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THE ANTI-DE SITTER PROOF OF THURSTON’S EARTHQUAKE THEOREM

FARID DIAF AND ANDREA SEPPI

Abstract. Thurston’s earthquake theorem asserts that every orientation-preserving home-

omorphism of the circle admits an extension to the hyperbolic plane which is a (left or
right) earthquake. The purpose of these notes is to provide a proof of Thurston’s earth-

quake theorem, using the bi-invariant geometry of the Lie group PSL(2,R), which is also

called Anti-de Sitter three-space. The involved techniques are elementary, and no back-
ground knowledge is assumed apart from some two-dimensional hyperbolic geometry.
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1. Introduction

Since the 1980s, earthquake maps have played an important role in the study of hyperbolic
geometry and Teichmüller theory. These are (possibly discontinuous) maps of the hyperbolic
plane to itself that, roughly speaking, are isometric in the complement of a subset of the
hyperbolic plane which is a disjoint union of geodesics, and they ”slip” along the ”faults”
represented by these geodesics. In particular, they may have points of discontinuity there. In
general, an earthquake map can be complicated, and it is an isometry only on the connected
components of the complement of a measured geodesic lamination.

To achieve the solution of the Nielsen realization problem [11], Steven Kerckhoff proved
the so-called earthquake theorem for closed hyperbolic surfaces, that is, the existence of a left
(right) earthquake map between any two closed hyperbolic surfaces of the same genus. In
[20], William Thurston gave a generalization, proved by independent methods, to a universal
setting, which is the statement that we consider in the present notes: he proved that every
orientation-preserving homeomorphism of the circle admits an extension to the hyperbolic
plane which is a (left or right) earthquake. Earthquake maps have been extensively studied
later in various directions, see [9, 10, 13, 14, 16, 17, 18]

Mess’ groundbreaking work and later developments. In his 1990 pioneering paper [12], Ge-
offrey Mess has first highlighted the deep connections between the Teichmüller theory of
hyperbolic surfaces, and three-dimensional Lorentzian geometries of constant sectional cur-
vature. In particular, the so-called Anti-de Sitter geometry is the Lorentzian geometry of
constant negative curvature — that is, the Lorentzian analogue of hyperbolic geometry. One
of the models of Anti-de Sitter three-space is simply the Lie group PSL(2,R), endowed with
a Lorentzian metric which is induced by the (bi-invariant) Killing form on its Lie algebra.
This is the model that we adopt in the present work.

Mess has then observed that convex hulls in Anti-de Sitter space can be used, together
with a Gauss map construction for spacelike surfaces, to prove earthquake theorems in
hyperbolic geometry. In [12], Mess outlined the proof of the earthquake theorem between
closed hyperbolic surfaces. His groundbreaking ideas have been improved and implemented
by several authors, leading to many results of existence of earthquake maps in various settings
[1, 2, 4, 15] and of other interesting types of extensions [3, 5, 6, 19]. See also the paper [7],
which is a detailed introduction to Anti-de Sitter geometry, contains a general treatment of
the Gauss map, but only sketches some of the ideas that appear in the proof of Mess.

The literature seems to lack a complete proof of the earthquake theorem, in Thurston’s
universal version, which relies on Anti-de Sitter geometry. In this note, we will provide a
detailed proof of Thurston’s earthquake theorem (Theorem 2.4), and we will then recover
(Corollary 6.6) the existence of earthquake maps for closed hyperbolic surfaces. While the
proofs that appear in [12], and in several of the aforementioned subsequent works, make use
of a computation of the holonomy, here we will simply work with the definition of earthquake
map.

In fact, the proof presented here, although going through several technical steps, entirely
involves elementary tools. The only required knowledge for these notes is the hyperbolic
plane geometry in the upper half-space model, and the very basic definitions of Lie groups
theory and Lorentzian geometry.

A quick comparison of the two proofs. It is also worth remarking that the proof presented
here, and suggested by Mess, is not entirely different in spirit from Thurston’s proof in [20].
Indeed, the starting point of Thurston’s proof consists in considering, given an orientation-
preserving homeomorphism f or the circle, those isometries γ of the hyperbolic plane such
that the composition h := γ ◦ f is extreme left : that is, such that h has a lift h̃ : R → R
satisfying h(x) ≤ x and whose fixed point set is non-empty. In Thurston’s words, ”h moves
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points counterclockwise on the circle, except for those points that it fixes”. Then Thurston
defines the earthquake map to be equal to γ−1 on the convex hull of the fixed points of h.

This has an interpretation in terms of Anti-de Sitter geometry. Spacelike planes in Anti-
de Sitter space, which is simply the Lie group PSL(2,R), are isometrically embedded copies
of the hyperbolic plane, and are parameterized by elements of PSL(2,R) itself, via a natural
duality. For instance, the dual plane to the identity consists of all elliptic elements of order
two, which is identified with the hyperbolic plane itself via the fixed point map. The“extreme
left condition” as above is then exactly equivalent to the condition that the spacelike plane
dual to γ is a past support plane of the convex hull of the graph of f , which can be seen as
a subset of the boundary at infinity of Anti-de Sitter space.

The proof presented here then consists in considering the left and right projections, defined
on the past boundary components of the convex hull, and to consider the composition E of
one projection with the inverse of the other. It turns out that this composition map E is
indeed equal to γ−1 on the convex hull of the fixed points of γ ◦ f , as in Thurston’s ansatz.
Of course one can replace extreme left by extreme right, and past boundary with future
boundary, to obtain right earthquakes instead of left earthquakes.

We remark that the main statement proved by Thurston also includes a uniqueness part.
In fact, the earthquake map is not quite unique, but it is up to a certain choice that has
to be made at every geodesic where it is discontinuous. We will give an interpretation of
this phenomenon in terms of a choice of support plane at the points of the boundary of
the convex hull that admit several support planes, but we will not provide a proof of the
uniqueness part here.

