
HAL Id: hal-04235499
https://hal.science/hal-04235499

Preprint submitted on 11 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On complete maximal submanifolds in
pseudo-hyperbolic space

Andrea Seppi, Graham Smith, Jérémy Toulisse

To cite this version:
Andrea Seppi, Graham Smith, Jérémy Toulisse. On complete maximal submanifolds in pseudo-
hyperbolic space. 2023. �hal-04235499�

https://hal.science/hal-04235499
https://hal.archives-ouvertes.fr


ar
X

iv
:2

30
5.

15
10

3v
1 

 [
m

at
h.

D
G

] 
 2

4 
M

ay
 2

02
3

ON COMPLETE MAXIMAL SUBMANIFOLDS IN PSEUDO-HYPERBOLIC SPACE

ANDREA SEPPI, GRAHAM SMITH, AND JÉRÉMY TOULISSE

Abstract. We provide a full classification of complete maximal p-dimensional spacelike submanifolds in the

pseudo-hyperbolic space Hp,q, and we study its applications to Teichmüller theory and to the theory of Anosov

representations of hyperbolic groups in PO(p, q + 1).
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1. Introduction

Minimal submanifolds have become an invaluable part of the modern geometer’s toolbox, having played

fundamental roles in the proofs of a number of notable results. In recent years there has been a growing

interest in the application of maximal submanifolds to the study of pseudo-riemannian symmetric spaces. In

this paper, we provide a full classification of complete maximal p-dimensional spacelike submanifolds in the

pseudo-hyperbolic space Hp,q, and we discuss new results that this classification yields both in Teichmüller

theory and in the theory of Anosov representations of hyperbolic groups in PO(p, q + 1).1

1.1. Main results. In this paper, we take pseudo-hyperbolic space to be the projective space Hp,q of

negative-definite lines in Rp,q+1. It is a homogeneous pseudo-riemannian space of constant sectional cur-

vature equal to −1 and of signature (p, q), that is, having p positive and q negative linearly-independent

directions. When q is equal to 0 or 1, Hp,q reduces to the better-known examples of hyperbolic space Hp

and anti-de Sitter space AdSp,1 respectively.

As in the hyperbolic and anti-de Sitter cases, Hp,q possesses an asymptotic boundary ∂∞Hp,q, which we

identify with the space of isotropic lines in Rp,q+1. The union Hp,q ∪ ∂∞Hp,q is compact with respect to the

topology that it inherits as a subset of projective space.

We identify a special class of topologically embedded spheres in ∂∞Hp,q as follows. We say that a triple

of pairwise distinct points in ∂∞Hp,q - which, we recall, represent lines in Rp,q+1 - is positive whenever their

span is 3-dimensional with signature (2, 1), and non-negative whenever their span contains no negative-

definite 2-plane. When p ≥ 3, we say that a topologically embedded (p − 1)-sphere Λ in ∂∞Hp,q is positive

(respectively non-negative) whenever every triple of pairwise distinct points that it contains is positive (re-

spectively non-negative). When p = 2, for topological reasons, we require in addition that Λ contain at least

1 positive triple. This latter case is studied in detail by Labourie–Toulisse–Wolf in [LTW23], where they

call non-negative 1-spheres semi-positive loops. We denote by B the space of non-negative (p − 1)-spheres

in ∂∞Hp,q, furnished with the Hausdorff topology.

We define a maximal p-submanifold of Hp,q to be a connected, p-dimensional, smooth spacelike sub-

manifold which is a critical point of the area functional with respect to compactly supported variations. We

1For the study of maximal surfaces in pseudo-riemannian symmetric spaces, please see [Ish88, BBD+12, Col16, CTT19,

LTW23, Nie22, LT23, CT23]. For existing applications of maximal surfaces to Teichmüller theory please see [BS10, BMS13,

SK13, BST17, Sep19], and for discussions of the theory of Anosov representations, please see [Lab06, GW12, Kas18, DGK18,

Zim21, Can].
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denote byM the space of complete maximal p-submanifolds of Hp,q, furnished with the topology of smooth

convergence over compact sets. Given any complete maximal p-submanifold M of Hp,q, we denote by ∂∞M

the intersection of its closure with ∂∞Hp,q, and we call this set the asymptotic boundary of M. It is relatively

straightforward to show (see Corollary 4.11) that ∂∞M is always a non-negative (p − 1)-sphere, and even

that ∂∞ mapsM continuously into B. We prove the converse of this fact.

Theorem A. The asymptotic boundary map ∂∞ : M → B is a homeomorphism. In particular, for every

non-negative (p − 1)-sphere Λ in ∂∞Hp,q, there exists a unique complete maximal p-submanifold of Hp,q

with asymptotic boundary Λ.

The proof of Theorem A requires an in-depth study of the asymptotic structure of complete maximal p-

submanifolds in Hp,q. The techniques that we develop yield, in addition, the following new result concerning

the total curvatures of complete maximal p-submanifolds with sufficiently regular asymptotic boundaries.

Theorem B. If M is a complete maximal p-submanifold in Hp,q with C3,α asymptotic boundary, and if II

denotes its second fundamental form, then, for all s > p − 1,

‖II‖ ∈ Ls(M, dVolM) . (1.1)

1.2. Historical background. From a historical perspective, Theorem A is best understood in the context

of asymptotic Plateau problems. The asymptotic Plateau problem in hyperbolic p-space was first addressed

by Anderson in [And83], where he proved the existence of volume-minimizing k-dimensional currents in

Hp bounded by any given closed, embedded (k − 1)-dimensional submanifold of ∂∞Hp. In general, the

questions of regularity, topological type, and uniqueness of such minimizing currents present hard and subtle

problems (see, for example, [Cos14]). Nonetheless, in dimension 3, Anderson showed that every Jordan

curve Λ in ∂∞H3 bounds a smoothly embedded minimal disk. However, these disks are not necessarily

unique, even under the additional hypothesis that Λ be the limit set of some quasi-fuchsian representation

(see [And83, Theorem 5.2]). Indeed, Huang–Wang constructed in [HW15] quasi-fuchsian representations

whose limit sets may bound arbitrarily many smoothly embedded, invariant minimal disks.

This contrasts sharply with the situation in anti-de Sitter space. Indeed, in [ABBZ12], Andersson–

Barbot–Béguin–Zeghib showed that, given any representation ρ : Γ = π1(N) → PO(p, 2), which is the

holonomy of a maximal, globally hyperbolic, anti-de Sitter manifold homeomorphic to N × R, for some

closed manifold N, there exists a unique ρ-invariant maximal hypersurface in Hp,1 with asymptotic bound-

ary equal to the limit set of ρ. In particular, ρ acts on this hypersurface freely and properly discontinuously,

with quotient diffeomorphic to N. Likewise, in [BS10], Bonsante–Schlenker showed that every positive

(p − 1)-sphere in ∂∞Hp,1 is the asymptotic boundary of some complete maximal hypersurface and, fur-

thermore, when p = 2 and the boundary curve is the graph of a quasi-symmetric homeomorphism, this

hypersurface is also unique.

Analogous results have recently been obtained for maximal surfaces in the pseudo-hyperbolic space H2,q.

Indeed, in [CTT19], Collier–Tholozan–Toulisse proved that, for any closed, orientable surface S of genus

at least 2, and any maximal representation ρ : π1(S ) → PO0(2, q + 1), the limit set of ρ is the asymptotic

boundary of a unique complete ρ-invariant maximal surface in H2,q. As before, ρ then acts freely and

properly-discontinuously on this surface, with quotient diffeomorphic to S . Finally, in [LTW23], Labourie–

Toulisse–Wolf generalised this result to prove that every non-negative 1-sphere in ∂∞H2,q is the asymptotic

boundary of a unique complete maximal surface.

Theorem A thus unifies the known results for Hp,1 and H2,q, and extends them to Hp,q for all (p, q),
whilst addressing the most general hypotheses on the asymptotic boundary.

1.3. Techniques and novelties. We note first that our approach is quite different from those used in the ear-

lier works mentioned above. Indeed, Anderson used geometric measure theory to address the Plateau prob-

lem in Hp, a technique which to date has no pseudo-riemannian analogue. Likewise, Andersson–Barbot–

Béguin–Zeghib and Bonsante–Schlenker used the works [Ger83, Ger06] of Gerhardt, [Bar88] of Bartnik,

and [Eck03] of Ecker, which are peculiar to the Lorentzian setting. Finally Collier–Tholozan–Toulisse used
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Higgs bundles, whilst Labourie–Toulisse–Wolf used pseudo-holomorphic curves, both of which are peculiar

to the case of surfaces.

We prove Theorem A by applying the continuity method in a global manner. This has the advantage

over previous approaches of yielding detailed information concerning the asymptotic structures of complete

maximal p-submanifolds with smooth asymptotic boundaries, yielding, as a byproduct, Theorem B.

The continuity method decomposes into three main steps, namely compactness, uniqueness and pertur-

bation (or, stability).

Our compactness result is a manifestation of the dichotomy first observed by Labourie in [Lab97] in the

context of k-surfaces in hyperbolic 3-space (see also [Sch96, Smi13, Smi18, Smi22]).

Step 1 (Compactness – Theorem 5.1). If {Mm}m∈N is a sequence of complete maximal p-submanifolds of

Hp,q then, either

(1) {Mm}m∈N subconverges in the C∞
loc

topology to a smooth, complete maximal p-submanifold of Hp,q,

or

(2) {Mm}m∈N subconverges in the Hausdorff topology to a Lipschitz p-submanifold foliated by complete,

lightlike geodesics, all having the same endpoint at infinity.

We call submanifolds of the second type degenerate. We will see below (see Lemma 4.10) that, up to

isometries of the ambient space, the space of degenerate submanifolds is itself homeomorphic to the space

of 1-Lipschitz maps from a hemisphere S
p−1
+ ⊆ Sp−1 into Sq−1. Indeed, degenerate submanifolds are simply

the graphs of suspensions of such maps.

Recall now that the spaceM of complete maximal p-submanifolds carries the topology of smooth conver-

gence over compact sets, whilst the space B of non-negative (p− 1)-spheres carries the Hausdorff topology.

Since no degenerate submanifold can have a non-negative sphere as its asymptotic boundary, one of the main

consequences of Theorem 5.1 for the proof of Theorem A is that the asymptotic boundary map ∂∞ :M→ B
is proper.

Uniqueness is proven using the maximum principle. Our proof is similar to that of [LTW23], although

some care is required in the present, higher-dimensional setting.

Step 2 (Uniqueness – Theorem 6.1). A non-negative (p − 1)-sphere in ∂∞Hp,q is the asymptotic boundary

of at most one complete maximal p-submanifold of Hp,q.

The lengthiest and most technical part of the proof is the following stability result.

Step 3 (Stability – Theorem 7.1). Let (Λt)t∈(−ǫ,ǫ) be a smoothly varying family of smooth, spacelike spheres

in ∂∞Hp,q. If there exists a complete maximal p-submanifold M of Hp,q with asymptotic boundary Λ0 then,

upon reducing ǫ if necessary, there exists a family (Mt)t∈(−ǫ,ǫ) of complete maximal p-submanifolds such

that, M0 = M and, for all t, Mt has asymptotic boundary Λt.

The usual approach to proving stability results of this kind is to first represent maximal p-submanifolds near

M as zeroes of some functional over some Banach space, and then to apply the implicit function theorem. In

the present case, the non-compactness of the submanifolds in question presents an extra layer of difficulty,

requiring us to study such things as asymptotic models and pre-elliptic estimates. This will be carried out in

Section 7, where, in addition, we will provide a far more detailed discussion of the main ideas used in this

step of the proof.

Having established Steps 1, 2 and 3, Theorem A readily follows by the continuity method. Indeed, let

Im(∂∞) denote the image of ∂∞, let B∞ denote the space of smooth, spacelike (p − 1)-spheres in ∂∞Hp,q,

and note that this is a dense subset of B. Since totally geodesic, spacelike p-subspaces of Hp,q are trivially

maximal, Im(∂∞) has non-trivial intersection with B∞. Since B∞ is path-connected, the continuity method

then shows that Im(∂∞) contains B∞. Finally, by density of B∞, and properness of ∂∞, it follows that

Im(∂∞) contains B, thus proving Theorem A.

Finally, the asymptotic analysis developed to prove Step 3 involves the use of weighted function spaces

over complete maximal p-submanifolds. Although weighted spaces are not actually required for the proof of
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Theorem A, they provide detailed asymptotic information at little extra cost. In particular, they permit us to

show that the norms of the second fundamental forms of suitably regular cones, on the one hand, and suitably

regular, complete maximal p-submanifolds, on the other, both decay exponentially at an equal rate, whilst

their volume forms both grow exponentially at an equal, slower rate. Theorem B is then a straightforward

consequence of these two properties.

1.4. Applications I - Anosov representations. Amongst our main motivations for the study of complete

maximal p-submanifolds in Hp,q are their applications to the study of representations of word-hyperbolic

groups in PO(p, q + 1). In what follows, Γ will denote a word-hyperbolic group with connected Gromov

boundary.

In [DGK18], Danciger–Guéritaud–Kassel introduced a notion of convex-cocompactness for representa-

tions in PO(p, q + 1). We say that a representation ρ : Γ → PO(p, q + 1) is Hp,q-convex-cocompact

whenever it has finite kernel and acts properly-discontinuously and cocompactly on some closed, convex

subset K of Hp,q whose interior Int(K) is non-trivial and whose ideal boundary ∂∞K contains no non-trivial

segment. We will be concerned here with the more specific case where the Gromov boundary of Γ is home-

omorphic to a (p − 1)-sphere. In this case, Danciger–Guéritaud–Kassel showed that Λ = ∂∞K is a positive

(p− 1)-sphere2 in ∂∞Hp,q. Since every positive sphere is, in particular, non-negative, Theorem A thus yields

the following result.

Corollary 1.1. Let Γ be a word-hyperbolic group with Gromov boundary homeomorphic to a (p − 1)-
sphere. Every Hp,q-convex-cocompact representation ρ : Γ → PO(p, q + 1) preserves a unique complete

maximal p-submanifold M in Hp,q. Furthermore

(1) ρ acts properly-discontinuously and cocompactly on M, and

(2) M depends real analytically on ρ.

Beyrer–Kassel have told us of an intriguing application of Corollary 1.1 to the study of higher-dimensional

extensions of higher-rank Teichmüller theory. Recall (c.f. [Wie18]) that when Γ is a compact surface group,

and G is a reductive Lie group of higher rank, a connected component of Hom(Γ, G) is said to be a higher-

rank Teichmüller space whenever it consists entirely of discrete and faithful representations. The study

of such spaces, which share a number of properties of classical Teichmüller space, has yielded over the

last two decades a rich and fascinating theory. Although it is natural to generalize this concept to higher-

dimensional word-hyperbolic groups, to date only a few higher-dimensional cases have been shown to exist.

One such is given by Barbot in [Bar15], where he showed that, when Γ is the fundamental group of a

compact, p-dimensional hyperbolic manifold, the quasi-fuchsian component of Hom(Γ, PO(p, 2)) consists

entirely of Hp,1-convex-cocompact representations, which, in particular, are discrete and faithful. In their

work [BK23], contemporaneous with the present paper, Beyrer–Kassel prove a converse of Corollary 1.1,

namely that any representation acting properly-discontinuously and cocompactly on a weakly spacelike p-

dimensional submanifold of Hp,q is Hp,q-convex-cocompact. Together with Corollary 1.1, this allows them

to show in [BK23, Theorem 1.3] that, for all p ≥ 2 and q ≥ 1, and for any word-hyperbolic group Γ with

Gromov boundary homeomorphic to a (p − 1)-sphere, the set of Hp,q-convex-cocompact representations

ρ : Γ → PO(p, q + 1) is a union of connected components of Hom(Γ, PO(p, q + 1)). In this manner, they

extend Barbot’s result to yield a large family of new higher-dimensional higher-rank Teichmüller spaces,

including many examples which are not quasi-fuchsian (c.f. [LM19, MST]).

We now discuss applications of Corollary 1.1 to the study of P1-Anosov representations of word-hyper-

bolic groups in PO(p, q + 1). Anosov representations were introduced by Labourie in [Lab06], and have

since become a cornerstone of higher-rank Teichmüller theory. We refer the reader to Danciger–Guéritaud–

Kassel’s paper [DGK18] for a formal definition of the concept of P1-Anosov representations. In addition,

2Note that, in the terminology of [DGK18], objects that are here described as “positive” are there referred to as “negative” (and

vice-versa). The terminology of [DGK18] reflects the fact that, in the above situation, Λ lifts to a cone in Rp,q+1 of which any pair

of non-colinear points has negative scalar product (c.f. Lemma 4.7). The terminology of the present paper has been chosen to be

consistent with [FG06] and [GLW21].



6 A. SEPPI, G. SMITH, AND J. TOULISSE

in the same paper, they described a direct relationship between such representations and the Hp,q-convex-

cocompact representations discussed above. To understand this, note first that the set of non-null lines in

Rp,q+1 consists of two connected components, namely Hp,q and Hq+1,p−1, where the sign of the metric of

the latter is inverted. Danciger–Guéritaud–Kassel showed that every Hp,q-convex-cocompact representation

is P1-Anosov and, conversely, that every P1-Anosov representation is either Hp,q-convex-cocompact or

Hq+1,p−1-convex-cocompact. We say that the representation is positive in the former case, and negative in

the latter, so that every Hp,q-convex-cocompact representation is a positive P1-Anosov representation, and

vice versa. In particular, in this case, Λ := ∂∞K coincides with the proximal limit set of the representation

ρ3.

Our first application of Corollary 1.1 provides a new constraint on the hyperbolic groups which admit

positive P1-Anosov representations.

Corollary 1.2. Let Γ be a torsion-free word-hyperbolic group with Gromov boundary homeomorphic to a

(p − 1)-sphere. If Γ admits a positive P1-Anosov representation in PO(p, q + 1), then it is isomorphic to

the fundamental group of a smooth, closed p-dimensional manifold with universal cover diffeomorphic to

Rp.

It is worth comparing Corollary 1.2 to the result [BLW10] of Bartels–Lück–Weinberger, which states that,

for p ≥ 6, any torsion-free hyperbolic group with Gromov boundary homeomorphic to a (p − 1)-sphere is

the fundamental group of a closed p-dimensional topological manifold with universal cover homeomorphic

to Rp. Note, in particular, that in Example 5.2 and Lemma 5.3 of that paper, the authors construct, for all

k ≥ 2, a torsion-free hyperbolic group Γ, with Gromov boundary homeomorphic to S4k−1, which is not

isomorphic to the fundamental group of any closed smooth aspherical manifold. We consequently have the

following corollary.

Corollary 1.3. For any k ≥ 2 and q ≥ 1, there exists a torsion-free word-hyperbolic group Γ with Gromov

boundary homeomorphic to a (4k − 1)-sphere which does not admit any positive P1-Anosov representation

in PO(4k, q + 1).

Remark. More precisely, the top Pontrjagin number of the piecewise linear manifold associated to Γ appears

to provide an obstruction to the existence of positive P1-Anosov representations in PO(p, q + 1).

Our second application concerns the structure of a class of manifolds introduced by Guichard–Weinhard

in [GW12]. Indeed, let Isot(E) denote the space of maximally isotropic subspaces of E. Given a positive

P1-Anosov representation ρ of Γ in PO(p, q + 1), Guichard–Wienhard constructed a domain Ωρ in Isot(E)
upon which ρ(Γ) acts properly-discontinuously and cocompactly. The quotient Ωρ/ρ(Γ)is a closed mani-

fold locally modelled on Isot(E). However, to date, little more has been shown concerning its structure.

Given two natural numbers k ≤ n, the Stiefel manifold Vk,n is the space of k-tuples of unit vectors in

Rn that are pairwise orthogonal. For all such k and n, Vk,n is diffeomorphic to the homogeneous space

O(n)/O(n − k). In particular, it is connected unless k = n, in which case it has 2 connected components.

Corollary 1.4. Let Γ be a torsion-free word-hyperbolic group with Gromov boundary homeomorphic to a

(p − 1)-sphere, let ρ : Γ → PO(p, q + 1) be a positive P1-Anosov representation, and let Ωρ denote its

Guichard–Wienhard domain.

(1) If q ≥ p, and if M denotes the complete maximal p-submanifold preserved by ρ, then Ωρ/ρ(Γ) is

homeomorphic to a Vp,q-bundle over M/ρ(Γ).
(2) If q < p, then Ωρ is empty.

In particular, in the former case, Ωρ is connected, unless p = q and the first Stiefel-Whitney class of

NM/ρ(Γ) vanishes, in which case it has 2 connected components.

3See Footnote 2.



ON COMPLETE MAXIMAL SUBMANIFOLDS IN PSEUDO-HYPERBOLIC SPACE 7

1.5. Applications II - renormalized area. We conclude this introduction with a discussion of the renor-

malized area of complete maximal surfaces. Motivated by applications to the AdS-CFT correspondence, the

renormalized area of a maximal surface M in H2,q with second fundamental form II is defined by

Aren(M) :=

∫

M

‖II‖2dVolM . (1.2)

The study of the renormalized area of maximal surfaces in H2,q presents a number of interesting, as yet

unstudied, problems. For example, following [AM10] it is of interest to determine its first and second varia-

tions. Likewise, in the spirit of [Bis20], it is also of interest to determine how finiteness of the renormalized

area may be expressed in terms of properties of the asymptotic boundary. Substituting p = s = 2 in

Theorem B yields a partial response to this latter problem for surfaces in pseudo-hyperbolic space.

Corollary 1.5. Every complete maximal surface M in H2,q with C3,α asymptotic boundary has finite renor-

malized area.

Finally, in the (2 + 1)-dimensional anti-de Sitter case, that is, when (p, q) = (2, 1), using the ideas de-

veloped by Mess in [Mes07] (see also [Mes07, BS20]), Corollary 1.5 yields the following new Teichmüller-

theoretic result. A self-diffeomorphism of H2 is called minimal Lagrangian whenever its graph is a minimal

Lagrangian surface in H2 ×H2. In [BS10], Bonsante-Schlenker used maximal surfaces in anti-de Sitter ge-

ometry to prove that every quasisymmetric circle homeomorphism admits a unique quasiconformal minimal

Lagrangian extension to H2.

Corollary 1.6. If f is a C3,α circle diffeomorphism, then the Beltrami coefficient of its unique quasiconfor-

mal minimal Lagrangian extension is an element of L2(H2, dVolH2).

It is known that quasiconformal maps of H2 with square integrable Beltrami coefficient extend to Weil-

Petersson circle homeomorphisms. This latter family is precisely the closure of the space of circle diffeomor-

phisms with respect to the topology induced on the universal Teichmüller space by the (infinite-dimensional)

Kähler structure constructed in [TT06]. Motivated by the recent work of Bishop [Bis20], which character-

ized Weil-Petersson quasicircles in H2 as those Jordan curves that bound a complete minimal surface in H3

of finite renormalized area, it is natural to conjecture that the quasiconformal minimal Lagrangian extension

of f is in L2(H2, dVolH2) if and only if f is in the Weil-Petersson class. We leave this question for future

investigation.

1.6. Structure of paper. In Section 2, we provide some background on pseudo-hyperbolic space and on the

associated Riemannian symmetric space. In Section 3, we introduce spacelike and maximal submanifolds

and, making use of so-called Fermi charts, we define the notion of entire graph. In Section 4 we study

positive and non-negative spheres, and their relationship to the asymptotic boundaries of entire graphs. In

Section 5 we prove Theorem 5.1 and deduce the properness of the asymptotic boundary map (Theorem

5.2). In Section 6 we prove the uniqueness of a complete maximal p-submanifold with given asymptotic

boundary (Theorem 6.1). In Section 7 we prove the stability result, namely Theorem 7.1. In Section 8 we

conclude the proofs of Theorem A and Theorem B. In Section 9 we prove Corollaries 1.1, 1.2, 1.4, and 1.5.

Finally, in Section 10, we prove Corollary 1.6.
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2. Pseudo-hyperbolic geometry

We begin by introducing pseudo-hyperbolic space and reviewing its basic properties. In this section, we

describe the 3 main models for pseudo-hyperbolic space that will be used throughout the sequel, namely the

projective model Hp,q, its double cover H
p,q
+ , and the quadric Qp,q, which is a subset of Rp,q+1 isometric to

H
p,q
+ . In addition, we classify its geodesics and totally geodesic subspaces, and we describe the geometry of

its grassmannian bundle of spacelike tangent p-planes.

2.1. Pseudo-hyperbolic space. Let p, q be non-negative integers, let E be a real vector space of dimension

(p + q + 1), and let P(E) denote its projective space. We equip E with a bilinear form b of signature

(p, q + 1), that is, with p positive and (q + 1) negative linearly independent directions. We define pseudo-

hyperbolic space by

Hp,q :=
{
x ∈ P(E) | b(x, x) < 0

}
. (2.1)

It will often be useful to work with a double cover of this space. Thus, let P+(E) denote the projective space

of oriented lines in E, that is the quotient of E \ {0} by R+, and define

H
p,q
+ :=

{
x ∈ P+(E) | b(x, x) < 0

}
. (2.2)

The natural map P+(E) → P(E) yields the desired double cover H
p,q
+ → Hp,q. Note that the preimage

of any connected subset A of P(E) consists of either one or two connected components. We call any such

connected component a lift of A.

The double cover H
p,q
+ naturally identifies with a quadric as follows. Denote

Qp,q :=
{
x ∈ E | b(x, x) = −1

}
. (2.3)

Trivially, Qp,q projects onto H
p,q
+ , whilst every point of H

p,q
+ contains a unique representative in Qp,q. We

thus obtain a natural diffeomorphism r : H
p,q
+ → Qp,q. In particular, this diffeomorphism induces pseudo-

riemannian metrics on both Hp,q and H
p,q
+ . Indeed, for any x ∈ H

p,q
+ , the differential of r maps the tangent

space TxH
p,q
+ to r(x)⊥, the b-orthogonal subspace to r(x) in E. The pull-back through r of the restriction

of b to Qp,q then defines a metric g on H
p,q
+ of signature (p, q) and of constant sectional curvature equal to

−1. Since this metric invariant under the involution x 7→ −x, it likewise induces a metric over Hp,q which

we also denote by g, making the double cover H
p,q
+ → Hp,q into a local isometry.

The group O(p, q + 1) of orthogonal transformations of (E, b) acts by isometries on H
p,q
+ , whilst its

projectivization PO(p, q + 1) acts by isometries on Hp,q. Together with Z2, these groups form the short

exact sequence

1 −→ Z2 −→ O(b) −→ PO(b) −→ 1 . (2.4)

In both cases, the stabilizer of any point is isomorphic to O(p, q), yielding identifications of Hp,q and H
p,q
+

with the respective pseudo-riemannian symmetric spaces PO(p, q + 1)/O(p, q) and O(p, q + 1)/O(p, q),
equipped with suitable scalar multiples of their Killing metrics.

