known whether they can handle con-
straints specific to methods calls via FFI. None of the ab-
stractions written for Rust for Linux are mechanically and
rigorously proven sound.

Amélie Gonzalez, Djob Mvondo, and Yérom-David Bromberg

Finally, the problem of inlining through FFI is Rust is still
under investigation [2]. Inlining by LLVM is automatically
done within Rust code. However, the current Rust build in-
frastructure of the kernel makes it such that inlining is not
available between C code compiled with a C front-end of
LLVM (eg. clang), and a Rust front-end of LLVM (eg. rustc).
Link Time Optimization (LTO) would need to be enabled in
the build system. Developers of RFL have already discussed
supporting that feature [2].

5 Other Driver proposals and Related Work

Usage of Rust in systems programming is not new, even in
terms of networking. However, we contribute a first look
into using Rust for developing networking drivers in Linux.

5.1 Other Abstraction and Driver Proposals

Others have undertaken the task of making network drivers
for Linux in Rust, albeit with different goals.

In July 2021, Finn Behrens opened a request to inspect and
merge his RTNL and network device manipulation abstrac-
tions [3]. It proposed changes that now require rewrites of
code later merged in Rust for Linux’s experimental tree.

Tomonori Fujita developed his own €1000 out-of-tree Rust
driver [12]. It uses direct calls to bindings, and relies on his
original October 2022 RFL proposal [14]. He posted a first
draft of his more complete networking abstraction patch set
in May 2023. The patch set covers basic representation of
network devices, network namespaces, handling of socket
buffers, network device operations and Ethernet operations.
While there is an intersection with our own abstractions, it
is slim. Tomonori Fujita focuses on writing hardware dri-
vers, while we wanted to focus on tunneling. His proposal
is currently being reviewed by the netdev community [13].
We chose not to rewrite our code until the Linux community
decides on what set of abstractions to adopt into mainline.

5.2 Related Work

Emmerich et al. have previously made network drivers for
Linux in higher level languages [10]. Rust was included in
that list. Their drivers all resided in userland, and used kernel
bypass with DPDK alongside custom-made wrappers. They
also showed that Rust reaches performance close to, but ever
so slightly under C. They also address the cost of safety in
Rust to explain that performance gap.

Redox [29] is a general purpose UNIX-like operating sys-
tem developed in Rust. It is still actively developed, and can
provide a functional desktop environment. Its developers
have chosen a micro-kernel approach, and run their drivers
in userspace. Redox is network-capable. The work of Em-
merich et al. also evaluated Redox’s networking. They noted,
at the time, that these drivers were not optimized and a poor
performance compared to their C userspace driver. It could



Takeaways of Implementing a Native Rust UDP Tunneling Network Driver in the Linux Kernel

be interesting to study the current performance of Redox’s
network stack [30], which is based on smolTCP [31].

Tock [21] is an operating system for embedded hardware.
It is the fruit of research around the benefits of writing ker-
nels in Rust [22]. In their design, however, Levy et al. focused
on devices such as security keys, operations such as USB
access or DMA, and did not discuss design considerations or
examples of networking in Tock.

Isolation of trusted and verified code has been explored, in-
cluding in Rust [5, 26]. Kirth et al. developed PKRU-Safe [19],
a combination of a compiler plugin and allocator for the
Rust toolchain that leveraged Intel Memory Protection Keys
(MPK) to protect safe memory from potential errors or ex-
ploits stemming from the unsafe code. With their design,
developers annotate frontiers between unsafe and safe code.
Combined with profiling, PKRU-Safe can determine which
allocations are used in the unsafe region, and which are not.
These mechanisms could be applicable in our situation, with
heavy modification of the Linux build system. Sandcrust [20]
is a sandboxing system built around process isolation and
accessible in Rust with a macro crate. The approach involves
serialization and transmission of data through pipes, which
incurs high overhead. Sandcrust relies on process isolation,
meaning it can only exist above the kernel.

6 Conclusion & Further Work

In this paper, we present our work on a UDP tunneling driver
written in Rust in Linux. Rust is especially useful for network
drivers, as they need to manage memory perfectly while also
remaining extremely efficient.