Main elements of the Anti-de Sitter proof. Despite the above analogies with Thurston’s
original proof of the existence of left and right earthquakes, developing the proof in the
Anti-de Sitter setting then leads to remarkable differences with respect to Thurston’s proof.
A large part of our proof is actually achieved by a reduction to the situation of an orientation-
preserving homeomorphism of the circle which is equal to the restriction of an element γi of
PSL(2,R) on an interval Ii (i = 1, 2), where I1 ∪ I2 equals the circle. In this situation the
earthquake extension is already well-known, and consists of a simple earthquake. However,
understanding this example in detail from the perspective of Anti-de Sitter geometry —
which corresponds to the situation where a boundary component of the convex envelope of
f is the union of two totally geodesic half-planes meeting along a geodesic — then permits
to prove easily some of the fundamental properties that one has to verify in order to show
that the composition map E is an earthquake map.

There are furthermore two main technical statements that we have to prove. The first
is the fact that the left and right projections (although they can be discontinuous) are
bijective — which is essential since the earthquake map is defined as the inverse of the left
projection post-composed with the right projection, and implies that E itself is a bijection
of the hyperbolic plane. While injectivity is easy using the aforementioned example of
two totally geodesic planes meeting along a geodesic, surjectivity requires a more technical
argument. The second statement is an extension lemma, which ensures that the left and
right projections (although sometimes discontinuous) extend continuously to the boundary,
and the extension is simply the projection from the graph of f onto the first and second
factor. This ensures that the composition E of the right projection with the inverse of the
left projection extends to f itself on the circle at infinity.

Some of the above steps do of course involve a number of technical difficulties, but the
language of Anti-de Sitter geometry is, in our opinion, extremely effective, and permits to
stick to quite elementary techniques in the entire work.

Acknowledgements. We would like to thank Pierre Will for a remark on the description of
timelike planes via composition of orientation-reversing isometries, that is used in Section
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3.4. We are grateful to Filippo Mazzoli and Athanase Papadopoulos for useful suggestions
that helped improving the exposition.

2. Earthquake maps

Throughout this work, we will use the upper half-plane model of the hyperbolic plane
H2, that is, H2 is the half-space Im(z) > 0 in C endowed with the Riemannian metric
|dz|2/Im(z)2 of constant curvature −1. Its visual boundary ∂∞H2 is therefore identified
with R ∪ {∞}, and H2 = H2 ∪ ∂∞H2 is endowed with the topology given by the one-point
compactification of the closed half-plane Im(z) ≥ 0. The isometry group of H2 is identified
with the group PSL(2,R) acting by homographies, and its action naturally extends to ∂∞H2.

Definition 2.1. A geodesic lamination λ of H2 is a collection of disjoint geodesics that foliate
a closed subset X ⊆ H2. The closed set X is called the support of λ. The geodesics in λ are
called leaves. The connected components of the complement H2 \ X are called gaps. The
strata of λ are the leaves and the gaps.

Given a hyperbolic isometry γ of H2, the axis of γ is the geodesic ℓ of H2 connecting the
two fixed points of γ in ∂∞H2. Therefore the axis ℓ is preserved by γ, and when restricted
to ℓ, γ|ℓ : ℓ → ℓ acts as a translation with respect to any constant speed parameterization
of ℓ.

Given two subsets A,B of H2, we say that a geodesic ℓ weakly separates A and B if A
and B are contained in the closure of different connected components of H2 \ ℓ.

Definition 2.2. A left (resp. right) earthquake of H2 is a bijective map E : H2 → H2 such
that there exists a geodesic lamination λ for which the restriction E|S of E to any stratum
S of λ is equal to the restriction of an isometry of H2, and for any two strata S and S′ of λ,
the comparison isometry

Comp(S, S′) := (E|S)−1 ◦ E|S′

is the restriction of an isometry γ of H2, such that:

• γ is different from the identity, unless possibly when one of the two strata S and S′

is contained in the closure of the other;
• when it is not the identity, γ is a hyperbolic transformation whose axis ℓ weakly
separates S and S′;

• moreover, γ translates to the left (resp. right), seen from S to S′.

Let us clarify the meaning of this last condition. Suppose f : [0, 1] → H2 is smooth path
such that f(0) ∈ S, f(1) ∈ S′ and the image of f intersects ℓ transversely and exactly at
one point z0 = f(t0) ∈ ℓ. Let v = f ′(t0) ∈ Tz0H2 be the tangent vector at the intersection
point. Let w ∈ Tz0H2 be a vector tangent to the geodesic ℓ pointing towards γ(z0). Then
we say that γ translates to the left (resp. right) seen from S to S′ if v, w is a positive (resp.
negative) basis of Tz0H2, for the standard orientation of H2.

It is important to observe that this condition is independent of the order in which we
choose S and S′. That is, if Comp(S, S′) translates to the left (resp. right) seen from S to
S′, then Comp(S′, S) translates to the left (resp. right) seen from S′ to S.

We remark that an earthquake E is not required to be continuous. In fact, in some cases
it will not be continuous, for instance when the lamination λ is finite, meaning that λ is
a collection of a finite number of geodesics. This is best visualized in the following simple
example.

Example 2.3. The map

E : H2 → H2
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defined in the upper half-space model of H2 by:

E(z) =


z if Re(z) < 0

az if Re(z) = 0

bz if Re(z) > 0

is a left earthquake if 1 < a < b, and a right earthquake if 0 < b < a < 1. The lamination
λ that satisfies Definition 2.2 is composed of a unique geodesic, namely the geodesic ℓ with
endpoints 0 and ∞.

It is clear that the earthquake map E from Example 2.3 is not continuous along ℓ.
Despite the lack of continuity, Thurston proved that any earthquake map extends con-

tinuously to an orientation-preserving homeomorphism of ∂∞H2, meaning that there exists
a (unique) orientation-preserving homeomorphism f : ∂∞H2 → ∂∞H2 such that the map

E(z) =

{
E(z) if z ∈ H2

f(z) if z ∈ ∂∞H2

is continuous at every point of ∂∞H2.
Then Thurston provided a proof of the following theorem, that he called “geology is

transitive”:

Theorem 2.4. Given any orientation-preserving homeomorphism f : ∂∞H2 → ∂∞H2, there
exists a left earthquake map of H2, and a right earthquake map, that extend continuously to
f on ∂∞H2.