Finally, the ideal boundary ∂∞Hp,q of Hp,q (respectively ∂∞H
p,q
+ of H

p,q
+ ) is defined to be the space of

isotropic lines (respectively oriented isotropic lines) in E. Each of these spaces carries a unique O(p, q+ 1)-
invariant conformal class of pseudo-riemannian metrics of signature (p − 1, q).

2.2. Totally-geodesic subspaces. A submanifold S of Hp,q or H
p,q
+ is called spacelike, timelike or lightlike

whenever its induced metric is respectively positive-definite, negative-definite or degenerate.

Complete totally-geodesic subspaces of Hp,q are given by the intersections with Hp,q of projective sub-

spaces P(V) of P(E). In particular, any complete geodesic γ in Hp,q is the intersection of Hp,q with a

projective line P(V), and is spacelike, timelike or lightlike whenever V has signature (1, 1), (0, 2) or (0, 1)
respectively. Similarly, complete totally-geodesic subspaces of H

p,q
+ are defined to be connected compo-

nents of the intersections of projective subspaces P+(V) with H
p,q
+ , that is, they are lifts of complete totally-

geodesic subspaces of Hp,q, and a trichotomy analogous to that given above likewise holds for geodesics of

this space.
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We define a hyperbolic p-space H in Hp,q (resp. H
p,q
+ ) to be the intersection of Hp,q with a projective

subspace P(V) (resp. a connected component of the intersection of H
p,q
+ with P+(V)), for some V of

dimension (p + 1) and signature (p, 1). In particular, any such H is spacelike and isometric to the p-

dimensional hyperbolic space Hp.

We define a marked hyperbolic p-space to be a pair (x, H) where H is a hyperbolic p-space and x is

a point of H. Note that this is equivalent to the data of an orthogonal decomposition E = ℓ ⊕ U ⊕ V ,

where ℓ is a negative-definite line, U is a positive-definite p-dimensional subspace, and V is the orthogonal

complement of their direct sum. Indeed, the point x and the hyperbolic p-space H are simply the respective

projectivizations of ℓ and ℓ ⊕U. A marked hyperbolic p-space in H
p,q
+ is likewise equivalent to the data of

an orthogonal decomposition E = ℓ ⊕U ⊕ V , where now ℓ is an oriented negative-definite line, and U and

V are as before.

2.3. Riemannian symmetric space. Let G(E) denote the grassmannian of p-planes in E of signature

(p, 0). Note that the operation of orthogonal complement identifies G(E) with the set of (q + 1)-planes of

signature (0, q + 1), and thus in turn with the space of totally-geodesic timelike q-spheres in Hp,q.

Since O(p, q + 1) acts transitively on G(E), and since every point stabilizer is a maximal compact sub-

group isomorphic to O(p) ×O(q + 1), this space naturally identifies with the riemannian symmetric space

of O(p, q + 1).
Every p-plane P in G(E) yields an orthogonal decomposition E = P ⊕ P⊥. Furthermore, since P and

P⊥ are respectively positive- and negative-definite, this decomposition also yields the positive-definite inner

product

bP := b|P ⊕ (−b|P⊥) . (2.5)

The tangent space TPG(E) naturally identifies with Hom(P, P⊥), so that bP induces a scalar product bHom,P

on this space, and thus yields a complete riemannian metric over G(E). This metric is preserved by the

action of O(p, q + 1) and so identifies with a scalar multiple of the Killing metric.

Note finally that G(E) is an open set in the grassmanian of p-planes in E, with topological boundary

given by the set of degenerate p-planes not containing any negative direction.

2.4. Grassmannian bundles. We define the grassmanian bundle over Hp,q to be the space G(Hp,q) of

pairs (x, P) where x is a point in Hp,q and P is a positive-definite p-plane in TxHp,q. Note that this space

naturally identifies under the exponential map with the space of marked hyperbolic p-spaces. We denote by

pr : G(Hp,q)→ Hp,q the canonical projection.

At each point (x, P) in G(Hp,q), the Levi-Civita connection on Hp,q yields the identification

T(x,P)G(Hp,q) = TxHp,q ⊕Hom(P, P⊥) . (2.6)

Furthermore, since P is non-degenerate, TxHp,q = P ⊕ P⊥, so that

T(x,P)G(Hp,q) = P ⊕ P⊥ ⊕Hom(P, P⊥) . (2.7)

With respect to this decomposition, we define the complete riemannian metric h over G(Hp,q) by

h(x,P) = b|P ⊕ (−b|P⊥) ⊕ bHom,P . (2.8)

The group PO(p, q + 1) acts transitively by isometries on (G(Hp,q), h) such that every point stabilizer is

isomorphic to P(O(p) ×O(q)). Moreover, the forgetful map

F : G(Hp,q) −→ G(E)
(x, P) −→ P

is an PO(p, q + 1)-equivariant proper riemannian submersion.

The grassmannian bundle G(Hp,q
+ ) over H

p,q
+ is defined in a similar manner and has similar properties. In

particular, its forgetful map F : (x, P) 7→ P likewise defines an O(p, q + 1)-equivariant proper riemannian

submersion from G(Hp,q
+ ) to G(E).
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Lemma 2.1. If {(xn, Pn)}n∈N is an unbounded sequence in G(Hp,q) (resp. G(Hp,q
+ )), then, up to extraction

of a subsequence, either {xn}n∈N converges in P(E) (resp. P+(E)) to a point in ∂∞Hp,q (resp. ∂∞H
p,q
+ ) or

{Pn}n∈N converges in the grassmanian of p-planes to a degenerate p-plane.

Proof. Indeed, the space G(Hp,q) naturally embeds homeomorphically into Hp,q ×G(E), and the result now

follows by definition of the induced topology. �

3. Entire graphs

We now study the basic geometry of p-dimensional spacelike immersions in Hp,q and H
p,q
+ . Note that,

since we are working in mixed signature, completeness is not necessarily the most convenient property to

work with, and we thus introduce the complementary concept of entire graphs. To this end, it will be useful

to introduce a special class of parametrizations of H
p,q
+ , which we call Fermi charts. These will allow us to

describe smooth entire graphs in H
p,q
+ , and to then adapt this concept to submanifolds of Hp,q. We establish

sufficient conditions for a smooth entire graph to be complete, we study the topology of the space of smooth

entire graphs, as well as its closure, and we conclude by describing a sense in which families of smooth

entire graphs can be considered locally uniformly spacelike.

3.1. Spacelike immersions. Let M be a connected p-dimensional manifold. We say that a smooth immer-

sion f : M → Hp,q is spacelike whenever its induced metric is riemannian. When this holds, f identifies TM

with a subbundle of f ∗THp,q, and we define the normal bundle NM of f to be the orthogonal complement

of TM in f ∗THp,q. Note that every fibre of NM is timelike.

We denote the induced metrics on TM and NM respectively by gT and gN. With respect to the splitting

f ∗THp,q = TM ⊕NM, the pull-back ∇ of the Levi-Civita connection on Hp,q decomposes as

∇ =

(
∇T −B

II ∇N

)
, (3.1)

where ∇T is the Levi-Civita connection of the induced metric gT on M, ∇N is a unitary connection on the nor-

mal bundle NM, II denotes the second fundamental form, which is an element of Ω
1(M, Hom(TM, NM)),

and B denotes the shape operator, which is an element of Ω
1(M, Hom(NM, TM)).

Since ∇ is torsion free and preserves f ∗g, for any two vector fields X and Y over M, and any section η of

NM,
II(X)(Y) = II(Y)(X) and

gN(II(X)(Y), η) = gT(B(X)(η), Y) .
(3.2)

We now define maximal spacelike submanifolds of Hp,q, which are the main objects of interest to us.

Definition 3.1. A spacelike submanifold M of Hp,q (or H
p,q
+ ) is called maximal whenever trgT

(II) = 0.

In addition, in the sequel, we will use the following norm of the second fundamental form.4

‖II‖2 =
p∑

i, j=1

∣∣∣gN (II(ei)(e j), II(ei)(e j))
∣∣∣ , (3.3)

where (e1, · · · , en) is any local orthonormal frame of TM.

We define the Gauss lift of a spacelike immersion f by

G f : M −→ G(Hp,q)
x 7−→ ( f (x), dx f (TxM)) .

(3.4)

With respect to the decomposition (2.7) of Subsection 2.4, for any (x, P) ∈ G(Hp,q), the pull-back through

G f of the tangent bundle of G(Hp,q) decomposes as

G∗f TG(Hp,q) = TM ⊕NM ⊕Hom(TM, NM) . (3.5)

4Throughout the paper, we use the symbol ‖ · ‖ to denote positive norms. Similarly, we will always use the symbol 〈·, ·〉 to denote

positive definite scalar products.
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Furthermore, with respect to the same decomposition,

dG f = (d f , 0, II) . (3.6)

Let gG f
denote the metric induced by G f over M.

Lemma 3.2. Let f : M → Hp,q be a spacelike immersion. If there exists C > 0 such that ‖II‖ < C, then

gT ≤ gG f
≤ (1 +C2)gT . (3.7)

Proof. Indeed, by (2.8) and (3.6), for all (u, v),

gG f
(u, v) = b(d f · u, d f · v) + bHom(II(u), II(v)) = gT(u, v) + bHom(II(u), II(v)) ,

and the first inequality follows. Observe now that, for all u,

bHom(II(u), II(u)) ≤ ‖II‖2b(d f · u, d f · u) ,

and the second inequality follows. �

3.2. Fermi charts. A key advantage of working with the double cover H
p,q
+ is the existence of nice global

coordinate systems that we now describe. Let (x, H) be a marked hyperbolic p-space in H
p,q
+ corresponding

to the orthogonal decomposition E = ℓ ⊕U ⊕ V . Let ‖.‖ denote the induced norm over U and let Bp denote

its unit ball. Note that the restriction of b to W := ℓ ⊕ V is negative-definite. Let Sq denote its unit sphere,

that is, the set of all y ∈ W such that b(y, y) = −1. We define the parametrisation Φ̂ : Bp × Sq → Qp,q by

Φ̂(u, w) := f (‖u‖)φ(u, w) , (3.8)

where,

φ(u, w) :=

(
2u

1 + ‖u‖2
, w

)
, (3.9)

and, for all t,

f (t) :=
1 + t2

1 − t2
. (3.10)

Let b′ denote the quadratic form obtained by reversing the sign of b over ℓ. The restriction of b′ to ℓ ⊕U is

positive-definite. Let Sp denote its unit sphere. Note now that, since we are working with H
p,q
+ , ℓ has a natural

orientation, so that Sp has a well-defined upper hemisphere, which we denote by S
p

+. Let σ : S
p

+ → Bp

denote stereographic projection, and define the parametrisation Ψ̂ : S
p
+ × Sq → Qp,q by

Ψ̂(u, w) := Φ̂(σ(u), w) . (3.11)

Finally, upon projectivising, we define the parametrisation Ψ : S
p

+ × Sq → H
p,q
+ by

Ψ(u, w) := [Ψ̂(u, w)] . (3.12)

We call Ψ the Fermi parametrisation of H
p,q
+ associated to (x, H). In this coordinate system, the point x cor-

responds to a point (0, w0) ∈ {0} × Sq, the hyperbolic p-space H identifies with Bp × {w0}, each submanifold

of the form Bp × {w} is a hyperbolic p-space, and {0} × Sq is a totally-geodesic timelike sphere.

The following result extends Proposition 3.5 of [CTT19].

Lemma 3.3. For any marked hyperbolic p-space (x, H), the map Ψ is a diffeomorphism from S
p
+ × Sq onto

H
p,q
+ . The pull-back through this map of the pseudo-hyperbolic metric is

Ψ
∗g = f (‖u‖)2

(
gS

p

+
− gSq

)
. (3.13)

Moreover, Ψ induces a diffeomorphism from Sp−1 × Sq into ∂∞H
p,q
+ , and the pull-back through this diffeo-

morphism of the conformal structure of ∂∞H
p,q
+ is compatible with the metric (gSp−1 − gSq).

Proof. Indeed, (3.13) follows by explicit calculation, as in [CTT19]. We likewise readily verify that Ψ yields

a diffeomorphism from S
p−1
+ × Sq into ∂∞H

p,q
+ . Finally, the above relations also imply that the conformal

structure of ∂∞H
p,q
+ is compatible with that of gSp−1 − gSq on Sp−1 × Sq, and this completes the proof. �
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We define the Fermi projection π : H
p,q
+ → H in the above Fermi chart by

(π ◦Ψ
−1)(y, z) := Ψ

−1(y, w0) . (3.14)

The following lemma summarises the properties of Fermi projections that will be required in the sequel.

Lemma 3.4. Let (x, H) be a marked hyperbolic p-space in H
p,q
+ with associated Fermi projection π. Then

(1) If x1, x2 ∈ H
p,q
+ are such that π(x1) = π(x2), and if, for each i, x̂i denotes the representative of xi in

Qp,q, then

b( x̂1, x̂2) ≥ −1 ,

with equality holding if and only if x1 = x2.

(2) For any vector v ∈ TH
p,q
+ ,

b(dπ(v), dπ(v)) ≥ b(v, v) .

Proof. To prove the first assertion, in the notation of Lemma 3.3, we need to show that the product of

x̂1 := Φ̂(u, w1) and x̂2 := Φ̂(u, w2) is bounded from below by −1. Let 〈·, ·〉W denote the restriction of −b to

W , and note that this form is positive-definite. Since 〈w1, w2〉W ≤ 1 for any two elements of the unit sphere

in W , a direct computation yields

b( x̂1, x̂2) = b

((
2u

1 − ‖u‖2 ,
1 + ‖u‖2
1 − ‖u‖2 w1

)
,

(
2u

1 − ‖u‖2 ,
1 + ‖u‖2
1 − ‖u‖2 w2

))

=
4‖u‖2

(1 − ‖u‖2)2
− (1 + ‖u‖2)2

(1 − ‖u‖2)2
〈w1, w2〉W ≥ −1 .

Equality holds if and only if 〈w1, w2〉W = 1, that is, if and only if w1 = w2. The second assertion follows

immediately from (3.13), and this completes the proof. �

3.3. Entire graphs. We now establish a suitable notion of entire graph in Hp,q and in H
p,q
+ . We first

consider the case of smooth submanifolds. Our definition will be based on the following lemma, where we

recall that S
p

+ denotes the hemisphere in Sp, endowed with the restriction of the spherical metric.

Lemma 3.5. For M a subset of H
p,q
+ , the following assertions are equivalent.

(1) M is a closed, connected, smooth, spacelike p-dimensional submanifold of H
p,q
+ .

(2) M is a closed, connected, smooth, spacelike submanifold of H
p,q
+ diffeomorphic to Rp.

(3) There exists a Fermi chart in which M is the graph of a smooth function ϕ : S
p
+ → Sq with ‖dϕ‖ < 1.

(4) In every Fermi chart, M is the graph of a smooth function ϕ : S
p
+ → Sq with ‖dϕ‖ < 1.

Proof. We first prove that (1) implies (4). Let (x, H) be a marked hyperbolic p-space and let π : H
p,q
+ → H

denote its Fermi projection. Since M is spacelike, by Item (2) of Lemma 3.4, π|M : M → H is a local

diffeomorphism. Since M is closed, and since π is proper, π|M is also proper, so that π|M is a covering map.

Since H is simply connected and M is connected, it follows that π|M is a homeomorphism, so that M is the

graph of some smooth function ϕ : S
p
+ → Sq. Since the condition of being spacelike only depends on the

conformal class of the pseudo-Riemannian metric, it follows by (3.13) that ϕ satisfies ‖dxϕ‖ < 1 for every

x ∈ H. This shows that (1) implies (4), as asserted.

In a similar manner, we show that the graph of any smooth function ϕ satisying ‖dϕ‖ < 1 is spacelike,

and (3) therefore implies (2). Since (4) trivially implies (3) and (2) trivially implies (1), this completes

the proof. �

Bearing in mind Lemma 3.5, we define smooth entire graphs in H
p,q
+ as follows.

Definition 3.6. A smooth entire graph in H
p,q
+ is a subset satisfying any (and hence all) of the conditions of

Lemma 3.5.
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Lemma 3.7. Let M be a smooth entire graph in H
p,q
+ . If x1, x2 ∈ M, and if, for each i, x̂i denotes the

representative of xi in Qp,q, then

b( x̂1, x̂2) ≤ −1 ,

with equality holding if and only if x1 = x2.

Proof. Let Φ̂ : Bp × Sq → Qp,q be a Fermi parametrisation such that x̂1 = Φ̂(0, N), where N denotes the

north pole of Sq. Let (u, w) ∈ Bp × Sq be such that x̂2 = Φ̂(u, w). By (3.8),

b( x̂1, x̂2) = −
1 + ‖u‖2
1 − ‖u‖2

〈N, w〉W = −1 + ‖u‖2
1 − ‖u‖2

cos
(
dS(N, w)

)
,

where 〈·, ·〉W = −b|W , which, we recall, is positive-definite, and dS here denotes the spherical distance in

Sq. Let dS also denote the spherical distance in Bp induced by the stereographic projection. Since M is the

graph of a smooth, strictly 1-Lipschitz function, and since (−cos) is increasing,

b( x̂1, x̂2) ≤ −
1 + ‖u‖2
1 − ‖u‖2 cos

(
dS(0, u)

)
,

with equality holding if and only if u = 0. However, we readily verify that

cos
(
dS(0, u)

)
=

1 − ‖u‖2
1 + ‖u‖2 ,

so that b( x̂1, x̂2) ≤ −1, as desired. Finally, since M is a strictly 1-Lipschitz graph, equality holds if and only

if x1 = x2, and this completes the proof. �

Remark 3.8. Lemma 3.7 implies that two points x1, x2 on a smooth entire graph M are connected by a

spacelike geodesic segment in H
p,q
+ . See also [CTT19, Lemma 3.7].

Corollary 3.9. Let M be a smooth entire graph in H
p,q
+ . If ι denotes the covering involution H

p,q
+ → Hp,q,

then ι(M) is disjoint from M.

Proof. By Lemma 3.7, given any two points x1, x2 ∈ M, b( x̂1, x̂2) ≤ −1. Hence b( x̂1, ι( x̂2)) = −b( x̂1, x̂2) ≥
1. By Lemma 3.7 again, ι( x̂2) is not in M, and the result follows. �

This allows us to define smooth entire graphs in Hp,q.

Definition 3.10. A smooth entire graph in Hp,q is a (connected) subset whose every lift to H
p,q
+ is a smooth

entire graph.

By Corollary 3.9, a smooth entire graph in Hp,q has two lifts to Hp,q, which are smooth entire graphs differing

from each other only by the covering involution. We now define

E := {smooth entire graphs in Hp,q} , and

E+ := {smooth entire graphs in H
p,q
+ } .

We furnish these spaces with their Hausdorff topologies. It follows from the above discussion that the natural

map from H
p,q
+ to Hp,q induces a double cover E+ → E.

The following lemma relates the condition of being a smooth entire graph to the completeness of the

induced metric.

Lemma 3.11. Let M be a connected, p-dimensional spacelike submanifold of Hp,q (or H
p,q
+ ).

(1) If the induced metric on M is complete, then M is a smooth entire graph.

(2) If M is a smooth entire graph with bounded second fundamental form, then its induced metric is

complete.
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Proof. It suffices to work with submanifolds of H
p,q
+ . To prove the first assertion, let π be the Fermi pro-

jection associated to some marked hyperbolic p-space (x, H). By by Item (2) of Lemma 3.4, since M is

spacelike, π is a distance-increasing local diffeomorphism. Since M is complete, π therefore has the path

lifting property, and is thus a covering map. Since H is simply connected, π is a diffeomorphism, so that, by

Lemma 3.5, M is an entire graph. The second item is proven in the case of surfaces in [LTW23, Corollary

3.30], and the general case is addressed in an analogous manner. This completes the proof. �

The following theorem due to Ishihara shows that, among maximal entire graphs, completeness of the

induced metric and boundedness of the second fundamental form are in fact equivalent. This will form the

basis of the compactness result that we will prove in Section 5.

Theorem 3.12 ([Ish88]). If M is a complete maximal p-dimensional submanifold of Hp,q, then the norm of

its second fundamental form is everywhere bounded above by pq.

It will be convenient to extend the notion of smooth entire graphs to subsets which are not necessarily

smooth. For this purpose, observe that the closure of E+ in the Hausdorff topology consists of those subsets

of H
p,q
+ which are represented in some Fermi chart - and thus, by Lemma 3.5, in any Fermi chart - as the

graphs of 1-Lipschitz functions.

Definition 3.13. We call a subset M of H
p,q
+ an entire graph whenever it is the graph of a 1-Lipschitz function

in some, and thus in every, Fermi chart. We call a subset M of Hp,q an entire graph whenever it lifts to an

entire graph M+ in H
p,q
+ .

Remark 3.14. As before, every entire graph in Hp,q has precisely two disjoint lifts in H
p,q
+ .

Let E (respectively E+) denote the space of entire graphs in Hp,q (respectively H
p,q
+ ). Let Lip1(S

p
+, Sq)

denote the space of 1-Lipschitz functions from S
p
+ into Sq, furnished with the topology of uniform conver-

gence. Given a marked hyperbolic p-space (x, H), let

Γ(x,H) : Lip1(S
p
+, Sq)→ E+ , (3.15)

denote the map which sends a function ϕ ∈ Lip1(S
p
+, Sq) to its graph in the Fermi chart of (x, H). With the

above definitions and topologies, Γ(x,H) trivially defines a homeomorphism from Lip1(S
p

+, Sq) into E+.

3.4. Locally uniformly spacelike families. We now recall the grassmannian bundle G(Hp,q
+ ) introduced

in Section 2.4. Given an element M ∈ E+, we define its Gauss lift in G(Hp,q
+ ) by

G(M) =
{
(x, TxM) ∈ G(Hp,q

+ )
}

. (3.16)

We say that a subset F ⊆ E+ is locally uniformly spacelike whenever the set⋃

M∈F
G(M) ∩ pr−1(K) (3.17)

is bounded in G(Hp,q
+ ) for every compact subset K of H

p,q
+ .

Lemma 3.15. For subsets F of E+, the following are equivalent.

(1) F is locally uniformly spacelike.

(2) For any marked hyperbolic p-space (x, H), and for all R > 0, there exists ǫ > 0 such that, for all

ϕ ∈ Γ
−1
(x,H)

(F ),
‖dϕ|B(x,R)‖ ≤ 1 − ǫ ,

where B(x, R) denotes the ball of radius R about x in H.

(3) There exists a marked hyperbolic p-space (x, H) with the property that, for all R > 0 there exists

ǫ > 0 such that, for all ϕ ∈ Γ
−1
(x,H)

(F ),

‖dϕ|B(x,R)‖ ≤ 1 − ǫ ,

where B(x, R) denotes the ball of radius R about x in H.
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Proof. First let (x, H) be a marked hyperbolic p-space in H
p,q
+ . Let J1 denote the space of 1-jets of smooth

functions over H, and let J1
1

denote the subset consisting of those jets (y,ϕ(y), dϕ(y)) such that ‖dyϕ‖ < 1.

Define G : J1
1
(X) → G(Hp,q

+ ) such that G(y,ϕ(y), dϕ(y)) is the tangent space of the graph of ϕ at x. Note

that this function is a homeomorphism.

We now show that (1) implies (2). Indeed, suppose that F is uniformly spacelike, let (x, H) be a marked

hyperbolic p-space with Fermi projection π, and choose R > 0. Since the closed ball B(x, R) in H is

compact, and since π is proper, the set K := π−1(B(x, R)) is also compact in H
p,q
+ . Since F is locally

uniformly spacelike, the set

A :=
{
(x, TxM) | M ∈ F , x ∈ K

}

then has compact closure in G(Hp,q
+ ). Since G is a homeomorphism, the set Â := G−1(A) likewise has

compact closure in J1
1
. However, for all ϕ ∈ Γ

−1
(x,H)

(F ) and, for all y ∈ B(x, R), the 1-jet of ϕ at y is an

element of Â. In particular,

sup

{
‖dyϕ‖ | ϕ ∈ Γ

−1
(x,H)

(F ) , y ∈ B(x, R)
}
≤ sup

{
‖dϕ(y)‖ | (y,ϕ(y), dϕ(y)) ∈ Â

}
< 1 , (3.18)

as desired.

Note that (2) trivially implies (3). We now show that (3) implies (1). Indeed, using the same notation

as before, suppose that (3.18) holds. In particular, the set Â has compact closure in J1
1
. Since G is a

homeomorphism, it follows that A := G(Â) has compact closure in G(Hp,q
+ ). Since A is the set of all tangent

planes over B(x, R) of elements of F , it follows that F is locally uniformly spacelike, as desired. �

Lemma 3.16. If F is a family of spacelike entire graphs in E+ such that

(1) the norms of the second fundamental forms of elements of F are uniformly bounded, and

(2) there exists a compact subset K ⊆ G(Hp,q
+ ) which meets the Gauss lift of every element of F ,

then F is locally uniformly spacelike.

Proof. Let (x, H) be a marked hyperbolic p-space and let π denote its Fermi projection. Given M ∈ F , let

πM denote the restriction of π to M, and let G(M) denote its Gauss lift. By Lemma 3.2 and Lemma 3.4 (2),
there exists C > 0 such that

gG(M) ≤ (1 +C2)gM ≤ (1 +C2)π∗MgH ,

where gM and gG(M) denote the respective metrics of M and G(M), and gH denotes the hyperbolic metric

of H. Now let L be a compact subset of H
p,q
+ and choose R > 0 such that

Diam(π(L) ∩ (π ◦ pr)(K)) < R.

By hypothesis, there exists y′ ∈ M such that Ty′M ∈ K. Let y be an element of L. By definition of R,

dH(π(y), π(y′)) < R so that, by the above inequality,

dG(M)(TyM, K) ≤ dG(M)(TyM, Ty′M) ≤ (1 +C2)R.

Since M and y are arbitrary, it follows that

⋃

M∈F

{
G(M) ∩ π−1(L)

}
⊂ BG(Hp,q

+ )

(
K, (1 +C2)R

)
,

where BG(Hp,q
+ )

(
K, (1+C2)R

)
here denotes the ball in G(Hp,q

+ ) of radius (1+C2)R about K. It follows that

F is locally uniformly spacelike, as desired. �
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4. Non-negative spheres

We now study topologically embedded spheres in ∂∞Hp,q and ∂∞H
p,q
+ . We introduce the concept of

admissibility for non-negative spheres in ∂∞H
p,q
+ , which will be the main geometric property that we will

use to prove Theorem A. Using Fermi charts, we study the geometries of non-negative spheres, positive

spheres and admissible non-negative spheres in ∂∞H
p,q
+ . We introduce the asymptotic boundary operator,

which associates a non-negative sphere to every entire graph, we study its topological properties, and we

describe the exceptional geometry of those entire graphs whose asymptotic boundaries are not admissible.

Finally, we conclude by studying the convex hulls of non-negative spheres, and their relationship to complete

maximal p-submanifolds.

