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UNIQUENESS AND NON-UNIQUENESS FOR THE

ASYMPTOTIC PLATEAU PROBLEM IN HYPERBOLIC SPACE

ZHENG HUANG, BEN LOWE, AND ANDREA SEPPI

Abstract. We prove a number of results on the number of solutions to the as-

ymptotic Plateau problem in H3. In the direction of non-uniqueness, we construct

an example of a quasicircle that is the asymptotic boundary of uncountably many

pairwise distinct stable minimal disks.

Moreover, we discuss criteria that ensure uniqueness. Given a Jordan curve

Λ in the asymptotic boundary of H3, we show that uniqueness of the minimal

surfaces with asymptotic boundary Λ is equivalent to uniqueness in the smaller

class of stable minimal disks, and, when Λ is invariant by a Kleinian group, to

uniqueness in the even smaller class of group invariant stable minimal disks.

Finally, we show that if a quasicircle (or more generally, a Jordan curve of

finite width) Λ is the asymptotic boundary of a minimal surface Σ with principal

curvatures less than or equal to 1 in absolute value, then uniqueness holds.
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1. Introduction

The classical “asymptotic Plateau problem” asks, given a Jordan curve Λ on

S2∞ = ∂∞H3, how to count the number of (properly embedded) minimal surfaces Σ

in H3, if any, that are asymptotic to Λ, in the sense that the closure of Σ in S2∞∪H3

is equal to Λ∪Σ. The existence of minimal disk solutions to the asymptotic Plateau

problem was obtained by Anderson ([And83]). Using geometric measure theory,

Anderson also obtained existence results in higher dimensions.

The uniqueness does not hold in general: as shown in [And83, HW15], taking

advantage of group actions, one can construct a Jordan curve Λ in S2∞ = ∂∞H3 which

is the limit set of some quasi-Fuchsian group such that Λ spans multiple minimal

disks (even an arbitrarily large, but finite, number). Anderson ([And83]) even

constructed a curve Λ which spans infinitely many minimal surfaces (the surfaces

he constructs have positive genus). On the other hand, when Λ is a round circle,
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the unique minimal surface it spans is a totally geodesic disk. To look for unique

solutions, it is therefore natural to consider the class of minimal surfaces that are

“close” to totally geodesic, for which Λ is “close” to a round circle. Related questions

with conditions on natural invariants of Λ were studied in [Sep16] (for the quasi-

conformal constant of Λ), and [HW13, San18] (for the Hausdorff dimension of Λ).

Some properness questions for the asymptotic Plateau problem solutions for various

classes of curves were addressed, for example, in [GS00, AM10]. For an overview

of this active area of research see the survey paper [Cos14].

Motivated by the above results and by many natural questions arising from the

study of the asymptotic Plateau problem, in this paper we address two basic ques-

tions, which, for the sake of simplicity, we state only in dimension three, but may

naturally be extended to hypersurfaces in Hn+1:

• under what conditions does a Jordan curve Λ on S2∞ span exactly one

minimal surface in H3?

• does there exist a Jordan curve Λ on S2∞ that spans infinitely many minimal

disks in H3, and if yes, which cardinality may the set of solutions have?

1.1. Characterizing uniqueness. Recall that a (hyper)surface is minimal if it is

a critical point of the area under compactly supported variations. It is stable if

moreover the second variation of the area under any compactly supported variation

is non-negative. In this introduction, we will always implicitly consider properly em-

bedded (hyper)surfaces. Our first theorem shows that it suffices to check uniqueness

in the class of stable minimal disks.

Theorem 1.1. Let Λ be a Jordan curve on S2∞ = ∂∞H3. Then Λ spans a unique

minimal surface if and only if it spans a unique stable minimal disk.

A statement similar to Theorem 1.1, but in the context of the finite Plateau

problem, was proved in [MY19]. When Λ is invariant under the action of a Kleinian

group (i.e. a discrete subgroup of isometries of H3), which is for instance the case

for the limit set of a quasi-Fuchsian group, we can prove a stronger statement.

Theorem 1.2. Let Λ be a Jordan curve on S2∞ = ∂∞H3, and let Γ be any Kleinian

group preserving Λ. Then Λ spans a unique minimal surface if and only if it spans

a unique Γ-invariant stable minimal disk.

The main idea in the proof of Theorem 1.1 is an adaptation of an argument in

[And83, Theorem 3.1]: we show that if there is a minimal surface, which is not

stable or is not topologically a disk, with asymptotic boundary Λ, then we can

construct two distinct — actually, disjoint — stable minimal disks with the same
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asymptotic boundary Λ (Theorem 3.1). The proof of Theorem 1.2 then relies on

a further improvement of the arguments of [And83, Theorem 3.1], showing that

if there is a non-invariant stable minimal disk, then we can construct two disjoint

invariant stable minimal disks (Theorem 3.2).

1.2. Uniqueness criteria via curvature conditions. Next, we turn our atten-

tion to sufficient conditions for uniqueness. For an immersed hypersurface in Hn+1,

or more generally in a hyperbolic (n + 1)-manifold, we say it has strongly small

curvature if its principal curvatures {λi} satisfy that

(1.1) |λi| ≤ 1− ϵ, i = 1, . . . , n, for some small ϵ > 0.

Similarly we say it has small curvature if |λi| < 1, and it has weakly small curvature if

|λi| ≤ 1. This definition has some immediate consequences: for instance, a complete

immersion of weakly small curvature is in fact a properly embedded topological

disk ([Eps84, Eps86], see also [EES22] for a generalization). See Section 4 and

Appendix A for more details.

Surfaces of small curvature are very special in three-manifold theory: Thurston

observed that a closed surface of small curvature in a complete hyperbolic three-

manifold is incompressible ([Thu86, Lei06]); they are abundant in closed hyper-

bolic three-manifolds ([KM12]); many results have been extended to the study of

complete noncompact hyperbolic three-manifold of finite volume ([Rub05, CF19,

KW21]). It is often favorable to consider canonical representatives within a ho-

motopy class of surfaces, and minimal surfaces are in many ways the most nat-

ural choice. Among hyperbolic three-manifolds, almost-Fuchsian manifolds are

quasi-Fuchsian manifolds which admit a closed minimal surface of small curva-

ture. This notion was introduced by Uhlenbeck and it played an important role

in her study of parametrization of the moduli space of minimal surfaces in hyper-

bolic three-manifolds ([Uhl83]). Subsequently many different aspects of this sub-

class of quasi-Fuchsian manifold have been studied up to recent years (for instance

[KS07, GHW10, HL21] and many others).

It is known ([Uhl83]) that any almost-Fuchsian manifold admits a unique closed

minimal surface — in other words, identifying the almost-Fuchsian manifold with a

quotient H3/Γ, the limit set Λ of the group Γ bounds a unique Γ-invariant minimal

disk asymptotic to Λ. Inspired by this fact, we prove (Corollary 1.4 below) that

if a Jordan curve Λ (not necessarily group equivariant) spans a minimal disk Σ of

strongly small curvature in H3, then Σ is the unique minimal surface asymptotic

to Λ. Our results, however, are more general. The main result we prove in this

direction is the following:
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Theorem 1.3. Let Λ be a topologically embedded n-sphere on Sn∞ = ∂∞Hn+1 of

finite width, and let Σ be a minimal hypersurface in Hn+1 of weakly small curvature

asymptotic to Λ. Then Σ is the unique minimal hypersurface in Hn+1 asymptotic

to Λ. Moreover, Σ is area-minimizing.

Let us explain the terminology of the statement. First, recall that a hypersurface

Σ is area-minimizing if any compact codimension-zero submanifold with boundary

has smaller area than any rectifiable hypersurface with the same boundary in the

ambient space. This implies that Σ is a stable minimal hypersurface. Second, the

width of a Jordan curve Λ in S2∞ = ∂∞H3 has been introduced in [BDMS21] —

and the definition is immediately extended to higher dimensions — as the supremum

over all points in the convex hull of Λ of the sum of the distances from each boundary

component of the convex hull.

We include two proofs of Theorem 1.3 as they offer different perspectives. The

first proof only works for n = 2, but it is based on elementary geometric arguments,

which we sketch here. The first observation is that the finite width condition implies

that every minimal surface Σ′ has, roughly speaking, finite normal distance from

Σ. Moreover, by Theorem 1.1, it suffices to show uniqueness among stable mini-

mal disks. Now, if the maximum normal distance between Σ and another stable

minimal surface is realized in the interior, the conclusion follows from a maximum

principle argument, taking advantage the properties of the normal flow from Σ. If

the maximum normal distance is not realized in the interior, we use isometries to

send the run-away sequence of points back to a fixed point and use the compactness

theorems for stable minimal surfaces, so as to reduce essentially to the previous case.

The second proof, which works in any dimension, rests on an application of a more

general maximum principle proved in [Whi10] in the context of minimal varifolds

(see also [JT03]).

We now derive several corollaries of Theorem 1.3. Firstly, observe that if a prop-

erly embedded hypersurface Σ has strongly small curvatures, then its asymptotic

boundary has finite width (See Lemma A.4 in Appendix A). Hence we obtain:

Corollary 1.4. Let Λ be a topologically embedded n-sphere on Sn∞ = ∂∞Hn+1, and

let Σ be a minimal hypersurface in Hn+1 of strongly small curvature asymptotic to

Λ. Then Σ is the unique minimal hypersurface in Hn+1 asymptotic to Λ. Moreover,

Σ is area-minimizing.

Secondly, in dimension n = 2, quasicircles are an important class of Jordan curves,

which are known to have finite width. We thus obtain immediately the following.
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Corollary 1.5. Let Λ be a quasicircle on S2∞ = ∂∞H3, and let Σ be a minimal

surface in H3 of weakly small curvature asymptotic to Λ. Then Σ is the unique

minimal surface in H3 asymptotic to Λ. Moreover, Σ is area-minimizing.

We remark that the setting of Theorems 1.1 and 1.2 is more general than Theorem

1.3 and Corollary 1.5. Indeed, it follows from [HL21, Theorem 5.2] that there are

examples of quasi-Fuchsian groups Γ whose limit set Λ bounds a unique Γ-invariant

stable minimal disk Σ (hence, by Theorem 1.2, a unique minimal surface), but Σ

does not have weakly small curvature.

1.3. Strong non-uniqueness. Now we turn to the other extreme case: we aim to

construct a Jordan curve on S2∞ which spans a lot of minimal disks. To give some

context, Hass-Thurston conjectured that no closed hyperbolic 3-manifold admits

a foliation by minimal surfaces. Anderson even conjectured ([And83]) that no

hyperbolic 3-manifold admits a local 1-parameter family of closed minimal surfaces,

and proved this statement for quasi-Fuchsian hyperbolic 3-manifolds. It has been

a folklore conjecture that no Jordan curve in S2∞ = ∂∞H3 asymptotically bounds a

1-parameter family of minimal surfaces. The full extent of these conjectures remain

as major open questions in the field.