We remark that the earthquake map is not unique, as shown by Example 2.3, which
provides a family of left (resp. right) earthquake maps extending the homeomorphism

f(x) =


x if x ≤ 0

bx if x ≥ 0

∞ if x = ∞
,

parameterized by the choice of a ∈ (1, b) (resp. a ∈ (b, 1)). Thurston’s theorem is actually
stronger than the statement of Theorem 2.4 above, since it characterizes the non-uniqueness
as well. In short, the range of choices of the earthquake extension as in Example 2.3 is
essentially the only indeterminacy that occurs, and it happens exactly on each leaf of the
lamination where the earthquake is discontinuous. We will not deal with the uniqueness
part as in Thurston’s work here. Nevertheless, in Subsection 6.4 we will show that our
proof permits to recover the existence of earthquake maps between homeomorphic closed
hyperbolic surfaces, not relying on the uniqueness property.

3. Anti-de Sitter geometry

In this section, we will introduce the fundamental notions in Anti-de Sitter geometry. For
more details, the reader can consult [7, Section 3].

3.1. First definitions. The three-dimensional Anti-de Sitter space AdS3 is the Lie group
PSL(2,R), that is, the group of orientation-preserving isometries of H2, endowed with a bi-
invariant metric of signature (2, 1) (namely, a Lorentzian metric) which we now construct.

Consider first the double cover SL(2,R) of PSL(2,R), which we realize as the subset of
matrices of unit determinant in the four-dimensional vector space M2(R) of 2-by-2 matrices.
Endow M2(R) with the quadratic form q:

q(A) = −det(A) .
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It can be checked that q has signature (2, 2). The associated bilinear form is expressed by
the formula:

⟨A,B⟩ = −1

2
tr(A · adj(B)) (1)

for A,B ∈ M2(R), where adj denotes the adjugate matrix, namely

adj

(
a b
c d

)
=

(
d −b
−c a

)
.

Then SL(2,R) is realized as the subset of M2(R) defined by the condition q(A) = −1,
and the restriction of ⟨·, ·⟩ to the tangent space of SL(2,R) at every point defines a pseudo-
Riemannian metric of signature (2, 1). We will still denote by ⟨·, ·⟩ this metric on SL(2,R),
and by q the corresponding quadratic form. It can be shown that this metric has constant
curvature −1, and the restriction of ⟨·, ·⟩ to the Lie algebra sl(2,R) coincides with 1/8 times
the Killing form of SL(2,R).

Clearly both SL(2,R) and q are invariant under multiplication by minus the identity
matrix, hence the quotient PSL(2,R) = SL(2,R)/{±1} is endowed with a Lorentzian metric
of constant curvature −1, and is what we call the (three-dimensional) Anti-de Sitter space
AdS3. It turns out that the group of orientation-preserving and time-preserving isometries
of AdS3 is the group PSL(2,R) × PSL(2,R), acting by left and right multiplication on
PSL(2,R) ∼= AdS3:

(α, β) · γ := αγβ−1 .

Although orientation-preserving and time-preserving are notions that do not depend on
a chosen orientation, we will fix here an orientation and a time-orientation of AdS3 ∼=
PSL(2,R). To define an orientation on a Lie group, it actually suffices to define it in the Lie
algebra, namely the tangent space at the identity 1. Hence we declare that the following is
an oriented basis (which is actually orthonormal) of sl(2,R):

V =

(
0 1
1 0

)
W =

(
1 0
0 −1

)
U =

(
0 −1
1 0

)
(2)

Observe that the vectors V,W are spacelike (i.e. q(V, V ) > 0 and q(W,W ) > 0), while U
is timelike (q(U,U) < 0). One can check that U is the tangent vector to the one-parameter
group of elliptic isometries of H2 fixing i ∈ H2, parameterized by the angle of clockwise
rotation; V and W are vectors tangent to the one-parameter groups of hyperbolic isometries
fixing the geodesics with endpoints (−1, 1) and (0,∞) respectively. Analogously, to define
a time-orientation it suffices to define it in the Lie algebra, and we declare that U is a
future-pointing timelike vector.

3.2. Boundary at infinity. The boundary at infinity of AdS3 is defined as the projectivization
of the cone of rank one matrices in M2(R):

∂∞AdS3 = P{A | q(A) = 0, A ̸= 0} .

We endow AdS3 = AdS3 ∪ ∂∞AdS3 with the topology induced by seeing both AdS3 and
∂∞AdS3 as subsets of the (real) projective space PM2(R) over the vector space M2(R).
Hence AdS3 is the compactification of AdS3 in PM2(R). It will be extremely useful to
consider the homeomorphism between ∂∞AdS3 and RP1 ×RP1, which is defined as follows:

δ : ∂∞AdS3 → RP1 × RP1

[X] 7→ (Im(X),Ker(X))
(3)

where of course in the right-hand side we interpret RP1 as the space of one-dimensional
subspaces of R2. Since we have Im(AXB−1) = A · Im(X) and Ker(AXB−1) = B ·Ker(X),
the map δ is equivariant with respect to the action of the group PSL(2,R)×PSL(2,R), acting



THE ANTI-DE SITTER PROOF OF THURSTON’S EARTHQUAKE THEOREM 7

on ∂∞AdS3 as the natural extension of the group of isometries of AdS3, and on RP1 ×RP1

by the obvious product action.
The following is a useful characterization of sequences in AdS3 converging to a point in

the boundary (see [7, Lemma 3.2.2]): for (γn)n∈N a sequence of isometries of H2, we have:

γn → δ−1(x, y) ⇔ there exists z ∈ H2 such that γn(z) → x and γ−1
n (z) → y

⇔ for every z ∈ H2, γn(z) → x and γ−1
n (z) → y

(4)

where of course here we are using the standard identification between RP1 and the visual
boundary R ∪ {∞} = ∂∞H2, mapping the line spanned by (a, b) to a/b.