4.1. Non-negative spheres. We begin by introducing the notions of positive and non-negative triples.

Definition 4.1. A triple of distinct points (x, y, z) in ∂∞Hp,q (or ∂∞H
p,q
+ ) is called

(1) positive whenever x ⊕ y ⊕ z is 3-dimensional with signature (2, 1);
(2) non-negative whenever x ⊕ y ⊕ z does not contain any negative-definite 2-plane.

This allows us to define positive and non-negative spheres.

Definition 4.2. A subset Λ of ∂∞Hp,q (or ∂∞H
p,q
+ ) is called

(1) a positive (p − 1)-sphere whenever it is homeomorphic to Sp−1 and any triple of distinct points of

Λ is positive;

(2) a non-negative (p − 1)-sphere whenever it is homeomorphic to Sp−1, any triple of distinct points of

Λ is non-negative and, if p = 2, Λ contains at least one positive triple.

Remark 4.3. When p = 2, non-negative spheres as in Definition 4.2 are precisely the semi-positive loops of

[LTW23].

We now describe how non-negative spheres in ∂∞Hp,q lift to ∂∞H
p,q
+ .

Definition 4.4. We say that two points x and y of ∂∞H
p,q
+ are antipodal whenever they represent the same

projective line with opposite orientations. We say that a non-negative (p− 1)-sphere in ∂∞H
p,q
+ is admissible

whenever it contains no pair of antipodal points.

Lemma 4.5. A subset Λ of ∂∞Hp,q is a non-negative (p − 1)-sphere if and only if any lift Λ+ to ∂∞H
p,q
+ is

an admissible non-negative (p − 1)-sphere.

Proof. Suppose first p > 2. Since Λ is a (p − 1)-sphere, it is simply connected. Since the projection

∂∞H
p,q
+ → ∂∞Hp,q is a double cover, it follows that Λ admits two disjoint lifts Λ± in ∂∞H

p,q
+ which are

non-negative. Since the covering involution of ∂∞H
p,q
+ → ∂∞Hp,q is x 7→ −x, it follows that neither lift

contains antipodal points, so that Λ+ and −Λ+ are admissible. Conversely, an admissible (p − 1)-sphere in

∂∞H
p,q
+ projects injectively to a non-negative p-sphere in ∂∞Hp,q, and this proves the result when p > 2.

When p = 2, it is shown in [LTW23, Lemma 2.8] that the lift of any non-negative sphere in ∂∞H2,q has

two connected components in ∂∞H
p,q
+ , and the proof proceeds as before. �

We will mostly work with admissible non-negative spheres in the double cover ∂∞H
p,q
+ . We now de-

scribe how these objects are characterized in Fermi charts. We first characterize non-negative and positive

spheres. The latter will be used in Section 9 to study the applications of Theorem A to the study of Anosov

representations.

Lemma 4.6. Let Λ+ be a subset of ∂∞H
p,q
+ . The following assertions are equivalent.

(1) Λ+ is a non-negative (p − 1)-sphere.

(2) Λ+ is homeomorphic to Sp−1 and, for every pair of points x, y in Λ+ and every choice of represen-

tatives x̂, ŷ, we have b( x̂, ŷ) ≤ 0.

(3) There exists a Fermi chart in which Λ+ is the graph of a 1-Lipschitz map ϕ : Sp−1 → Sq.
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(4) In every Fermi chart, Λ+ is the graph of a 1-Lipschitz map ϕ : Sp−1 → Sq.

Proof. The fact that (1) implies (2) is a direct generalization of [LTW23, Corollary 2.10].

We now show that (2) implies (1). Let (x, y, z) be a triple of distinct points of Λ+, and let V := x⊕ y⊕ z

denote the subspace that they generate. Let x̂, ŷ and ẑ denote respectively non-zero elements of the oriented

lines x, y and z, and recall that the Gram matrix of V is defined by

G :=


b( x̂, x̂) b( x̂, ŷ) b( x̂, ẑ)
b(ŷ, x̂) b(ŷ, ŷ) b(ŷ, ẑ)
b(ẑ, x̂) b(ẑ, ŷ) b(ẑ, ẑ)

 .

Since x̂, ŷ and ẑ are lightlike,

Det(G) = 2b( x̂, ŷ)b(ŷ, ẑ)b( x̂, ẑ) ≤ 0 . (4.1)

We claim that this implies that (x, y, z) is non-negative. Indeed, suppose the contrary, and that V contains

a negative-definite 2-plane. By (4.1), V is either negative-definite or null. However, in the former case, V

would contain no lightlike subspace, which is absurd, and in the latter, it would contain exactly one such

subspace, which is also absurd. It follows that (x, y, z) is non-negative, as asserted, and this proves that (2)
implies (1).

We now prove that (2) implies (4). Let Λ+ be a non-negative sphere and let (x, H) be a marked hyper-

bolic p-space, with associated Fermi projection π. In the notation of Lemma 3.3, the inner product of any

two points x̂ := φ(u1, w1) and ŷ := φ(u2, w2) in ∂∞H
p,q
+ � Sp−1 × Sq is given by

b( x̂, ŷ) = 〈u1, u2〉U − 〈w1, w2〉W , (4.2)

where here 〈·, ·〉U and 〈·, ·〉W denote the respective restrictions of b to U and of −b to W , defined as in Section

3.2.

Now, assume x̂ and ŷ are distinct elements of Λ+. By hypothesis, 〈w1, w2〉W ≥ 〈u1, u2〉U . However,

denoting the spherical distances in Sp−1 and Sq both by dS ,

〈u1, u2〉U = cos(dS (u1, u2)) , and

〈w1, w2〉W = cos(dS (w1, w2)) .
(4.3)

Thus, since cos is decreasing on [0, π], dS (u1, u2) ≥ dS (w1, w2). In particular, π|Λ+ is injective, and, by the

conservation of domain, its image is open. Since Sp is compact, its image is also compact, and thus closed

so that, by connectedness, π(Λ+) coincides with the whole of Sp. This shows that Λ+ is the graph of some

1-Lipschitz function ϕ : Sp−1 → Sq and (2) implies (4), as desired.

Using again (4.2) and (4.3), we readily see that (3) implies (2). Since (4) trivially implies (3), this

completes the proof. �

Recall that a map f between metric spaces is contractive whenever it satisfies d( f (x1), f (x2)) < d(x1, x2)
for any pair (x1, x2) of distinct points. Using [DGK18, Lemma 3.2] and repeating the proof of Lemma 4.6

replacing all inequalities with strict inequalities, we obtain the following result.

Lemma 4.7. Let Λ+ be a subset of ∂∞H
p,q
+ . The following assertions are equivalent.

(1) Λ+ is a positive (p − 1)-sphere.

(2) Λ+ is homeomorphic to Sp−1 and, for every pair of distinct points x, y in Λ+, and for every choice

of representatives x̂, ŷ, we have b( x̂, ŷ) < 0.

(3) There exists a Fermi chart in which Λ+ is the graph of a contractive map ϕ : Sp−1 → Sq.

(4) In every Fermi chart, Λ+ is the graph of a contractive map ϕ : Sp−1 → Sq.

Remark 4.8. It follows from Item (2) of the above lemma that a positive sphere is an admissible non-negative

sphere.

We now have the following characterisation of admissible non-negative spheres.

Lemma 4.9. Let Λ+ be a subset of ∂∞H
p,q
+ . The following assertions are equivalent.
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(1) Λ+ is an admissible non-negative (p − 1)-sphere.

(2) Λ+ is a non-negative (p − 1)-sphere not contained in the orthogonal complement of any point of

∂∞Hp,q.

(3) There exists a Fermi chart in which Λ+ is the graph of a 1-Lipschitz map ϕ : Sp−1 → Sq whose

image does not contain antipodal points.

(4) In every Fermi chart, Λ+ is the graph of a 1-Lipschitz map ϕ : Sp−1 → Sq whose image does not

contain antipodal points.

Proof. To show that (2) implies (1), we prove the contrapositive. Let Λ+ be a non-negative sphere which

is not admissible. Let x̂ and −x̂ denote representatives of a pair of antipodal points that it contains. Let ŷ

denote the representative of any other point of Λ+. By Lemma 4.6, b( x̂, ŷ) ≤ 0 and b((−x̂), ŷ) ≤ 0, so that

b( x̂, ŷ) = 0. It follows that Λ+ is contained in x⊥, as desired.

We now show that (1) implies (4). By Lemma 4.6, in every Fermi chart, Λ+ is the graph of a 1-Lipschitz

map ϕ : Sp−1 → Sq. Suppose now that ϕ(Sp−1) contains a pair (w,−w) = (ϕ(u),ϕ(u′)) of antipodal points.

Since ϕ is 1-Lipschitz, dS (w,−w) = π and dS (u, u′) ≤ π, it follows that dS (u, u′) = π, so that u′ = −u and

these points are therefore antipodal. It follows that Λ+ itself contains the antipodal pair (u, w), (−u,−w),
and is therefore not admissible.

Since (4) trivially implies (3), it remains only to show that (3) implies (2). By Lemma 4.6, Λ+ is non-

negative. Suppose now that Λ is contained in l⊥ for some l := φ(u0, w0), where φ is as in Lemma 3.3. By

(4.2),

0 = 〈u0, u0〉U − 〈w0,ϕ(u0)〉W = 1 − 〈w0,ϕ(u0)〉W ,

so that 〈w0,ϕ(u0)〉W = 1, and thus ϕ(u0) = w0. Likewise

0 = 〈u0, (−u0)〉U − 〈w0,ϕ(−u0)〉W = −1 − 〈w0,ϕ(−u0)〉W ,

so that 〈w0,ϕ(−u0)〉W = −1, and thus ϕ(−u0) = −w0. The image of ϕ therefore contains the antipodal

points ±w0, which is absurd, and it follows that (3) implies (2), as desired. �

4.2. Asymptotic boundaries. Define

B :=
{
non-negative (p − 1)-spheres in ∂∞Hp,q} , and

B+ :=
{
admissible non-negative (p− 1)-spheres in ∂∞H

p,q
+

}
.

(4.4)

We furnish these spaces with the Hausdorff topology. By Lemma 4.5 the projection ∂∞H
p,q
+ → ∂∞Hp,q

induces a two-to-one map B+ → B.

The Hausdorff closure of B+ in the space of closed subsets of ∂∞H
p,q
+ is the space B+ of non-negative

spheres. We define the asymptotic boundary operator

∂+∞ : E+ → B+ (4.5)

as follows. Let M ⊂ H
p,q
+ be an entire graph, let (x, H) be a marked hyperbolic p-space, let Γ(x,H) be

as in equation (3.15), denote ϕ := Γ
−1
(x,H)

(M), and note that ϕ extends uniquely to a 1-Lipschitz function

ϕ : S
p

+ → Sq. We define

∂+∞M := ϕ(Sp−1) . (4.6)

This trivially does not depend on the marked hyperbolic p-space chosen and, since ϕ depends continuously

on M, so too does ∂+∞M.

Lemma 4.10. Let M be an entire graph in H
p,q
+ . The following assertions are equivalent.

(1) ∂+∞M is not admissible.

(2) M contains a complete, lightlike geodesic.

(3) M is foliated by complete, lightlike geodesics.
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(4) In every Fermi chart, M is the graph of a 1-Lipschitz map ϕ : S
p

+ → Sq of the form

ϕ(sin(t)u0 + cos(t)v) = sin(t)w0 + cos(t)ϕ(v) (4.7)

for some u0 ∈ Sp−1, w0 ∈ Sq and some 1-Lipschitz function ϕ from the hemisphere u⊥
0
∩ S

p
+ to the

(q − 1)-sphere w⊥
0
∩ Sq.

Proof. We first prove that (1) implies (4). Suppose that ∂∞M is not admissible. Let (x, H) be a marked

hyperbolic p-space, and denote ϕ := Γ
−1
(x,H)

(M). Since ∂∞M is not admissible, it contains a pair of antipodal

points. In the Fermi chart of (x, H), this pair has the form ±(u0, w0) ∈ Sp−1 ×Sq. Let γ : (−π/2, π/2) → S
p

+
be a unit speed geodesic such that γ(±π/2) = ±u0, and note that

γ(t) = sin(t)u0 + cos(t)v ,

for some v ∈ S
p−1
+ . Since ϕ is 1-Lipschitz

π = d(−w0, w0) ≤ L[ϕ ◦ γ] ≤ L[γ] = d(−u0, u0) = π ,

so that (ϕ ◦ γ) is also a unit speed geodesic, and thus has the form

(ϕ ◦ γ)(t) = sin(t)w0 + cos(t)ϕ(v) ,

for some ϕ(v) ∈ Sq−1. Since γ is arbitrary, ϕ satisfies (4.7). Furthermore, upon restricting to the orthogonal

complement of u0, we see that ϕ is 1-Lipschitz, and this proves (4).
We now show that (4) implies (3). Indeed, with γ as above, γ(t) := (γ(t), (ϕ ◦ γ)(t)) is a clearly a

lightlike geodesic for the conformal metric gS
p
+
− gSq , with endpoints ±(u0, v0). Since Hp,q is geodesically

complete, and since unparameterized lightlike geodesics only depend on the conformal class of the pseudo-

riemannian metric (see [GHL04, Proposition 2.131]), γ is a complete lightlike geodesic for the metric g, and

(3) follows. Finally, (3) trivially implies (2), and, since the endpoints of a complete lightlike geodesic are

antipodal, (2) implies (1). This completes the proof. �

Corollary 4.11. The asymptotic boundary operator ∂+∞ restricts to a continuous map from E+ to B+, and

induces a continuous map ∂∞ : E → B such that the following diagram commutes.

E+ B+

E B

∂+∞

∂∞
.

Proof. Indeed, by Definition 3.6 and Lemma 4.10, if M ∈ E+, then ∂+∞(M) is admissible. The result now

follows by Lemma 4.5. �

4.3. Convex hulls. Given a subset Λ in P+(E), its convex hull Conv(Λ) is the intersection of all closed

half-spaces containing Λ. Observe that, if Λ is a non-negative set, then it is contained in at least one closed

half-space: indeed, for any a ∈ Λ, one has b(a, b) ≤ 0 for all b ∈ Λ, and Λ is thus contained in the half-

space defined by b(a, ·) ≤ 0. Furthermore, a suitable adaptation of the proof of [LTW23, Proposition 2.15,

Item (vi)] shows that Conv(Λ) is a subset of H
p,q
+ ∪ ∂∞H

p,q
+ .

Lemma 4.12. Conv is continuous with respect to the Hausdorff topology of B+ and the Hausdorff topology

of the space of closed, convex subsets of P+(E).

Proof. Indeed, upon taking a projective chart, we identify H
p,q
+ with the interior of the quadric Qp,q in

Rp,q+1. With this identification, the convex hull of any subset of H
p,q
+ ∪ ∂∞H

p,q
+ identifies with its convex

hull in Rp,q+1. The result now follows by the continuity of convex hulls in Rn, see [Smi20, Lemma 2.1] or

[Ser89]. �
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The following result is proven in [LTW23, Proposition 2.15, Item (vi)] in the case p = 2, but the proof

extends to our case.

Lemma 4.13. For every non-negative sphere in ∂∞H
p,q
+ , the intersection between Conv(Λ) and ∂∞H

p,q
+

coincides with Λ.

We also have

Lemma 4.14. If M is a complete maximal submanifold of H
p,q
+ , then M is contained in Conv(∂∞M).

Proof. Let M be a complete maximal submanifold of H
p,q
+ , and let ϕ ∈ E∗ be a linear form on E. Identifying

H
p,q
+ with the quadric Qp,q, and decomposing the trivial covariant derivative D on E along M ⊂ Qp,q ⊂ E,

we have for any vector fields X, Y over M and for any point x ∈ M,

(DXY)x = (∇T
XY)x + II(X, Y)x + b(X, Y)x , (4.8)

where ∇T denotes the Levi-Civita covariant derivative over M, and II denotes its second fundamental form.

In particular, for any u ∈ TxM and for any geodesic γ(t) in M with
•
γ(0) = u,

HessM
x ϕ(u, u) =

d2

dt2

∣∣∣∣∣∣
t=0

ϕ(γ(t)) = ϕ((Du
•
γ)x) = ϕ(II(u, u)x) + b(u, u)ϕ(x) .

Taking the trace with respect to gI yields

∆ϕ = pϕ ,

where ∆ is the Laplace-Beltrami operator on M. It now follows by the maximum principle that if ϕ is

positive (respectively negative) on ∂∞M, then it must also be positive (respectively negative) on M, and the

result follows. �

5. Compactness

We now begin our study of complete maximal spacelike submanifolds of Hp,q. Recall that, by Lemma

3.11, every complete maximal p-dimensional submanifold is an entire graph. We thus define

M := {complete maximal p-dimensional submanifolds of Hp,q} ⊂ E , and

M+ := {complete maximal p-dimensional submanifolds of H
p,q
+ } ⊂ E+ ,

(5.1)

and we equip these subspaces with the topologies inherited from E and E+ respectively. The aim of this

section is to prove the following result.

Theorem 5.1. Let {Mn}n∈N be a sequence inM+. Either

(1) {Mn}n∈N subconverges in the C∞
loc

topology to a complete maximal p-submanifold of H
p,q
+ , or

(2) {Mn}n∈N subconverges in the Hausdorff topology to a Lipschitz p-submanifold foliated by complete,

lightlike geodesics, all having the same endpoints at infinity.

As a consequence, we will derive the following properness result.

Corollary 5.2. The boundary maps ∂∞ :M→ B and ∂+∞ :M+ → B+ are proper.

5.1. Compactness I - smooth limits. Let M̂ denote the space of all pairs of the form (x, M), where M is

inM and x is a point of M. We equip this space with the topology that it inherits as a subset of Hp,q ×M.

We define the continuous maps τ : M̂ → G(Hp,q) by

τ(x, M) := TxM . (5.2)

We define the space M̂+ and the map τ+ : M̂+ → G(Hp,q
+ ) in a similar manner.

Theorem 5.3. The maps τ : M̂ → G(Hp,q) and τ+ : M̂+ → G(Hp,q
+ ) are proper.

In the context of this section, elliptic regularity is expressed as follows.
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Lemma 5.4. Let {Mn}n∈N be a sequence of maximal entire graphs in H
p,q
+ . If this sequence converges in the

C
1,α
loc

sense to a spacelike entire graph M∞, say, then M∞ is also maximal, and {Mn}n∈N converges to M∞ in

the C∞
loc

sense.

Proof. Let x0 be a point of M∞. Choose Fermi coordinates associated to the marked hyperbolic p-space

(x0, H) where Tx0
M∞ = Tx0

H. By Lemma 3.5, M∞ is the graph of a smooth 1-Lipschitz function f∞ :

S
p
+ → Sq. Using stereographic projection, we identify S

p
+ with Bp and the complement of a point in Sq

with Rq, in such a manner that x0 identifies with (0, 0). Since f∞ is 1-Lipschitz, its image is contained in a

hemisphere (see, for example, [Hei05, Lemma 2.8]), and we thus view f∞ as a function from Bp to Bq. For

large n, Mn thus also identifies with the graph of a smooth function fn : Bp → Bq.

Recall now that maximality is a quasi-linear property. That is, for all n, and for all x ∈ Bp(0, ǫ),
∑

i, j

a
i j
n (x)(∂i∂ j fn)(x) = bn(x) , (5.3)

where
a

i j
n (x) := A(J1 fn(x), J1g(J0 fn)) , and

bn(x) := B(J1 fn(x)) ,
(5.4)

for some smooth functions A and B, where g here denotes the pseudo-hyperbolic metric over Bp ×Bq and,

for all k, Jk denotes the k-jet operator. Differentiating (5.3) yields, for all k, for all n, and for all x,
∑

i, j

a
i j
n (x)(∂i∂ jD

k fn)(x) = bn,k(x) , (5.5)

where

bn,k(x) := Bk(Jk+1 fn(x), Jk+1g(J0 fn)) , (5.6)

for some smooth function Bk.

We now prove by induction that, for all k, there exists Ck such that, for all n,

‖ fn‖Ck,α(B(0,ǫ/2k−1)) ≤ Ck .

Indeed, by hypothesis, the result holds for k = 1. Suppose now that the result holds for k = l. Since M∞ is

spacelike, and since { fn}m∈N converges in the C1
loc

sense to f∞, there exists B1 > 0 such that, for all n, over

B(0, ǫ), ∑

i, j

a
i j
n ≥

1

B1

δi j .

By (5.4), (5.6) and the inductive hypothesis, there exists B2 > 0 such that, for all n, i, j we have

‖ai j
n ‖C0,α(B(0,ǫ/2l−1)), ‖bn,l−1‖C0,α(B(0,ǫ/2l−1)) ≤ B2 .

Upon applying the Schauder estimates to (5.5) (see Chapter 6 of [GT01]), we see that there exists B3 > 0

such that, for all n,

‖ fn‖Cl+1,α(B(0,ǫ/2l)) ≤ B3 .

Thus, for all k, and for all β < α, { fn}n∈N converges to f∞ in the Ck,β sense over Bǫ/2k−1(0). Since x0 is

arbitrary, it follows that {Mn}n∈N converges to M∞ in the C∞
loc

sense, and this completes the proof. �

Proof of Theorem 5.3. Up to taking lifts, it suffices to prove the statement for τ+. Let {(xn, Mn)}n∈N be a

sequence of elements of M̂+ such that {Txn
Mn}n∈N is bounded. We work in the Fermi chart corresponding

to some marked hyperbolic p-space (x0, H). Upon applying a (bounded) sequence of isometries of H
p,q
+ , we

may suppose that, for all n, xn = x0 and Txn
Mn = Tx0

H. For all n, let fn : S
p
+ → Sq denote the function

whose graph is Mn. Since, for all n, fn is 1-Lipschitz, upon extracting a subsequence if necessary, we may

suppose that { fn}n∈N converges in the C0,α sense for all α to the 1-Lipschitz function f∞.

By Theorem 3.12, the second fundamental forms of the graphs of these functions are bounded above by

pq. By Lemma 3.16, the sequence { fn}n∈N is locally uniformly spacelike. We claim that uniform bounds



22 A. SEPPI, G. SMITH, AND J. TOULISSE

also hold for the second derivatives of these functions. Indeed, choose R > 0, and let x be a point of B(0, R)
in Hp. For all n, let αn,x : H

p,q
+ → H

p,q
+ be an isometry that sends xn := (x, fn(x)) to x0 and Txn

Mn to Tx0
H,

and let f ′n,x denote the function whose graph is αn,xMn. For all n, since D2 f ′n,x(0) is the second fundamental

form of αn,xMn at (0, 0), by Theorem 3.12, its norm is uniformly bounded above by pq. Thus, since, for

all x and for all n, D2 fn(x) depends only on D2 f ′n,x(0) and αn,x, and since the family (αn,x)n∈N,x∈BR(0) is

precompact, ‖D2 fn(x)‖ is uniformly bounded over B(0, R), as asserted.

By the Arzelà-Ascoli Theorem, { fn}n∈N converges to f∞ in the C
1,α
loc

sense, for all α, and f∞ is a C1,α

function with spacelike graph. It then follows by Lemma 5.4 that f∞ is smooth and maximal, and that

{ fn}n∈N converges towards this function in the C∞
loc

sense. Finally, since the second fundamental form of Mn

has norm bounded above by pq, the same holds for the limit M∞. It follows by Lemma 3.11 that M∞ is

complete, and this completes the proof. �

5.2. A dynamical interlude. In order to complete the proof of Theorem 5.1, it is necessary to understand

the structure of diverging sequences in O(p, q). This theory is well-known, and we recall the main ideas

for the reader’s convenience. Let (F, B) be a (p + q)-dimensional vector space equipped with a signature

(p, q) bilinear form B, and let O(p, q) denote the group of linear endomorphisms of F preserving B. We

prove the following lemma, that we will apply in Section 5.3 in the situation where F = Tx0
H

p,q
+ for some

x0 ∈ H
p,q
+ , and B is the pseudo-riemannian metric of H

p,q
+ on Tx0

H
p,q
+ .

Lemma 5.5. Let {gn}n∈N be an unbounded sequence in O(p, q). After extracting a subsequence if necessary,

there exists a sequence {µn}n∈N of positive numbers converging to +∞ such that {exp(−µn)gn}n∈N converges

to some linear map ϕ ∈ End(F) with degenerate kernel and totally isotropic image.

We first establish some notation. Let F = U ⊕ V be a B-orthogonal splitting such that U has signature

(p, 0), and denote

θ :=

(
IdU 0

0 −IdV

)
, (5.7)

so that Bθ(x, y) := B(θ(x), y) defines a positive-definite scalar product on F. The set of fixed points of

the action of θ by conjugation defines a maximal compact subgroup K of O(p, q) which is isomorphic to

O(p) ×O(q).
Let (u1, · · · , up) and (v1, · · · , vq) be respectively orthonormal bases of U and V with respect to Bθ. Let

m0 := min{p, q}. For each i ∈ {1, · · · , m0} denote

Ei = span{ui + vi} , E∨i = θ(Ei) , W =

( m0⊕

i=1

Ei ⊕ E∨i

)⊥
. (5.8)

This yields the decomposition

F = E1 ⊕ · · · ⊕ Em0
⊕ E∨m0

⊕ · · · ⊕ E∨1 ⊕W . (5.9)

Note that

W =



span{vp+1, . . . , vq} if p < q ,

span{uq+1, . . . , up} if p > q , and

{0} otherwise.

(5.10)

In particular, the restriction of B to W is definite: negative-definite if p < q, and positive-definite if p > q.

For λ = (λ1, . . . , λm0
) ∈ Rm0 , let a(λ) denote the diagonal matrix which, with respect to the decomposi-

tion (5.9), has coefficients (λ1, · · · , λm0
,−λm0

, · · · ,−λ1, 0W) . The Cartan subspace associated to the above

bases is the space of matrices of the form a(λ), and its closed Weyl chamber is

a
+

:=
{
a(λ) | λ1 ≥ λ2 ≥ · · · ≥ λm0

≥ 0
}

. (5.11)

We are now ready to state the Cartan decomposition theorem (see [Kna02]).
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Theorem 5.6. For any g ∈ O(p, q), there exist k, k′ ∈ K and a unique a(λ) ∈ a+ such that

g = k exp(a(λ))k′. (5.12)

This now allows us to prove Lemma 5.5.

Proof of Lemma 5.5. Let gn =: kn exp(a(λn))k′n be a Cartan decomposition of gn, where here λn :=
(λ1,n, · · · , λm0,n). Define µn := λ1,n. Since {gn}n∈N is unbounded, upon extracting a subsequence if nec-

essary, we may suppose that that {µn}n∈N tends to infinity. We may likewise suppose that, for any i,

lim
n→∞

exp(λi,n − µn) = αi ∈ [0, 1] and that the sequences {kn}n∈N and {k′n}n∈N converge to k∞ and k′∞ re-

spectively. Since 1 = α1 ≥ · · · ≥ αm0
≥ 0,

lim
n→∞

(exp(−µn)gn) = k∞h∞k′∞ ,

where h∞ is the diagonal matrix with coefficients (1,α2, · · · ,αm0
, 0, · · · , 0). The result follows from the fact

that the kernel of h∞ has the form E j ⊕ · · · ⊕ Em0
⊕ E∨m0

⊕ · · · ⊕ E∨
1
⊕W and that its image is E1 ⊕ · · · ⊕ E j−1

where j > 1 is the least integer for which α j = 0. �

5.3. Compactness II - degenerate limits. Theorem 5.1 will now follow upon describing the behaviour of

diverging sequences inM.