What has been proven up to this point tends to support these conjectures. Huang-

Wang [HW19] and Hass [Has15] made progress on the Hass-Thurston conjecture

for certain fibered closed hyperbolic 3-manifolds containing short geodesics; Wolf-

Wu ([WW20]) ruled out so-called geometric local 1-parameter families of closed

minimal surfaces; it follows from the work of Alexakis-Mazzeo [AM10] that a generic

C3,α simple closed curve in the boundary at infinity of H3 bounds only finitely many

surfaces of any given finite genus; Coskunuzer proved that generic simple closed

curves in ∂∞H3 bound unique area-minimizing surfaces [Cos11].

On the other hand what we prove, while compatible with the folklore conjecture, is

in the other direction. Based on the aforementioned results, one might be tempted

to strengthen the folklore conjecture to the statement that any Jordan curve in

S2∞ = ∂∞H3 bounds at most countably many minimal surfaces. We show that this

stronger statement is false:

Theorem 1.6. There exists a quasicircle in S2∞ = ∂∞H3 spanning uncountably

many pairwise distinct stable minimal disks.

Let us emphasize some important features of the construction of this extreme

curve Λ. In ([And83]), Anderson constructed a Jordan curve which is the limit set

of a quasi-Fuchsian group (hence continuous but almost nowhere differentiable) such
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that it spans infinitely many minimal surfaces, one of which is a minimal disk. In

[HW15], for each integer N > 1, also using the limit set of a quasi-Fuchsian group,

an extreme curve spanning at least 2N distinct minimal disks was constructed.

However, Anderson ([And83]) has shown that any quasi-Fuchsian manifold only

admits finitely many least area closed minimal surfaces diffeomorphic to the fiber,

which poses a possible limitation on how much one can improve the aforementioned

constructions to find infinitely many minimal disks if one insists on using the limit

set of some quasi-Fuchsian group as the curve at infinity. The starting point of our

construction is similar to the ideas in [HW15], but the Jordan curve is constructed

in such a way to allow an improvement of the argument, leading to 2N pairwise

distinct minimal disk. Moreover, since this Jordan curve is not invariant under any

quasi-Fuchsian group, we must adopt a different approach in order to produce the

minimal disks, namely, in a spirit similar to the proofs of Theorems 1.1 and 1.2, we

take the limit of a sequence of solutions of the finite Plateau problems inside H3.

1.4. Quasiconformal constant. We conclude this introduction with an improve-

ment of the curvature estimates obtained in [Sep16] in terms of quasiconformal

constants, by a direct application of Corollary 1.5. More concretely, [Sep16, Theo-

rem A] showed that there exist universal constants C > 0 and K0 > 1 such that any

stable minimal disk in H3 with asymptotic boundary a K-quasicircle, for K < K0,

has principal curvatures bounded in absolute value by C logK. This result has been

recently applied in several directions, see [Bis19, Low21, CMN22].

The proof, however, relies on the application of compactness for minimal surfaces,

and therefore requires stability. However, when K is sufficiently small, the principal

curvatures of the area-minimizing (hence stable) disk whose existence is guaranteed

by [And83] are less than 1 − ϵ in absolute value, and therefore, as a consequence

of Corollary 1.5, Σ is the unique minimal surface. Up to taking a smaller constant

K0, we can therefore remove the stability assumption:

Corollary 1.7. There exist universal constants C > 0 and K0 > 1 such that the

principal curvatures λi of any minimal surface Σ in H3 with asymptotic boundary a

K-quasicircle with K ≤ K0 satisfy

|λi| ≤ C logK, i = 1, 2.

In particular, we also improve [Sep16, Theorem B] (up to choosing a smaller

constant) by removing the stability assumption.

Corollary 1.8. There exists a universal constant K ′
0 > 1 such that any K-quasicircle

with K ≤ K ′
0 is the asymptotic boundary of a unique minimal surface, which is an

area-minimizing disk of strongly small curvature.
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1.5. Organization of the paper. In the preliminary section §2, we collect and

prove some facts in preparation to work towards proofs of our main results intro-

duced above. In §3 we prove Theorems 1.1 and 1.2. In §4 we work in the case of

small curvature conditions and prove Theorem 1.3 and, using similar methods, we

provide an alternative argument for Theorem 1.2 in a special case; in §5 we address

some generalizations of our results in higher dimensions and codimensions; in §6 we

detail a construction of an extreme Jordan curve which spans uncountably many

minimal disks in H3 and hence prove Theorem 1.6. In Appendix A we provide the

details to extend some well-known arguments for hypersurfaces of small curvature

to the setting of weakly small curvature that is of interest here.

1.6. Acknowledgements. The first-named author wishes to thank Bill Meeks for

his insightful suggestions and Biao Wang for his generous help. Part of this work

was done during a visit of the first-named author at the Institut Fourier (Université
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and Analysis in the Pseudo-Riemannian setting).

2. Preliminaries

In this article, we denote by Hn+1 the hyperbolic space of dimension n + 1, and

by Sn∞ = ∂∞Hn+1 its visual boundary.

2.1. Hypersurfaces theory. Given an immersed hypersurface Σ inHn+1, we recall

that its first fundamental form is the restriction to TΣ of the hyperbolic metric h

of Hn+1. The second fundamental form is defined as

AΣ(v, w) = h(∇h
vW,NΣ) ,

where ∇h is the Levi-Civita connection of h, W is a local smooth extension of w, and

NΣ : Σ → THn+1 is a continuous choice of a unit normal vector to the immersion.

(Since NΣ is uniquely determined only up to a sign, so too is AΣ.)

The second fundamental form satisfies the identity

AΣ(v, w) = h(BΣ(v), w)

where BΣ is the shape operator, namely the endomorphism of the tangent bundle

of Σ given by BΣ(v) = −∇h
vNΣ. The principal curvatures of Σ are the eigenvalues

of BΣ, denoted by λ1, . . . , λn.
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The mean curvature of the immersed hypersurface Σ is

HΣ = tr(BΣ) = λ1 + . . .+ λn ,

and Σ is minimal if and only if its mean curvature vanishes identically. Although

HΣ depends (but only up to a sign) on the choice of the normal vector NΣ, the

condition of being minimal does not. Also, the mean curvature vector, which is

defined as HΣ ·NΣ, does not depend on such a choice.

Finally, the norm of the second fundamental form is

∥AΣ∥ =
√
tr(BΣBT

Σ) =
√

λ2
1 + . . .+ λ2

n .

2.2. Convex hull and width of a Jordan curve. Let Λ be a topologically em-

bedded n-sphere in Sn∞ = ∂Hn+1. We recall that the convex hull C(Λ) ⊂ Hn+1 =

Hn+1 ∪Sn∞ of Λ is the smallest geodesically convex subset that contains Λ. When Λ

is not the boundary of a totally geodesic hyperplane in Hn+1, C(Λ) is homeomorphic

to a ball, and, by the Jordan-Brouwer separation theorem, its boundary is the union

of Λ and two properly embedded disks, denoted by ∂+C(Λ) and ∂−C(Λ). When Λ

is the boundary of a totally geodesic hyperplane P , C(Λ) equals P ∪Λ. In this case,

by an abuse of notation, we will still use the symbols ∂+C(Λ) and ∂−C(Λ), meaning

that P = ∂+C(Λ) = ∂−C(Λ).

Following (and extending to all dimensions) the recent work [BDMS21], we now

define the width of Λ.

Definition 2.1. Given a topologically embedded n-sphere Λ in Sn∞, the width of Λ

is defined as:

w(Λ) = sup
x∈C(Λ)

(
d(x, ∂+C(Λ)) + d(x, ∂−C(Λ))

)
∈ [0,+∞] .

The following lemma, that relates minimal hypersurfaces and the convex hull of

their asymptotic boundaries, is well-known.

Lemma 2.2. Given a topologically embedded n-sphere Λ in Sn∞, let Σ be any prop-

erly embedded minimal hypersurface such that ∂∞Σ = Λ. Then Σ is contained in

C(Λ). Moreover, if Λ is not the boundary of a totally geodesic hyperplane, then Σ is

contained in the interior of C(Λ).

Proof. Let P be any totally geodesic hyperplane disjoint from Λ. The signed distance

function from P , defined in such a way that it goes to −∞ as it approaches Λ, cannot

have a positive maximum by a standard application of the geometric maximum

principle (see also Corollary 4.4 for a more general statement). This implies that Σ
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is contained in the half-space bounded by P whose closure contains Λ. Since C(Λ) is
the intersection of all such half-spaces, this concludes the proof of the first assertion.

For the second assertion, suppose that Σ contains a point x in the boundary of

C(Λ). Let P be any support hyperplane for C(Λ) containing x. This means that Σ

is tangent to P and, by the first assertion, it is contained in a half-space bounded

by P . By the strong maximum principle, Σ = P , and therefore Λ = ∂∞P .

2.3. Stable and area-minimizing minimal hypersurfaces. A minimal hyper-

surface Σ in a Riemannian manifold Mn+1 is stable if and only if, for every u ∈
C∞
0 (Σ), ˆ

Σ
uLΣ(u)dVolΣ ≥ 0 ,

where LΣ is the Jacobi operator:

(2.1) LΣ(u) = −∆Σu−
(
∥AΣ∥2 +RicM (N,N)

)
u .

Equivalently, integrating by parts, Σ is stable if and only if

(2.2)

ˆ
Σ

(
∥AΣ∥2 +RicM (N,N)

)
u2dVolΣ ≤

ˆ
Σ
∥∇u∥2dVolΣ

for every u ∈ C∞
0 (Σ).

A compact hypersurface Σc with boundary is a least area hypersurface if its area is

less than or equal to that of any other compact hypersurface Σ′
c such that ∂Σc = ∂Σ′

c.

For the non-compact case, we say a hypersurface Σ is area-minimizing if any compact

codimension 0 submanifold with boundary of Σ has least area in the sense above.

An area-minimizing hypersurface is stable. Indeed, the area-minimizing condition

implies that Σ is a critical point of the area functional among compactly supported

variation (that is, Σ is minimal) and the second derivative of the area is non-negative

(which is equivalent to the definition of stability given above).

When n = 2, the following theorem provides an important a priori bound on the

curvature of a stable minimal surface. We state the theorem here in its version for

embedded minimal surfaces in H3, but it holds more generally for immersed CMC

surfaces in a complete Riemannian manifold of bounded sectional curvature.