Overall, once abstractions are available to use the ker-
nel’s networking API, writing a network driver in Rust in
Linux is possible. Yet, we note that Rust’s type system and
safety checks make that process complex, and requires a lot
of careful planning to safely wrap C APL. Handling pointer
structures, such as with socket buffers, is especially com-
plicated. We show that our Rust driver performs only very
slightly worse in terms of performance than a C equivalent.
The Rust driver exhibits a statistically significant difference
of means across samples for both latency (+0.1892% com-
pared to the C driver) and throughput (-0.0011%) on our
gigabit link.

We envision exploring our driver scalability, notably on
better hardware and bigger links. These bigger links (10,
25 or even 100 gigabit per second) will likely create higher
CPU stress and allow us to get a clearer picture of current
processing bottlenecks of Rust networking in Linux.

At the same time, we will address shortcuts and missing
features discussed above, with the goal of closing the per-
formance gap with C while providing as safe a driver as
possible.

References

(1]

(2]

(3]
(4]

(5]

(6]

[7

—

8

—

[9

—

[10]

[11]
[12]

[13]

[14]

[15]

[16]
[17]
(18]
[19]

Daniel Almeida. 2023. [PATCH 0/6] Initial Rust V4L2 sup-
port. https://lore.kernel.org/rust-for-linux/20230406215615.122099- 1-
daniel.almeida@collabora.com (Message to the Linux Kernel Mailing
List).

Emilio Cobos Alvarez. 2023. Re: [PATCH 0/5] Rust abstractions for net-
work device drivers. https://lore.kernel.org/rust-for-linux/48a98d0c-
bfd1-68a9-5d1f-65c942b7c0ef@crisal.io (Message to the Linux Kernel
Mailing List).

Finn Behrens. 2022. DRAFT: [RFC]: Add Rust net_device wrappers.
GitHub. https://github.com/Rust-for-Linux/linux/pull/439

Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. 2020. The-
seus: an Experiment in Operating System Structure and State Man-
agement. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20). USENIX Association, 1-19. https:
//www.usenix.org/conference/osdi20/presentation/boos

Anton Burtsev, Dan Appel, David Detweiler, Tianjiao Huang,
Zhaofeng Li, Vikram Narayanan, and Gerd Zellweger. 2021. Isolation
in Rust: What is Missing?. In Proceedings of the 11th Workshop on Pro-
gramming Languages and Operating Systems (Virtual Event, Germany)
(PLOS ’21). Association for Computing Machinery, New York, NY, USA,
76-83. https://doi.org/10.1145/3477113.3487272

Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Daw-
son Engler. 2001. An Empirical Study of Operating Systems Er-
rors. In Proceedings of the Eighteenth ACM Symposium on Operat-
ing Systems Principles (Banff, Alberta, Canada) (SOSP *01). Associa-
tion for Computing Machinery, New York, NY, USA, 73-88. https:
//doi.org/10.1145/502034.502042

Rust Community. 2023. FFI — The Rustonomicon. https://doc.rust-
lang.org/nomicon/ffi.html#foreign-function-interface

Rust Community. 2023. rust-bingen — Automatically generates Rust
FFI bindings to C (and some C++) libraries. The Rust Programming
Language. https://github.com/rust-lang/rust-bindgen/

Jason A. Donenfeld. 2017. WireGuard: Next Generation Kernel Net-
work Tunnel. NDSS. , 12 pages. https://www.ndss-symposium.org/wp-
content/uploads/2017/09/ndss2017_04A-3_Donenfeld_paper.pdf
Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex Egger, Esat Garcia
Sanchez-Torija, Thomas Giinzel, Sebastian di Luzio, Alexandru Obada,
Maximilian Stadlmeier, Sebastian Voit, and Georg Carle. 2019. The
Case for Writing Network Drivers in High-Level Programming Lan-
guages. In 2019 ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS). IEEE, Trinity Hall, Cambridge,
UK, 1-13. https://doi.org/10.1109/ANCS.2019.8901892

The Rust Foundation. 2023. The Rust Programming Language. The
Rust Foundation. https://rust-lang.org

Tomonori Fujita. 2023. fujita/rust-e1000. GitHub. https://github.com/
fujita/rust-e1000

Tomonori Fujita. 2023. [PATCH v2 0/5] Rust abstractions for network
device drivers. https://lore.kernel.org/rust-for-linux/20230710073703.
147351-1-fujita.tomonori@gmail.com