Proof of Theorem 5.1. We work in the double cover H
p,q
+ . The result for Hp,q then follows upon taking lifts.

Given a sequence {Mn}n∈N inM+, we will show that, up to extracting subsequences, either it converges in

the C∞
loc

sense to an element ofM+, or it converges to an entire graph of the form described in Lemma 4.10.

We work in the Fermi chart of some marked hyperbolic p-space (x, H). Let Γ(x,H) be as in equation

(3.15). For all n, denote ϕn := Γ
−1
(x,H)

(Mn), and note that ϕn is smooth for all n. Suppose that {ϕn}n∈N does

not subconverge in the C∞
loc

sense to a smooth function f∞ : Bp → Sq whose graph is maximal. By Theorem

5.3, for every y ∈ H, the sequence {T(y,ϕn(y))Mn}n∈N is unbounded in G(Hp,q
+ ). Since E is compact, we may

suppose that {Mn}n∈N converges in the Hausdorff sense to some entire graph M∞, say.

We now show that M∞ contains a complete lightlike geodesic through every point. We continue to work

in the above Fermi chart. Choose y ∈ H and, for all n, denote ŷn := (y,ϕn(y)). Note first that, since the

fibre over y in H
p,q
+ is compact, upon applying a bounded sequence of isometries of H

p,q
+ , we may suppose

that, for all n, (y,ϕn(y)) = x0. For all n, let gn ∈ StabO(p,q+1)(x0) be such that gnTx0
H = Tx0

Mn. Since

{Tx0
Mn}n∈N diverges, so too does {gn}n∈N. By Lemma 5.5, we may suppose that there exists a sequence

{µn}n∈N of positive real numbers converging to +∞ such that lim
n→∞

(e−µn gn) = g∞ for some linear map g∞

with degenerate kernel and isotropic image.

For all n, denote M′n := g−1
n Mn. By Theorem 5.3, {M′n}m∈N subconverges to a complete maximal p-

dimensional submanifold M′∞, say. For all n ∈ N ∪ {∞}, denote S n := exp−1
x (M′n). Then {S n}n∈N is a

sequence of submanifolds of Tx0
H

p,q
+ , passing through the origin, and tangent to Tx0

H at this point. Further-

more, this sequence converges to S∞ in the C∞
loc

sense.

For all n ∈ N ∪ {∞}, let δn : (−ǫ, ǫ) → S n be a smoothly immersed curve such that δn(0) = 0. Suppose

furthermore that the sequence {δn}n∈N converges in the C∞
loc

sense to δ∞, and that the derivative at t = 0 of

δ∞ does not vanish. Since Ker(g∞) is degenerate, it has trivial intersection with TxH, and so, upon reducing

ǫ if necessary, we may suppose that (g∞ ◦ δ∞) is a smoothly immersed curve in some isotropic subspace of

Tx0
H

p,q
+ .

For all n, we now denote

γn(t) := (gn ◦ expx0
◦δn)(e

−µn t) = (expx0
◦gn ◦ δn)(e

−µn t) ,

where the last equality follows from the fact that expx0
◦gn = gn ◦ expx0

, since gn is an isometry of H
p,q
+ .

The sequence {γn}n∈N thus converges in the C∞
loc

sense to the complete lightlike geodesic

γ∞(t) := expx0

(
tg∞(

•
δ∞(0))

)
.
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It follows that M∞ contains a complete lightlike geodesic passing through the point y, and this concludes

the proof. �

We now prove Corollary 5.2.

Proof of Corollary 5.2. Up to taking lifts, it suffices to prove the statement for ∂+∞ : M+ → B+. Suppose

that ∂+∞ :M+ → B+ is not proper. Let {Λn}n∈N be a sequence in B+ converging to Λ∞ ∈ B+, say. For all n,

let Mn ∈ M+ be such that ∂∞Mn = Λn and suppose that the sequence {Mn}n∈N does not subconverge to any

element ofM+. By Theorem 5.1, up to extraction of a subsequence, this sequence converges to an entire

graph M∞, say, containing a complete lightlike geodesic. By Lemma 4.10, Λ∞ = ∂∞M∞ is not admissible.

This is absurd, and the result follows. �

6. Uniqueness

We now prove that, given an admissible sphere Λ in ∂∞Hp,q (or ∂∞H
p,q
+ ), there is at most one complete

maximal p-submanifold M whose asymptotic boundary is Λ.

Theorem 6.1. The boundary maps ∂∞ : M → B and ∂+∞ : M+ → B+ are injective. In particular, a non-

negative (p − 1)-sphere in ∂∞Hp,q or ∂∞H
p,q
+ is the asymptotic boundary of at most one complete maximal

p-submanifold.

In particular, this yields the following useful corollary.

Corollary 6.2. Let Γ be a subgroup of PO(p, q + 1) and denote by MΓ and BΓ the space of Γ-invariant

elements inM and B respectively. If M is an element ofM such that ∂∞M ∈ BΓ, then M ∈ MΓ.

The proof of this result is similar in spirit to that given in [LTW23, Section 4] for the case H2,n, although a

litte more care is required in the present, higher-dimensional setting.

6.1. The test function. The result will follow upon applying the maximum principle to a certain well

chosen function that we describe in this section. Recall that, given a point x ∈ H
p,q
+ , x̂ ∈ Qp,q denotes its

unique representative such that b( x̂, x̂) = −1.

Lemma 6.3. Let Λ be a non-negative sphere in ∂∞H
p,q
+ . If x is an element in Conv(Λ)∩H

p,q
+ and if {yn}n∈N

is a sequence in H
p,q
+ converging to a point y in Λ, then b( x̂, ŷn) tends to −∞.

Proof. The arguments of [LTW23, Proposition 2.15] show that, since Λ is a non-negative sphere, b( x̂, ŷ) < 0

for any representative ŷ ∈ E of y. By hypothesis, there exists a sequence {ǫn}n∈N of positive numbers,

converging to zero, such that ǫnŷn → ŷ. Since b( x̂, ǫnŷn) → b( x̂, ŷ) < 0, it follows that b( x̂, ŷn) → −∞, as

desired. �

We now describe the function of interest to us. Upon taking lifts, it will suffice to show that the boundary

operator ∂+∞ : M+ → B+ is injective. Let M1, M2 ∈ M+ be such that ∂+∞M1 = ∂+∞M2 = Λ ∈ B+. Using

the identification of H
p,q
+ with the quadric Qp,q = {x̂ ∈ E , b( x̂, x̂) = −1} we define

β : M1 ×M2 −→ R

(x, y) 7−→ b( x̂, ŷ) .
(6.1)

Note that, by Lemma 3.7, if M1 = M2 then the supremum of β is −1, and is achieved at all pairs of the form

(x, x). We now show that this condition in fact characterises equality of M1 and M2.

Lemma 6.4. If M1 is different from M2 then sup β ∈ (−1, 0].

Proof. By Lemma 4.14 and Lemma 6.3, for all x1 ∈ M1, Λ is disjoint from x⊥
1

. However, by Lemma 4.14,

M2 is contained in Conv(Λ), and is therefore also disjoint from x⊥
1

, so that β(x1, ·) does not vanish on M2.

Since, by Lemma 6.3, β(x1, y) becomes negative as y approaches Λ, it follows that β(x1, x2) < 0 for any

(x1, x2) ∈ M1 ×M2.
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We now work in a Fermi chart with Fermi projection π. Since M1 and M2 are complete, they are entire

graphs. In particular, if M1 , M2, then there exists (x1, x2) ∈ M1 ×M2 such that x1 , x2 and π(x1) = π(x2).
It now follows by Lemma 3.4 (1) that β(x1, x2) > −1, and the result follows. �

We now compute the Hessian of β, using the quadric model Qp,q.

Lemma 6.5. The Hessian of β at a point p := (x1, x2) in M1 × M2 in the direction v := (u1, u2) in

Tx1
M1 × Tx2

M2 is given by

Hesspβ(v, v) = (‖u1‖2 + ‖u2‖2))β(p) + 2b(u1, u2) + b(II1(u1, u1), x2) + b(x1, II2(u2, u2)) ,

where, for each i, IIi denotes the second fundamental form of Mi and ‖ui‖ =
√

b(ui, ui).

Proof. Let γi be a local geodesic in Mi with γi(0) = xi and
•
γi(0) = ui. Using the decomposition (4.8) of

the trivial connection D on E, we obtain

Hesspβ(v, v) =
d2

dt2

∣∣∣∣∣∣
t=0

b(γ1(t), γ2(t))

= b(‖u1‖2x1 + II1(u1, u1), x2) + 2b(u1, u2) + b(x1, ‖u2‖2x2 + II2(u2, u2)) ,

as desired. �

6.2. A linear-algebraic interlude. Theorem 6.1 will now be a consequence of the following technical

result of linear algebra.

Lemma 6.6. Let U and V be finite dimensional Euclidean vector spaces of equal dimension and let ϕ be an

endomorphism of U ⊕ V of the form

ϕ =

(
µId + A M∗

M µId + B

)
, (6.2)

where

(1) µ is a real number in (−1,+∞),
(2) A and B are traceless and symmetric,

(3) M∗ is the adjoint of M with respect to the underlying scalar products of U and V, and

(4) for every u in U, ‖M(u)‖ ≥ ‖u‖.
Then ϕ has at least one positive eigenvalue.

Proof. Since the endomorphism M∗M of U is symmetric and non-negative semi-definite, there is an or-

thonormal basis (u1, · · · , un) of U such that, for each i, M∗M(ui) = λ2
i
ui for some λi ∈ R. Observe now

that for every i, j,

〈M(ui), M(u j)〉 = 〈M∗M(ui), u j〉 = λ2
i 〈ui, u j〉 = λ2

i δi j , (6.3)

so that, by (4), we may take λi ≥ 1 for all i. Furthermore, setting vi := 1
λi

M(ui) yields an orthonormal basis

B = (u1, · · · , un, v1, · · · , vn) of U ⊕ V with respect to which both blocks M and M∗ in (6.2) are represented

by the diagonal matrix Λ = diag(λ1, · · · , λn).
Consider now the orthogonal matrix

P :=
1
√

2

(
Id Id

−Id Id

)
.

A direct computation yields

ϕP−1B = P−1ϕBP = 2

(
µId −Λ + 1

2
(A + B) 1

2
(A − B)

1
2
(A − B) µId + Λ + 1

2
(A + B)

)
.

Since µ > −1 and λi ≥ 1, and since A and B are traceless, the trace of µId + Λ + 1
2
(A + B) is positive, so

that the diagonal of ϕP−1B has at least one positive element. However, by the Schur-Horn theorem [Sch23]

(see also [MS17, Example 5.50] for a proof using moment maps), the diagonal vector (d1, · · · , d2n) of ϕP−1B
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is contained in the permutation polytope generated by the eigenvalues of ϕP−1B, and it follows that ϕP−1B has

at least one positive eigenvalue, as desired. �

Corollary 6.7. For any point p in M1 × M2 with β(p) > −1, there exists a vector v in Tp(M1 × M2) such

that Hesspβ(v, v) > 0.

Proof. By Lemma 6.5, with respect to the splitting Tx1
M1 ⊕ Tx2

M2, the matrix Hesspβ(v, v) can be written

in the form 〈ϕ(v), v〉, where 〈·, ·〉 is the scalar product given by the sum of the restrictions of b to Tx1
M1 and

Tx2
M2,

ϕ =

(
β(p)Id + A1(·, x2) π1

π2 β(p)Id + A2(·, x1)

)
,

p = (x1, x2), πi is the orthogonal projection from E to Txi
Mi, and Ai ∈ End(Txi

Mi) satisfies the identity

b(Ai(ui, x), ·) = b(II(ui, ·), x) for ui ∈ Txi
Mi and x ∈ E. Since the orthogonal complement of Txi

Mi in E is

negative-definite, for all x ∈ E, b(πi(x), πi(x)) ≥ b(x, x), and the result now follows by Lemma 6.6. �

6.3. Uniqueness.

Proof of Theorem 6.1. Upon taking lifts, it suffices to prove the statement for H
p,q
+ . Suppose the contrary,

so that M1 , M2. By Lemma 6.4, sup β ∈ (−1, 0]. Consider a maximizing sequence {(xn, yn)}n∈N for

β. For each n, let gn be an isometry such that gn(xn) = x and gn(Txn
M1) coincides with some fixed p-

dimensional real subspace of TxHp,q. Applying Theorem 5.3, the sequence {gn(M1)}n∈N subconverges to a

complete maximal submanifold M′
1
. By continuity of the boundary map, the sequence {gn(Λ)}n∈N likewise

subconverges to an admissible sphere Λ
′. By Theorem 5.2, upon extracting another subsequence, we may

suppose that {gn(M2)}n∈N also converges to M′
2

with ∂∞M′
2
= Λ

′.
We now claim that the sequence {gn(yn)}n∈N is bounded. Indeed, suppose the contrary. Upon extracting

a subsequence, we may suppose that this sequences converges to some point of Λ
′ so that, by Lemma 6.3,

b(x, gn(yn))→ −∞. However by Lemma 6.4, for all large n,

b(x, gn(yn)) = b(gn(xn), gn(yn)) = b(xn, yn) > −1 ,

which is absurd, so that this sequence is indeed bounded, as asserted. Upon extracting a further subsequence,

we may suppose that it converges to some point y, say, of M′
2

such that b(x, y) > −1. In particular, by Lemma

3.7, y < M′
1
, so that M′

1
, M′

2
. Defining β′ : M′

1
× M′

2
→ R as before, we see that this function attains its

maximum at the point (x, y). Furthermore, by Lemma 6.4 again, β′(x, y) ∈ (−1, 0]. However, by Corollary

6.7, the Hessian of β′ at (x, y) has a positive eigenvalue, which contradicts the fact that (x, y) is a maximum,

and this completes the proof. �

7. Stability

We now study the problem of perturbing maximal graphs. It will suffice to work in the double cover H
p,q
+ .

We prove the following result.

Theorem 7.1. Let (Λt)t∈(−ǫ,ǫ) be a family of smooth, spacelike positive (p − 1)-spheres in ∂∞H
p,q
+ varying

continuously in the C∞ topology. If there exists a complete maximal p-submanifold M0 of H
p,q
+ such that

∂∞M0 = Λ0 then, for all sufficiently small t, there exists a complete maximal p-submanifold Mt of H
p,q
+

such that ∂∞Mt = Λt.

The overall strategy of our proof of Theorem 7.1 follows the now standard approach towards perturbing

minimal surfaces: smooth maximal p-submanifolds close to M0 are first represented as zeroes of some

smooth functional over some Banach space, and the desired perturbations are then obtained upon applying

the implicit function theorem.

This process is usually relatively straightforward when the submanifolds of interest are compact, but be-

comes harder in the non-compact case of interest to us here. The main challenge lies in proving invertibility

of the Jacobi operator of M0. Although systematic treatments of this kind of problem exist (see, for example,
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[Maz91, AM10, Fin21]), we find it preferrable, and more informative, to adopt an alternative, more ad-hoc

approach, guided by two general principles.

The first general principle is to choose an appropriate asymptotic model, that is, a class of submanifolds

with readily determined properties which are approached asymptotically by the maximal graphs of interest

to us. The asymptotic model used here will be given by the class of radially parametrized cones, and we will

study their geometric and analytic properties in Sections 7.2 and 7.3.

The second general principle concerns the invertibility of elliptic operators over non-compact manifolds.

In order to correctly explain it, we recall the concept of elliptic estimates and introduce the concept of pre-

elliptic estimates. Let L : E → F be a bounded linear map between Banach spaces. An elliptic estimate for

L is an estimate of the form

‖x‖E ≤ C
(
‖Rx‖G + ‖Lx‖F

)
, (7.1)

valid for all x ∈ E, where R : E → G is a compact linear map into a normed vector space. Elliptic estimates

measure the defect of invertibility in terms of compact operators. When such an estimate holds for L, it

is known that L has finite-dimensional kernel and closed image (see, for example, [Lax02, Chapter 21,

Theorem 4]), and it is then often a formal matter to derive first the Fredholm property and then invertibility

from the specific geometry of the problem at hand.

We define a pre-elliptic estimate for L to be an estimate of the form

‖x‖E ≤ C
(
‖Rx‖G + ‖Lx‖F

)
, (7.2)

valid for all x ∈ E, where now R : E → G is an arbitrary bounded linear map from E into some normed

vector space. Although pre-elliptic estimates are in themselves of little interest, being readily obtained for

any operator upon setting R := Id, they provide a useful means of organising our ideas, as we will now see.

Suppose that L is an elliptic partial differential operator defined over some manifold X of bounded geom-

etry. A typical estimate provided by the general theory of elliptic partial differential operators is

‖ f ‖H2(X) ≤ C
(
‖ f ‖L2(X) + ‖L f ‖L2(X)

)
, (7.3)

where L2(X) here denotes the Lebesgue space of square integrable functions over X, and H2(X) denotes

the Sobolev space of L2 functions with L2 weak derivatives up to order 2. When X is compact, the

Rellich-Kondrachov Theorem (see, for example, [Eva10, Section 5.7]) implies that the canonical embed-

ding H2(X) ֒→ L2(X) is compact, so that (7.3) is elliptic, and all is well. However, when X is non-compact,

the Rellich-Kondrachov Theorem does not apply, and (7.3) is unfortunately only pre-elliptic.

Our second general principle is thus to transform the pre-elliptic estimates provided by the general theory

of elliptic partial differential operators into elliptic estimates. The main tool required for this process is a

standard estimate for solutions of a certain class of ordinary differential equations which we will describe

in Section 7.4. This will be used to obtain elliptic estimates for Sobolev spaces over radially parametrized

cones in Section 7.5, and for Hölder spaces over such cones in Section 7.6. These results will be adapted

in Section 7.7 to address the case of Sobolev and Hölder spaces over maximal graphs. This will yield the

desired invertibility of the Jacobi operator, allowing us to prove Theorem 7.1 in Section 7.8.

Finally, the reader may wonder why we chose to work over both Sobolev and Hölder spaces. We do

so because, although Hölder spaces provide the natural framework for studying the perturbation theory of

maximal surfaces, invertibility of operators is more readily proven over Sobolev spaces, on account of the

natural dualities they present. It is thus standard practice to obtain invertibility results first over Sobolev

spaces, which are then used as a basis for proving the corresponding results over Hölder spaces.

7.1. The Jacobi operator. We first introduce the protagonist of this section, namely the Jacobi operator,

which measures variations of the mean curvature vector arising from infinitesimal perturbations of spacelike

graphs. Most of the rest of this section will be devoted to studying its invertibility properties over suitable

Banach spaces.

The Jacobi operator is defined formally as follows. Let M be a smooth p-dimensional spacelike subman-

ifold of Hp,q, and let NM denote its normal bundle. Given a section σ of NM, we define ι(σ) : M → Hp,q



28 A. SEPPI, G. SMITH, AND J. TOULISSE

by

ι(σ)(y) := Exp(σ(y)) ,

where Exp denotes the exponential map of Hp,q. We define H(σ) ∈ Γ(NM) such that, for all y ∈ M, the

vectorH(σ)(y) is the parallel transport along the unique geodesic from ι(σ)(y) to y of the mean curvature

vector of ι(σ) at this point. The Jacobi operator of Y is then defined by

(Jσ)(y) :=
∂

∂t
H(tσ)(y)

∣∣∣∣∣∣
t=0

.

Remark 7.2. Note that when M is C3, its normal bundle is C2, and the preceding construction still makes

sense. This will become relevant in Section 10, where we will be concerned with problems of relatively low

regularity.

Lemma 7.3. Let M be a p-dimensional spacelike submanifold of Hp,q. The Jacobi operator of M is given

by

Jσ = ∆
Nσ− pσ+

∑

m,n

g
(
II(em, en),σ

)
II(em, en) , (7.4)

where II here denotes the second fundamental form of M, and e1, · · · , ep is any orthonormal frame of the

tangent bundle of M.

Proof. Since the result is local, and since we may always add to σ the normal component of some timelike

Killing vector field of Hp,q, we may suppose that σ does not vanish. We extend ι(σ) to a smooth immersion

of M × (−ǫ, ǫ) into Hp,q, defined by ι(σ)(y, t) = Exp(σ(ty)). The section σ is thus identified with the

tangent vector field of the second component. For all t, we denote Mt := M× {t}, and we denote respectively

by TMt and NMt its tangent and normal bundles in Hp,q. Note, in particular, that σ is timelike and normal

to M0. Choose y0 ∈ M = M0, let e1, · · · , ep be an orthonormal frame of (TMt)t∈(−ǫ,ǫ), let f1, · · · , fq be an

orthonormal frame of (NMt)t∈(−ǫ,ǫ), and suppose that, for all i and for all j,

(∇Tei)(y0, 0) = 0 and (∇N f j)(y0, 0) = 0 . (7.5)

Now let ξ and ν be vector fields tangent to (Mt)t∈(−ǫ,ǫ) such that

[ξ,σ] = [ν,σ] = 0 , (7.6)

and such that, for every other tangent vector field µ,

(∇T
µξ)(y0, 0) = (∇T

µν)(y0, 0) = 0 . (7.7)

For all i,

Dσ(g(II(ξ, ν), f j)) = Dσ(g(π
N(∇ξν), f j))

= Dσ(g(∇ξν, f j))

= g(∇σ∇ξν, f j) + g(∇ξν,∇σ f j)

= g(Rσξν, f j) + g(∇ξ∇σν, f j) + g(∇ξν,∇σ f j) ,

where, we recall, g denotes the pseudo-riemannian metric of Hp,q, and R denotes its Riemann curvature

tensor. By (7.7) and (7.5), (∇ξν)(y0, 0) is normal to M0 and (∇σ fi)(y0, 0) is tangential, so that the final term

vanishes. Next, since ∇ is torsion free and [σ, ν] vanishes,

g(∇ξ∇σν, f j) = g(∇ξ∇νσ, f j) .

Recalling the decomposition of (3.1), since Hp,q has constant sectional curvature equal to −1, and since σ

is normal to to M,

Dσ(g(II(ξ, ν), f j)) = −g(σ, f j)g(ξ, ν) + g(∇ξ∇νσ, f j)

= −g(σ, f j)(ξ, ν) + g(∇ξ∇N
ν σ, f j) − g(∇ξB(ν)(σ), f j)

= −g(σ, f j)(ξ, ν) + g(HessN(σ)(ξ, ν), f j) + g(B(ν)(σ),∇ξ f j) .
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However, for any normal vector field τ,

B(ξ)(τ) = −
p∑

i=1

g(∇ξτ, ei)ei =
p∑

i=1

g(τ,∇ξei)ei =
p∑

i=1

g(τ, II(ξ, ei))ei .

Applying to this to ∇νσ and ∇ξ f j yields

Dσ(g(II(ξ, ν), f j)) = −g(σ, fi)g(ξ, ν) + g(HessN(σ)(ξ, ν), f j) −
p∑

i=1

g(II(ν, ei),σ)g(II(ξ, ei), f j) . (7.8)

On the other hand, recalling that [σ, ξ] = 0, we have ∇σξ = ∇ξσ, so that

(∇σξ)T = (∇ξσ)T = −B(ξ)(σ) = −
p∑

i=1

g(II(ξ, ei),σ)ei ,

with a similar formula holding for (∇σν)T . It follows that

Dσ(g(II(ξ, ν), f j)) = g(∇σ(II(ξ, ν)), f j) + g(II(ξ, ν),∇σ f j)

= g(∇σII(ξ, ν), f j) + g(II(∇T
σξ, ν), f j) + g(II(ξ,∇T

σν), f j)

= g(∇N
σ II(ξ, ν), f j) −

p∑

i=1

g(II(ξ, ei),σ)g(II(ν, ei), f j)

−
p∑

i=1

g(II(ν, ei),σ)g(II(ξ, ei), f j) ,

(7.9)

where the last term of the first line vanishes since, as before, (∇σ fi)(y0, 0) is tangential.

Combining (7.8) and (7.9) now yields

g(∇N
σ II(ξ, ν), f j) = −g(σ, f j)g(ξ, ν) + g(HessN(σ)(ξ, ν), f j) +

p∑

i=1

g(II(ξ, ei),σ)g(II(ν, ei), f j) ,

so that

∇N
σ II(ξ, ν) = −g(ξ, ν)σ+ HessN(σ)(ξ, ν) +

p∑

i=1

g(II(ξ, ei),σ)II(ν, ei) ,

and the result follows upon taking the trace. �

7.2. The asymptotic model I - spacelike polar coordinates. We now study the asymptotic model that will

be used in the sequel. We first describe the coordinate systems of H
p,q
+ and ∂∞H

p,q
+ in which our constructions

will be carried out. Let x0 be a point of H
p,q
+ . We denote the (positive) unit tangent bundle of H

p,q
+ at x0 by

T1
x0

H
p,q
+ := {v ∈ Tx0

H
p,q
+ | g(v, v) = 1} .

Define Φ : T1
x0

H
p,q
+ × (0,∞)→ H

p,q
+ and Φ∞ : T1

x0
H

p,q
+ → ∂∞H

p,q
+ respectively by

Φ(v, r) := Expx0
(rv) , and

Φ∞(v) := lim
r→+∞

Expx0
(rv) ,

where Expx0
here denotes the exponential map of H

p,q
+ . It follows that Φ parametrizes the set of all points in

H
p,q
+ separated from x0 by some non-trivial spacelike geodesic, whilst Φ∞ parametrizes the set of end-points

of all such geodesics in H
p,q
+ . We call Φ (resp. Φ∞) spacelike polar coordinates of H

p,q
+ (resp. ∂∞H

p,q
+ )

about x0.

We now provide algebraic descriptions of the images of these parametrizations, as well as their induced

metrics. Recall first that we denote the unique representative of any point x ∈ H
p,q
+ in Qp,q by x̂, and we
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denote any representative of any point x ∈ ∂∞H
p,q
+ by x̂. Let h denote the pseudo-riemannian metric that

T1
x0

H
p,q
+ inherits as a submanifold of Tx0

H
p,q
+ .