Theorem 2.3. [RST10, Main Theorem] There exists a constant c > 0 such that,

for any stable embedded two-sided minimal surface Σ in H3,

∥AΣ(p)∥ ≤ c

min{d(p, ∂Σ), π/2}
.
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Applying Theorem 2.3 to a properly embedded minimal surface, which is auto-

matically two-sided (see [Sam69]), we immediately get the following corollary. See

also [Ros06, Corollary 11].

Corollary 2.4. There exists a constant c′ > 0 such that, for any stable properly

embedded minimal surface Σ in H3, ∥AΣ∥ ≤ c′.

2.4. Compactness results. We conclude the preliminaries by stating an important

compactness theorem for minimal surfaces. Again, we state the theorem here only

for embedded minimal surfaces in H3, but it holds more generally for immersed

surfaces in a complete Riemannian manifold (see [And85, Section 2]). This result is

well-known and is often stated under the assumption of bounded Gaussian curvature

(in absolute value); however, by the Gauss’ equation for minimal surfaces when

n = 2, KΣ = −1−∥AΣ∥2/2, hence this is equivalent to a bound on the norm of the

second fundamental form.

Theorem 2.5. Let B be a bounded domain in H3 and let {Σn}n∈N be a sequence of

embedded minimal surfaces in B with ∂Σn ⊂ ∂B. Suppose there exists a constant C

such that ∥AΣn∥ ≤ C and that there exists a compact subset K ⊂ int(B) such that

Σn∩K ̸= ∅, for all n. Then, up to extracting a subsequence, Σn converges smoothly

to an embedded minimal surface Σ∞.

In particular, for properly embedded minimal surfaces, we obtain the following

compactness result.

Corollary 2.6. Let {Σn}n∈N be a sequence of properly embedded minimal surfaces

in H3. Suppose there exists a constant C such that ∥AΣn∥ ≤ C and that there exists

a compact subset K ⊂ H3 such that Σn ∩K ̸= ∅, for all n. Then, up to extracting a

subsequence, Σn converges smoothly on compact subsets of H3 to a properly embedded

minimal surface Σ∞.

Proof. Fix a point xo ∈ H3. Let m0 ∈ N be such that K ⊂ B(xo,m0). For any

m ≥ m0, by applying Theorem 2.5 on the balls B(xo,m) of radius m centered at

xo, we find a subsequence converging smoothly to a minimal surface in B(xo,m).

By a standard diagonal argument, we can then extract a subsequence converging

smoothly on all compact subsets to an embedded minimal surface Σ∞.

It only remains to show that Σ∞ is properly embedded. Suppose by contradiction

that xi ∈ Σ∞ is a diverging sequence in Σ∞, which accumulates to x∞ ∈ H3. Then

for m large, x∞ would be contained in the interior of B(xo,m), and this would

contradict the smooth convergence.
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3. Uniqueness among stable minimal disks

In this section, we prove Theorems 1.1 and 1.2.

3.1. Outline. The key result to prove Theorem 1.1 is the following:

Theorem 3.1. Let Λ be a Jordan curve on S2∞ = ∂H3. Suppose that there exists

a properly embedded minimal surface in H3, which is not a stable minimal disk,

spanning Λ, then Λ spans at least two disjoint stable minimal disks in H3.

Before proving Theorem 3.1, let us explain how this implies Theorem 1.1. By

the results of [And83], we know that Λ spans a stable (actually, area-minimizing)

minimal disk. So uniqueness among minimal surfaces clearly implies uniqueness

among stable minimal disks. For the converse direction, suppose by contradiction

that Λ span a unique stable minimal disk, but it spans several minimal surfaces.

Hence it spans a minimal surface U which is not a stable minimal disk (that is,

either it is not stable, or it is not a disk, or both). By Theorem 3.1, Λ spans two

distinct stable minimal disks, and this gives a contradiction.

When Λ is invariant by the action of a Kleinian group, in order to achieve Theorem

1.2, we will first prove the following result in the same spirit of Theorem 3.1.

Theorem 3.2. Let Λ be a Jordan curve on S2∞ = ∂H3 and let Γ be a Kleinian

group preserving Λ. Suppose that there exists a properly embedded minimal surface

in H3, which is not Γ-invariant, spanning Λ. Then Λ spans at least two disjoint

Γ-invariant stable minimal disks in H3.

Theorem 3.2 implies Theorem 1.2 very similarly to above. Indeed, Anderson

proved the existence of a Γ-invariant stable minimal disk, hence uniqueness among

minimal surfaces implies uniqueness among Γ-invariant stable minimal disks. Con-

versely, suppose that Λ spans a minimal surface which is not a Γ-invariant stable

minimal disk. If it is not a minimal disk, Theorem 3.1 applies as above. If it is

instead not Γ-invariant, we apply Theorem 3.2 to produce two distinct Γ-invariant

stable minimal disks, and this gives a contradiction.

3.2. Adapting the arguments of Anderson. To prove Theorems 3.1 and 3.2,

we will adapt an argument in [And83]. We first need the following result.

Lemma 3.3. Let Λ be a Jordan curve on S2∞ = ∂H3, let U be a properly embedded

minimal surface in H3 spanning Λ, and let Ω be a connected component of H3 \ U .

Then there exists a properly embedded stable minimal disk Σ in Ω ∪ U spanning Λ.
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Moreover, if Λ is invariant under a Kleinian group Γ, then Σ can be taken such that

(3.1) Σ ⊂
⋂
g∈Γ

g(Ω ∪ U) .

Proof. We can clearly assume that Λ is not the boundary of a totally geodesic plane.

Then, since U is contained in the interior of C(Λ) by Lemma 2.2, Ω contains either

∂+C(Λ) or ∂−C(Λ). Suppose it contains ∂+C(Λ), the other case being analogous. Fix
a homeomorphism ϕ : D → Λ∪∂+C(Λ) and let γn = ϕ({|z| = 1− 1

n}). Then {γn}n∈N
is a sequence of nullhomotopic simple closed curves in Ω ∩ C(Λ) that converge to Λ

as n → +∞.

Now, fix a point xo ∈ U . For any n, let Rn be a sufficiently large radius so that

γn ⊂ B(xo, Rn). By genericity of the transversality of intersection of submanifolds,

we can furthermore pick Rn so that U and ∂B(xo, Rn) intersect transversely. By

[HS88, Theorem 6.3] applied to Mn := B(xo, Rn) ∩ Ω, which (as a consequence of

transversality) is sufficiently convex in the terminology of [HS88], we can solve the

Plateau problem to find a minimal disk Σn, contained in Mn, with ∂Σn = γn, and

of least area (in Mn), hence in particular stable.

Next we show that the limit of these Σn provides the desired stable minimal disk

Σ. However, when Λ is Γ-invariant, we first need an additional adjustement which

will ensure (3.1). Since Γ is a discrete subgroup of Isom(H3), it is countable, and so

too is the coset space G/Stab(U). Let us enumerate its elements as

G/Stab(U) = {g0 = [id], g1, g2, . . .}

and let us denote Un := gn(U), which is a properly embedded minimal surface

spanning Λ. Here, we construct Σn as the solution of the Plateau problem with

∂Σn = γn, but instead of Mn, we apply [HS88, Theorem 6.3] to the ambient

manifold

M ′
n := B(xo, Rn) ∩ Ω ∩ g1(Ω) . . . ∩ gn(Ω) ,

where Rn is chosen so that ∂B(xo, Rn) intersects transversely all the minimal sur-

faces Ω, g1(Ω), . . . , gn(Ω). Since the points of tangency of two minimal surfaces are

isolated (see [CM11, Section 5.3]), the boundary of M ′
n is piecewise smooth, mean-

ing that it is smooth (and minimal) in the complement of an embedded finite graph.

Hence M ′
n is is sufficiently convex in the terminology of [HS88], which allows us to

apply [HS88, Theorem 6.3].

We now claim that, up to extracting a subsequence, Σn converges smoothly on

compact subsets of H3 to a properly embedded minimal disk Σ. For this, first

observe that there exists R0 > 0 such that Σn ∩ B(xo, R0) ̸= ∅ for all n. Indeed,

since ∂Σn = γn is contained in ∂+C(Λ), by the maximum principle (as in the first
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part of Lemma 2.2) Σn is entirely contained in C(Λ), and by the Jordan-Brouwer

Theorem, Σn must disconnect C(Λ) in two components, one of which contains xo,

and the other contains ϕ(0) ∈ ∂+C(Λ). Fixing a path η connecting xo to ϕ(0) which

is contained in the interior of C(Λ) (except for its endpoints), Σn must therefore

intersect η. Hence Σn intersects B(xo, R0) for any choice of R0 such that B(xo, R0)

contains η.

Now, fix any radius R > 0 and consider the ball B(xo, R). For n = n(R) suf-

ficiently large, γn is contained in H3 \ B(xo, R + 1). Hence the distance from any

point of Σn ∩ B(xo, R) and ∂Σn = γn is bounded below by 1. Theorem 2.3 implies

that there is a constant C, independent of n, such that ∥AΣn(x)∥ ≤ C for every

x ∈ Σn ∩ B(xo, R). Applying Theorem 2.5, we can extract a subsequence nk such

that Σnk
∩B(xo, R) converges smoothly to a minimal disk. By a diagonal argument,

we can then find a subsequence of {Σn}n∈N that converges smoothly on compact

subsets to a minimal disk Σ∞. Moreover, the limit Σ∞ is stable as a smooth limit

of stable minimal surfaces, and is contained in Ω∪U because every Σn is contained

in Ω.

It remains to show that Σ∞ is properly embedded and ∂∞Σ = Λ. To see that it

is properly embedded, the same argument as in the proof of Corollary 2.6 applies.

Observe that Σn is contained in C(Λ) for all n, and therefore so too is Σ∞. Since

C(Λ) ∩ ∂∞H3 = Λ, we have that ∂∞Σ = Λ. This concludes the proof.

For the “moreover” part when Λ is Γ-invariant, recall that in that case we have

constructed the Σn to be contained inM ′
n. In particular, for fixedm, Σn is contained

in gm(Ω) for all n ≥ m. Taking limits, Σ∞ is contained in g(Ω ∪ U) for all g ∈ Γ.

This concludes the proof.

In the case where Λ is Γ-invariant, we improve Lemma 3.3 to the following lemma.

We include a proof, which follows closely the construction done by Anderson in

[And83, Theorem 3.1], for convenience of the reader.