Tomonori Fujita. 2023. rust: add initial netdevice support. GitHub.
https://github.com/Rust-for-Linux/linux/pull/908

Weining Gu, Z. Kalbarczyk, Ravishankar, K. Iyer, and Zhenyu Yang.
2003. Characterization of linux kernel behavior under errors. In 2003
International Conference on Dependable Systems and Networks, 2003.
Proceedings. 459-468. https://doi.org/10.1109/DSN.2003.1209956
Andreas Hindborg. 2022. Linux Rust NVMe Driver Status Update.
https://Ipc.events/event/16/contributions/1180/

Graydon Hoare. 2010. Project Servo. Mozilla Annual Summit, Whistler,
Canada. http://venge.net/graydon/talks/intro-talk-2.pdf

Rick Jones. 2015. Care and Feeding of Netperf 2.7.X. Hewlett Packard.
https://hewlettpackard.github.io/netperf/doc/netperf.html

Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian
Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz.
2022. PKRU-Safe: Automatically Locking down the Heap between


https://lore.kernel.org/rust-for-linux/20230406215615.122099-1-daniel.almeida@collabora.com
https://lore.kernel.org/rust-for-linux/20230406215615.122099-1-daniel.almeida@collabora.com
https://lore.kernel.org/rust-for-linux/48a98d0c-bfd1-68a9-5d1f-65c942b7c0ef@crisal.io
https://lore.kernel.org/rust-for-linux/48a98d0c-bfd1-68a9-5d1f-65c942b7c0ef@crisal.io
https://github.com/Rust-for-Linux/linux/pull/439
https://www.usenix.org/conference/osdi20/presentation/boos
https://www.usenix.org/conference/osdi20/presentation/boos
https://doi.org/10.1145/3477113.3487272
https://doi.org/10.1145/502034.502042
https://doi.org/10.1145/502034.502042
https://doc.rust-lang.org/nomicon/ffi.html#foreign-function-interface
https://doc.rust-lang.org/nomicon/ffi.html#foreign-function-interface
https://github.com/rust-lang/rust-bindgen/
https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_04A-3_Donenfeld_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_04A-3_Donenfeld_paper.pdf
https://doi.org/10.1109/ANCS.2019.8901892
https://rust-lang.org
https://github.com/fujita/rust-e1000
https://github.com/fujita/rust-e1000
https://lore.kernel.org/rust-for-linux/20230710073703.147351-1-fujita.tomonori@gmail.com
https://lore.kernel.org/rust-for-linux/20230710073703.147351-1-fujita.tomonori@gmail.com
https://github.com/Rust-for-Linux/linux/pull/908
https://doi.org/10.1109/DSN.2003.1209956
https://lpc.events/event/16/contributions/1180/
http://venge.net/graydon/talks/intro-talk-2.pdf
https://hewlettpackard.github.io/netperf/doc/netperf.html

[20]

[21]

(22]

(23]

[24]

Safe and Unsafe Languages. In Proceedings of the Seventeenth Euro-
pean Conference on Computer Systems (Rennes, France) (EuroSys °22).
Association for Computing Machinery, New York, NY, USA, 132-143.
https://doi.org/10.1145/3492321.3519582

Benjamin Lamowski, Carsten Weinhold, Adam Lackorzynski, and
Hermann Hartig. 2017. Sandcrust: Automatic Sandboxing of Unsafe
Components in Rust. In Proceedings of the 9th Workshop on Program-
ming Languages and Operating Systems (Shanghai, China) (PLOS’17).
Association for Computing Machinery, New York, NY, USA, 51-57.
https://doi.org/10.1145/3144555.3144562

Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat
Pannuto, Prabal Dutta, and Philip Levis. 2017. Multiprogramming a
64kB Computer Safely and Efficiently. In Proceedings of the 26th Sym-
posium on Operating Systems Principles (Shanghai, China) (SOSP ’17).
Association for Computing Machinery, New York, NY, USA, 234-251.
https://doi.org/10.1145/3132747.3132786

Amit Levy, Bradford Campbell, Branden Ghena, Pat Pannuto, Prabal
Dutta, and Philip Levis. 2017. The Case for Writing a Kernel in Rust.
In Proceedings of the 8th Asia-Pacific Workshop on Systems (Mumbai,
India) (APSys ’17). Association for Computing Machinery, New York,
NY, USA, Article 1, 7 pages. https://doi.org/10.1145/3124680.3124717
Asahi Lina. 2022. Tales of the M1 GPU. Asahi Linux. https://asahilinux.
org/2022/11/tales-of-the-m1-gpu

Asahi Lina. 2023. [PATCH v3] rust: xarray: Add an abstraction for XAr-
ray. https://lore.kernel.org/rust-for-linux/20230224-rust-xarray-v3-
1-04305b1173a5@asahilina.net (Message to the Linux Kernel Mailing
List).