Lemma 7.4. For any x0 ∈ H
p,q
+ ,

(1) Φ maps T1
x0

H
p,q
+ × (0,∞) diffeomorphically onto the open subset Ωx0

⊆ H
p,q
+ given by

Ωx0
:= {x ∈ H

p,q
+ | b( x̂, x̂0) < −1} , (7.10)

and the pull-back of the pseudo-hyperbolic metric is

ĥ := sinh2(r)h ⊕ dr2 . (7.11)

(2) Φ∞ maps T1
x0

H
p,q
+ conformally diffeomorphically onto the open subset Ωx0,∞ ⊆ ∂∞H

p,q
+ given by

Ωx0 ,∞ := {x ∈ ∂∞H
p,q
+ | b( x̂, x̂0) < 0} . (7.12)

Proof. For any spacelike vector u ∈ Tx̂0
Qp,q, the geodesic leaving x̂0 in the direction of u is

γu(t) := cosh(t‖u‖) x̂0 +
1

‖u‖ sinh(t‖u‖)u .

Indeed, this is the unique constant-speed parametrised curve in the intersection of Qp,q with the plane

spanned by x̂0 and u having velocity u at x̂0. It follows that, for all (u, r) ∈ T1
x0

Qp,q × (0,∞),
Φ̂(u, r) = cosh(r) x̂0 + sinh(r)u . (7.13)

We now show that Im(Φ) = Ωx0
. Indeed, for all (u, r), since b(u, x̂0) = 0,

b(Φ̂(u, r), x̂0) = −cosh(r) < −1 ,

so that Φ(u, r) ∈ Ωx0
. Conversely, we verify that every y ∈ Ωx0

satisfies ŷ = Φ̂(u, r), where

r := arccosh(−b( x̂0, ŷ)) , and

u :=
1

sinh(r)
ŷ − coth(r) x̂0 ,

so that Im(Φ) = Ωx0
, as desired.

Upon letting r tend to +∞ in (7.13), we see that

Φ̂∞(u) = x̂0 + u .

We now show that Im(Φ∞) = Ωx0 ,∞. Indeed, for all u, since b(u, x̂0) = 0,

b(Φ̂∞(u), x̂0) = −1 ,

so that Φ̂∞(u) ∈ Ωx0 ,∞. Conversely, given y ∈ Ωx0 ,∞, we may suppose that b(ŷ, x̂0) = −1, and we verify

that u := ŷ − x̂0 satisfies b(u, x̂0) = 0 and b(u, u) = 1. Since

ŷ = Φ̂∞(u) ,

it follows that ŷ ∈ Im(Φ̂∞), so that Im(Φ̂∞) = Ωx0,∞, as desired.

It remains only to study the induced metrics. Let v be a tangent vector to T1
x0

H
p,q
+ at u. Differentiating

(7.13) yields

DΦ̂(u, r) · (v, 0) = sinh(r)v , and

DΦ̂(u, r) · (0, 1) = sinh(r) x̂0 + cosh(r)u ,

so that

b
(
DΦ̂(u, r) · (v, t), DΦ̂(u, r) · (v, t)

)
:= sinh(r)b(v, v) + t2 ,

as desired. Finally, since

DΦ̂∞(u) · v = v ,

Φ̂∞ is conformal, and this completes the proof. �
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Remark 7.5. In view of the proof of Theorem 7.1 that will be given below, it will be useful to observe that if

Np and Nq denote the respective north poles of Sp and Sq, then in any Fermi parametrization Ψ : S
p

+ × Sq →
H

p,q
+ such that Ψ(Np, Nq) = x0, Ωx0 ,∞ = Ψ(Sp−1 × S

q

+) where S
q

+ the open hemisphere about Nq in Sq.

Indeed, using the notation of Section 3.2, it follows from (3.8) that, if x̂ =: Ψ̂(u, w), then

b( x̂, x̂0) = −〈Nq, w〉W = − cos(dS(Nq, w)) ,

which is negative if and only if dS(Nq, w) < π/2.

We henceforth identify Tx0
H

p,q
+ with Rp,q and T1

x0
H

p,q
+ with the pseudo-sphere Sp−1,q of vectors v ∈ Rp,q

on which the quadratic form of Rp,q takes the value +1. The tangent bundle of Sp−1,q × (0,∞) trivially

identifies with π∗
1
TSp−1,q ⊕R, where π1 here denotes projection onto the first factor. We say that a vector

field is horizontal whenever it takes values in π∗
1
TSp−1,q. Let ∂r denote the unit normal vector field in the

r-direction. By (7.11) every horizontal vector field is orthogonal to ∂r.

Lemma 7.6. Let ∇ and ∇̂ denote respectively the Levi-Civita covariant derivatives of h and ĥ. For all

horizontal vector fields ξ and ν,

∇̂ξν = (π∗1∇)ξν − cosh(r)sinh(r)h(ξ, ν)∂r ,

∇̂ξ∂r = coth(r)ξ ,

∇̂∂r
ξ = coth(r)ξ + [∂r, ξ] , and

∇̂∂r
∂r = 0 .

(7.14)

Remark 7.7. Note that in the product space Sp−1,q × (0,∞) we may view horizontal vector fields as r-

dependent families of tangent vector fields over Sp−1,q, every horizontal vector field then satisfies [∂r, ξ] =
∂rξ.

Proof. The fourth identity follows from the fact that vertical lines in this parametrization are unit speed

geodesics. For all r, let Ar denote the shape operator of Sp−1,q × {r}, that is

∇̂ξ∂r = Ar · ξ .

A standard exercise in the geometry of quadrics shows that, for all r,

Ar = coth(r)Id .

This proves the second identity, and the third identity follows since ∇̂ is torsion free. For all r, the restriction

of ĥ to Sp−1,q × {r} is a scalar multiple of h. Since ∂r is spacelike, it follows that

∇̂ξν = (π∗1∇)ξν+ ĥ(∇̂ξν, ∂r)∂r

= (π∗1∇)ξν − ĥ(ν,∇ξ∂r)∂r

= (π∗1∇)ξν − ĥ(ν, Ar · ξ)∂r

= (π∗1∇)ξν − coth(r)ĥ(ν, ξ) .

The first identity follows, and this completes the proof. �

7.3. The asymptotic model II - radially parametrized cones. We continue to use the notation of the

preceding section. Given a spacelike submanifold X ⊂ T1
x0

H
p,q
+ we define

X̂ := Φ(X × (0,∞)) , and

X∞ := Φ∞(X) ,

and we call these submanifolds respectively the cone of X and its ideal projection. Trivially X∞ = ∂∞X̂,

and we will always assume that the latter is a spacelike (p − 1)-sphere.

We first study the infinitesimal geometry of cones.
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Lemma 7.8. Let g and ĝ denote respectively the metrics of X and X̂. Then

Φ
∗ĝ = sinh2(r)g ⊕ dr2 . (7.15)

Proof. Indeed, in spacelike polar coordinates,

X̂ = X × (0,+∞) ,

and the result follows by (7.11). �

Let NX and NX̂ denote respectively the normal bundles over X and X̂ in Sp−1,q and Hp,q. Since ∂r is tangent

to X̂, with the above identification,

NX̂ = π∗1NX . (7.16)

Lemma 7.9. Let II (respectively ÎI) denote the second fundamental forms of X (respectively X̂) with respect

to h (resp. ĥ), and let H (resp. Ĥ) denote its mean curvature vector. Then

ÎI = π∗1II , and

Ĥ =
π∗

1
H

sinh2(r)
.

(7.17)

Proof. Indeed, by (7.14), for all horizontal ξ and ν,

ÎI(ξ, ν) = πN
(
∇̂ξν

)
= πN

(
(π∗1∇)ξν

)
= (π∗1II)(ξ, ν) .

Likewise, for all horizontal ξ,

ÎI(∂r, ξ) = ÎI(ξ, ∂r) = πN
(
∇̂ξ∂r

)
= πN(coth(r)ξ) = 0 .

Finally,

ÎI(∂r, ∂r) = πN
(
∇∂r

∂r

)
= 0 ,

and this proves the first identity. The second identity follows by (7.15) upon taking the trace, and this

completes the proof. �

Lemma 7.10. Let ∇N and ∇̂N denote the respective covariant derivatives of NX and NX̂. For all k,

‖(∇̂N)k(sinh(r)−1 ÎI)‖ = sinh−(k+2)(r)‖∇kII‖ ◦ π1 . (7.18)

Likewise,

‖(∇̂N)k(sinh(r)−1Ĥ)‖ = sinh−(k+2)(r)‖∇kH‖ ◦ π1 . (7.19)

Proof. From (7.14), since ∂r is tangent to X̂, for every section σ of NX̂, and for every horizontal vector field

ξ,

∇̂N
ξ σ = (π∗1∇N)ξσ , and

∇̂N
∂r
σ = coth(r)σ+ [∂r,σ] .

Consequently, for all such ξ,

∇̂N
ξ (sinh(r)−1 ÎI) = (π∗1∇N)ξ(sinh(r)−1 ÎI) = sinh(r)−1(π∗1(∇NII))ξ .

Likewise, since π∗
1
II is constant in the radial direction,

∇̂N
∂r

(
sinh(r)−1 ÎI

)
= ∇̂N

∂r

(
sinh(r)−1π∗1II

)
= 0 = sinh(r)−1(π∗1(∇NII))∂r

.

Iterating this argument yields, for all k,

(∇̂N)k
(
sinh(r)−1 ÎI

)
= sinh(r)−1π∗1((∇N)kII) .

The first identity follows by (7.11), and the second follows upon taking the trace. �
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We now study the asymptotic geometry of cones. Denote

P0 := Rp × {0} ⊂ Rp,q , (7.20)

and let P denote the totally-geodesic subspace in Hp,q tangent to P0 at x0.

Lemma 7.11. Let X be a spacelike sphere in Sp−1,q, and let {xm}m∈N be a divergent sequence in X̂. If

{αm}m∈N is a sequence of isometries of Hp,q such that, for all m,

αm(xm) = x0 , and

Dαm(Txm
X̂) = P0 ,

(7.21)

then {αm(X̂)}m∈N converges in the C∞
loc

sense to P, and {αm(X∞)}m∈N converges in the Hausdorff sense to

∂∞P. In particular, X̂ has bounded geometry.

Proof. Note first that, upon suitably modifying X̂ in an arbitrarily small neighbourhood of x0, we may

suppose that this submanifold is smooth and spacelike. For all m, denote Ym := αm(X). By Lemma 7.8 and

Lemma 3.11 (1), for all m, Ym is an entire graph of some smooth 1-Lipschitz function ϕm, say. By (7.18) and

Lemma 3.16 (1), the sequence {Ym}m∈N is locally uniformly spacelike. By (7.18) again, and reasoning as in

the proof of Theorem 5.3, we see that the derivatives of {ϕm}m∈N to all orders are locally uniformly bounded,

so that this sequence is compact in the C∞
loc

sense. Let ϕ∞ be an accumulation point and let Y∞ denote its

graph. Since the intrinsic distance from xm to x0 tends to infinity, by (7.18) again, Y∞ is totally-geodesic,

and since Tx0
Y∞ = P0, it follows that Y∞ = P. The sequence {Ym}m∈N is thus C∞

loc
-precompact with P as its

unique accumulation point, and therefore converges in the C∞
loc

sense to P, as desired. Finally, since E+ is

precompact in the Hausdorff topology, this sequence also converges in the Hausdorff sense to P. It follows

by continuity of the asymptotic boundary operator ∂∞ that {αm(X∞)}m∈N = {∂∞αm(X̂)}m∈N converges in the

Hausdorff sense to ∂∞P, and this completes the proof. �

It remains only to describe how cones model the non-compact ends of maximal graphs. For all r0 > 0, let

X̂r0
denote the image of X × (r0,∞) under Φ. We call X̂r0

the truncated cone over X of inner radius r0.

Lemma 7.12. Let X be a smooth spacelike sphere in Sp−1,q and let M be a complete maximal p-submanifold

in H
p,q
+ such that ∂∞M = X∞. There exists a compact subset K ⊆ M, r0 > 0 and a smooth section

σ ∈ Γ(NX̂r0
) such that M \ K is the graph of σ over X̂r0

. Furthermore, for all k, ‖Jkσ(x)‖ tends to zero as

x tends to infinity. In particular, M has bounded geometry.

Proof. It will suffice to show that with {xm}m∈N and {αm}m∈N as in Lemma 7.11, {αm(M)}m∈N also converges

in the C∞
loc

sense to P. Indeed, when this holds, there exists r0 > 0 such that, for all (x, r) ∈ X̂r0
, a portion of

M is the graph of some normal section σx,r over the unit ball about this point. We now claim that the family

(σx,r)r>r0
joins together to yield a normal section over X̂r0

. Indeed, note first that, upon choosing a suitable

Fermi chart, any totally-geodesic timelike sphere can be represented as {0} × Sq. Since M is an entire graph

in any such chart, it intersects every such sphere exactly once, so that, for all (x, r) and (x′, r′), the sections

σx,r and σx′,r′ coincide over the intersection B1(x, r) ∩ B1(x′, r′), and the family (σx,r)r>r0
joins together to

yield a normal section σ over X̂r0
, as asserted. The graph of this section is trivially the complement of some

compact subset of M, and the result follows.

We now prove the assertion. Note that any accumulation point M∞ of the sequence {αm(M)}m∈N satisfies

∂∞M∞ = ∂∞P, and therefore contains no complete lightlike ray. It follows by Theorem 5.1 that {αm(M)}m∈N
is relatively compact in the C∞

loc
topology and that every accumulation point M∞ is a complete maximal graph

satisfying ∂∞M∞ = ∂∞P, so that, by uniqueness, M∞ = P. In other words, {αm}m∈N is C∞
loc

pre-compact

with P as its unique accumulation point, and therefore converges in the C∞
loc

sense to P, as desired. �

7.4. Elliptic estimates I - differential operators over the line. We now determine elliptic estimates for

the actions of the Jacobi operator on Sobolev and Hölder spaces defined over cones and maximal graphs.

As explained in the introduction to this section, pre-elliptic estimates will first be obtained using general

properties of elliptic operators over manifolds of bounded geometry (see, for example, Lemmas 7.19 and
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7.24), and the main challenge will lie in transforming these pre-elliptic estimates into elliptic estimates.

This will follow from a standard estimate for solutions of a certain family of ordinary differential operators

defined over an unbounded interval which we now study.

The main idea of this section is well illustrated by the operator

L := ∂2
x − 1 , (7.22)

defined over C2([0,∞)). The general solution of the equation Lu = 0 is

u(x) := Aex + Be−x , (7.23)

so that if u is a bounded solution of Lu = 0, then

‖u‖C0 ≤
∣∣∣u(0)

∣∣∣ . (7.24)

That is, when u is bounded, its supremum over the non-compact interval [0,∞) is bounded in terms of its

value over the compact set {0}. It is this simple yet powerful idea that underlies the estimates derived below.

It will be helpful to recall the following definition from the theory of partial differential equations (see

[CIL92]). Let f : (a, b) → R be a continuous function, and let P be a second-order differential operator.

For all c ∈ (a, b) and v ∈ R, we say that (P f )(c) ≥ v in the viscosity sense whenever it has the property

that, for all smooth g : (a, b) → R such that g ≥ f and g(c) = f (c),

(Pg)(c) ≥ v . (7.25)

The theory of viscosity solutions is designed to be the most general framework in which the pointwise

maximum principle applies.

Lemma 7.13. Let

P := P(x, ξ) := ξ2 + a(x)ξ + b(x) (7.26)

be a C0 family of monic quadratic polynomials in ξ such that

lim
x→+∞

P(x, ξ) =: P∞(ξ) =: ξ2 + a∞ξ+ b∞ . (7.27)

If P∞(0) < −δ, for some δ > 0, then there exists C > 0 such that for any A ≥ 0 and for any bounded function

u : [0,∞) → [0,∞) satisfying

P(x, ∂x)u ≥ −A , (7.28)

in the viscosity sense,

‖u|[C,∞)‖L∞ ≤
A

δ
+

∣∣∣u(C)
∣∣∣ . (7.29)

Proof. Let α > 0 be such that P∞(ξ) < −δ for all ξ ∈ [−2α, 2α]. Let C > 0 be such that, for all x ≥ C, and

for all ξ ∈ [−α,α],
P(x, ξ) < −δ .

In particular, for all such x,

b(x) = P(x, 0) < 0 .

For all R ∈ R, and for all x ≥ C,

P(x, ∂x)e
αx+R = P(x,α)eαx+R ≤ −δeαx+R , and

P(x, ∂x)e
−αx+R = P(x,−α)e−αx+R ≤ −δe−αx+R ,

so that

P(x, ∂x)cosh(αx + R) ≤ −δcosh(αx + R) .

We now define

M(R) := max



∣∣∣u(C)
∣∣∣

cosh(R)
,

A

δ

 .

The function v(x, R) := u(x) −M(R) cosh(αx + R) then satisfies
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(1) v(C, R) ≤ 0,

(2) limx→∞ v(x, R) = −∞ , and

(3) for any x ≥ C, in the viscosity sense,

P(x, ∂x)v(x, R) = P(x, ∂x)u(x) −M(R)P(x, ∂x) cosh(αx + R)

≥ −A + δM(R) cosh(αx + R)

≥ 0 .

Fix R and let x0 be a maximum of v(·, R) in [C,+∞). If x0 > C, then, denoting by f the constant function

equal to v(x0, R),

b(x0)v(x0, R) = P(x, ∂x) f (x)|x=x0
≥ P(x, ∂x)ν(x, R)|x=x0

≥ 0 .

Since b(x0) < 0, it follows that

sup
x≥C

ν(x) ≤ ν(x0) ≤ 0 ,

so that, for all x ≥ C,

u(x) ≤ M(R)cosh(αx + R) .

Setting R = −αx now yields, for all x ≥ C,

u(x) ≤ M(R) ≤ A

δ
+

∣∣∣u(C)
∣∣∣ ,

as desired. �

The following corollary will be useful for obtaining estimates over Hölder spaces.

Corollary 7.14. Under the hypotheses of Lemma 7.13, there exists C > 0 such that, for all A, B > 0, and

for all bounded u : [0,∞) → [0,∞) satisfying

P(x, ∂x)u ≥ −A − B‖u‖
1
2

L∞ , (7.30)

in the viscosity sense,

‖u‖L∞ ≤
2A

δ
+

B2

δ2
+ 2‖u|[0,C]‖L∞ . (7.31)

Proof. Indeed, by Lemma 7.13, there exists C > 0 such that, for all such A, B and u,

‖u‖L∞ ≤
A

δ
+

B

δ
‖u‖

1
2

L∞ + ‖u|[0,C]‖L∞ .

However, by the algebraic-geometric mean inequality,

B

δ
‖u‖

1
2

L∞ ≤
B2

2δ2
+

1

2
‖u‖L∞ ,

and the result follows upon combining these relations. �

The following variant of Lemma 7.13 which will serve to obtain estimates over Sobolev spaces.

Lemma 7.15. Let

P := P(x, ξ) := ξ2 + a(x)ξ + b(x) (7.32)

be a C1 family of monic quadratic polynomials in ξ such that

lim
x→+∞

P(x, ξ) =: P∞(ξ) =: ξ2 + a∞ξ+ b∞ , and

lim
x→+∞

a′(x) = 0 .
(7.33)

If P∞(0) < −δ, for some δ > 0, then there exists C > 0 such that, for all smooth, integrable u, v : [0,∞) →
[0,∞), if

P(x, ∂x)u ≥ −v , (7.34)
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then

‖u‖L1 ≤ 2

δ
‖v‖L1 +

2

δ
(2 + |a∞|)‖u|[0,C]‖W1,1 . (7.35)

Proof. Choose x0 ∈ (0,∞) such that, for all x ≥ x0,

∣∣∣a(x) − a∞
∣∣∣ < 1 − δ

2
,
∣∣∣a′(x)

∣∣∣ < δ

4
and

∣∣∣b(x) − b∞
∣∣∣ < δ

8
. (7.36)

Define

f (x) :=

∫ x

x0

u(t)dt .

We will show that f satisfies a second order differential relation of the type addressed by Lemma 7.13.

Indeed, upon integrating by parts, we obtain
∫ x

x0

P(t, ∂t)u(t)dt =

∫ x

x0

u′′(t) + a(t)u′(t) + b(t)u(t)dt

= [u′(t)]xx0
+ [a(t)u(t)]xx0

−
∫ x

x0

a′(t)u(t)dt + b(x) f (x) −
∫ x

x0

(b(x) − b(t))u(t)dt

= f ′′(x) − u′(x0) + a(x) f ′(x) − a(x0)u(x0)

−
∫ x

x0

a′(t)u(t)dt + b(x) f (x) −
∫ x

x0

(b(x) − b(t))u(t)dt

= P(x, ∂x) f − u′(x0) − a(x0)u(x0) −
∫ x

x0

a′(t)u(t)dt −
∫ x

x0

(b(x) − b(t))u(t)dt .

Thus, bearing in mind (7.36),

P(x, ∂x) f (x) ≥ −‖v‖L1 −
∣∣∣u′(x0)

∣∣∣ −
∣∣∣a(x0)

∣∣∣
∣∣∣u(x0)

∣∣∣ − δ
2
‖u|[x0 ,∞)‖L1 .

Noting that f (x0) = 0, it follows by Lemma 7.13 that, upon increasing x0 further if necessary,

‖u|[x0 ,∞)‖L1 = ‖ f ‖L∞ ≤
1

δ

(
‖v‖L1 +

∣∣∣u′(x0)
∣∣∣+

∣∣∣a(x0)
∣∣∣
∣∣∣u(x0)

∣∣∣
)
+

1

2
‖u|[x0 ,∞)‖L1 ,

so that

‖u|[x0 ,∞)‖L1 ≤ 2

δ

(
‖v‖L1 +

∣∣∣u′(x0)
∣∣∣+

∣∣∣a(x0)
∣∣∣
∣∣∣u(x0)

∣∣∣
)

.

It remains only to reformulate the right-hand side in terms of integral norms. Upon averaging, we obtain

‖u|[x0+1,∞)‖L1 ≤
∫ 1

0

‖u|[x0+s,∞)‖L1ds ≤ 2

δ
‖v‖L1 +

2

δ

(
2 − δ

2
+ |a∞|

)
‖u|[x0 ,x0+1]‖W1,1 .

Finally,

‖u|[0,x0+1]‖L1 ≤ ‖u|[0,x0+1]‖W1,1 ,

and the result follows upon combining these last two relations. �

Applying the algebraic-geometric mean inequality as in the proof of Corollary 7.14, we obtain the following

useful variant of Lemma 7.15.

Corollary 7.16. Under the hypotheses of Lemma 7.15, there exists C > 0 such that, for all A, B > 0, and

for all smooth, integrable u, v : [0,∞) → [0,∞), if

P(x, ∂x)u ≥ −u
1
2 v

1
2 , (7.37)

then

‖u‖L1 ≤ 4

δ2
‖v‖L1 +

4

δ
(2 + |a∞|)‖u|[0,C]‖W1,1 . (7.38)
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7.5. Elliptic estimates II - weighted Sobolev spaces. We now introduce the weighted function spaces that

we will use to construct perturbations of maximal graphs. We first study weighted Sobolev spaces, where

we will be able to prove invertibility using duality arguments. This will then be used in the next section

as the basis for proving invertibility in the Hölder space case. Recall that, given a spacelike sphere X in

T1
x0

Hp,q, the corresponding cone is X̂ = Φ

(
X × (0,+∞)

)
and the truncated cone is X̂r0

= Φ

(
X × [r0,+∞)

)
.

For ω ∈ R, let µω denote the operator of multiplication by eωr, acting on Γ(NX̂) or Γ(NX̂r0
). For k ∈ N,

l ∈ [1,∞), and ω ∈ R, we define the ω-weighted Sobolev norm by

‖σ‖
W

k,l
ω

:= ‖µ−ωσ‖Wk,l . (7.39)

For all k ∈ N, l ∈ [1,∞), and ω ∈ R, we define the ω-weighted Sobolev space W
k,l
ω (NX̂r0

) to be the com-

pletion of C∞
0
(NX̂r0

) with respect to the ω-weighted Sobolev norm. For all such k, l and ω, let W
k,l
ω,0

(NX̂r0
)

denote the subspace of W
k,l
ω (NX̂r0

) consisting of those sections which vanish over X × {r0}. The key to

understanding the theory of weighted function spaces lies in the observation that, for all k, p and ω, the map

µω : Wk,l(NX̂r0
)→ Wk,l

ω (NX̂r0
) (7.40)

is an isometric isomorphism with inverse µ−ω. Functional properties of any operator L over the weighted

space W
k,l
ω (NX̂r0

) are thus determined by studying those of its conjugate Lω := µ−ωLµω over the unweighted

space Wk,l(NX̂r0
).

The aim of this section is to prove the following result.

Theorem 7.17. For all r0 > 0, and for every weight ω ∈ (−√p,
√

p), the operator

J : W
2,2
ω,0

(NX̂r0
)→ L2

ω(NX̂r0
) (7.41)

is a linear isomorphism.

Since by Lemma 7.12 every complete maximal graph with smooth spacelike asymptotic boundary is asymp-

totic to a cone, estimates for Jacobi operators over maximal graphs will be obtained upon perturbing this

result.

To prove Theorem 7.17, we first note that, by Lemma 7.3, Lemma 7.6 and Lemma 7.8,

Jσ = sinh−2(r)∆Nσ+ (∇N
∂r
)2σ+ (p − 1)coth(r)(∇N

∂r
)σ− pσ+

∑

m,n

g(ÎI(em, en),σ)ÎI(em, en) , (7.42)

where ∆
N here denotes the Laplace operator of NX, and e1, · · · , ep is an arbitrary orthonormal frame of the

tangent bundle of X̂. We thus consider the simpler operator

Lσ := sinh−2(r)∆Nσ+ P
(
r,∇N

∂r

)
σ , (7.43)

where

P(r, ξ) := ξ2 + (p − 1)coth(r)ξ − p , (7.44)

and, for all ω ∈ R, we define the conjugate operator

Lωσ := µ−ωLµωσ = sinh−2(r)∆Nσ+ P
(
r,∇N

∂r
+ ω

)
σ . (7.45)

The following result provides the key to transforming pre-elliptic estimates into elliptic estimates in the

present Sobolev space case.

Lemma 7.18. For all r0 > 0, and for every weight ω ∈ (−√p,
√

p), there exists C > 0 such that, for all

σ ∈ W2,2(NX̂r0
),

‖σ‖L2 ≤ C
(
‖σ|X×[r0,C]‖W1,2 + ‖Lωσ‖L2

)
. (7.46)
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Proof. Define f , g : [r0,∞)→ [0,∞) by

f (r) :=

∫

X

‖σ(x, r)‖2sinh(r)p−1dx , and

g(r) :=

∫

X

‖Lωσ(x, r)‖2sinh(r)p−1dx .