Lemma 3.4. Let Λ be a Jordan curve on S2∞ = ∂H3 and let Γ be a Kleinian group

preserving Λ. Let U be a properly embedded minimal surface in H3 spanning Λ, and

let Ω be a connected component of H3 \U . Then there exists a Γ-invariant properly

embedded stable minimal disk Σ in Ω ∪ U spanning Λ.

Proof. We will use the following notation. Choose a connected component D of

∂∞H3\Λ. Given a properly embedded (minimal) surface Σ with ∂∞Σ = Λ, recalling

that Σ disconnects H3 by the Jordan-Brower separation theorem, we denote Ω+(Σ)

to be the connected component of H3 \ Σ whose closure in H3 ∪ ∂∞H3 contains D.

Finally, given Σ1 and Σ2, we write Σ1 ⪯ Σ2 if Ω+(Σ1) ⊇ Ω+(Σ2).
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Now, given U , we define a sequence {Σn}n∈N inductively as follows. Set Σ0 := U

and let Σn+1, using Lemma 3.3, to be a properly embedded stable minimal surface

such that

(3.2) Σn+1 ⊂
⋂
g∈Γ

g(Ω+(Σn) ∪ Σn) .

As in the proof of Lemma 3.3, there exists a fixed compact set (for example a

compact set containing a path connecting the two boundary components of C(Λ))
that intersects each Σn. Moreover, by Corollary 2.4, ∥AΣn∥ ≤ C for some universal

constant C. Hence by Corollary 2.6, Σn converges up to a subsequence to a properly

embedded minimal surface Σ∞, which is moreover stable. Arguing as in the second

last paragraph of Lemma 3.3, ∂∞Σ∞ = Λ.

The main point of the construction is that Σ∞ is Γ-invariant. To see this, fix

g ∈ Γ. By the inductive step, g(Σn) ⪯ Σn+1 for all n. Taking limits along the

chosen subsequence, g(Σ∞) ⪯ Σ∞. Repeating the argument for g−1, this shows

that g(Σ∞) = Σ∞ and concludes the proof.

3.3. Conclusion of the proofs. We now prove Theorem 3.1.

Proof of Theorem 3.1. Suppose U is a properly embedded minimal surface in H3

spanned by Λ, which is not a stable minimal disk. By the Jordan-Brouwer separation

theorem, U disconnects H3. Let Ω± be the two connected components of H3\U . By

Lemma 3.3, there exists a properly embedded stable minimal disk Σ± contained

in Ω± ∪ U with ∂∞Σ± = Λ. We claim that Σ± is disjoint from U . Indeed, Σ± is

contained by construction in Ω± ∪ U , so by the strong maximum principle, if Σ±

and U intersect, then they are equal. Since Σ± is a stable minimal disk, and U is

not, they must be disjoint. This shows that Σ+ ⊂ Ω+ and Σ− ⊂ Ω−, hence they

are in particular disjoint.

The proof of Theorem 3.2 is completely analogous, relying on Lemma 3.4 instead

of Lemma 3.3.

Proof of Theorem 3.2. If U is a properly embedded minimal surface in H3 spanned

by Λ, which is not Γ-invariant, denoting by Ω± the two connected components of

the complement of U , then by Lemma 3.4 there exists a properly embedded Γ-

invariant stable minimal disk Σ± contained in Ω± ∪U with ∂∞Σ± = Λ. Since Σ± is

Γ-invariant, and U is not, they are distinct, and by the strong maximum principle

they are disjoint. Hence Σ+ and Σ− are disjoint.
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4. Small curvatures and uniqueness

In this section, we show that a small curvature condition can imply uniqueness

for solutions to the asymptotic Plateau problem. This will prove Theorem 1.3 in

the case of n = 2.

4.1. Small curvature conditions. We now introduce several conditions of having

small curvature.

Definition 4.1. Let Σ be an immersed hypersurface in Hn+1, and let λi denote its

principal curvatures, for i = 1, . . . , n. We say that:

• Σ has weakly small curvature if |λi(x)| ≤ 1 for every x in Σ and every

i = 1, . . . , n;

• Σ has small curvature if |λi(x)| < 1 for every x in Σ and every i = 1, . . . , n;

• Σ has strongly small curvature if there exists ϵ > 0 such that |λi(x)| ≤ 1− ϵ

for every x in Σ and every i = 1, . . . , n.

In this article, will need two results on hypersurfaces of weakly small curvatures,

namely Theorem 4.2 and Theorem 4.3 below. These results are well known under the

small curvatures assumptions, see [Eps84] and [EES22, Section 4]. In Appendix

A we will explain how the arguments adapt under the weakly small curvatures

assumption.

Theorem 4.2. Let Σ ⊂ Hn+1 be a properly immersed hypersurface of weakly small

curvature. Then Σ is properly embedded and diffeomorphic to Rn.

By this result, we can hereafter assume that all the hypersurfaces of weakly small

curvatures are properly embedded.

Theorem 4.3. Let Σ ⊂ Hn+1 be a properly embedded hypersurface of weakly small

curvatures. Then the map F : Σ× R → Hn+1 defined by

FΣ(x, t) = expx(tN(x))

is a diffeomorphism. For every t ∈ R, Σt := FΣ(Σ, t) is a properly embedded hyper-

surface of weakly small curvature.

If moreover Σ is minimal, then the mean curvature of Σt, computed with respect

to the unit normal vector field pointing towards the direction where t is increasing,

has the same sign as −t.

A consequence of Theorem 4.3 is that, if Σ is a properly embedded hypersurface

of weakly small curvature, the signed distance function fΣ : Hn+1 → R is smooth
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and has no critical points. Indeed, fΣ is simply the composition

(4.1) fΣ = π ◦ F−1
Σ

where π : Σ× R → R is the projection to the second factor.

Let us focus again on minimal hypersurfaces. The following statement is an

immediate consequence of great importance for this work.

Corollary 4.4. Let Σ ⊂ Hn+1 be a properly embedded minimal hypersurface of

weakly small curvature. For any embedded minimal hypersurface Σ′ ⊂ Hn+1, the

restriction of dΣ := d(·,Σ) to Σ′ has no positive local maximum.

Proof. Assume by contradiction that (dΣ)|Σ′ has a positive local maximum. Let

xmax ∈ Σ′ the maximum point and tmax = dΣ(xmax) > 0 be the corresponding max-

imum value. Up to switching the sign of fΣ, dΣ coincides with fΣ in a neighbourhood

of xmax, where fΣ is the signed distance function as in (4.1). Hence (fΣ)|Σ′ also has

a positive local maximum at xmax. This implies that Σ′ is, in an embedded neigh-

bourhood of xmax, tangent to Σtmax and contained in the region FΣ(Σ×{t ≤ tmax}),
which is strictly mean convex by the last part of Theorem 4.3. This contradicts the

maximum principle for mean curvature.

Finally, it is immediate to check that minimal hypersurfaces of weakly small

curvatures are stable.

Lemma 4.5. Let Σ be a minimal hypersurface in Hn+1 of weakly small curvatures.

Then Σ is stable.

Proof. If Σ has weakly small curvatures, then

∥AΣ∥2 = λ2
1 + . . .+ λ2

n ≤ n = −RicHn+1(N,N) .

Hence the left hand side of (2.2) is non-positive, and this concludes the proof.

4.2. Proof of Theorem 1.3 for n = 2. In this subsection, we prove Theorem 1.3

for surfaces in H3. By Theorem 1.1, we know that it will be sufficient to prove the

uniqueness in the class of stable minimal disks.

The fundamental result is therefore the following theorem.

Theorem 4.6. Let Λ be a Jordan curve on S2∞ = ∂H3 of finite width, and let Σ be

a properly embedded minimal surface in H3 of weakly small curvature asymptotic to

Λ. Then Σ is the unique properly embedded stable minimal surface in H3 asymptotic

to Λ.
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Combining Theorem 4.6 with Theorem 1.1, we immediately obtain the first part

Theorem 1.3 in the case n = 2. The “moreover” part of Theorem 1.3 then follows

from the results of [And83], which show that every Jordan curve bounds at least

one area-minimizing minimal disk.

We begin by an easy lemma.

Lemma 4.7. Let Λ be a Jordan curve on S2∞ = ∂H3 of width w(Λ) < +∞, and let

Σ be any properly embedded surface contained in C(Λ) with ∂∞Σ = Λ . Then for

every x ∈ C(Λ), d(x,Σ) ≤ w(Λ).

Proof. We may assume that Λ is not the boundary of a totally geodesic hyperplane,

as in that case the conclusion holds trivially. Let x ∈ C(Λ). By definition of the

width, there exist two geodesic segments joining x to y± ∈ C±(Λ), each of length

at most w(Λ) + ϵ. Since Σ is contained in the interior of C(Λ) by Lemma 2.2,

and disconnects C(Λ) by the Jordan-Brouwer separation theorem, one of these two

segments must meet Σ at a point y, which is on the segment between x and the

other endpoint y±. Hence

d(x,Σ) ≤ d(x, y) ≤ d(x, y±) ≤ w(Λ) + ϵ .

Since ϵ was arbitrary, this concludes the proof.

Proof of Theorem 4.6. Let Σ′ be a properly embedded stable minimal surface such

that ∂∞Σ′ = Λ. Consider the restriction to the surface Σ′ of the distance function

dΣ := d(·,Σ). We want to show that dΣ vanishes identically on Σ′. This will imply

Σ′ ⊆ Σ and thus, since Σ′ is also properly embedded, Σ = Σ′.

Suppose by contradiction that

(4.2) sup
Σ′

dΣ > 0 .

By Lemma 4.7, the supremum of dΣ on Σ′ is bounded above by w(Λ), hence in

particular it is finite. Let {x′n}n∈N be a maximizing sequence for (dΣ)|Σ′ , namely

(4.3) d(x′n,Σ) ≥ sup
Σ′

dΣ − 1

n
.

Now, fix a point xo ∈ H3. Let ϕn be isometries of H3 such that ϕn(x
′
n) = xo.

We denote Σn = ϕn(Σ) and Σ′
n = ϕn(Σ

′). Observe that Σ′
n contains xo, and thus it

intersects every ball centered at xo. For Σn, we have

d(xo,Σn) = d(ϕn(x
′
n), ϕn(Σ)) = d(x′n,Σ) ≤ w(Λ) .

This shows that Σn intersects every ball centered at xo of radius R ≥ w(Λ).
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Recall that Σ has weakly small curvatures, hence ∥AΣ∥ ≤ 2, and since this con-

dition is preserved by isometries, ∥AΣn∥ ≤ 2. By Corollary 2.6, Σn converges up to

a subsequence, smoothly on a compact subsets in H3, to a stable properly embed-

ded minimal surface Σ∞. Moreover, since the weakly small curvatures condition is

closed for the topology of smooth convergence on compact domains, Σ∞ has weakly

small curvatures.