A fundamental step in the proof of the earthquake theorem is that to any map f :
∂∞H2 → ∂∞H2 we can associate a subset of ∂∞AdS3, namely (via the map δ) the graph
of f . By the equivariance of the map δ introduced in (3), we see immediately that, for
(α, β) ∈ PSL(2,R)× PSL(2,R):

(α, β) · graph(f) = graph(βfα−1) . (5)

In the rest of this paper, we will omit the map δ, and we will simply identify ∂∞AdS3
with RP1 × RP1.

3.3. Spacelike planes. We conclude the preliminaries by an analysis of totally geodesic planes
in AdS3. They are all obtained as the intersection of AdS3 with a projective subspace in the
projective space PM2(R) over M2(R). Hence they are all of the following form:

P[A] = {[X] ∈ PSL(2,R) | ⟨X,A⟩ = 0} (6)

for some nonzero 2-by-2 matrix A. The notation P[A] is justified by the observation that
the plane PA defined in the right-hand side of (6) depends only on the projective class
of A. The totally geodesic plane P[A] is spacelike (resp. timelike, lightlike) if and only if
q(A) = −det(A) is negative (resp. positive, null). It will be called the dual plane of [A],
since it can be seen as a particular case of the usual projective duality between points and
planes in projective space. In particular, the dual plane Pγ of an element γ ∈ PSL(2,R) is
a spacelike totally geodesic plane.

Example 3.1. The first example, which is of fundamental importance for the following, is
for γ = 1 is the identity of PSL(2,R). By (1), P1 is the subset of PSL(2,R) consisting of
projective classes of unit matrices X with tr(X) = 0. By the Cayley–Hamilton theorem,
X2 = −id, hence the elements of P1 are order–two isometries of H2, that is, elliptic elements
with rotation angle π. Observe that P1 is invariant under the action of PSL(2,R) by conju-
gation, which corresponds to the diagonal in the isometry group PSL(2,R) × PSL(2,R) of
AdS3. Using (4), one immediately sees that the boundary of P1 in ∂∞AdS3 ∼= RP1 × RP1

is the diagonal; more precisely:

∂∞P1 = graph(1) ⊂ RP1 × RP1 . (7)

Given a point z ∈ H2, let us denote by Rz the order–two elliptic isometry with fixed
point z. We claim that the map

ι : H2 → P1 ι(z) = Rz

is an isometry with respect to the hyperbolic metric of H2 and the induced metric on P1 ⊂
AdS3. First, the inverse of ι is simply the fixed-point map Fix : P1 → H2 sending an elliptic
isometry to its fixed point, which also shows that ι is equivariant with respect to the action of
PSL(2,R) on H2 by homographies and on P1 by conjugation, since Fix(αγα−1) = α(Fix(γ)).
That is, we have the relation

ι(α · p) = α ◦ ι(p) ◦ α−1 . (8)
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This immediately implies that ι is isometric, since the pull-back of the metric of P1 is
necessarily PSL(2,R)-invariant and has constant curvature −1, hence it coincides with the
standard hyperbolic metric on the upper half-space.

This example is actually the essential example to understand general spacelike totally
geodesic planes. Indeed, every spacelike totally geodesic plane is of the form Pγ for some
γ ∈ PSL(2,R). To see this, observe that the action of the isometry group of AdS3 on
spacelike totally geodesic planes is transitive, and that Pγ = (γ,1)P1 because the isometry
(γ,1) maps 1 to γ, and therefore maps the dual plane of 1 to the dual plane of γ. By (5)
and (7), we immediately conclude the following:

Lemma 3.2. Every spacelike totally geodesic plane of AdS3 is of the form Pγ for some
orientation-preserving isometry γ of H2, and

∂∞Pγ = graph(γ−1) ⊂ RP1 × RP1 .

3.4. Timelike planes. Let us now consider a matrix A ∈ M2(R) such that det(A) = −1.
Hence the plane defined by Equation (6) is a timelike totally geodesic plane. Associated with
[A] is an orientation-reversing isometry η of H2 . Indeed, the action of A by homography
on CP1 preserves RP1 and switches the two connected components of the complement, that
is, the upper and the lower half-spaces. The matrix A thus induces an orientation-reversing
isometry, up to identifying these two components via z 7→ z̄. We will thus denote P[A] by
Pη, by a small abuse of notation.

The totally geodesic plane Pη can be parameterized as follows. Consider the map

I 7→ Iη , (9)

defined on the space of reflections I along geodesics of H2, with values in PSL(2,R) ∼= AdS3.
Its image is precisely Pη. Indeed, it is useful to remark that by the Cayley–Hamilton theorem,
a matrix X with det(X) = −1 is an involution if and only if and tr(X) = 0. Now, because
det(A) = −1, adj(A) = −A−1, and therefore ⟨XA,A⟩ = 0 if and only if tr(X) = 0, that is,
if and only if X is an involution. This shows that the image of the map (9) is the entire
plane Pη.

Similarly to the spacelike case, using the transitivity of the action of the group of isome-
tries on timelike planes, every timelike plane is of the form above. Thanks to this description,
we can show the following.

Lemma 3.3. Every timelike totally geodesic plane of AdS3 is of the form Pη for some
orientation-reversing isometry η of H2, and

∂∞Pη = graph(η−1) ⊂ RP1 × RP1 .

Proof. It only remains to check the identity for ∂∞Pη. For this, we will use the character-
ization (4) together with the parameterization (9) of Pη. Suppose the sequence In is such
that Inη(z) → x ∈ ∂∞H2, for any z ∈ H2. Then, using that In is an involution and the
continuity of the action of η on H2, (Inη)−1(z) = η−1I−1

n (z) = η−1In(z) → η−1(x). This
concludes the proof. □

Remark 3.4. It is worth remarking that, since reflections of H2 are uniquely determined
by (unoriented) geodesics, we can consider the map (9) as a map from the space G(H2) of
unoriented geodesics of H2 to PSL(2,R). It turns out that this map is isometric with respect
to a natural metric on G(H2) which makes it identified with the two-dimensional Anti-de
Sitter space AdS2, see [8, Example 6.1] for more details.
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3.5. Lightlike planes. The only case left to consider consists of lightlike totally geodesic
planes. Those are of the form P[A] for a nonzero matrix A with det(A) = 0, that is, for
rank(A) = 1. We describe their boundary in the following lemma. It is important to remark
that, unlike spacelike and timelike planes considered above, the boundary will not be a graph
in RP1 × RP1.