It will suffice to show that f satisfies a second-order ordinary differential relation of the type used in Corol-

lary 7.16. Differentiating f twice under the integral and applying the product rule yields

f ′(r) =

∫

X

2〈∇N
∂r
σ,σ〉sinh(r)p−1dx + (p − 1)coth(r) f (r) , and

f ′′(r) =

∫

X

2〈(∇N
∂r
)2σ,σ〉sinh(r)p−1dx +

∫

X

2〈∇N
∂r
σ,∇N

∂r
σ〉sinh(r)p−1dx

+

∫

X

2〈(p − 1)coth(r)∇N
∂r
σ,σ〉sinh(r)p−1dx − (p − 1)

sinh(r)2
f (r) + (p − 1)coth(r) f ′(r)

≥
∫

X

2〈(∇N
∂r
)2σ,σ〉sinh(r)p−1dx +

∫

X

4〈(p − 1)coth(r)∇N
∂r
σ,σ〉sinh(r)p−1dx

− (p − 1)

sinh(r)2
f (r) + (p − 1)2coth(r)2 f (r) .

Consider now the function

Qω(r, ξ) := ξ2 − ((p − 1)coth(r) − 2ω)ξ+

(
2ω2 +

(p − 1)

sinh(r)2
− 2p

)
,

Using the preceding formulae for the derivatives of f , we obtain

Qω(r, ∂r) f ≥
∫

X

2
〈
(∇N

∂r
)2σ+

(
(p − 1)coth(r) + 2ω

)
∇N
∂r
σ+

(
ω2 + ω(p − 1)coth(r) − p

)
σ,σ

〉
sinh(r)p−1dx

=

∫

X

2
〈
P
(
r,∇N

∂r
+ω

)
σ,σ

〉
sinh(r)p−1dx .

Applying (7.45) now yields

Qω(r, ∂r) f ≥
∫

X

2〈Lωσ,σ〉sinh(r)p−1dx −
∫

X

2〈∆Nσ,σ〉sinh(r)p−3dx ,

so that, upon integrating by parts,

Qω(r, ∂r) f ≥
∫

X

2〈Lωσ,σ〉sinh(r)p−1dx +

∫

X

2〈∇Nσ,∇Nσ〉sinh(r)p−3dx

≥
∫

X

2〈Lωσ,σ〉sinh(r)p−1dx

≥ −2 f
1
2 g

1
2 .

Since ω ∈ (−√p,
√

p), Qω satisfies the hypotheses of Corollary 7.16, and there therefore exists C > 0 such

that

‖σ‖2
L2 = ‖ f ‖L1 ≤ C

(
‖g‖L1 + ‖ f |[r0 ,C]‖W1,1

)
= C

(
‖Lωσ‖2L2 + ‖ f |[r0,C]‖W1,1

)
.

Finally,

‖ f |[r0 ,C]‖W1,1 = ‖ f |[r0 ,C]‖L1 + ‖ f ′|[r0,C]‖L1 = ‖σ|X×[r0,C]‖2L2 + ‖ f ′|[r0,C]‖L1 ,
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whilst

‖ f ′|[r0,C]‖L1 =

∫ C

r0

∣∣∣∣∣∣

∫

X

2〈∇N
∂r
σ,σ〉sinh(p−1)(r)dx + (p − 1)coth(r) f (r)

∣∣∣∣∣∣dr

≤ 2‖∇N
∂r
σ|X×[r0,C]‖L2‖σX×[r0,C]‖L2 + (p − 1)coth(r0)‖σ|X×[r0,C]‖2L2 .

Upon applying the algebraic-geometric mean inequality to the first term, we thus obtain

‖ f ′|[r0,C]‖L1 ≤ ‖∇N
∂r
σ|[r0,C]‖2L2 + pcoth(r0)‖σ|X×[r0,C]‖2L2 ,

and the result follows upon combining these estimates. �

Lemma 7.19. For all r0 > 0, and for any weight ω ∈ (−√p,
√

p), there exists C > 0 such that, for all

σ ∈ W
2,2
0,0
(NX̂r0

),

‖σ‖W2,2 ≤ C
(
‖σ|X×[r0,C]‖W1,2 + ‖Lωσ‖L2

)
. (7.47)

Proof. Indeed, since X̂r0
is of bounded geometry, it follows by the classical theory of elliptic operators (see,

for example, [Eva10, Lemma 7.18]) that there exists C > 0 such that, for all (x, r) ∈ X̂r0
,

‖σ|B1(x,r)‖W2,2 ≤ C
(
‖σ|B2(x,r)‖L2 + ‖Lωσ|B2(x,r)‖L2

)
.

Let {(xm, rm)}m∈N be a sequence in X̂r0
such that the unit balls about its points cover X̂r0

. Since X̂r0
has

bounded geometry, we may suppose that there exists N > 0 such that any point (y, s) of X̂r0
lies at a distance

of less than 2 from at most N elements of this sequence. Then

‖σ‖2
W2,2 ≤

∞∑

m=1

‖σ|B1(xm,rm)‖
2
W2,2 ≤ C

∞∑

m=1

(
‖σ|B2(xm ,rm)‖

2
L2 + ‖Lωσ|B2(xm,rm)‖

2
L2

)
≤ NC

(
‖σ‖2

L2 + ‖Lωσ‖2L2

)
,

and the result now follows upon combining this estimate with (7.46). �

Lemma 7.20. For all r0 > 0, and for any weight ω ∈ (−√p,
√

p), there exists C > 0 such that, for all

σ ∈ W
2,2
0,0
(NX̂r0

),

‖σ‖W2,2 ≤ C
(
‖σ|X×[r0,C]‖W1,2 + ‖Jωσ‖L2

)
. (7.48)

Proof. Let χ : R → [0, 1] be a smooth, increasing function equal to 0 over (−∞,−1] and equal to 1 over

[0,∞). For all r1 ∈ R, denote χr1
(r) := χ(r − r1), and denote

Lω,r1
:= χr1

Jω + (1 − χr1
)Lω = Lω + χr1

(Jω − Lω) .

By (7.42) and (7.43), Lω,r1
converges to Lω in the operator norm as r1 tends to infinity. It follows by stability

of elliptic estimates that, for sufficiently large r1, an estimate of the form (7.47) also holds for Lω,r1
. Choose

r2 > r1 + 1, and note that, for all σ, over X × [r2,∞),
Lω,r1

σ = Jωσ .

It follows that, for suitable constants C1, C2 > 0, and for all σ,

‖σ‖W2,2 ≤ ‖(1 − χr2
)σ‖W2,2 + ‖χr2

σ‖W2,2

≤ C1

(
‖σ|X×[0,r2]‖W2,2 + ‖χr2

σ|X×[0,C1]‖W1,2 + ‖Lω,r1
χr2
σ‖L2

)

≤ C2

(
‖σ|X×[0,r2]‖W2,2 + ‖χr2

σ|X×[0,C1]‖W1,2 + ‖[Lω,r1
, µr2

]σ‖L2 + ‖χr2
Lω,r1

σ‖L2

)
,

where here µr2
denotes the operator of multiplication by χr2

. Since this is a first order differential operator,

upon increasing C2 if necessary, we obtain

‖σ‖W2,2 ≤ C2

(
‖σ|X×[0,r2]‖W2,2 + ‖σ|X×[0,C2]‖W1,2 + ‖χr2

Lω,r1
σ‖L2

)

= C2

(
‖σ|X×[0,r2]‖W2,2 + ‖σ|X×[0,C2]‖W1,2 + ‖Jωσ‖L2

)
.
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Finally, by the classical theory of elliptic operators, there exists C3 > 0 such that

‖σ|X×[0,r2]‖W2,2 ≤ C3

(
‖σ|X×[0,r2+1]‖L2 + ‖Jωσ‖L2

)
,

and the result follows upon combining these estimates. �

We now prove Theorem 7.17.

Proof of Theorem 7.17. By the Rellich-Kondrachov compactness theorem (see, for example, [Eva10, Sec-

tion 5.7]), the restriction operator

R : W
2,2
0,0

(NX̂r0
)→ W1,2(NX̂r0

|X×[r0,C])

is compact. The estimate (7.48) is thus of elliptic type, so that, as in [Lax02, Chapter 21, Theorem 4], Jω
has finite-dimensional kernel and closed image. Since, for all ω, J∗ω = J−ω, it follows that Jω is Fredholm.

Since J0 is self-adjoint, its Fredholm index is equal to zero, and since (Jω)ω∈(−√p,
√

p) is a continuous family

of Fredholm operators, it follows that the Fredholm index of Jω is zero for all ω ∈ (−√p,
√

p).
It remains only to prove that Jω is a linear isomorphism for all ω. Consider first the case where ω ∈

(−√p, 0]. It will now be preferable to work with the unconjugated operator J. Let σ ∈ W
2,2
ω,0

(NX̂r0
) be an

element of the kernel of J. We claim that σ vanishes. Indeed, suppose that contrary. By elliptic regularity,

σ is smooth. Note also that, since ω ≤ 0, σ is an element of the unweighted Sobolev space W2,2(NX̂r0
)

and, since X̂r0
has bounded geometry, it follows by standard elliptic bootstrapping arguments that ‖σ‖L∞ is

finite. Since X̂r0
is also complete, it follows by Omori’s maximum principle that, for all ǫ > 0, there exists

(x, r) ∈ X̂r0
such that

Hess(‖σ‖2)(x, r) ≤ ǫId , and

‖σ(x, r)‖2 ≥ ‖σ‖2L∞ − ǫ ,

so that, by (7.4), at this point,

ǫp ≥ ∆‖σ‖2 = 2〈∆Nσ,σ〉+ 2‖∇Nσ‖2 = 2p‖σ‖2 + 2‖∇Nσ‖2 +
∑

m,n

〈II(em, en),σ〉2 ≥ 2p‖σ‖2L∞ − 2pǫ .

Upon choosing ǫ < 2
3
‖σ‖2

L∞ , we obtain a contradiction, and it follows that σ vanishes, as asserted. The

operator Jω is thus injective and therefore invertible. Finally, by duality, for all ω ∈ [0,
√

p), Jω = J∗−ω is

also invertible, and this completes the proof. �

7.6. Elliptic estimates III - weighted Hölder spaces. We now address the case of weighted Hölder spaces.

For k ∈ N, α ∈ (0, 1), and ω ∈ R, we define the ω-weighted Hölder norm by

‖σ‖
C

k,α
ω

:= ‖µ−ωσ‖Ck,α , (7.49)

where, as before, for ω ∈ R, µω denotes the operator of multiplication by eωr. For k ∈ N, α ∈ (0, 1),
and ω ∈ R, we define the ω-weighted Hölder space C

k,α
ω (NX̂r0

) to be the space of all k-times differentiable

sections of NX̂r0
with finite ω-weighted Hölder norm. For all such k, α and ω, we denote by C

k,α
ω,0

(NX̂r0
) the

closed subspace consisting of those sections which vanish along X × {r0}.
The aim of this section is to prove the following result.

Theorem 7.21. For all r0 > 0, and for every weight ω ∈ (−p, 0], the operator

J : C
2,α
ω,0

(NX̂r0
)→ C0,α

ω (NX̂r0
) , (7.50)

is a linear isomorphism.

Remark 7.22. Upon refining the arguments used in Section 7.4 and below, we may show that, for all ω ∈
(−p, 1), every element of the kernel of J in C

2,α
ω,0

(X̂r0
) has exponential decay at infinity. The maximum

principle then shows that, for all such ω, J has trivial kernel over C
2,α
ω,0

(X̂r0
), and the isomorphism property

then follows. Theorem 7.21 as stated is, however, quite sufficient for our purposes.
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We continue to use the framework of the preceeding section. The following result provides the key to

transforming pre-elliptic estimates into elliptic estimates in the Hölder space case.

Lemma 7.23. For all r0 > 0, and for every weight ω ∈ (−p, 1), there exists C > 0 such that, for all

σ ∈ C2,α(NX̂r0
),

‖σ‖C0 ≤ C
(
‖σ|X×[0,C]‖C0 + ‖Lωσ‖C0

)
. (7.51)

Proof. Consider the function f : [r0,∞)→ [0,∞) given by

f (r) := supx∈X‖σ(x, r)‖2 .

It will suffice to show that f satisfies in the viscosity sense a second-order ordinary differential relation of

the type used in Corollary 7.14. Indeed, by the product rule,

P(r, ∂r + ω)‖σ‖2 = 2
〈
P
(
r,∇N

∂r
+ω

)
σ,σ

〉
+ 2‖∇N

∂r
σ‖2 − P(r,ω)‖σ‖2

≥ 2
〈
P
(
r,∇N

∂r
+ω

)
σ,σ

〉
− P(r,ω)‖σ‖2 .

Likewise, at every point (x, r) ∈ X̂r0
maximizing ‖σ‖2 over X × {r},

0 ≥ ∆‖σ‖2 = 2〈∆Nσ,σ〉+ 2‖∇Nσ‖2 ≥ 2〈∆Nσ,σ〉 .

Consider now a smooth function g such that g ≥ f and g(r) = f (r). Then, at any point (x, r) such that

f (r) = ‖σ(x, r)‖2,

P(r, ∂r +ω)g ≥ P(r, ∂r +ω)‖σ‖2

≥ 2
〈(

sinh−2(r)∆N + P
(
r,∇N

∂r
+ω

))
σ,σ

〉
− P(r,ω)‖σ‖2

= 2〈Lωσ,σ〉 − P(r,ω)g.

Consequently, in the viscosity sense,

(P(r, ∂r + ω) + P(r,ω)) f ≥ −2‖Lωσ‖C0 f
1
2 .

Since ω ∈ (−p, 1), Q(r, ξ) := P(r, ξ + ω) − P(r,ω) satisfies the hypothesis of Corollary 7.14. There

therefore exists C > 0 such that

‖σ‖2L∞ = supr>0

∣∣∣ f (r)
∣∣∣ ≤ C2

(
‖σ|X×[r0,C]‖2C0 + ‖Lωσ‖2C0

)
≤ C2

(
‖σ|X×[r0,C]‖C0 + ‖Lωσ‖C0

)2
,

as desired. �

Lemma 7.24. For all r0 > 0, and for every weight ω ∈ (−p, 1), there exists C > 0 such that, for all

σ ∈ C
2,α
0,0

(NX̂r0
),

‖σ‖C2,α ≤ C
(
‖σ|X×[0,C]‖C0 + ‖Lωσ‖C0,α

)
. (7.52)

Proof. Since X̂r0
is of bounded geometry, by the classical theory of elliptic operators, there exists C1 > 0

such that, for all (x, r) ∈ X̂r0
,

‖σ|B1(x)‖C2,α ≤ C1

(
‖σ|B2(x)‖C0 + ‖Lωσ|B2(x)‖C0,α

)
.

Thus, for a suitable constant C2 > 0,

‖σ‖C2,α ≤ C2 sup
x∈X̂r0

‖σ|B1(x)‖C2,α ≤ C1C2 sup
x∈X̂r0

(
‖σ|B2(x)‖C0 + ‖Lωσ|B2(x)‖C0,α

)
≤ C1C2

(
‖σ‖C0 + ‖Lωσ‖C0,α

)
,

and the result follows upon combining this estimate with (7.51). �
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Lemma 7.25. For all r0 > 0, and for every weight ω ∈ (−p, 1), there exists C > 0 such that, for all

σ ∈ C
2,α
0

(NX̂r0
),

‖σ‖C2,α ≤ C
(
‖σ|X×[0,C]‖C0 + ‖Jωσ‖C0,α

)
. (7.53)

Proof. Let χ : R → [0, 1] be a smooth, increasing function equal to 0 over (−∞,−1] and equal to 1 over

[0,∞). For all r1 ∈ R, denote χr1
(r) := χ(r − r1), and denote

Lω,r1
:= χr1

Jω + (1 − χr1
)Lω .

By (7.42) and (7.43), Lω,r1
converges to Lω in the operator norm as r1 tends to infinity. It follows by stability

of elliptic estimates that, for sufficiently large r1, an estimate of the form (7.52) also holds for Lω,r1
. Choose

r2 > r1 + 1, and note that, for all σ, over X × [r2,∞),
Lω,r1

σ = Jωσ .

It follows that, for suitable constants C1, C2 > 0, and for all σ,

‖σ‖C2,α ≤ ‖(1 − χr2
)σ‖C2,α + ‖χr2

σ‖C2,α

≤ C1

(
‖σ|X×[0,r2]‖C2,α + ‖χr2

σ|X×[0,C1]‖C0 + ‖Lω,r1
χr2
σ‖C0,α

)

≤ C2

(
‖σ|X×[0,C2]‖C2,α + ‖σ|X×[0,C2]‖C1,α + ‖Lω,r1

σ|X×[r2,∞)‖C0,α

)

= C2

(
‖σ|X×[0,C2]‖C2,α + ‖Jωσ‖C0,α

)
.

Finally, by the classical theory of elliptic operators, there exists C3 > 0 such that

‖σ|X×[0,C2]‖C2,α ≤ C3

(
‖σ|X×[0,C2+1]‖C0 + ‖Jωσ|X×[0,C2+1]‖C0,α

)
,

and the result follows upon combining these estimates. �

We now prove Theorem 7.21.

Proof of Theorem 7.21. Indeed, choose ω ∈ (−p, 0]. By the Arzelà-Ascoli theorem, the restriction operator

R : C
2,α
ω,0

(NX̂r0
)→ C0(NX̂r0

|X×[0,C])

is compact. The estimate (7.53) is thus of elliptic type, so that, as in [Lax02, Chapter 21, Theorem 4], J has

finite-dimensional kernel and closed image. Furthermore, as in the proof of Theorem 7.17, for all such ω,

Jω is injective, so that, by the closed graph theorem, it is a linear isomorphism onto its image.

It remains only to prove surjectivity. Since Jω is a linear isomorphism onto its image, there exists C > 0

such that, for all σ ∈ C
2,α
0,0

(NX̂r0
),

‖σ‖
C

2,α
0

≤ C‖Jωσ‖C0,α
0

. (7.54)

Now let χ : R → [0, 1] be a smooth function equal to 1 over (−∞, 0] and equal to 0 over [1,∞), and for

all r > 0, define χr(x) := χ(x − r). Choose τ ∈ C
0,α
0,0

(NX̂r0
), and note that, for all r, since χr has compact

support, τχr ∈ L2(NX̂r0
). It follows by Theorem 7.17 that, for all r, there exists σr ∈ W

2,2
0,0
(NX̂r0

) such

that Jωσr = τχr. Since X̂r0
is of bounded geometry, it follows by the Sobolev embedding theorem that

σr ∈ L∞(X̂r0
), then by elliptic regularity that σr ∈ C

2,α
loc

(X̂r0
), and then by the Schauder estimates (see, for

example, [GT01, Chapter 6]) that σr ∈ C2,α(X̂r0
). Note, however, that this process does not yield uniform

C2,α bounds on (σr)r>0, since the Sobolev norm of (τχr)r>0 may diverge as r tends to infinity. However, by

(7.54), for all r,

‖σr‖C2,α
0
≤ C‖τχr‖C0,α

0
.

Note that (τχr)r>0 is uniformly bounded in C
0,α
0

(NX̂r0
), so that, by the Arzelà-Ascoli theorem again, (σr)r≥0

is relatively compact in the C
2,β

loc
topology for all β < α. By semicontinuity of the Hölder seminorm, every
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accumulation point σ is an element of C
2,α
0,0

(NX̂r0
). Since every such point trivially satisfies Jωσ = τ,

surjectivity follows, and this completes the proof. �

7.7. Elliptic estimates IV - maximal graphs. We now use a perturbation argument to adapt Theorems 7.17

and 7.21 to weighted function spaces defined over maximal graphs. Let M be a maximal graph in H
p,q
+ with

smooth spacelike boundary ∂∞M = X∞. By Lemma 7.12, there exists r0 > 0 and a compact subset K of M

such that M \K coincides with the graph of some smooth normal section σ over X̂r0
. In particular, this yields

an explicit parametrization êσ : X̂r0
→ M \ K. For all (x, r) ∈ X̂r0

, let q̂σ(x, r) denote the composition of

parallel transport from (x, r) to êσ(x, r) with orthogonal projection onto the normal bundle of M. Note that,

since parallel transport defines isometries, and since orthogonal projection from a q-dimensional negative-

definite subspace in Rp,q to any other such subspace is always a linear isomorphism, q̂σ always defines a

bundle isomorphism from NX̂r0
to N(M \ K). For any section τ of NM, we denote

(êσ)∗τ := (q̂σ)−1 ◦ τ ◦ êσ ∈ Γ(NX̂r0
) . (7.55)

For all suitable k, p and ω, and for every smooth section τ of NM, we define

‖τ‖
W

k,l
ω (M\K) := ‖(êσ)∗τ‖

W
k,l
ω (X̂r0

) . (7.56)

Let χ : M → [0, 1] be a smooth, compactly supported function, equal to 1 over K. We define the ω-weighted

Sobolev norm for sections of NM by

‖τ‖
W

k,l
ω

:= ‖χτ‖Wk,l + ‖(1 − χ)τ‖
W

k,l
ω (M\K) , (7.57)

and we define the ω-weighted Sobolev space W
k,l
ω (M) to be the completion of C∞(NM) with respect to this

norm.

Lemma 7.26. Let M be a complete maximal p-submanifold such that ∂∞M = X∞ is smooth and spacelike.

For every weight ω ∈ (−√p,
√

p), there exists a compact subset K′ ⊆ M and C > 0 such that, for all

τ ∈ W
2,2
ω (NM),

‖τ‖
W

2,2
ω
≤ C

(
‖τ|K′‖L2 + ‖Jτ‖L2

ω

)
. (7.58)

Proof. Indeed, let K be as above. We may suppose that K has smooth boundary and, by Lemma 7.12, that

σ and all its derivatives are as small as we wish. It follows that, up to reparametrization, the restriction

of J to M \ K is a perturbation of the Jacobi operator of X̂r0
so that, by Theorem 7.17, it defines a linear

isomorphism from W
2,2
ω,0

(NM|M\K) into L2
ω(NM|M\K). Let χ : M → [0, 1] be a smooth, compactly supported

function equal to 1 over K. For suitable C1, C2 > 0, and for all τ ∈ W
2,2
ω (NM),

‖τ‖
W

2,2
ω
≤ ‖χτ‖W2,2 + ‖(1 − χ)τ‖

W
2,2
ω

≤ ‖χτ‖W2,2 +C1‖J(1 − χ)τ‖L2
ω

≤ C2

(
‖τ|Supp(χ)‖W2,2 + ‖Jτ‖L2

ω

)
.

Finally, by the classical theory of elliptic operators, there exists C3 > 0 and a compact set K′ containing a

neighbourhood of Supp(χ) such that

‖τ|Supp(χ)‖W2,2 ≤ C3

(
‖τ|K′‖L2 + ‖Jτ|K′‖L2

)
,

and the result follows upon combining these estimates. �

With êσ as before, for all suitable k, α and ω, and for every k-times differentiable section τ of NM, we define

‖τ‖
C

k,α
ω (M\K) := ‖(êσ)∗τ‖

C
k,α
ω (X̂r0

) . (7.59)

With χ as before, we define the ω-weighted Hölder norm for k-times differentiable sections of NM by

‖τ‖
C

k,α
ω

:= ‖χτ‖Ck,α + ‖(1 − χ)τ‖
C

k,α
ω (M\K) , (7.60)
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and we define the ω-weighted Hölder space C
k,α
ω (M) to be the space of all k-times differentiable sections of

NM for which this norm is finite. Repeating the proof of Lemma 7.26 in the Hölder space case yields the

following estimate.

Lemma 7.27. Let M be a complete maximal p-submanifold such that ∂∞M = X∞ is smooth and spacelike.

For every weight ω ∈ (−p, 1), and for all α ∈ (0, 1), there exists a compact subset K′ ⊆ M and C > 0 such

that, for all σ ∈ C
2,α
ω (NM),

‖σ‖
C

2,α
ω
≤ C

(
‖σ|K′‖C0,α + ‖Jσ‖

C
0,α
ω

)
. (7.61)

Repeating the proofs of Theorems 7.17 and 7.21 in the present context yields the following results, which

concludes our study of the analytic properties of the action of the Jacobi operator on Sobolev and Hölder

spaces over cones and maximal graphs.

Theorem 7.28. Let M be a complete maximal p-submanifold such that ∂∞M = X∞ is smooth and spacelike.

For every weight ω ∈ (−√p,
√

p), the operator J defines a linear isomorphism from W
2,2
ω (M) into L2

ω(M).

Theorem 7.29. Let M be a complete maximal p-submanifold such that ∂∞M = X∞ is smooth and spacelike.

For every weight ω ∈ (−p, 0], and for all α ∈ (0, 1), the operator J defines a linear isomorphism from

C
2,α
ω (M) into C

0,α
ω (M).

7.8. Perturbing maximal ends. We now describe the families of perturbations of maximal graphs to which

the implicit function theorem will be applied. Our construction is inevitably rather technical, reflecting

the main difference between the perturbation theories of compact manifolds and non-compact manifolds,

namely that in the non-compact case functional norms are sensitive to the parametrizations used. It is for

this reason that we will describe our parametrizations in some detail.

The first step concerns the construction of explicit parametrizations of families of cones. We proceed as

follows. Let (Xt)t∈(−ǫ,ǫ) be a smooth family of spacelike graphs in T1
x0

Hp,q
� Sp−1,q such that X0 = X. Let

(et)t∈(−ǫ,ǫ) be a smooth family of smooth functions from X into Sp−1,q such that, for all t, et parametrises Xt.

For all t, define êt : X × (0,∞)→ H
p,q
+ by

êt(x, r) := Φ(et(x), r) , (7.62)

so that êt parametrises X̂t.

We now study the variations of the mean curvature vectors of these cones. Note that the mean curvature

vector always lies in the tangent bundle of the ambient space. However, we alert the reader to the fact that,

since the derivative of et with respect to t becomes large at infinity, it will be preferable to identify different

fibres of this bundle in the following non-standard manner.

First, for all t ∈ (−ǫ, ǫ), and for all x ∈ X, let pt(x) denote parallel transport from x to et(x) along

the unique geodesic joining these two points, let qt(x) denote the composition of this function with the

orthogonal projection onto the normal bundle of et and note that, as before, qt defines a bundle isomorphism

from NX into NXt for all t. For all t, let Ht ∈ Γ(NX) denote the image under q−1
t of the mean curvature

vector of Xt.

For all t, we identify NX̂t with π∗
1
NXt via parallel transport τrad along radial lines, where π1 is the pro-

jection onto the first factor on X̂t � Xt × (0,+∞). We denote by q̂t : NX̂0 → NX̂t the bundle isomorphism

induced by this identification, that is, the unique bundle isomorphism such that the following diagram com-

mutes.

NX̂0

τrad−−−→ π∗
1
NX0

q̂t

y
π∗

1
qt

y
NX̂t

τrad−−−→ π∗
1
NXt

. (7.63)
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For all t, let Ĥt denote the image under q̂−1
t of the mean curvature vector of X̂t. Note now that, whilst radial

projection contracts by a factor of sinh(r), parallel transport does not. The identification of NX̂t with π∗
1
NXt

via parallel transport along radial lines thus differs from that used in Section 7.2 by a factor of sinh(r) so

that, by (7.17), for all t,

Ĥt =
π∗

1
Ht

sinh(r)
. (7.64)

Lemma 7.30. For all r0 > 0 and for all α ∈ (0, 1), the map sending t to Ĥt defines a smooth function from

(−ǫ, ǫ) into C
2,α
−1

(NX̂r0
).