Since Σ′ is stable by assumption, and stability is preserved by isometries, Σ′
n is

stable for every n. However, we do not have explicit curvature bounds as for Σn.

In this case, we use Theorem 2.4 to find that each ∥AΣ′
n
∥ is bounded by a universal

constant. This enables us to apply Corollary 2.6 again to find that the sequence Σ′
n

converges, up to a subsequence, smoothly on a compact domains in H3 to another

properly embedded minimal surface Σ′
∞.

Observe that, since by construction xo ∈ Σ′
n for all n, xo ∈ Σ′

∞. We now claim

that

(4.4) d(xo,Σ∞) = sup
Σ′

∞

dΣ∞

where as usual dΣ∞ = d(·,Σ∞). Clearly we have d(xo,Σ∞) ≤ supΣ′
∞
dΣ∞ . By

contradiction, if the inequality were strict, then one would find p ∈ Σ′
∞ and ϵ > 0

such that d(p,Σ∞) > d(xo,Σ∞) + ϵ. By smooth convergence on compact sets, this

would imply that, for large n,

d(pn,Σn) > d(xo,Σn) +
ϵ

2

where pn ∈ Σ′
n and pn → p. But d(pn,Σn) = d(ϕ−1(pn),Σ) and d(xo,Σn) =

d(x′n,Σ). Hence we would have

d(ϕ−1(pn),Σ) > d(x′n,Σ) +
ϵ

2

thus contradicting (4.3).

Having established the claim, (4.4) implies that xo is a global maximum for the

restriction to Σ′ of the distance function dΣ∞ . This contradicts Corollary 4.4 and

thus concludes the proof.

4.3. Alternative argument for Theorem 1.2. We now explain an alternative

proof of Theorem 1.2, which however only applies when the Kleinian group Γ is quasi-

Fuchsian and isomorphic to the fundamental group of a closed surface. This is based

on the work of Guaraco, Lima and Vargas-Pallete [GLVP21], which we summarize

now. Let M be a quasi-Fuchsian manifold. One of their main results is that M

admits a foliation by closed surfaces that are either minimal, or have non-vanishing

mean curvature (i.e., are either strictly mean-convex, or strictly mean-concave.) The
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sign of the mean curvature switches at the minimal leaves. Their work implies that

if M contains a unique closed stable minimal surface S, then M \ S has a foliation

F by surfaces that are isotopic to S and have mean-curvature vector everywhere

pointing towards S.

Proof of Theorem 1.2 for Γ quasi-Fuchsian. Suppose Γ admits a unique invariant

stable minimal disk Σ, which thus gives a unique closed stable minimal surface Σ/Γ

in M := H3/Γ. Let F : M → R be a function whose level sets F−1(t) are the leafs

of the foliation of M provided by [GLVP21], and such that F−1(0) = Σ/Γ. The

foliation F lifts to a foliation of H3 by properly embedded disks Σ̃t := F̃−1(t) (where

F̃ is the lift of F to H3, and therefore Σ̃0 = Σ) with asymptotic boundary the limit

set Λ of Γ.

By Theorem 1.1, it suffices to show that, if Σ′ is a properly embedded stable

minimal disk in H3 with ∂∞Σ′ = Λ, then Σ′ = Σ. Consider the function f := F̃ |Σ′ :

Σ′ → R. We claim that f ≡ 0, which will imply Σ′ = Σ since both are properly

embedded. First, observe that f is bounded. Indeed, since Γ is quasi-Fuchsian, the

convex core C(Λ)/Γ of M is compact, and F is thus bounded on the convex core.

Lifting to H3, this shows that F̃ |C(Λ) is bounded, and so too is f by Lemma 2.2.

Now, the proof is similar to the proof of Theorem 4.6, using the foliation lifted

from F instead of the equidistant foliation. Suppose by contradiction that sup f > 0,

the other case being analogous. Let x′n be a sequence such that f(x′n) → sup f , let ϕn

be a sequence of isometries sending x′n to a fixed point xo, and let Σ′
n := ϕn(Σ

′) and

Σn := ϕn(Σ̃sup f ). Using Theorem 2.4 and Corollary 2.6, the sequence Σ′
n converges,

up to a subsequence, smoothly on a compact domains in H3 to another properly

embedded minimal surface Σ′
∞. We claim that the sequence Σn also converges up

to subsequences to a smooth surface in H3. For this, first observe that the width

C(Λ) is finite because Λ is a quasicircle, and, by cocompactness of the action of Γ on

Σ̃sup f , the distance of Σ̃sup f from C(Λ) is bounded by some constant c. It follows

that Σn intersects every ball centered at xo of radius R ≥ w(Λ) + c. Second, by

smoothness of Σ̃sup f and cocompactness again, the norm of the second fundamental

form of Σ̃sup f and of all its covariant derivative is bounded. Since ϕn is an isometry,

the norm of the second fundamental form of Σn and of all its covariant derivative is

bounded too. This allows to extract a subsequence of {Σn}n∈N converging smoothly

on compact sets to a surface Σ∞ (see for instance [Smi07]). As we are assuming

sup f > 0, Σ̃sup f has negative mean curvature with respect to the unit normal

pointing towards F̃ = +∞, hence the same holds for the limit Σ∞.

It follows from the construction that xo ∈ Σ′
∞. By cocompactness, the distance

between different leaves Σ̃sup f and Σ̃t goes to zero as t → sup f . Using this fact,
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one can show similarly to the proof of Theorem 4.6 that xo ∈ Σ∞. Moreover, since

Σ′ is contained in the region {x | F̃ (x) ≤ sup f} whose boundary is Σ̃sup f , after

taking limits Σ′
∞ is contained in the side of Σ∞ corresponding to decreasing values

of F̃ . This contradicts the geometric maximum principle at the tangency point xo,

and therefore shows that sup f ≤ 0. Repeating the argument for the infimum of f

instead of the supremum shows that f ≡ 0 and concludes the proof.

5. Higher dimension and codimension

In this section, we outline some generalization of previous results to higher di-

mensions and higher codimensions.

5.1. Hypersurfaces in higher dimensions. We first provide a proof of Theorem

1.3 in higher dimensions. The argument is similar to the proof of Theorem 4.6.

However, in that case it was sufficient to work with a stable minimal surface, by

Theorem 1.1. The difference here is that instead of passing to a limit of minimal

submanifolds (which we will be unable to do if they are unstable), we pass to a limit

of metric balls in the ambient space. We are then able to apply a theorem of White

[Whi10] in the setting of minimal varifolds to get a contradiction.

Proof of Theorem 1.3. Recall that, if dΣ = d(·,Σ) denotes the distance function

from Σ, by Theorem 4.3 the level hypersurfaces of dΣ form a strictly mean-convex

foliation of Hn\Σ, meaning that the mean curvature vector does not vanish and

always points towards Σ. Let Σ′ be another properly embedded minimal hyper-

surface with the same asymptotic boundary as Σ. Since Λ has finite width, we

know that dΣ is bounded on Σ′ by some constant. (Indeed, the proof of Lemma 4.7

works identically in any dimension.) If (dΣ)|Σ′ attains its supremum at an interior

point, then the strong maximum principle implies that Σ′ = Σ. If not, we can

take a sequence of points xk on Σ′ with dΣ(xk) tending to the supremal distance

D := supΣ′ dΣ. Without loss of generality assume that all of the xk are in the same

connected component Ω+ (say) of Hn+1 \ Σ.

Then we claim that the intersections of the open metric balls of radius 2D cen-

tered at the xk intersected with d−1
Σ ([0, D]) ∪Ω− (where Ω− is the other connected

component of Hn+1\Σ) are a sequence of smooth Riemannian manifolds with bound-

ary, that we call Mk, that subsequentially converge to a smooth limit Riemannian

manifold with strictly mean convex boundary M∞. Note that since we are inter-

secting with open balls, the Mk are incomplete and have boundary contained in

d−1
Σ (D) ∩ Ω+. We just need to check smooth convergence at the boundary.
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For every xk there is a point pk on Σ such that the ball of radius 4D centered

at pk contains Mk. Let ϕk be an isometry of Hn+1 sending pk to a given point p,

and fix any radius R ≥ 4D. Using that ∥AΣ∥ ≤ n by assumption, as in Corollary

2.6 (which holds in any dimensions) we can pass to a subsequential limit Σ∞ of the

minimal hypersurfaces ϕk(Σ) inside every ball B(p,R).

Note that Σ∞ has weakly small curvature. By Theorem 4.3, the set of points

at signed distance D from Σ∞ is a smooth strictly mean convex submanifold, and

so is its intersection with the interior of B(p, 4D). Since ϕk(d
−1
Σ (D) ∩ B(pk, 4D))

converges smoothly to the set of points in B(p, 4D) at signed distance D from Σ∞,

it follows that the boundary of Mk (which is contained in d−1
Σ (D)) subsequentially

converges smoothly, after applying ϕk. In other words, we have shown that the Mk

subconverge smoothly, in the sense of limits of Riemannian manifolds, to a manifold

with strictly mean convex boundary M∞.

Now, since dΣ(xn) tends to D, the set of limit points of Σ ∩Mk in M∞ contains

a point in the boundary of M∞. But [Whi10, Theorem 3] says exactly that this is

impossible.

For the “moreover” part, Anderson [And85] proved the existence of an area-

minimizing integral current with asymptotic boundary Λ, which, however, is a

smooth hypersurface only in the complement of a singular set of Hausdorff dimen-

sion at most n−7. Nevertheless, calling this integral current Σ′, the above argument

based on the theorem of White [Whi10] applies to such a Σ′ as well, showing that

Σ′ = Σ is, in particular, a smooth hypersurace. Hence Σ is area-minimizing.

5.2. Higher codimension submanifolds. We briefly discuss some generalizations

to higher codimension. By following Uhlenbeck’s approach [Uhl83], Jiang [Jia21,

Lemma 2.2] defined a notion of almost Fuchsian for quotients M of Hn+1 by discrete

faithful representations of surface groups in Isom(Hn+1). Such a quotientM is called

almost-Fuchsian if it admits a (two-dimensional) minimal surface Σ with principal

curvatures smaller than 1 in magnitude. Jiang showed that an almost-Fuchsian M

with Σ removed is foliated by equidistant surfaces to Σ that are mean 2-convex (the

sum of the smallest two principal curvatures is positive), and thus by the maximum

principle that Σ is the unique closed minimal surface in M . Bronstein recently

showed that in four dimensions M could in fact be homeomorphic to a nontrivial

disk bundle over a surface [Bro23]. The limit set of such an M would then be a

self-similar everywhere-non-tame knot in ∂∞H4 ∼= S3 (see [GLT22].)