Lemma 3.5. Every lightlike totally geodesic plane of AdS3 is of the form P[A] for some rank
one matrix A, and

∂∞P[A] =
(
Im(A)× RP1

)
∪
(
RP1 ×Ker(A)

)
.

In other words, ∂∞P[A] is the union of two circles in RP1 × RP1, one horizontal and one

vertical, which intersect exactly at the point in RP1 ×RP1 corresponding to [A] ∈ ∂∞AdS3
via the map δ introduced in (3).

Proof. The points in ∂∞P[A] are projective classes of rank one matricesX satisfying ⟨X,A⟩ =
0, that is, such that tr(Xadj(A)) = 0. Since Xadj(A) has vanishing determinant, by the
Cayley-Hamilton theorem Xadj(A) is traceless if and only if it is nilpotent, that is, if and
only if Xadj(A)Xadj(A) = 0. Since image and kernel of both X and adj(A) are all one-
dimensional, it is immediate to see that this happens if and only if

Im(adj(A)) = Ker(X) or Im(X) = Ker(adj(A)) . (10)

Now, since det(A) = 0 implies adj(A)A = Aadj(A) = 0, the relations Ker(adj(A)) = Im(A)
and Im(adj(A)) = Ker(A) hold. Hence X ∈ P[A] if and only if Im(X) = Im(A) or Ker(X) =
Ker(A), which concludes the proof, by the definition of δ. □

4. Convexity notions

In this section we develop the necessary tools to tackle the proof of Thurston’s earthquake
theorem.

4.1. Affine charts. The starting point of the proof rests in considering the graph of an
orientation-preserving homeomorphism f : RP1 → RP1 as a subset of ∂∞AdS3, and taking
its convex hull. However, the convex hull of a set in projective space can be defined in an
affine chart, but AdS3 is not contained in any affine chart. The following lemma serves to
show that the convex hull of the graph of f is well-defined.

Lemma 4.1. Let f : RP1 → RP1 be an orientation-preserving homeomorphism. Then:

(1) There exists a spacelike plane Pγ in AdS3 such that ∂∞Pγ ∩ graph(f) = ∅.
(2) Moreover, given any point (x0, y0) /∈ graph(f), there exists a spacelike plane Pγ such

that ∂∞Pγ ∩ graph(f) = ∅ and (x0, y0) ∈ ∂∞Pγ .

Before providing the proof, let us discuss an important consequence of the first item.
Given a (spacelike) plane Pγ in AdS3, let Pγ be the unique projective subspace in PM2(R)
that contains Pγ , which is defined by the equation (6) (where γ = [A]). Let us denote by
Aγ the complement of Pγ , which we will call a (spacelike) affine chart. The first item of
Lemma 4.1 can be reformulated as follows:

Corollary 4.2. Let f : RP1 → RP1 be an orientation-preserving homeomorphism. There
exists a spacelike affine chart Aγ containing graph(f).

The proof of Lemma 4.1 below is largely inspired by [1, Lemma 6.2, Lemma 6.3].

Proof of Lemma 4.1. Clearly the second item implies the first. However, we will first prove
the first item, and then explain how to improve the proof to achieve the second item.

Recall that PSL(2,R) acts transitively on pairs of distinct points of RP1 ∼= R ∪ {∞} —
actually, it acts simply transitively on positively oriented triples. Hence for the first point we



THE ANTI-DE SITTER PROOF OF THURSTON’S EARTHQUAKE THEOREM 10

may assume, up to the action of the isometry group of AdS3 by post-composition on f (recall
(5)), that f(0) = 0 and f(∞) = ∞. Then f induces a monotone increasing homeomorphism
from R to R. Since f(0) = 0, f preserves the two intervals (−∞, 0) and (0,∞). Let now
γ = Ri be the order–two elliptic isometry fixing i. Clearly γ is an involution that maps
0 to ∞, and switches the two intervals (−∞, 0) and (0,∞). Hence f(x) ̸= γ(x) for all
x ∈ R ∪ {∞}, that is, graph(f) ∩ graph(γ) = ∅. By Lemma 3.2 and the fact that γ is an
involution, graph(f) ∩ ∂∞Pγ = ∅.

To prove the second item, we will make full use of the transitivity of the PSL(2,R)-
action on oriented triples, and we will apply both pre and post-composition of an element
of PSL(2,R). As a preliminary step, let (x0, y0) /∈ graph(f), and observe that we can find
points x and x′ such that f maps the unoriented arc of RP1 connecting x and x′ containing
x0 to the unoriented arc connecting f(x) and f(x′) not containing y0. The proof is just a
picture, see Figure 1. Since f preserves the orientation of RP1, up to switching x and x′,
we have that (x, x0, x

′) is a positive triple in RP1, while (f(x), y0, f(x
′)) is a negative triple.

Having made this observation, using simple transitivity on oriented triples we can assume
(x, x0, x

′) = (0, 1,∞) and (f(x), y0, f(x
′)) = (0,−1,∞). Then the choice γ = Ri as in the

first part of the proof satisfies the condition in the second item as well, since γ(1) = −1. □

x x0 x′

y0

f (x)

p

graph(f )

f (x′)

Figure 1. The proof of a claim in Lemma 4.1, drawn in the torus RP1×RP1

(identify opposite sides by a translation). Given p /∈ graph(f), consider
any orientation-reversing homeomorphism g of RP1. Then graph(f) and
graph(g) (dashed) intersect in two points, and let x, x′ the corresponding
solutions of the equation f = g. Then f maps an arc from x to x′ containing
x0, to an arc from f(x) to f(x′) not containing y0.

4.2. Convex hulls. Corollary 4.2 permits to consider the convex hull of graph(f), in any
affine chart Aγ that contains graph(f).