Proof. Indeed, (Ht)t∈(−ǫ,ǫ) trivially defines a smooth function from (−ǫ, ǫ) into C2,α(NXr0
). It follows that

(π∗
1
Ht)t∈(−ǫ,ǫ) defines a smooth function from (−ǫ, ǫ) into C

2,α
0

(NX̂r0
). Since multiplication by 1

sinh(r)
defines

a bounded linear map from C
2,α
0

(NX̂r0
) into C

2,α
−1

(NX̂r0
), the result follows. �

The second step involves constructing explicit parametrizations of families of graphs over families of

cones. For all t, and for all σ ∈ C
2,α
0

(NX̂r0
), we define êσt : X̂ → Hp,q by

êσt (x, r) := Expêt(x,r)(q̂t ◦σ(x, r)) . (7.65)

Let U := U2,α
0

be a neighbourhood of the zero section in C
2,α
0

(NX̂r0
) such that, for all σ ∈ U, êσt is

a spacelike embedding. We now study, as before, the variations of the mean curvature vectors of these

embeddings. Note that, in contrast to the previous case, the derivative of êσt with respect to σ remains

small at infinity, and we thus use parallel transport to identify nearby fibres of the tangent bundle of the

ambient space in the standard manner. For all t, and for all σ ∈ U, let q̂σt denote the composition of parallel

transport from êt(x, r) to êσt (x, r) with orthogonal projection onto the normal bundle of êσt . As before, for

all (t,σ) ∈ (−ǫ, ǫ) ×U, q̂σt is a bundle isomorphism, we denote by Ĥσ
t the image under (q̂σt ◦ q̂t)−1 of the

mean curvature vector of êσt , and we define

F (t,σ) := Ĥσ
t − Ĥt . (7.66)

We recall the following technical lemma of differential geometry.

Lemma 7.31. Let Ω ⊆ Rm be an open subset, and let f : Ω → R be a smooth function. For all x0 ∈ Ω,

there exist smooth functions f1, · · · , fm : Ω → R such that

f (x) = f (x0) +
m∑

i=1

(xi − xi
0) fi(x) . (7.67)

Furthermore, for all i, fi(0) = (∂i f )(0).

Proof. It suffices to address the case where Ω is convex. For all i, we define

fi(x) :=

∫ 1

0

∂ f

∂xi

(x0 + t(x− x0))dt ,

and we readily verify that these functions have the desired properties. �

For all ω ≤ 0, we denote

U2,α
ω := U ∩C2,α

ω (NX̂r0
) .

Lemma 7.32. For all r0 > 0, for all α ∈ (0, 1), and for every weight ω ≤ 0, F defines a smooth function

from (−ǫ, ǫ) ×U2,α
ω into C

0,α
ω (NX̂r0

).
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Proof. Since F (t, 0) = 0, and since mean curvature is quasilinear, upon reducing U if necessary, and upon

applying Lemma 7.31 pointwise to the 2-jets of σ, we find that there exist smooth functions ai j, bi and c

such that, for all (t,σ),

F (t,σ)(x, r) = ai j(t, x, r, J1σ(x, r))Hess(σ)i j(x, r) + b1(t, x, r, J1σ(x, r))(∇σ)i(x, r)

+ c(t, x, r, J1σ(x, r))σ(x, r) ,

where here J1σ denotes the 1-jet of σ. Consider now the final term in this expression. The canonical

inclusion U2,α
ω → U2,α

0
is continuous and linear, and therefore smooth. Since the derivatives of c to all

orders are bounded, the non-linear operator

σ 7→ c(t, x, r, J1σ(x, r))

defines a smooth function from (−ǫ, ǫ)×U2,α
0

into C
0,α
0

(X̂r0
). Finally, the product C

0,α
0

(X̂r0
)⊕C

0,α
ω (NX̂r0

)→
C

0,α
ω (NX̂r0

) is continuous and bilinear, and thus also smooth. It follows that the composition

σ 7→ c(t, x, r, J1σ(x, r))σ(x, r)

defines a smooth map from (−ǫ, ǫ) ×U2,α
ω into C

0,α
ω (NX̂). The remaining terms, though more technical, are

addressed in a similar manner, and this completes the proof. �

The third step of our construction involves iterating the preceding step to produce explicit parametriza-

tions of families of graphs over families of graphs over families of cones. Thus, for all t, for all σ ∈ U, and

for all τ ∈ C
2,α
0

(NX̂), define ê
(σ,τ)
t : X̂ → H

p,q
+ by

ê
(σ,τ)
t (x, r) := Expêσt (x,r)(q̂

σ
t ◦ q̂t ◦ τ(x, r)) . (7.68)

Upon reducing U if necessary, we may suppose that, for all t, and for all σ, τ ∈ U, ê
(σ,τ)
t is a spacelike

embedding. For all such (t,σ, τ), let q̂
(σ,τ)
t denote the composition of parallel transport from êσt (x, r) to

ê
(σ,τ)
t (x, r) with orthogonal projection onto the normal bundle of ê

(σ,τ)
t . Once again, for all (t,σ, τ) ∈

(−ǫ, ǫ) ×U ×U, q̂
(σ,τ)
t is a bundle isomorphism, we denote by Ĥ

(σ,τ)
t the image under (q̂

(σ,τ)
t ◦ q̂σt ◦ q̂t)−1

of the mean curvature vector of ê
(σ,τ)
t , and we define

G(t,σ, τ) := Ĥ
(σ,τ)
t − Ĥt . (7.69)

Repeating the proof of Lemma 7.32 yields the following result.

Lemma 7.33. For all r0 > 0, for all α ∈ (0, 1), and for every weight ω ≤ 0, G defines a smooth function

from (−ǫ, ǫ) ×U2,α
ω ×U2,α

ω into C
0,α
ω (NX̂).

Finally, we sketch how this construction extends to treat perturbations of complete maximal graphs. At

this stage, although it is not strictly necessary, we will take the weight ω to be equal to zero. Let M := M0 be

a complete maximal graph such that ∂∞M = X0,∞. By Lemma 7.12, there exists a compact subset K ⊆ M,

r0 > 0, and a section σ0 ∈ C
2,α
0

(NX̂0,r0
) whose graph coincides with M \ K. In addition, upon increasing

r0 if necessary, we may suppose that σ0 is as small as we wish. Now let (M̃t)t∈(−ǫ,ǫ) be a smooth family of

complete, smooth, not necessarily maximal, spacelike graphs such that M̃0 = M and such that, for all t, the

graph of σ0 over NX̂t,r0
coincides with the complement of some compact subset of M̃t. Let (êM

t )t∈(−ǫ,ǫ) be a

smooth family of smooth embeddings such that

(1) êM
0

is the identity,

(2) for all t, êM
t parametrizes M̃t, and

(3) for all t, êM
t coincides with ê

σ0

t ◦ (ê
σ0

0
)−1 over M̃0 \ K.
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We underline here that it is of little importance how (êM
t )t∈(−ǫ,ǫ) extends over the rest of (M̃t)t∈(−ǫ,ǫ), as long

as it is smooth. For all sufficiently small (t, τ) ∈ (−ǫ, ǫ) ×C2,α(NM), we define q̂
M,τ
t and Ĥ

M,τ
t in the same

way as before, and we define, for all such (t, τ),

H(t, τ) := Ĥ
M,τ
t . (7.70)

Note that, by construction,

H(0, 0) = 0 .

Lemma 7.34. For all α ∈ (0, 1), upon reducingU if necessary, H defines a smooth function from (−ǫ, ǫ) ×
U2,α

0
into C

0,α
0

(NM).

Remark 7.35. We will see in Section 8.3 that σ0 ∈ C
2,α
−1

(NX̂0,r0
), and the argument of the following proof

then shows that H in fact defines a smooth function from (−ǫ, ǫ) ×U2,α
ω into C

0,α
ω (NM) for all ω ∈ [−1, 0].

However, Lemma 7.34 as stated is already sufficient for proving stability.

Proof. Indeed, outside some compact subset of M,

(êσ0

0
)∗H(t, τ) := (q̂σ0

0
)−1 ◦H(t, τ) ◦ ê

σ0

0
= G(t,σ0, τ) + Ĥt ,

and the result now follows by Lemmas 7.30 and 7.33 �

We are now ready to prove our perturbation result.

Proof of Theorem 7.1. Let (Λt)t∈(−ǫ,ǫ) be a family of spacelike spheres in ∂∞H
p,q
+ varying continuously in

the C∞ topology. We first show that, upon reducing ǫ if necessary, we may suppose that, for all t, Λt lies

in the image of some fixed spacelike polar coordinate chart. Indeed, in any Fermi chart, Λ is the graph of

some strictly 1-Lipschitz function ϕ : Sp−1 → Sq. By [Hei05, Lemma 2.8], this function takes values in an

open hemisphere so that, by Lemma 7.4 and the subsequent remark, Λ0 lies in the image of some spacelike

polar coordinate chart. Upon reducing ǫ if necessary, we may suppose that Λt is also contained in the same

coordinate chart, as asserted.

Now, let M0 be a complete maximal graph with ∂∞M0 = Λ0. Let (M̃t)t∈(−ǫ,ǫ) denote the smooth family

of perturbations of M0 constructed above, and let H : (−ǫ, ǫ) ×U2,α
0
→ C

0,α
0

(NM) denote the operator

defined in (7.70). As shown above, H defines a smooth function between Banach spaces. Furthermore,

its partial derivative with respect to the second component is the Jacobi operator J. By Theorem 7.29,

J : C
2,α
0

(NM) → C
0,α
0

(NM) is a linear isomorphism. It follows by the implicit function theorem that,

upon reducing ǫ and U if necessary, we may suppose that for all t ∈ (−ǫ, ǫ), there exists a unique element

τt ∈ U2,α
0

such that

Ĥ
M,τt

t = H(t, τt) = 0 .

For all such t, the image of ê
M,τt

t is a maximal graph Mt, say. Since (τt)t∈(−ǫ,ǫ) tends to zero in C
2,α
0

(NM)

as t tends to zero, upon reducing ǫ if necessary, we may suppose that, for all t, ê
M,τt

t has bounded second

fundamental form so that, by Lemma 3.11, it is complete. Finally, since, for all t, τt is bounded, ∂∞Mt =
∂∞M̃t = Λt, and this completes the proof. �

8. Proofs of main results

8.1. Smoothly approximating 1-Lipschitz maps. In order to conclude the proofs of Theorem A, we re-

quire the following refinement of [Hei05, Lemma 2.8].

Lemma 8.1. Let ϕ : Sp−1 → Sq be a 1-Lipschitz map. If the image of ϕ does not contain antipodal points,

then it is contained in an open hemisphere of Sq.
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Proof. By the Hahn-Banach separation theorem, it suffices to show that 0 is not in the convex hull of ϕ(Sp−1)
in Rq+1. Suppose the contrary, namely that there exist x1, . . . , xm ∈ Sp−1 and λ1, . . . , λm ∈ (0, 1) with∑
λi = 1 such that

m∑

i=1

λiϕ(xi) = 0 .

Since cos is decreasing on [0, π], for all i, j,

〈ϕ(xi),ϕ(x j)〉 = cos(dS (ϕ(xi),ϕ(x j))) ≥ cos(dS (xi, x j)) = 〈xi, x j〉 ,

so that,

0 =

〈 m∑

i=1

λiϕ(xi),
m∑

i=1

λiϕ(xi)

〉

=
m∑

i=1

λ2
i + 2

∑

1≤i< j≤m

λiλ j〈ϕ(xi),ϕ(x j)〉

≥
m∑

i=1

λ2
i + 2

∑

1≤i< j≤m

λiλ j〈xi, x j〉

=

〈 m∑

i=1

λixi,

m∑

i=1

λixi

〉
≥ 0 .

Equality therefore holds, so that 0 ∈ Rp also lies in the convex hull of {x1, · · · , xm}. Furthermore, for any

other point y in Sp−1,

0 =

〈 m∑

i=1

λiϕ(xi),ϕ(y)

〉
=

m∑

i=1

λi〈ϕ(xi),ϕ(y)〉 ≥
m∑

i=1

λi〈xi, y〉 =
m∑

i=1

〈λixi, y〉 = 0 ,

so that
m∑

i=1

λi(〈ϕ(xi),ϕ(y)〉 − 〈xi, y〉) = 0 .

Since every summand on the left-hand side is non-negative, it follows that, for all i,

〈ϕ(xi),ϕ(y)〉 = 〈xi, y〉 .

Setting y = −x1 now yields

〈ϕ(x1),ϕ(−x1)〉 = 〈x1,−x1〉 = −1 ,

so that ϕ(Sp−1) contains antipodal points. This is absurd, and the result follows. �

The first consequence of Lemma 8.1 is that 1-Lipschitz maps not containing antipodal points can be

continuously deformed to constant maps.

Lemma 8.2. Let ϕ : Sp−1 → Sq be a 1-Lipschitz map. If the image of ϕ does not contain antipodal points,

then there exists a continuous family of maps (ϕt)t∈[0,1] : Sp−1 → Sq such that

(1) ϕ0 = ϕ,

(2) ϕ1 is constant, and

(3) for all t, ϕt is (1 − t)-Lipschitz.

Morerover, if, in addition, ϕ is smooth, then we can assume that (ϕt)t∈[0,1] is also smooth.

Proof. By applying Lemma 8.1, let y denote the centre of an open hemisphere S
q
+ containing ϕ(Sp−1). We

work in geodesic coordinates of Sq about y, so that S
q

+ identifies with the ball B
q

π/2
(0). By compactness,

ϕ(Sp−1) ⊂ B
q
r (0) ,
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for some r < π/2. For all s, define Φs : B
q
r (0)→ B

q
r (0) by

Φs(x) := sx .

A quick computation shows that, for all s, the map Φs is

(
sin(rs)
sin(r)

)
-Lipschitz with respect to the spherical

metric over B
q
r (0). We thus define

ϕt := Φ arcsin((1−t)sin(r))
r

◦ ϕ ,

and the result follows. �

The second consequence of Lemma 8.1 is that 1-Lipschitz maps not containing antipodal points can be

approximated by smooth, strictly 1-Lipschitz maps.

Lemma 8.3. Let ϕ : Sp−1 → Sq be a 1-Lipschitz map. If the image of ϕ does not contain antipodal points,

then, for all δ > 0, there exists a smooth, strictly 1-Lipschitz map ψ : Sp−1 → Sq such that

‖ϕ− ψ‖C0 < δ . (8.1)

Proof. By Lemma 8.2, there exists ǫ > 0, and a (1− ǫ)-Lipschitz map ϕ′ : Sp−1 → Sq such that ‖ϕ−ϕ′‖C0 <

δ/2. We now identify Sq with the unit sphere in Rq+1, and we denote by π : Rq+1 \ {0} → Sq radial

projection. The function ϕ′′(x) := ϕ′(x)/(1− ǫ) is a 1-Lipschitz map into Sq/(1 − ǫ). Applying a suitable

smoothing convolution yields a smooth, 1-Lipschitz map ϕ′′′ : Sp−1 → Rq+1 such that ‖ϕ′′ − ϕ′′′‖C0 < δ/2.

Since π is strictly contracting outside Sq,

‖ϕ′ − (π ◦ ϕ′′′)‖C0 = ‖(π ◦ ϕ′′) − (π ◦ ϕ′′′)‖C0 <
δ

2
.

It follows that ψ := (π ◦ ϕ′′′) is a smooth, strictly 1-Lipschitz map, and satisfies

‖ϕ − ψ‖C0 ≤ ‖ϕ − ϕ′‖+ ‖ϕ′ − ψ‖ < δ ,

as desired. �

8.2. Proof of Theorem A.

Proof of Theorem A. We first show that ∂∞ maps M bijectively onto B. It suffices to work in the double

cover H
p,q
+ and show that ∂+∞ mapsM+ bijectively onto B+. By Lemmas 3.5, 3.11 and 4.10, ∂∞ mapsM+

into B+. We now show that every admissible non-negative (p − 1)-sphere Λ in ∂∞H
p,q
+ is the asymptotic

boundary of a unique complete maximal graph in H
p,q
+ .

We first prove existence. Suppose first that Λ is smooth and spacelike. By Lemma 8.1, we may choose a

Fermi chart with respect to which Λ is the graph of some smooth, strictly 1-Lipschitz map ϕ : Sp−1 → S
q

+,

say. Let (ϕt)t∈[0,1] be as in Lemma 8.2 and, for all t, let Λt denote the graph of ϕt in ∂∞H
p,q
+ � Sp−1 × Sq.

Let E ⊆ [0, 1] denote the set of all t for which Λt is the asymptotic boundary of some complete maximal

graph in ∂∞H
p,q
+ . By Theorem 7.1, E is open, by Theorem 5.2, E is closed, and, since Λ0 is the boundary

of a totally-geodesic p-dimensional hyperbolic plane, E is non-empty. It follows by connectedness that

E = [0, 1], and this proves existence when Λ is smooth.

By Corollary 5.2, ∂+∞ : M+ → B+ is proper, and, by Lemma 8.3, the set of smooth, spacelike spheres

in ∂∞H
p,q
+ is dense in B+, and surjectivity of ∂+∞ follows. Since uniqueness is proven in Theorem 6.1, it

follows that ∂+∞ is a bijection, as desired.

It remains only to show that ∂∞ is a homeomorphism. Let {Mm}m∈N be a sequence of maximal graphs

converging in the C∞
loc

sense to the maximal graph M∞. Choose a Fermi chart and, for all m ∈ N ∪ {∞}, let

ϕm denote the 1-Lipschitz function whose graph is Mm. By the Arzelà-Ascoli Theorem, {ϕm}m∈N is compact

in the uniform topology. Since ϕ∞ is its unique limit, this sequences converges uniformly towards ϕ∞, and

it follows that {Mm}m∈N also converges in the Hausdorff sense to M∞. From this is follows that {∂∞Mm}m∈N
likewise converges in the Hausdorff sense to ∂∞M∞, and this proves continuity. Finally, by Theorem 5.2,

the asymptotic boundary map is proper. Its inverse is therefore also continuous, and this completes the

proof. �
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8.3. Proof of Theorem B. We first note that, in order not to trouble the reader with technical questions of

low regularity, we have up to this point only worked with objects that are smooth. However, by elliptic reg-

ularity, in the context of elliptic, second-order partial differential equations, the properties of being smooth

and of being C2,α are equivalent. There is, nonetheless, one important caveat, namely, when we wish to

study functionals over the space of C2,α sections of the normal bundle of some cone X̂, we require that this

bundle also be of type C2,α. For this to hold, it is necessary and sufficient that the sphere X be of type C3,α.

For this reason, we henceforth work with asymptotic boundaries of type C3,α, to which the theory developed

in the previous sections applies without modification.

It will now be sufficient to work in the double cover H
p,q
+ . Let M be a compete maximal p-submanifold

of H
p,q
+ with C3,α asymptotic boundary M∞. Let x0 ∈ H

p,q
+ be such that M∞ lies in the image of its spacelike

polar coordinate chart. Let X ⊆ T1
x0

H
p,q
+ denote the preimage of M∞ in this chart, and let X̂ denote its cone.

Let r0 > 0 and σ ∈ Γ(NX̂r0
) be as in Lemma 7.12. Note that ‖σ|B1(x)‖C2,α tends to zero as x tends to infinity

so that, in particular,

σ ∈ C
2,α
0

(NX̂r0
) . (8.2)

Theorem B is a straightforward consequence of the following refinement of (8.2).

Lemma 8.4. For all α ∈ (0, 1),

σ ∈ C
2,α
−1

(NX̂r0
) . (8.3)

Proof. Let Ĥ denote the mean curvature vector of X̂, and note that, by (7.19),

Ĥ ∈ C
0,α
−1

(NX̂r0
) .

Consider now a general section τ ∈ C
2,α
0

(NX̂r0
). Since X̂ is asymptotically totally-geodesic, for ‖τ‖C2,α

sufficiently small, the graph of τ is an embedded, spacelike submanifold. For all such τ, we denote

êτ(x, r) := Exp(x,r)(τ(x, r)) ,

we denote by q̂τ(x, r) the composition of parallel transport from (x, r) to êτ(x, r) with orthogonal projection

onto the normal bundle of X̂, and we denote by Ĥτ the image under (q̂τ)−1 of the mean curvature vector of

êτ. Since the mean curvature functional is quasi-linear, upon applying Lemma 7.31 pointwise to the 2-jets

of τ, we obtain

Ĥτ = Ĥ + L(τ)τ ,

where, for any section ρ,

L(τ)ρ := ai j(x, r, J1τ(x, r))Hess(ρ)i j(x, r) + bi(x, r, J1τ(x, r))(∇ρ)i(x, r) + c(x, r, J1τ(x, r))ρ(x) ,

for suitable functions a, b and c. In particular, since the graph of σ is maximal,

L(σ)σ = −Ĥ .

Note now that L(0) is simply the Jacobi operator J of X̂. Since ‖σ|B1(x)‖C2,α tends to zero as x tends to

infinity, it follows that, for all τ supported in the complement of a sufficiently large compact subset K of X̂r0
,

L(σ)τ = J′τ ,

for some perturbation J′ of J for which the conclusion of Theorem 7.21 continues to hold. Suppose now

that that K contains the boundary of X̂r0
, and let χ : X̂r0

→ [0, 1] be a smooth, compactly supported function

equal to 1 over K. Then, (1 − χ)σ vanishes along the boundary and, outside Supp(χ),

J′(1 − χ)σ = J′σ = L(σ)σ = −Ĥ ,

so that, by (8.3),

g := J′(1 − χ)σ ∈ C
0,α
−1

(NX̂r0
) .
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We now claim that (1− χ)σ is an element of C
2,α
−1,0

(NX̂r0
). Indeed, by Theorem 7.21 applied to C

2,α
−1,0

(NX̂r0
),

there exists an element σ′ ∈ C
2,α
−1,0

(NX̂r0
) such that J′σ′ = g. Since C

2,α
−1,0

(NX̂r0
) is contained in C

2,α
0,0

(NX̂r0
),

(σ′ − (1 − χ)σ) ∈ C
2,α
0,0

(NX̂r0
) .

Finally, since J′(σ′ − (1 − χ)σ′) = (g − g) = 0, by Theorem 7.21 again, applied now to C
2,α
0,0

(NX̂r0
),

σ′ − (1 − χ)σ = 0 ,

so that

(1 − χ)σ = σ′ ∈ C
2,α
−1,0

(NX̂r0
) ,

as asserted. Since χ vanishes outside a compact set, it follows that σ is also an element of C
2,α
−1

(NX̂r0
), and

this completes the proof. �

Proof of Theorem B. We continue to use the notation of Lemma 8.4. Let dVol and d̂Vol denote respectively

the volume forms of X and X̂. By (7.15),

d̂Vol = sinhp−1(r)dVol ∧ dr .

Let d̂Volσ denote the volume form of the embedding êσ. Since X̂ is asymptotically totally-geodesic, and

since ‖σ|B1(x)‖C2,α tends to zero as x tends to infinity, there exists C1 > 0 such that

d̂Volσ ≤ C1d̂Vol = C1sinhp−1(r)dVol ∧ dr .

By (8.3), there exists C2 > 0 such that

‖II‖2 ≤ C2e−2r .

It follows that ∫

X̂r0

‖II‖sd̂Volσ ≤ C1Cs/2
2

∫

X̂r0

sinhp−1(r)e−srdVoldr

= 21−pC1Cs/2
2

Vol(X)

∫ ∞

r0

e(p−1)r−srdr

< ∞ ,

as desired. �

9. Anosov representations

We now discuss the applications of Theorem A to the theory of positive P1-Anosov representations in

PO(p, q + 1). We refer the reader to [DGK18] for definitions and recall here only the main properties of

such representations. Let Γ be a word-hyperbolic group with Gromov boundary homeomorphic to a (p− 1)-
sphere. Every P1-Anosov representation ρ : Γ → PO(p, q + 1) preserves a unique (p − 1)-sphere Λρ in

∂∞Hp,q, called the proximal limit set. The proximal limit set Λρ is either positive for b or positive for −b.

In the former case ρ is called positive, and in the latter negative. Positive P1-Anosov representations are

precisely those for which Conv(Λρ) ∩Hp,q is non-empty; and furthermore, ρ acts properly discontinuously

and cocompactly on Conv(Λρ) ∩Hp,q.

9.1. Invariant maximal submanifolds. Let ρ : Γ → PO(p, q+ 1) be a positive P1-Anosov representation.

Proof of Corollary 1.1, Item (1). Let Λ := Λρ denote the proximal limit set of ρ. By definition, Λρ is a

positive (p − 1)-sphere in ∂∞Hp,q. In particular, it is non-negative so that, by Theorem A, there exists a

unique complete maximal graph M such that ∂∞M = Λ. Since ρ preserves Λ, it also preserves M, and

existence follows.

To prove uniqueness, let M′ be another complete maximal graph preserved by ρ, and denote Λ
′ = ∂∞M′.

Since M′ is ρ-invariant, so too is Λ
′, and therefore so too is Conv(Λ′). By [DGK17, Theorem 1.15 and

Theorem 1.24] (see also [BK23, Fact 2.15]), ∂∞Conv(Λ′) = Λ. It follows by Lemma 4.13 that Λ
′ =
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∂∞Conv(Λ′) = Λ so that, by uniqueness of solutions to the asymptotic Plateau problem, M′ = M, as

desired.

Finally, by Lemma 4.14, M is contained in Conv(Λ). Furthermore by [DGK18, Theorem 1.7], the action

of ρ(Γ) on Conv(Λρ) ∩ Hp,q is properly discontinuous and cocompact. Since M is a closed subset of

Conv(Λρ)∩Hp,q, it follows that the action of ρ(Γ) on M is also properly discontinuous and cocompact, and

this completes the proof of Item (1). �

Item (2) of Corollary 1.1 will be proven in the next section. We now prove Corollary 1.2.

Proof of Corollary 1.2. Let M be as in Corollary 1.1. Note that M is diffeomorphic to Rp, and the action of

ρ(Γ) on M is properly discontinuous. In particular, the stabilizer of any point is finite. Since Γ is torsion-

free, the action of ρ(Γ) on M is free. By Item (1) of Corollary 1.1, ρ(Γ) acts cocompactly on M, and the

quotient M/ρ(Γ) is thus a closed smooth manifold of dimension p. Finally, P1-Anosov representations have

finite kernel. Since Γ is torsion-free, ρ is faithful, Γ is isomorphic to the fundamental group of M/ρ(Γ), and

the result follows. �

9.2. Analytic dependence. In order to conclude the proof of Corollary 1.1, we now show that M depends

real analytically on the representation. This will use the implicit function theorem in a manner similar to that

of the proof of Theorem 7.1. However, since we are concerned here with the cocompact case, the proof is in

fact much simpler, differing little from similar cases already treated in the literature (such as, for example,

[Whi89]). For this reason, we will only sketch the main ideas.