For any almost-Fuchsian M , the foliation by mean 2-convex equidistant surfaces

to Σ lifts to a foliation of the complement of a lift Σ̃ of Σ to Hn+1. We thus expect

that the same argument by contradiction using [Whi10, Theorem 3] (which applies
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in any codimension) can be used, to show that the limit set of M bounds a unique

minimal disk, namely Σ̃. Jiang’s work is for two dimension surfaces in arbitrary

codimension, but we expect that similar arguments would work for k-dimensional

minimal surfaces with small principal curvatures in any dimension. In that case, the

same arguments would give a uniqueness result for asymptotic Plateau problems in

that setting as well.

Finally here we mention that Fine has recently developed a theory for counting

minimal surfaces in H4 with asymptotic boundary a given knot [Fin21]. In view of

[Bro23] and the previous discussion, one should be able to give examples of (wild)

knots in S3 that bound a unique minimal surface in H4.

6. Uncountably many minimal disks

The aim of this section is to prove Theorem 1.6.

6.1. Constructing the Jordan curve. We begin by constructing the Jordan curve

Λ in S∞ = ∂∞H3, that will be the asymptotic boundary of uncountably many stable

minimal disks. For this purpose, we will construct an explicit continuous injective

map

f : RP1 = R ∪ {∞} → CP1 = C ∪ {∞} .

We begin by fixing some notation. Let ϵ, δ > 0 be some constants which will be

fixed later. For the moment, we only need to assume that ϵ < 1/3, so that the circle

of radius 2n(1+ ϵ) is smaller than the circle of radius 2n+1(1− ϵ), and δ < π/8. Let

pn+,+ :=2n (1− ϵ) ei(
π
2
−δ)

qn+,+ :=2n (1 + ϵ) ei(
π
2
−δ)

pn−,+ :=2n (1− ϵ) ei(
π
2
+δ)

qn−,+ :=2n (1 + ϵ) ei(
π
2
+δ)

pn+,− :=2n (1− ϵ) ei(−
π
2
+δ)

qn+,− :=2n (1 + ϵ) ei(−
π
2
+δ)

pn−,− :=2n (1− ϵ) ei(−
π
2
−δ)

qn−,− :=2n (1 + ϵ) ei(−
π
2
−δ)

Observe that the points pnσ1,σ2
and qnσ1,σ2

lie in the quadrant determined by the

two signs σ1 and σ2, and that the Euclidean distance between pnσ1,σ2
and qnσ1,σ2

is

2n+1ϵ. Moreover, denoting α(z) = 2z, we see that pnσ1,σ2
= 2np0σ1,σ2

and the same

for qnσ1,σ2
.

Now, we define the map f , which will be injective and piecewise smooth when

restricted to R \ {0}, with junctions exactly at the points pnσ1,σ2
and qnσ1,σ2

. The

explicit formula for f is the following:
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f(t) =



0 if t = 0

2n (1− ϵ) ei((4π−8δ)t− 9π
2
+9δ) if t ∈

[
2n, 2n

(
1 + 1

4

)]
2n (1 + ϵ(−8t+ 7)/3) ei(

π
2
−δ) if t ∈

[
2n

(
1 + 1

4

)
, 2n

(
1 + 1

2

)]
2n (1 + ϵ) ei((−4π+8δ)t+ 5π

2
−5δ) if t ∈

[
2n

(
1 + 1

2

)
, 2n

(
1 + 3

4

)]
2n ((−4/3 + 4ϵ)t+ (10/3− 6ϵ)) ei(−

π
2
+δ) if t ∈

[
2n

(
1 + 3

4

)
, 2n+1

]
∞ if t = ∞
−2n (1− ϵ) ei((4π−8δ)t+ 9π

2
−9δ) if t ∈

[
−2n

(
1 + 1

4

)
,−2n

]
−2n (1 + ϵ(8t+ 7)/3) ei(−

π
2
+δ) if t ∈

[
−2n

(
1 + 1

2

)
,−2n

(
1 + 1

4

)]
−2n (1 + ϵ) ei((−4π+8δ)t− 5π

2
+5δ) if t ∈

[
−2n

(
1 + 3

4

)
,−2n

(
1 + 1

2

)
)
]

−2n ((4/3− 4ϵ)t+ (10/3− 6ϵ)) ei(
π
2
−δ) if t ∈

[
−2n+1,−2n

(
1 + 3

4

)]
Let us explain this definition (see also Figure 1). First, observe that the image

of (0,+∞) lies in the half-space {ℜ(z) > 0}, while the image of (−∞, 0) lies in the

half-space {ℜ(z) < 0}. The intervals [2n, 2n(1 + 1/4)] are mapped to the arcs of

circles contained in {ℜ(z) > 0} connecting pn+,− to pn+,+, and similarly the intervals

[2n(1 + 1/2), 2n(1 + 3/4)] are mapped to the arcs of circles contained in {ℜ(z) > 0}
connecting qn+,+ to qn+,−, parameterized proportionally to arclenght. The intervals

[2n(1+1/4), 2n(1+1/2)] are mapped to straight lines connecting pn+,+ to qn+,+. The

intervals [2n(1 + 1/4), 2n(1 + 1/2)] are mapped to straight lines connecting qn+,− to

pn+1
+,− . For negative values of t, the situation is absolutely analogous up to composing

with a reflection in the imaginary axis. Namely, f satisfies the symmetry:

(6.1) f(−t) = −f(t) .

Also, f satisfies the equivariance property

(6.2) f ◦ αn = αn ◦ f ,

where we recall that α(z) = 2z.

Lemma 6.1. The image of f is a quasicircle in CP1.

Proof. We show that f is continuous and injective, which shows that the image

of f is a Jordan curve. One immediately checks from the formula that f is well-

defined and continuous (actually, piecewise smooth) when restricted to R \ {0}.
Observe moreover that, if |t| ∈ [2n, 2n+1], then |f(t)| ∈ [2n(1− ϵ), 2n+1(1− ϵ)]. This

immediately implies that f is continuous at t = 0 and t = ∞.

To check that f is injective, we have already observed that f maps (0,+∞) to

the open right half-space and (−∞, 0) to the open left half-space. Hence, together
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qn+,+

pn+,+

qn−,+

pn−,+

qn+1
+,+

pn+1
+,+

qn+1
−,+

pn+1
−,+

pn+,−pn−,−

qn+,−qn−,−

qn+1
+,−qn+1

−,−

pn+1
+,−pn+1

−,−

Figure 1. The construction of the Jordan curve Λ.

with (6.1), it suffices to check that f is injective on (0,+∞). By the condition on

|f(t)| in the previous paragraph and (6.2) it is actually sufficient to check that f is

injective on [1, 2], which is an immediate consequence of the construction.

Let us denote by Λ the image of f . We now show that Λ is a quasicircle, by

using the following characterization of quasicircles given in [Ahl66, Chapter IV,

Theorem 5]. Let Λ be a Jordan curve in CP1 = C ∪ {∞} going through ∞. Then

Λ is a quasicircle if and only if there exists a constant C > 0 such that, for every

z1, z2 ∈ Λ ∩ C and every z3 in the arc of Λ ∩ C with endpoints z1, z2,

(6.3) |z3 − z1| ≤ C|z2 − z1| .
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To check that (6.3) holds for the image of f , first observe that the condition (6.3) is

scale-invariant. Hence, since Λ is invariant by the transformations αn(z) = 2nz, we

can assume that max{|z1|, |z2|} ∈ [1/2, 1]. By definition of f , the arc of Λ ∩ C with

endpoints z1, z2 is then contained in the Euclidean ball B(0, 1). It follows that it is

enough to check (6.3) for |z2−z1| ≤ ϵ0, for any fixed ϵ0 > 0. Indeed, if |z2−z1| ≥ ϵ0,

since by the triangle inequality |z3 − z1| ≤ 2, we have |z3 − z1| ≤ (2/ϵ0)|z2 − z1|. In
conclusion, it is sufficient to check that (6.3) holds when either z1 or z2 has modulus

in [1/2, 1] and |z2−z1| ≤ ϵ0. This is immediately verified since Λ∩{1/2− ϵ0 ≤ |z| ≤
1 + ϵ0} is a union of finitely many straight line segments or arcs of circles meeting

orthogonally at the adjacency points.

Remark 6.2. We remark that Λ is not a symmetric quasicircle. Indeed, as a conse-

quence of the invariance under the scaling α(z) = 2z, Λ cannot satisfy the so-called

strong reverse triangle property in a neighbourhood of 0, see [GS92, Section 6].

Now, in order to fix the suitable values of ϵ and δ, we need to introduce minimal

catenoids. A minimal catenoid is a minimal surface in H3, homeomorphic to an

open annulus, whose asymptotic boundary is the union of two disjoint circles C and

C ′ in ∂∞H3 = CP1, and which is obtained as a surface of revolution with respect

to the unique geodesic meeting orthogonally both totally geodesic planes P and P ′

with ∂∞P = C and ∂∞P ′ = C ′. See Figure 2.

C

C ′

Figure 2. A minimal catenoid in H3 and its axis of revolution.

We will use the following existence result:

Theorem 6.3 ([dMG87]). There exists a constant d > 0 such that, if C and C ′

are disjoint circles in ∂∞H3 = CP1 and the distance between the totally geodesic

planes P and P ′ that they span is less than d, then there exists a minimal catenoid

with asymptotic boundary equal to C ∪ C ′.
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Now, let us define the following circles in CP1 = C ∪ {∞}:

Cn,0 =

{
z :

∣∣∣∣z − 2n
(
1− 2ϵ− 1 + ϵ

100

)∣∣∣∣ = 2n

100

}
C ′
n,0 =

{
z :

∣∣∣∣z − 2n
(
1 + 2ϵ+

1 + ϵ

100

)∣∣∣∣ = 2n

100

}
Cn,1 = {z : |z − 2nei(

π
2
−δ−(1+δ)ϵ)| = ϵ}

C ′
n,1 = {z : |z − 2nei(

π
2
+δ+(1+δ)ϵ)| = ϵ}

See Figure 3. Observe that

(6.4) Cn,0 = αnC0,0 C ′
n,0 = αnC ′

0,0 Cn,1 = αnC0,1 C ′
n,1 = αnC ′

0,1 .

and that Cn,0, C
′
n,0, Cn,1 and C ′

n,1 are all in the complement of the image of f .