Example 4.3. Given σ ∈ PSL(2,R), the convex hull of graph(σ) is the closure of the totally
geodesic spacelike plane Pσ−1 in AdS3. Indeed by Lemma 3.2 the boundary at infinity of
Pσ−1 equals graph(σ), and moreover Pσ−1 is convex, since spacelike geodesics of AdS3 (which
are the intersections of two transverse spacelike planes) are lines in an affine chart, and any
two points in ∂∞H2 are connected by a geodesic. Hence Pσ−1 is clearly the smallest convex
set containing graph(σ).

This is the only case in which graph(f) is contained in a plane, and therefore its convex
hull has empty interior. If f is not the restriction to RP1 of an element of PSL(2,R), then
the convex hull of graph(f) is a convex body in the affine chart Aγ .

Let us study one more important property of the convex hull of graph(f).
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Proposition 4.4. Let f : RP1 → RP1 be an orientation-preserving homeomorphism, let Pγ

in AdS3 be a spacelike plane such that ∂∞Pγ ∩ graph(f) = ∅, and let K be the convex hull
of graph(f) in the affine chart Aγ . Then:

• The interior of K is contained in AdS3.
• The intersection of K with ∂∞AdS3 equals graph(f).

In particular, K ⊂ AdS3.
Before proving Proposition 4.4, we give another technical lemma, which is proved by an

argument in a similar spirit as the proof of Lemma 4.1.

Lemma 4.5. Let f : RP1 → RP1 be an orientation-preserving homeomorphism and let Pγ

in AdS3 be a spacelike plane such that ∂∞Pγ ∩ graph(f) = ∅. Given any two distinct
points (x, f(x)) and (x′, f(x′)) in graph(f), there exists a spacelike plane, disjoint from Pγ ,
containing them in its boundary at infinity.

Proof. Applying the action of PSL(2,R) × PSL(2,R) we can assume that γ = 1. The
hypothesis ∂∞P1 ∩ graph(f) = ∅ then tells us that f has no fixed point. We are looking for
a σ ∈ PSL(2,R) such that

• P1 ∩ Pσ−1 = ∅;
• (x, f(x)), (x′, f(x′)) ∈ ∂∞Pσ−1 = graph(σ).

For the first condition to hold, it clearly suffices that the boundaries of P1 and Pσ−1 do not
intersect, that is to say, σ(y) ̸= y for all y ∈ RP1. This is equivalent to saying that σ does
not have fixed points on RP1, namely, σ is an elliptic isometry. The second condition is
equivalent to σ(x) = f(x) and σ(x′) = f(x′).

Since f has no fixed points, f(x) ̸= x and f(x′) ̸= x′. There are various cases to
distinguish (see also Figure 2). First, suppose (x, f(x), x′) is a positive triple. Then either
(x, f(x′), f(x), x′) or (x, f(x), x′, f(x′)) are in cyclic order, because the remaining possibility,
namely that (x, f(x), f(x′), x′) are in cyclic order, would imply that f has a fixed point. If
(x, f(x′), f(x), x′) are in cyclic order, then the hyperbolic geodesics ℓ connecting x to f(x)
and ℓ′ connecting x′ to f(x′) intersect, and the order two elliptic isometry σ fixing ℓ ∩ ℓ′
maps x to f(x) and x′ to f(x′). If (x, f(x), x′, f(x′)) are in cyclic order, then the geodesics
ℓ1 connecting x to x′ and ℓ2 connecting f(x) to f(x′) intersect, and one can find an elliptic
element σ fixing ℓ1 ∩ ℓ2 sending x to f(x) and x′ to f(x′). Second, if (x, f(x), x′) is a
negative triple, then the argument is completely analogous. Finally, there is the possibility
that f(x) = x′. If f(x′) ̸= x, the σ we are looking for is for instance an order–three elliptic
isometry with fixed point in the barycenter of the triangle with vertices x, f(x) = x′ and
f(x′). If instead f(x′) = x, then clearly we can pick any order–two elliptic isometry with
fixed point on the geodesic ℓ from x to x′. □

In particular, Lemma 4.5 shows that given any spacelike affine chart Aγ containing
graph(f) and any two distinct points in graph(f), the line connecting them is contained
in AdS3 ∩ Aγ (except for its endpoints, which are in ∂∞AdS3), and is a spacelike geodesic
of AdS3.

x f(x′) f(x) x′ x f(x′)f(x) x′

`

`′ `2

x f(x′)f(x)=x′

`1

Figure 2. Several cases in the proof of Lemma 4.5.

We are now ready to prove Proposition 4.4.
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Proof of Proposition 4.4. Given a point p in ∂∞AdS3 \ graph(f), by the second item of
Lemma 4.1 there exists a spacelike plane Pγ′ passing through p that does not intersect
graph(f). This implies that Pγ′ ∩K = ∅, and therefore K∩∂∞AdS3 = graph(f). Since K is
connected, it is contained in the closure of one component of the complement of ∂∞AdS3 in
Aγ . But K is connected and intersects AdS3 \ Pγ because, by Lemma 4.5, the line segment
connecting any two points of graph(f) in the affine chart Aγ is contained in AdS3 ∩ Aγ .

Hence K is contained in AdS3 and its interior is contained in AdS3. □

By Corollary 4.2 and Proposition 4.4, we can now give the following definition:

Definition 4.6. Given an orientation-preserving homeomorphism f : RP1 → RP1, we define
C(f) to be the subset of AdS3 which is obtained as the convex hull of graph(f) in any
spacelike affine chart Aγ such that ∂∞Pγ ∩ graph(f) = ∅.

The definition is well posed — that is, it does not depend on the chosen affine chart Aγ —
because lines and planes are well defined in projective space, hence the change of coordinates
from an affine chart to another preserves convex sets. When referring to convexity notions in
the following, we will implicitly assume we have chosen a spacelike affine chart Aγ containing
graph(f).

4.3. Support planes. Let us recall a basic notion in convex analysis. Given a convex body
K in an affine space of dimension three, a support plane of K is an affine plane Q such that
K is contained in a closed half-space bounded by Q, and ∂K ∩ Q ̸= ∅. If p ∈ ∂K ∩ Q,
one says that Q is a support plane at the point p. As a consequence of the Hahn–Banach
theorem, there exists a support plane at every point p ∈ ∂K.