[25]

[26]

[27]

[28]

[29]
[30]

[31]

Amélie Gonzalez, Djob Mvondo, and Yérom-David Bromberg

Ariel Miculas, Miguel Ojeda, and Wedson Almeida Filho. 2023. [RFC
PATCH 00/80] Rust PuzzleFS filesystem driver. https:/lore.kernel.org/
rust-for-linux/20230609063118.24852- 1-amiculas@cisco.com (Mes-
sage to the Linux Kernel Mailing List).

Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel,
Zhaofeng Li, Gerd Zellweger, and Anton Burtsev. 2020. RedLeaf: Isola-
tion and Communication in a Safe Operating System. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20). USENIX Association, 21-39. https://www.usenix.org/conference/
0sdi20/presentation/narayanan-vikram

Nicolas Palix, Gaél Thomas, Suman Saha, Christophe Calves, Julia
Lawall, and Gilles Muller. 2011. Faults in Linux: Ten Years Later. In
Proceedings of the Sixteenth International Conference on Architectural
Support for Programming Languages and Operating Systems (Newport
Beach, California, USA) (ASPLOS XVI). Association for Computing
Machinery, New York, NY, USA, 305-318. https://doi.org/10.1145/
1950365.1950401

Bogin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang.
2020. Understanding Memory and Thread Safety Practices and Issues
in Real-World Rust Programs. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation
(London, UK) (PLDI 2020). Association for Computing Machinery, New
York, NY, USA, 763-779. https://doi.org/10.1145/3385412.3386036
Redox. 2023. The Redox Operating System. https://www.redox-os.org/
Redox. 2023. redox-os/netstack. Redox OS. https://gitlab.redox-
os.org/redox-os/netstack

smolTCP. 2023. smoltcp-rs/smoltcp: a smol tep/ip stack. GitHub. https:
//github.com/smoltcp-rs/smoltcp


https://doi.org/10.1145/3492321.3519582
https://doi.org/10.1145/3144555.3144562
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/3124680.3124717
https://asahilinux.org/2022/11/tales-of-the-m1-gpu
https://asahilinux.org/2022/11/tales-of-the-m1-gpu
https://lore.kernel.org/rust-for-linux/20230224-rust-xarray-v3-1-04305b1173a5@asahilina.net
https://lore.kernel.org/rust-for-linux/20230224-rust-xarray-v3-1-04305b1173a5@asahilina.net
https://lore.kernel.org/rust-for-linux/20230609063118.24852-1-amiculas@cisco.com
https://lore.kernel.org/rust-for-linux/20230609063118.24852-1-amiculas@cisco.com
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://doi.org/10.1145/1950365.1950401
https://doi.org/10.1145/1950365.1950401
https://doi.org/10.1145/3385412.3386036
https://www.redox-os.org/
https://gitlab.redox-os.org/redox-os/netstack
https://gitlab.redox-os.org/redox-os/netstack
https://github.com/smoltcp-rs/smoltcp
https://github.com/smoltcp-rs/smoltcp

	Abstract
	1 Introduction
	2 Background
	2.1 Rust for Systems Programming
	2.2 Rust for Linux
	2.3 Linux and its Network Stack

	3 Our Driver and Its Abstractions
	3.1 Abstractions
	3.2 Initialization
	3.3 Network Interface Private Data
	3.4 Processing Socket Buffers

	4 Evaluation
	4.1 Evaluation Setup
	4.2 Benchmark Results
	4.3 Missing Bits & Limitations

	5 Other Driver proposals and Related Work
	5.1 Other Abstraction and Driver Proposals
	5.2 Related Work

	6 Conclusion & Further Work
	References