Let ρ0 : Γ → PO(p, q + 1) be a representation acting properly-discontinuously and cocompactly on a

complete maximal p-submanifold M of Hp,q. Note that ρ0 lifts to a representation taking values in O(p, q +
1) which preserves a complete maximal p-submanifold of the double cover H

p,q
+ which we also denote by

M.

Lemma 9.1. There exists a positive function φ ∈ C∞
0
(M) such that, for all x ∈ M,

∑

γ∈Γ
φ(ρ0(γ) · x) = 1 . (9.1)

Proof. Indeed, let K be a fundamental domain for the action of ρ0 on M. Let ψ ∈ C∞
0
(M) be a positive

function which does not vanish over K. Choose ǫ > 0 and let N denote the number of translates of K

required to cover the ǫ-neighbourhood of the support of this function, which is finite by proper discontinuity

of the action of ρ0. For all x ∈ M, there exist at most N values of γ for which ψ ◦ ρ0(γ) does not vanish over

Bǫ(x). We thus define the smooth function ψ̃ : M → R by

ψ̃(x) :=
∑

γ∈Γ
ψ(ρ0(γ) · x) .

Clearly ψ̃(ρ0(γ) · x) = ψ̃(x) for all x ∈ M and γ ∈ Γ, and we readily verify that

φ(x) :=
ψ(x)

ψ̃(x)

has the desired properties. �

Recall now the quadric Qp,q introduced in Section 2.1. Let e0 : M → H
p,q
+ = Qp,q ⊆ Rp,q+1 denote the

canonical embedding. For all ρ ∈ Hom(Γ, O(p, q + 1)), we define ẽρ : M → E by

ẽρ(x) :=
∑

γ∈Γ
φ(ρ0(γ)

−1 · x)ρ(γ)ρ0(γ)
−1e0(x) . (9.2)

Lemma 9.2. For all ρ ∈ Hom(Γ, O(p, q + 1)), ẽρ is ρ-equivariant.



ON COMPLETE MAXIMAL SUBMANIFOLDS IN PSEUDO-HYPERBOLIC SPACE 53

Proof. Indeed, for all µ ∈ Γ, and for all x ∈ M,

ẽρ(ρ0(µ) · x) =
∑

γ∈Γ
φ(ρ0(γ)

−1 · ρ0(µ) · x)ρ(γ)ρ0(γ)
−1e0(ρ0(µ) · x)

=
∑

γ∈Γ
φ(ρ0(µ

−1γ)−1 · x)ρ(γ)ρ0(γ)
−1ρ0(µ)e0(x)

=
∑

γ∈Γ
φ(ρ0(µ

−1γ)−1 · x)ρ(γ)ρ0(µ
−1γ)−1e0(x)

=
∑

γ∈Γ
φ(ρ0(γ)

−1 · x)ρ(µγ)ρ0(γ)
−1e0(x)

=
∑

γ∈Γ
φ(ρ0(γ)

−1 · x)ρ(µ)ρ(γ)ρ0(γ)
−1e0(x)

= ρ(µ)ẽρ(x) ,

as desired. �

For all ρ, let eρ denote the composition of ẽρ with the canonical projection onto the projective space P+(E)
of oriented lines in E. Recall now that H

p,q
+ is an open subset of P+(E).

Lemma 9.3. There exists a neighbourhood U of ρ0 in Hom(Γ, O(p, q + 1)) such that, for all ρ ∈ U, eρ

defines a spacelike embedding from M into H
p,q
+ .

Proof. Indeed, denote

Ω := {x ∈ Rp,q+1 | b(x, x) < 0} .

Let K ⊆ M be a fundamental domain of ρ0. Define the neighbourhood U1 of ρ0 in Hom(Γ, O(p, q + 1)) by

U1 := {ρ | ẽρ(x) ∈ Ω ∀x ∈ K} .

By ρ-equivariance of ẽρ and O(p, q + 1)-invariance of Ω, for all ρ ∈ U1,

Im(ẽρ) ⊆ Ω ,

so that

Im(eρ) ⊆ H
p,q
+ .

By compactness and equivariance again, there exists a neighbourhood ρ0 ∈ U2 ⊆ U1 such that, for all

ρ ∈ U2, eρ is a spacelike embedding, and this completes the proof. �

We now sketch the proof of the analytic dependence.

Sketch of proof of Corollary 1.1, Item (2). Let NM denote the normal bundle of M and, for all (k,α), let

C
k,α
equiv

(NM) denote the space of ρ0-equivariant Ck,α sections of this bundle. Let U be as in Lemma 9.3. For

all ρ ∈ U, and for all x ∈ M, let qρ(x) denote the composition of parallel transport along the geodesic from

e0(x) to eρ(x) with orthogonal projection onto the normal bundle of eρ(M), and note that qρ is a bundle

isomorphism. For every section σ of the normal bundle of M, we define eρ,σ by

eρ,σ(x) := Expeρ(x)(q
ρ(x)σ(x)) ,

where Exp here denotes the exponential map of H
p,q
+ . By cocompactness and equivariance, upon reducing

U if necessary, there exists a neighbourhood V2,α of the zero section in C
2,α
equiv

(NM) such that, for all

(ρ,σ) ∈ U ×V2,α, eρ,σ is a spacelike embedding from M into H
p,q
+ . For all such (ρ,σ), let qρ,σ(x) denote

the composition of parallel transport from eρ(x) to eρ,σ(x) with orthogonal projection onto the normal

bundle of eρ,σ(M), and note that qρ,σ is also a bundle homeomorphism. For all (ρ,σ) ∈ U ×V2,α let Hρ,σ

denote the image under (qρ)−1 ◦ (qρ,σ)−1 of the mean curvature vector of eρ,σ.
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We define the functional H : U ×V2,α → C
0,α
equiv

(NM) by

H(ρ,σ) := Hρ,σ .

This functional is smooth, and its partial derivative with respect to the second component is the Jacobi

operator J of M. Since J is a generalised laplacian over a cocompact manifold, it is Fredholm of index zero.

Finally, as in the proof of Theorem 7.17, J has trivial kernel, and is thus a linear isomorphism, and the result

follows by the implicit function theorem. �

9.3. The Guichard–Wienhard domain. In this section, we prove Theorem 1.4 following the ideas of

[CTT19, Section 4]. We first recall the construction described by Guichard–Wienhard in [GW12]. Let b be

a signature (p, q+ 1) quadratic form on some vector space E, and let Isot(E) denote the space of maximally

isotropic subspaces of E. Observe that every element V in Isot(E) has dimension min{p, q + 1} and that

Isot(E) is a PO(b)-homogenous space.

Theorem 9.4 ([GW12]). Let Γ be a word hyperbolic group, let ρ be a P1-Anosov representation of Γ in

O(b), let Λ ⊂ ∂∞Hp,q denote the proximal limit set of ρ, and denote

Ωρ :=
{
V ∈ Isot(E) , P(V) ∩Λ = ∅} . (9.3)

The action of ρ(Γ) on Ωρ is properly discontinuous and cocompact.

We first provide an elementary description of the intersections of maximal totally isotropic subspaces with

∂∞Hp,q.

Lemma 9.5. Let E = U ⊕W be an orthogonal decomposition such that b restricts to a positive-definite

form on U and a negative-definite form on W. Endow U and W with the scalar products 〈·, ·〉U = b|U and

〈·, ·〉W = −b|W . Let V ∈ Isot(E).

(1) If p ≤ q + 1, then V is the graph of a linear map ϕ : U → W which is an isometry onto its image.

In any Fermi chart P+(V) ⊂ ∂∞H
p,q
+ is the graph of an isometric immersion ψ : Sp−1 → Sq.

(2) If p ≥ q+ 1, then V is the graph of a linear map ϕ : W → U which is an isometry onto its image. In

any Fermi chart P+(V) ⊂ ∂∞H
p,q
+ is the graph of an isometry ψ : Σ

q → Sq for some totally-geodesic

sphere Σ
q ⊆ Sp−1.

Proof. For any two vectors, v1 = (u1, w1) and v2 = (u2, w2),

b(v1, v2) = 〈u1, u2〉U − 〈w1, w2〉W ,

so that V is the graph of some isometric linear map ϕ from U to W or from W to U, depending on the sign

of (p − q − 1). Taking the intersections with ∂∞Hp,q, we see that, if p ≤ q + 1, then P+(V) ⊂ ∂∞H
p,q
+ is

the graph of ψ = ϕ|Sp , and if p ≥ q + 1, then P+(V) ⊂ ∂∞H
p,q
+ is the graph of the inverse of ϕ restricted to

Σ
q = ϕ(W)∩ Sp. �

Lemma 9.6. Let Λ be a positive sphere in ∂∞Hp,q and let V ∈ Isot(E) be a maximal totally isotropic

subspace. If p ≥ q + 1, then P(V) intersects Λ.

Proof. Let Λ+ be a lift of Λ in ∂∞H
p,q
+ . We work in a Fermi chart, so that ∂∞H

p,q
+ � Sp−1 × Sq. In particular,

Λ+ is the graph of a 1-Lipschitz map f : Sp−1 → Sq. By Lemma 9.5, there exists a q-dimensional totally

geodesic sphere Σ
q in Sp−1 together with an isometry ψ : Σ

q → Sq such that P+(V) ∩ ∂∞H
p,q
+ is the graph

of ψ.

Consider the map g := ψ−1 ◦ f|Σq from Σ
q to itself. Since Λ is positive, the image of g does not contain

antipodal points so that, by Lemma 8.2, it is homotopic to the constant map and thus has degree 0. It then

follows by the Lefschetz fixed-point theorem that g has at least one fixed point. The graphs of ψ and f thus

intersect so that P(V) and Λ also intersect, as desired. �

This proves the second item in Corollary 1.4. Before completing the proof, we require two more technical

results.
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Lemma 9.7. Suppose that p ≤ q, and let M be a smooth entire graph in Hp,q with asymptotic boundary Λ.

For all V ∈ Isot(E), either

(1) there is a point x in M, which is unique, such that V is contained in x⊥, or

(2) P(V) intersects Λ.

Proof. We first show that P(V⊥) meets M ∪Λ. Indeed, since p ≤ q, the isotropic space V has dimension

p and its orthogonal complement V⊥ is a degenerate (q + 1)-dimensional subspace of E which does not

contain any positive-definite line and on which the kernel of b is exactly V . In particular, V⊥ is the limit of

some sequence {Wn}n∈N of negative-definite (q + 1)-dimensional subspaces in E. For every n we choose a

Fermi chart Ψn : S
p
+ × Sq → H

p,q
+ such that Ψn({N} × Sq) = P+(Wn). Since any lift M+ of M is an entire

graph in every such chart, M+ intersects each P+(Wn) in a unique point, and it follows that M intersects

each P(Wn) in a unique point. By compactness of M ∪Λ, P(V⊥) intersects M ∪Λ, as asserted.

Observe now that P(V⊥) intersects M at a point x if and only if V is contained in x⊥. Note, furthermore,

that for any two points x̂, ŷ in V⊥ satisfying b( x̂, x̂) = b(ŷ, ŷ) = −1,

b( x̂, ŷ) ≥ −1 ,

and uniqueness of x follows by Lemma 3.7. Finally, if P(V⊥) intersects Λ, then, since the kernel of b|V⊥ is

exactly V , it follows that P(V) intersects Λ, and this completes the proof. �

Recall that the Stiefel manifold Vk,n is the space of k-tuples of unit vectors in Rn that are pairwise orthog-

onal.

Lemma 9.8. Suppose that p ≤ q, let M be a smooth entire graph in Hp,q, and let

B(M) := {(x, V) | x ∈ M, V ∈ Isot(x⊥)} (9.4)

denote the bundle over M whose fiber over x is Isot(x⊥). Then:

(1) The fibers of B(M) are diffeomorphic to Vp,q.

(2) If ρ : Γ → PO(b) is a representation acting freely and properly discontinuously on M, then the

quotient B(M)/ρ(Γ) is connected unless p = q and NM/ρ(Γ) has vanishing first Stiefel-Whitney

class.

Proof. To prove (1), consider an orthogonal splitting x⊥ = U ⊕ V such that b restricts to a positive-definite

form on U and a negative-definite form on V . By Lemma 9.5, elements in Isot(x⊥) are graphs of linear maps

ϕ : U → V satisfying 〈ϕ(a),ϕ(b)〉V = 〈a, b〉U for any a, b ∈ U. Fixing an orthonormal basis (e1, ..., ep) of

U, such a map is given by an orthonormal p-tuple of vectors in V , so that Isot(x⊥) is diffeomorphic to Vp,q,

as desired.

To prove (2), observe that if p < q then Vp,q is connected, and therefore so too is B(M)/Γ. When

p = q, the fiber B(M)x has two connected components, and so the quotient B(M)/Γ either has one or two

connected components. Fix an orientation of M. Given x ∈ M, and identifying TxM and NxM respectively

with U and V , we see that the two connected components of the fiber correspond to the two orientations of

Nx M. It follows that the quotient B(M)/Γ has two connected components if and only if NM/ρ(Γ) carries

a global orientation, that is, if and only if the O(q)-bundle NM/ρ(Γ) reduces to a SO(q)-bundle. Since the

obstruction to this is precisely the first Stiefel-Whitney class, this proves (2). �

We now conclude the proof of Corollary 1.4.

Proof of Corollary 1.4. Let B(M) be the bundle constructed in Lemma 9.8, where M is the complete maxi-

mal ρ(Γ)-invariant p-submanifold given by Corollary 1.1.

Assume q ≥ p. Since elements in Isot(x⊥) have dimension p, the inclusion of x⊥ into E induces an

embedding of Isot(x⊥) into Isot(E). Taking this embedding fiberwise yields a map δ : B(M) → Isot(E).
We claim that δ is a homeomorphism onto its image, and δ(B(M)) = Ωρ. Indeed, the homogeneous space

Isot(E) is diffeomorphic to Vp,q+1, so has dimension dim(Vp,q) + q which is thus equal to the dimension
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of B(M). By Lemma 9.7, the map δ is a bijection onto the open set Ωρ. Since δ is continuous it is a

homeomorphism by invariance of domain theorem.

Now, δ is clearly equivariant for the actions of ρ(Γ) on B(M) and Ωρ. The conclusions of Theorem 1.4

then follow by Lemma 9.6 and Lemma 9.8, which can be applied since the action of ρ(Γ) on M is properly

discontinuous by Corollary 1.1, and is free by the assumption that Γ is torsion-free. �

10. Renormalized area and minimal lagrangian extensions

We conclude this paper with a discussion of the applications of Theorem B. Note first that Corollary 1.5

is an immediate consequence of Theorem B for p = 2, together with the definition of renormalized area

given in (1.2). In this section, we prove Corollary 1.6.

10.1. The PSL(2, R) model of anti-de Sitter space. We first recall the PSL(2, R) model of H2,1 (see

[Mes07] or [BS20, Section 3] for more details). Following the notation of Section 2.1, we take E =M(2, R)
to be the vector space of 2 × 2 matrices, and consider the following bilinear form of signature (2, 2)

b(A1, A2) = −
1

2
tr(A1 · adj(A2)) , (10.1)

where adj here denotes the adjugate matrix. Since A · adj(A) = det(A)Id, the quadratic form induced by b

is b(A, A) = − det(A). With this choice of V and b, H
2,1
+ identifies with SL(2, R), and H2,1 identifies with

PSL(2, R).
In this model, ∂∞H2,1 thus identifies with the space of projective classes of 2 × 2 matrices of rank 1.

Although we already know from Section 3.2 that ∂∞H
2,1
+ is homeomorphic to S1 × S1, and thus ∂∞H2,1,

being the quotient of ∂∞H
2,1
+ by the antipodal map, is also in this particular dimension homeomorphic to

S1 × S1, we will need to use here a different parameterization for ∂∞H2,1. This is given by the map

Ξ : ∂∞H2,1 → P(R2) × P(R2),

defined by

Ξ([A]) = (Im(A), Ker(A)), (10.2)

where, for any rank 1 matrix A, [A] denotes its projective class.

Finally, since multiplication on the left and on the right by matrices of unit determinant preserves b,

there is a monomorphism of PSL(2, R) × PSL(2, R) into the group PO(b) of isometries of H2,1. For di-

mensional reasons, it turns out that its image is the identity component of PO(b). The parameterization

Ξ
−1 is clearly equivariant with respect to the monomorphism PSL(2, R) × PSL(2, R) → PO(b), where

PSL(2, R) × PSL(2, R) acts on P(R2) × P(R2) by the obvious product action.

Lemma 10.1. Given any orientation-preserving circle homeomorphism f : P(R2) → P(R2), the set

Ξ
−1(graph( f )) is a positive 1-sphere in ∂∞H2,1.

Proof. Let x, y, z be a triple of pairwise distinct points in ∂∞H2,1. By definition, we need to show that

x ⊕ y ⊕ z has signature (2, 1). Denote Ξ(x) = (x1, x2), Ξ(y) = (y1, y2) and Ξ(z) = (z1, z2). Observe

that, since Ξ(x), Ξ(y) and Ξ(z) are on the graph of f and x, y, z are pairwise distinct, x1, y1 and z1 are

pairwise distinct. Likewise, since f is injective, x2, y2 and z2 are pairwise distinct. Now, since PSL(2, R)
acts transitively on oriented triples in P(R2), using the action of PSL(2, R)× PSL(2, R) we can assume that

x1 = x2 =

[
0

1

]
y1 = y2 =

[
1

1

]
y1 = y2 =

[
1

0

]
.

From the definition of Ξ in (10.2), it follows immediately that

x =

[
0 0

1 0

]
y =

[
1 −1

1 −1

]
z =

[
0 1

0 0

]
.



ON COMPLETE MAXIMAL SUBMANIFOLDS IN PSEUDO-HYPERBOLIC SPACE 57

The span of x, y and z is the three-dimensional subspace of traceless matrices inM(2, R), which, by (10.1),

is the b-orthogonal complement of the identity matrix. Since b(id, id) < 0, the space x⊕ y ⊕ z has signature

(2, 1), as desired. �

10.2. Minimal lagrangian extensions. Let us now outline the construction, first developed in [BS10], of

minimal Lagrangian diffeomorphisms of the hyperbolic plane from maximal surfaces in H2,1.

Definition 10.2. A diffeomorphism F : H2 → H2 is minimal Lagrangian if it is area-preserving and its

graph is a minimal surface in H2 ×H2.

Given a maximal surface in AdS, or more generally any spacelike surface, one can define two Gauss

maps π1, π2 : M → H2 as follows. Given any point p = [Ap] ∈ AdS, which we think as the pro-

jective class of a matrix Ap ∈ M(2, R) with det(A) = 1, let ν(p) be a unit normal vector to M at p.

Since M is spacelike, ν(p) is represented by an element Np of M(2, R), well-defined up to a sign, sat-

isfying b(Ap, Np) = 0 and b(Np, Np) = −1. Now, since b is preserved by multiplication by matrices

of unit determinant, b(id, A−1
p Np) = 0 and b(A−1

p Np, A−1
p Np) = −1. Likewise b(id, NpA−1

p ) = 0 and

b(NpA−1
p , NpA−1

p ) = −1. By (10.1), this means that A−1
p Np and NpA−1

p are traceless matrices with deter-

minant 1, and, by the Cayley-Hamilton theorem, their projective classes in PSL(2, R) have order two. We

define

π1(p) = Fix([NpA−1
p ]) and π2(p) = Fix([A−1

p Np]),

where Fix denotes the unique fixed point of the action of H2, in the upper half-plane model, of an elliptic

element of PSL(2, R).
The key point for the construction of minimal Lagrangian maps is then the following identity for the

pull-backs of the hyperbolic metric of H2 via the two Gauss maps π1 and π2:

(π1)
∗gH2 = I((id − JB)·, (id− JB)·) and (π2)

∗gH2 = I((id + JB)·, (id + JB)·) , (10.3)

where as usual I denotes the first fundamental form of M and B its shape operator, and J denotes the

almost-complex structure on M associated to I. Here B is considered as a smooth section of the bundle of

endomorphisms of TM, and the same holds for J. For a proof of (10.3), see [KS07, Lemma 3.16], [Bar18,

Section 6.2] or [BS20, Proposition 6.3.7].

Now, recall that an orientation-preserving circle homeomorphism f : P(R2)→ P(R2) is quasisymmetric

if it admits a quasiconformal extension to H2. The key properties required to construct minimal Lagrangian

extensions of quasisymmetric circle homeomorphisms are summarized in the following lemma, proved in

[BS10].

Lemma 10.3. Let f : P(R2) → P(R2) be any quasisymmetric circle homeomorphism, and let M be the

complete maximal surface in AdS with ∂∞M = Ξ
−1(graph( f )).

(1) For i = 1, 2, πi : M → H2 is a diffeomorphism;

(2) F := π2 ◦ π−1
1

is a quasiconformal minimal Lagrangian diffeomorphism of H2 whose continuous

extension to ∂∞H2
� P(R2) equals f .

Since Lemma 10.3 is well-known, we only outline here the proof and the fundamental references, together

with some observations which will be important for the proof of Corollary 1.6.

Let B denote the shape operator of M, as above, and let ±λ be the eigenvalues of B. By Ishihara’s

bound on the norm of the second fundamental form (Theorem 3.12) of a complete maximal surface, λ2 ≤ 1.

Moreover, by [BS10, Theorem 1.12, Proposition 5.2], if ∂∞M = Ξ
−1(graph( f )) for f a quasisymmetric

circle homeomorphism, then λ2 ≤ 1 − ǫ for some ǫ > 0.

Now, since B is a symmetric and traceless endomorphism of T M, so too is JB. A direct computation

shows that

det(id ± JB) = 1 + det(B) = 1 − λ2 ∈ (ǫ, 1] . (10.4)

The identity (10.4) has several consequences. First, it implies that π1 and π2 are local diffeomorphisms.

By [BS10, Proposition 3.17], πl (resp. πr) extends continuously to the maps ∂∞M → ∂∞H2
� P(R2)
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sending Ξ
−1(x1, x2) to x1 (resp. x2). As a consequence, πl and πr are global diffeomorphisms, and so too is

F := π2 ◦ π−1
1

. Moreover F extends continuously to f .

Second, by (10.4) and the easy observation that tr(id ± JB) = 2, the eigenvalues of id ± JB are bounded

above and below by positive constants. Hence the quasiconformal dilatation of πl and πr, which equals the

ratio between these eigenvalues, is bounded. This shows that πl and πr are quasiconformal, and so too is F.

Third, (10.4) also shows that the Jacobian determinants of π1 and π2 coincide. Hence F is area-preserving.

To complete the proof of Lemma 10.3, it thus only remains to show that the graph of F is minimal in H2×H2.

This follows easily from (10.3), which can be rewritten as:

(πi)
∗gH2 = (1 + det(B))I + (−1)iI(2JB·, ·) .

Since JB is symmetric and traceless, this shows that the Hopf differential Hopf(πi) is the unique quadratic

differential on M whose real part equals (−1)iI(2JB·, ·). By the Codazzi equation, Hopf(πi) is holomorphic.

Hence πi is a harmonic diffeomorphism. Moreover Hopf(π1) = −Hopf(π2), showing that (π1, π2) : M →
H2 ×H2 is a conformal harmonic embedding, hence its image is a minimal surface, and therefore the graph

of F is minimal.

10.3. Proof of Corollary 1.6. We are now ready to provide the proof of Corollary 1.6.

Proof of Corollary 1.6. Let f be a C3,α circle diffeomorphism. In particular, f is quasisymmetric ([GL00,

Chapter 16]). Recall that the modulus of the Beltrami differential of a quasiconformal diffeomorphism

F : H2 → H2 satisfies the identity

|µ(p)| = K(p) − 1

K(p) + 1
, (10.5)

where K(p) is the quasiconformal dilatation of F at p ([GL00, Chapter 1]). Moreover, when F = π2 ◦ π−1
1

is the quasiconformal minimal Lagrangian extension of f constructed in [BS10] (c.f. Lemma 10.4), a direct

computation based on (10.3) (see [Sep19, Proposition 5.5]) shows that

K(p) =


1 + λ(π−1

1
(p))

1 − λ(π−1
1
(p))


2

, (10.6)

where as usual ±λ are the principal curvatures of the complete maximal surface M. From (10.5) and (10.6),

and recalling that, if II denotes the second fundamental form of M, then ‖II‖2 = 2λ2, we obtain

|µ(p)| =
2|λ ◦ π−1

1
|

1 + (λ ◦ π−1
1
)2
≤ C(‖II‖ ◦ π−1

1 ) . (10.7)

Finally, using (10.3) and (10.4), we see that π∗
1
dAreaH2 ≤ dAreaM . Therefore, by Corollary 1.5, we obtain

∫

H2

|µ|2dAreaH2 ≤ C

∫

M

‖II‖2dAreaM < +∞ ,

and this completes the proof. �
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[DGK18] Jeffrey Danciger, François Guéritaud, and Fanny Kassel. Convex cocompactness in pseudo-Riemannian hyperbolic

spaces. Geom. Dedicata, 192:87–126, 2018.

[Eck03] Klaus Ecker. Mean curvature flow of spacelike hypersurfaces near null initial data. Commun. Anal. Geom., 11(2):181–

205, 2003.

[Eva10] Lawrence C. Evans. Partial differential equations, volume 19 of Grad. Stud. Math. Providence, RI: American Mathe-

matical Society (AMS), 2nd ed. edition, 2010.

[FG06] Vladimir Fock and Alexander Goncharov. Moduli spaces of local systems and higher Teichmüller theory. Publ. Math.

Inst. Hautes Études Sci., (103):1–211, 2006.

[Fin21] Joel Fine. Knots, minimal surfaces and J-holomorphic curves. ArXiv:2112.07713, 2021.

[Ger83] Claus Gerhardt. H-surfaces in Lorentzian manifolds. Commun. Math. Phys., 89:523–553, 1983.

[Ger06] Claus Gerhardt. On the CMC foliation of future ends of a spacetime. Pac. J. Math., 226(2):297–308, 2006.

[GHL04] Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. Riemannian geometry. Universitext. Berlin: Springer, 3rd

ed. edition, 2004.

[GL00] Frederick P. Gardiner and Nikola Lakic. Quasiconformal Teichmüller theory, volume 76 of Math. Surv. Monogr. Prov-

idence, RI: American Mathematical Society, 2000.

[GLW21] Olivier Guichard, François Labourie, and Anna Wienhard. Positivity and representations of surface groups.

arXiv:2106.14584, 2021.

[GT01] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order. Class. Math. Berlin:

Springer, reprint of the 1998 ed. edition, 2001.

[GW12] Olivier Guichard and Anna Wienhard. Anosov representations: domains of discontinuity and applications. Invent.

Math., 190(2):357–438, 2012.

[Hei05] Juha Heinonen. Lectures on Lipschitz analysis, volume 100 of Rep., Univ. Jyväskylä, Dep. Math. Stat. Jyväskylä:
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