We will adopt this terminology for the convex hulls C(f) in AdS3: we say that a totally
geodesic plane P is a support plane of C(f) (at p ∈ ∂C(f)) if p ∈ C(f) ∩ P ⊂ AdS3 and, in
an affine chart containing graph(f), C(f) lies in a closed half-space bounded by the affine
plane that contains P . As usual, one easily sees that this definition does not depend on the
affine chart as long as it contains graph(f).

Remark 4.7. Equivalently, we can say that a totally geodesic plane P is a support plane
for C(f) if there exists a continuous family {Pt}t∈[0,ϵ) of totally geodesic planes, pairwise

disjoint in AdS3, such that P0 = P and Pt ∩ C(f) = ∅ for t > 0.

Also, recall that we have the following identity for convex hulls: if X is a set, C(X) its
convex hull and Q an affine support plane for C(X), then Q ∩ C(X) = C(Q ∩X). Applying
this identity in our setting, we obtain for any totally geodesic support plane P :

P ∩ C(f) = C(∂∞P ∩ graph(f)) . (11)

In the following proposition, we see that all support planes of C(f) are allowed to be
spacelike, and lightlike only if they touch C(f) at a boundary point.

Proposition 4.8. Let f : RP1 → RP1 be an orientation-preserving homeomorphism, and let
P be a support plane of C(f) at a point p ∈ ∂C(f). Then:

• If p ∈ AdS3, then P is a spacelike plane.
• If p ∈ ∂∞AdS3, then P is either spacelike or lightlike.

Proof. The basic observation is that if P is a support plane, then ∂∞P and graph(f) = C(f)∩
∂∞AdS3 do not intersect transversely. To clarify this notion, we say that an intersection
point p ∈ ∂∞P ∩ graph(f) is transverse if, for a small neighbourhood U of p such that
(graph(f) \ p) ∩ U has two connected components, these two connected components are
contained in different connected components of U \∂∞P . From Lemma 3.3, if P is timelike,
then ∂∞P is the graph of an orientation-reversing homeomorphism of RP1, hence it intersects
graph(f) transversely. From Lemma 3.5, if P is lightlike, then ∂∞P is the union of the two
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circles {x}×RP1 and RP1×{y}. So if p ∈ ∂∞P ∩graph(f) and p is not the point p0 = (x, y),
then ∂∞P and graph(f) intersect transversely. So the sole possibility for P to be a lightlike
support plane is to intersect graph(f) only at the point p0. It remains to show that P ∩C(f)
consists only of the point p0, that is, it does not contain any point of AdS3. By contradiction,
if q ∈ P ∩ C(f) is different from p0, then by (11) ∂∞P ∩ graph(f) would contain another
point different by p0 as well, because the left-hand side must contain not only p0 but also q.
This would give a contradiction as above. □

Given a spacelike support plane P of C(f) at a point p, we say that P is a future (resp.
past) support plane if in a small simply connected neighbourhood U of p in AdS3, C(f) is
contained in the closure of the connected component of U \ P which is in the past (resp.
future) of P . This means that there exist future-oriented (resp. past-oriented) timelike
curves in U leaving C(f) ∩ U and reaching P ∩ U .

Clearly C(f) cannot have a future and past support plane at p at the same time, unless
C(f) has empty interior, which is precisely the situation when f is an element of PSL(2,R)
as in Example 4.3. In the following we will always assume int C(f) ̸= ∅. As a consequence
of the previous discussion, we have the following useful statement on the convergence of
support planes.

Lemma 4.9. Let f : RP1 → RP1 be an orientation-preserving homeomorphism which is not
in PSL(2,R), pn a sequence of points in ∂C(f), and Pγn

a sequence of future (resp. past)
spacelike support planes at pn, for γn ∈ PSL(2,R). Up to extracting a subsequence, we can
assume pn → p and Pγn → P . Then:

• If p ∈ AdS3, then P = Pγ is a future (resp. past) support plane of C(f), for
γn → γ ∈ PSL(2,R).

• If p ∈ ∂∞AdS3, then either P is a lightlike plane whose boundary is the union of
two circles meeting at p, or the conclusion of the previous point holds.

Proof. The proof is straightforward, having developed all the necessary elements above. It
is clear that we can extract converging subsequences from pn and Pγn

, by compactness
of C(f) and of the space of planes in projective space. Also, the limit of the sequence of
support planes Pγn

at pn is a support plane P at p, since both conditions that pn ∈ C(f)
and that C(f) is contained in a closed half-space bounded by Pγn are closed conditions. By
Proposition 4.8, if the limit p is in AdS3, then P is a spacelike support plane, which is of
course future (resp. past) if all the Pγn

are future (resp. past). This situation can also occur
analogously if p ∈ ∂∞AdS3; the other possibility being that P is lightlike, and in this case
the proof of Proposition 4.8 shows that P = P[A] if p is represented by the projective class
of the rank–one matrix A. □

Corollary 4.10. Let f : RP1 → RP1 be an orientation-preserving homeomorphism which is
not in PSL(2,R). Then ∂C(f) is the disjoint union of graph(f) = C(f)∩∂∞AdS3 and of two
topological discs, of which one only admits future support plane, and the other only admits
past support planes.

Proof. It is a basic fact in convex analysis that ∂C(f) is homeomorphic to S2; by Proposition
4.4, its intersection with ∂∞AdS3 equals graph(f) and is therefore a simple closed curve.
By the Jordan curve theorem, the complement of graph(f) is the disjoint union of two
topological discs, each of which is contained in AdS3 again by Proposition 4.4.

By Lemma 4.9, the set of points p ∈ ∂C(f) admitting a future support plane is closed. But
it is also open because its complement is the set of points admitting a past support plane,
for which the same argument applies. Hence each connected component of the complement
of graph(f) admits only future support planes, or only past support planes. Finally, C(f)
necessarily admits both a past and a future support plane, otherwise it would not be compact
in an affine chart. This concludes the proof. □
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By virtue of Corollary 4.10, we will call the connected component of ∂C(f) \ graph(f)
that only admits future support planes the future boundary component, and denote it by
∂+C(f); similarly, the connected component that only admits past support planes is the
past boundary component, denoted by ∂−C(f).