C ′
n,1 Cn,1

Cn,0 C ′
n,0

Figure 3. The circles Cn,0, C
′
n,0, Cn,1 and C ′

n,1.

Lemma 6.4. There exists constants ϵ, δ > 0 such that for all n ∈ Z and all j ∈
{0, 1}, Cn,j ∪ C ′

n,j is the asymptotic boundary of a minimal catenoid.

Proof. By (6.4) and the fact that α is the boundary value of an isometry of H3 in the

upper half-space model, it suffices to prove the statement for n = 0. We shall first

choose ϵ in such a way that C0,0∪C ′
0,0 bounds a minimal catenoid. For this, it suffices

to observe that C0,0 and C ′
0,0 are circles of radii 1/100, and the Euclidean distance

between their centers is 2(2ϵ + (1 + ϵ)/100) = 2/100 + 402ϵ/100. As ϵ → 0, the

circles C0,0 and C ′
0,0 tend to a pair of tangent circles, each with radius 1/100. Since

the hyperbolic distance varies continuously, and the hyperbolic distance between
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two totally geodesic planes tangent at infinity equals zero, the distance between the

totally geodesic planes bounded by C0,0 and C ′
0,0 tends to zero. Hence by Theorem

6.3, when ϵ is sufficiently small, there exists a minimal catenoid with asymptotic

boundary C0,0 ∪ C ′
0,0.

We shall now keep such ϵ fixed, and choose δ in such a way that C0,1∪C ′
0,1 bounds

a minimal catenoid. The reasoning is completely analogous to the previous case.

Indeed, the circles C0,1 and C ′
0,1 have radius ϵ and the distance between their centers

is bounded above by 2ϵ + 2δ(1 + ϵ). Hence C0,1 and C ′
0,1 tend to be tangent when

δ → 0, and we conclude again by Theorem 6.3.

In the rest of the section, we will denote by Catn,j the minimal catenoid whose

asymptotic boundary is Cn,j∪C ′
n,j , and by Catsolidn,j the closure in H3 of the connected

component of H3 \Catn,j that contains the totally geodesic planes spanned by Cn,j

and C ′
n,j .

6.2. Topological disks. We will now need to construct topological disks with as-

ymptotic boundary the Jordan curve Λ = f(RP1), contained in the complement of

suitably chosen solid catenoids. The choice of these solid catenoids will be encoded

in a function ι : Z → {0, 1}. Each such topological disk will be the starting point to

construct pairwise distinct minimal disks.

Lemma 6.5. For every ι : Z → {0, 1}, there exists a continuous injective map Fι

from the upper half-plane H2 to H3, whose image is contained in

H3 \
⋃
n∈Z

Catsolidn,ι(n)

and which extends continuously to f : R ∪ {∞} = ∂∞H2 → C ∪ {∞} = ∂∞H3.

Proof. We will divide the construction in several steps. We fix n ∈ Z, and we will

first define Fι on the strip {z ∈ H2 : 2n ≤ |z| ≤ 2n(1+3/4)} in the upper half-plane.

We will distinguish two cases here, according to whether ι(n) = 0 or ι(n) = 1. Then

we will define Fι on the strip {z ∈ H2 : 2n(1 + 3/4) ≤ |z| ≤ 2n+1} in a way which

is independent of ι(n).

Suppose first that ι(n) = 1. We divide the strip {2n ≤ |z| ≤ 2n(1+3/4)} in three

portions, namely {2n ≤ |z| ≤ 2n(1 + 1/4)}, {2n(1 + 1/4) ≤ |z| ≤ 2n(1 + 1/2)} and

{2n(1 + 1/2) ≤ |z| ≤ 2n(1 + 3/4)}, and define Fι on each of them in such a way

that it extends to fι on the corresponding interval of the real axis. Moreover, the

image of Fι will have to avoid the solid catenoid Catsolidn,1 . The idea is to map {2n ≤
|z| ≤ 2n(1 + 1/4)} to the convex hulls of the arcs of circles fι([2

n, 2n(1 + 1/4)]) and

fι([−2n(1+1/4),−2n]), and similarly {2n(1+1/2) ≤ |z| ≤ 2n(1+3/4)} to the convex
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hull of fι([2
n(1 + 1/2), 2n(1 + 3/4)]) and fι([−2n(1 + 3/4),−2n(1 + 1/2)]) — these

convex hulls are portions of totally geodesic planes — and then connect them by a

band connecting fι([2
n(1+ 1/4), 2n(1+ 1/2)]) and fι([−2n(1+ 1/2),−2n(1+ 1/4)]).

See Figure 4.

Fι

Figure 4. The construction of Fι if ι(n) = 1, in the Klein model of H3.

Formally, let us use the upper half-space model {(z, h) : z ∈ C, h > 0} of H3.

As t varies in [2n, 2n(1 + 1/4)], let γ(t) parameterize the curve in H3 (actually, a

geodesic, although not parameterized by arclength) contained in the vertical plane

ℜ(z) = 0, in such a way that limx→±∞ expγ(t)(xvγ(t)) = fι(±t), where vp is the

vector based at p and orthogonal to the vertical plane ℜ(z) = 0, pointing towards

ℜ(z) > 0. Then define

Fι(ite
is) = expγ(t)(χ(s)vγ(t))

for a fixed decreasing diffeomorphism χ : [−π/2, π/2] → R. By construction, Fι

extends to fι on ±[2n, 2n(1 + 1/4)]. Starting from t ∈ [2n(1 + 1/2), 2n(1 + 3/4)], we

repeat exactly the same procedure to define Fι on {2n(1+1/2) ≤ |z| ≤ 2n(1+3/4)},
thus obtaining another portion of totally geodesic plane. We repeat the same again

to define Fι on {2n(1+1/4) ≤ |z| ≤ 2n(1+1/2)}, simply by changing the interval of

definition of t, with the sole irrelevant difference that in this case the image of γ is not

a geodesic. Putting together the three pieces, Fι, defined on {2n ≤ |z| ≤ 2n(1+3/4)},
is continuous and piecewise smooth. Since the minimal catenoids are contained in

the convex hull of their two asymptotic circles, it is immediate to see that the image

of Fι is disjoint from the solid catenoid Catsolidn,1 .

Having described this construction in detail when ι(n) = 1, we now explain how to

modify it for ι(n) = 0. Here we divide again the strip A := {2n ≤ |z| ≤ 2n(1+3/4)}
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in three parts, but differently from above. Let A± = A ∩ {|z ∓ 2n(1 + 3/8)| =

2n(3/8)}, and let A0 be the closure of A\ (A−∪A+). We can use again an auxiliary

curve γ : [−π/2, π/2] in H3, having the property of being contained in the totally

geodesic plane of symmetry between the two totally geodesic planes with asymptotic

boundaries {|z| = 2n(1 ± ϵ)}, such that γ(±π/2) = fι(±2n(1 + 3/8)), and define

Fι(ie
s) = γ(s). Then we “fill” the strip A in such a way that Fι(A±) is sweeped-

out by the geodesics with endpoints fι(±2n(1 + 3/8 + t)), for t ∈ 2n(−3/8, 3/8),

and that Fι(A0) is sweeped-out by finite geodesic segments, in such a way that

Fι(2
nies) = expp(χ(s)v) parameterizes, as in the previous case, a geodesic with

endpoints fι(±2n), for p a point in the vertical plane ℜ(z) = 0, and analogously for

Fι(2
n(1+3/4)ies), on the other boundary half-circle of A. The convex hull property

will then ensure again that the image of Fι is in the complement of Catsolidn,0 . See

Figure 5. We leave to the reader the details, which are only slightly more technical

than in the case ι(n) = 1.

Fι

A− A+

A0

Figure 5. The construction of Fι if ι(n) = 0.

Finally, it remains to define Fι on the strip {2n(1 + 3/4) ≤ |z| ≤ 2n+1}. Here

we take again a curve γ : [2n(1 + 3/4), 2n+1] → H3 with the property that its

image is contained in ℜ(z) = 0 and that limx→±∞ expγ(t)(xvγ(t)) = fι(±t). We can

then define Fι(ite
is) = expγ(t)(χ(s)vγ(t)). This definition will match the previous

definitions of Fι on the common boundaries |z| = 2n(1 + 3/4) or |z| = 2n+1. See

Figure 6.

Hence Fι is globally well-defined, continuous and piecewise smooth. As in the

proof of Lemma 6.1, one can observe that the image of 2n ≤ |z| ≤ 2n+1 under the

map Fι is contained, in the upper half-space, in B(0, 2n+1(1 + ϵ)) \B(0, 2n(1 + ϵ)).

Using this property, following the same lines as the proof of Lemma 6.1 it is easy to
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Fι

Figure 6. The construction of Fι on the remaining strip, which is in
common for all choices of ι.

verify that Fι is injective and limz→0 Fι(z) = 0, limz→∞ Fι(z) = ∞. By construction

Fι extends to fι on R, and therefore Fι is the desired continuous and injective

extension of fι.

6.3. Conclusion of the proof. We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. Let Λ be the image of the continuous injective map f , and

fix ι : Z → {0, 1}. We will construct a stable minimal disk Σι contained in

Ωι := H3 \
⋃
n∈Z

Catsolidn,ι(n)

with ∂∞Σι = Λ.

Let us denote by Uι the topological disk constructed in Lemma 6.5, namely the

image of the continuous injective map Fι : D → H3, where we identify here the

upper half-plane model of H2 with the unit disc D. We will denote by C(Uι) the

convex hull of Λ ∪ Uι in H3 ∪ ∂∞H3. As a preliminary step, observe that

(6.5) ∂∞C(Uι) = Λ .

Indeed, given any point p in ∂∞H3 \ Λ, since the map Fι extends to a continuous

injective map from D to H3∪∂∞H3, Uι∪Λ is a closed subset of H3∪∂∞H3, and one

can find a neighbourhood U of p in the topology of the closed ball which is disjoint

from Uι ∪Λ. Then a totally geodesic plane P contained in U disconnects p from the

convex hull of Λ ∪ Uι, thus showing p /∈ C(Uι).
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Now, let γn = Fι({|z| = 1− 1/n}). Then {γn}n∈N is a sequence of nullhomotopic

simple closed curves in C(Uι) that converge to Λ as n → +∞. The proof of the

existence of Σι now roughly follows the strategy of Lemma 3.3.

Fix the point xo = Fι(0) ∈ Uι. For any n, let Rn be a sufficiently large radius

so that γn ⊂ B(xo, Rn). Up to a small perturbation of Rn, assume moreover,

as a consequence of genericity of transverse intersection, that the intersection of

∂B(xo, Rn) and ∂Ωι is transverse. By [HS88, Theorem 6.3] applied to Mn := Ωι ∩
B(xo, Rn), which is sufficiently convex in the terminology of [HS88], we can solve

the Plateau problem to find a least area (hence stable) minimal disk Σn
ι contained

in Mn with ∂Σn
ι = γn.

We will show that Σn
ι converges, up to extracting a subsequence, smoothly on

compact subsets of H3 to a properly embedded minimal disk Σι contained in Ωι.

We first observe that there exists R0 > 0 such that Σn
ι ∩ B(xo, R0) ̸= ∅ for all n.

To see this, recall that C(Uι) is homeomorphic to a closed ball, hence Λ disconnects

∂C(Uι), which is homeomorphic to a sphere, into two topological disks which we

denote ∂±C(Uι). Pick a geodesic segment η connecting two points x± ∈ ∂±C(Uι)

and containing xo. Since γn and η are contained in C(Uι) and linked, and the disk

Σn
ι is contained in C(Uι), it must intersect η. Hence Σn

ι intersects B(xo, R0) for any

choice of R0 such that B(xo, R0) contains η.

Now, fix any radius R > 0 and consider the ball B(xo, R). For n = n(R) suffi-

ciently large, γn is contained in H3 \ B(xo, R + 1). The distance from any point of

Σn
ι ∩B(xo, R) and ∂Σn

ι = γn is thus bounded below by 1. By Theorem 2.3 there is a

constant C, independent of n, such that the Gaussian curvature of Σn
ι is bounded by

C in absolute value. Applying Theorem 2.5, we can extract a subsequence nk such

that Σnk
ι ∩B(xo, R) converges smoothly to a minimal disc. By a diagonal argument,

we can then find a subsequence of {Σn
ι }n∈N that converges smoothly on compact

subsets to a minimal disk Σι. Moreover the limit Σι is stable since it is the smooth

limit of the stable minimal surfaces Σn
ι .

An easy argument by contradiction as in the proof of Corollary 2.6 shows that Σι

is properly embedded. Moreover, since Σn
ι is contained in Ωι, then Σι is contained

in the closure of Ωι. This would be sufficient for our purpose; nonetheless the strong

maximum principle actually implies that Σι is contained in Ωι itself. Finally, since

Σn
ι is contained in C(Uι) for all n, so too is Σι. Then (6.5) implies that ∂∞Σι = Λ.

It only remains to show that, if ι0 ̸= ι1, then Σι0 ̸= Σι1 . By hypothesis,

there exists m ∈ Z such that ι0(m) ̸= ι1(m). Up to switching the roles, sup-

pose ι0(m) = 0 and ι1(m) = 1. Then, by construction, Σι0 is contained in the

complement of Catsolidm,0 , whereas Σι1 is contained in the complement of Catsolidm,1 .
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But the solid catenoids Catsolidm,0 and Catsolidm,1 are linked in the sense of [HW15,

Section 3.4]. Then [HW15, Lemma 3.12] implies that Λ is not nullhomotopic in

(H3 ∪ ∂∞H3) \ (Catsolidm,0 ∪Catsolidm,1 ). Now, if Σι0 = Σι1 =: Σ, then Σ would be a disk

contained in the complement of Catsolidm,0 ∪Catsolidm,1 , hence contradicting that Λ is not

nullhomotopic. This concludes the proof.

Appendix A. Small curvatures

In this appendix, we explain how to obtain Theorems 4.2 and 4.3. These results

are well-known under the assumption that Σ has small curvatures (see for instance

[Eps84]). However, we need to relax the hypothesis here to assume that Σ has only

weakly small curvatures. We follow here the approach of [EES22, Section 4].

The fundamental observation is that, if Σ is a hypersurface in Hn+1 of weakly

small curvatures and γ : I → Σ is a geodesic for the first fundamental form of Σ,

then the acceleration of γ is

(A.1) ∇h
γ′(t)γ

′(t) = A(γ′(t), γ′(t))N(γ(t))

and therefore, by the weakly small curvature assumption,

(A.2) ∥∇h
γ′(t)γ

′(t)∥ ≤ 1 .

This leads us to study curves satisfying the bound (A.2) on the acceleration. Let

S be a horosphere or a sphere in Hn+1. (By sphere, here we always mean the set

of points at distance r > 0 from a given points of Hn+1.) The complement of S

has two connected components, one of which is geodesically convex, and the other

is not. We call the former the (open) convex side of S, and the latter the (open)

concave side of S. The closed convex (resp. concave) side of S is the union of S

with the open convex (resp. concave) side. The following lemma is an improvement

of [EES22, Lemma 4.9], following a similar strategy of proof.

Lemma A.1. Let γ : [a, b] → Hn+1 be a smooth curve satisfying (A.2). Then

• The image of γ lies in the open concave side of any sphere tangent to γ,

except for the tangency point.

• The image of γ lies in the closed concave side of any horosphere tangent to

γ.

Proof. It suffices to prove the first item, as the second item follows by taking the

limit of tangent spheres as the radius goes to infinity.

Assume that the tangency point is, in the upper half-space model γ(0) = (0, . . . , 0, 1),

that γ is parameterized by arclength, that γ′(0) = (1, 0, . . . , 0) and that the tangent
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horosphere is {xn = 1}. Hence the tangent spheres Sr of radius r are, in a neigh-

bourhood of γ(0), graphs of functions fr : Ur → R, where Ur ⊂ Rn is a sufficiently

small ball, and by symmetry fr only depends on the distance from the origin in Rn.

First we show γ lies on the open concave side of any tangent sphere Sr for small

t. We use a subscript (·)n+1 to denote the last coordinate in the upper half-space

model. Thus γn+1(0) = γ′n+1(0) = 0. By a direct computation of the Christoffel

symbol Γn
11 = 1, we see that

(∇h
γ′γ′)n+1(0) = γ′′n+1(0) + 1 .

Since γ has small acceleration, we obtain

γ′′n+1(0) ≤ |(∇h
γ′γ′)n+1(0)| − 1 ≤ ∥(∇h

γ′γ′)(0)∥ − 1 ≤ 0 .

Now, denote γ̂ the projection of γ to Rn. By an easy computation following similar

lines, (fr ◦ γ̂)(0) = (fr ◦ γ̂)′(0) = 0 and (fr ◦ γ̂)′′(0) = −1 + 1/ tanh(r) > 0. Hence

for t ∈ (0, ϵ), γn+1(t) < fr(t) and this shows that γ stays for small times in the open

concave side of Sr.

It remains to show that γ(t) stays in in the open concave side of Sr for every

t > 0. Suppose by contradiction that for some t0, γ(t0) ∈ Sr. Let p be the center

of Sr. Then the function t 7→ d(p, γ(t)) is equal to r for t = 0 and t = t0, and is

larger than r for t ∈ (0, ϵ). Hence it admits a maximum point tmax. This implies

that γ is tangent to the geodesic sphere centered at p of radius d(p, γ(tmax)) and

thus contradicts the first part of the proof.

Having established Lemma A.1, the following lemma follows immediately.

Lemma A.2. Let Σ ⊂ Hn+1 be a properly immersed hypersurface of weakly small

curvatures. Then Σ is contained in the closed concave side of every tangent horo-

sphere.

Proof. Let p ∈ Σ and let S be a tangent horosphere. Given any other q, by com-

pleteness of Σ, we can find a geodesic segment γ joining p and q. As observed in

(A.2), γ satisfies the hypothesis of Lemma A.1, hence q is contained in the closed

concave side of S.

Now, the proof of Theorem 4.2 follows exactly the proof of [EES22, Proposition

4.15]. To prove Theorem 4.3, we need the following well-known result, which follows

from a direct computation (see for instance [HW13, formula (2.2)] or [EES22,

Lemma 4.5]).

Lemma A.3. Let Σ be an embedded hypersurface in Hn+1 of weakly small cur-

vatures, and let N be its unit normal vector. Then for every t ∈ R, the map
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ιt : Σ → Hn+1 defined by ιt(x) = expx(tN(x)) is an immersion, and its princi-

pal curvatures satisfy the identity

(A.3) λt
i(ιt(x)) =

λi(x)− tanh(t)

1− λi(x) tanh(t)
,

where λ1, . . . , λn are the principal curvatures of Σ.

Proof of Theorem 4.3. It follows from Lemma A.3 that the map F (x, t) = ιt(x) has

injective differential, hence is a local diffeomorphism. We show that it is bijective.

To show that F is surjective, let p be any point in Hn+1, let r = d(p,Σ) and let

x ∈ Σ be a point that realizes this distance. Then the geodesic sphere of center p

and radius r is tangent to Σ at x, and p = F (x, r). For injectivity, suppose that

p = F (x1, t1) = F (x2, t2). Let Sti be the geodesic spheres centered at p of radius ti.

As before, Sti is tangent to Σ at xi. By Lemma A.1, Σ is contained, except for the

tangency points, in the open concave side of both St1 and St2 . This implies that

t1 = t2, because otherwise the open concave side of St1 would intersect the convex

side of St2 (or vice versa), leading to a contradiction. By Lemma A.1 again, Σ\{x1}
is contained in the open concave side of St1 = St2 , and thus x2 = x1.

We have thus shown that each ιt is a proper embedding, and it has weakly small

curvatures by Lemma A.3. When Σ is minimal, Lemma A.3 again implies the last

statement on the sign of the mean curvature of ιt, because λ
t
i is a decreasing function

of t.

We have already observed that, for n = 2, if the Jordan curve Λ spans a surface

of strongly small curvatures, then Λ is a quasicircle, and this in turns implies that

Λ has finite width. We conclude this appendix by a direct proof, that works in any

dimensions.

Lemma A.4. Let Λ be a topologically embedded n-sphere Λ in Sn∞ and Σ be a

properly embedded hypersurface of strongly small curvatures such that ∂∞Σ = Λ.

Then C(Λ) has finite width.

Proof. Assume that the principal curvatures λ1, . . . , λn of Σ are smaller than 1− ϵ

in absolute value. By Lemma A.3, for t0 > tanh−1(1 − ϵ) the hypersurface Σt0

(resp. Σ−t0) has negative (resp. positive) principal curvatures, that is, it is locally

concave (resp. convex) with respect to the direction of the normal vector N . Since

Σ±t0 are properly embedded, they bound a geodesically convex region U , which

thus contains the C(Λ). By Theorem 4.3, every point in C(Λ) lies on a geodesic

segment of the form t 7→ F (x, t), for t ∈ [−t0, t0]. Hence for every x ∈ C(Λ),
d(x, ∂+C(Λ)) + d(x, ∂−C(Λ) ≤ 2t0. This shows that w(Λ) ≤ 2t0.
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