4.4. Left and right projections. We are now ready to introduce the left and right projections,
which will play a central role in the proof of the earthquake theorem. These are maps

π±
l : ∂±C(f) → H2 π±

r : ∂±C(f) → H2

defined on the future or past components of ∂C(f), constructed as follows. Given a point
p ∈ ∂±C(f), let P be a support plane of C(f) at p. By Proposition 4.8, the support plane is
necessarily spacelike, hence of the form P = Pγ for some γ ∈ PSL(2,R).

Remark 4.11. It is important to remark here that Pγ might not be unique, if ∂±C(f) is not
C1 at p. Hence we choose a support plane Pγ at p. Moreover we require that the choice of
support planes is made so that the support plane is constant on any connected component of
the subset of ∂±C(f) consisting of those points that admit more than one support plane. The
definition of the projections then depends (although quite mildly, see Corollary 5.7 below)
on the choice of Pγ .

Now, having chosen the support plane Pγ at p, left or right multiplication by γ−1 maps γ
to 1, and therefore maps Pγ to P1, which we recall from Example 3.1 is the space of order–two
elliptic elements and is therefore naturally identified with H2 via the map Fix : P1 → H2.

Denote by Lγ−1 : PSL(2,R) → PSL(2,R) and Rγ−1 : PSL(2,R) → PSL(2,R) the left
and right multiplications by γ−1; in other words, there are the actions of the elements (γ,1)
and (1, γ−1) of PSL(2,R) × PSL(2,R). By what we said above, Lγ−1(p) and Rγ−1(p) are
elements of P1, since p ∈ Pγ , and Lγ−1(p) (resp. Rγ−1(p)) maps bijectively Pγ to P1. We
can finally define:

π±
l (p) = Fix(Rγ−1(p)) π±

r (p) = Fix(Lγ−1(p)) . (12)

It might seem counterintuitive to define the left projection using right multiplication, and
vice versa. However, this is the most natural choice by virtue of the property of Lemma 4.12
below. Another reason to justify this choice is that these projections can be naturally seen
as the left and right components of the Gauss map of spacelike surfaces in AdS3 with values
in the space of timelike geodesics of AdS3, which is naturally identified with H2 × H2, see
[7, Section 6.3] for more details and for several other equivalent definitions.

Lemma 4.12. Let f : RP1 → RP1 be an orientation-preserving homeomorphism, and let
(α, β) ∈ PSL(2,R) × PSL(2,R). Let us denote K = C(f) and K̂ = (α, β) · C(f) and let

π±
l , π

±
r : ∂±K → H2 and π̂±

l , π̂
±
r : ∂±K̂ → H2 be the left and right projections of K and K̂

respectively. Then

π̂±
l ◦ (α, β) = α ◦ π±

l π̂±
r ◦ (α, β) = β ◦ π±

r . (13)

To clarify the statement, let us remark that the isometry (α, β) maps a point p ∈ K to a

point p̂ ∈ K̂, and maps support planes at p ∈ K to support planes at p̂. Hence the relation
(13) holds when we consider the projections π̂±

l and π̂±
r defined with the choice of support

planes of K̂ given by the images P̂ of the support planes P chosen in the definitions of π±
l

and π±
r .

Proof. As remarked above, for any p ∈ ∂±K, we have p̂ := (α, β) · p ∈ K̂, and for a chosen

support plane P = Pγ for K at p, (α, β) · P = Pγ̂ is the chosen support plane for K̂ at p̂.
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By the duality, γ̂ = (α, β) · γ = αγβ−1. Hence we have:

π̂±
l (p̂) = Fix

(
Rγ̂−1(p̂)

)
= Fix

(
R(βγ−1α−1)(αpβ

−1)
)

= Fix
(
R(γ−1α−1)(αp)

)
= Fix

(
α ◦Rγ−1(p) ◦ α−1

)
= α(Fix(Rγ−1(p))) = απ±

l (p) .

The computation is completely analogous for the right projection. □

Example 4.13. The simplest example that we can consider is the situation where f = σ ∈
PSL(2,R), so that C(f) = Pσ−1 as in Example 4.3. This case is somehow degenerate, because
C(σ) has empty interior, hence Corollary 4.10 does not hold and it does not quite make sense
to talk about the future and past components of the boundary. However, we can still define
the left and right projections. Since Pσ−1 itself is the unique support plane at any of its
points, from (12) we have the following simple expressions for the left and right projections
πl, πr : Pσ−1 → H2.

πl(p) = Fix(p ◦ σ) πr(p) = Fix(σ ◦ p) . (14)

Observe that πl and πr extend to the boundary of Pσ−1 : recalling that the boundary of Pσ−1

is the graph of σ (Lemma 3.2), we have

πl(x, σ(x)) = x πr(x, σ(x)) = σ(x) . (15)

Equation (15) is indeed immediately checked when σ = 1, because in that case πl and πr
coincide with the fixed point map Fix : P1 → H2, and we have already observed in Example
4.3, using (4), that Fix extends to the map (x, x) 7→ x from ∂∞P1 to ∂∞H2. The general
case of Equation (15) then follows from Equations (5) and (13), that is, by observing that
the isometry (1, σ) maps graph(1) to graph(σ) and P1 to Pσ−1 .

Finally, we can compute the map of H2 obtained by composing the inverse of the left
projection with the right projection. Indeed, this is induced by the map P1 → P1 sending
an order–two elliptic element R = p ◦ σ ∈ P1 to σ ◦ p = σ ◦ R ◦ σ−1. Hence we have

πr ◦ π−1
l = σ : H2 → H2 . (16)

In conclusion, the composition πr ◦ π−1
l is an isometry and its extension to ∂∞H2 is

precisely the map f = σ of which ∂∞Pσ−1 is the graph. In the next sections we will see
that this fact is extremely general, that is, for any orientation-preserving homeomorphism
of the circle f , the compositions π±

r ◦ (π±
l )

−1 associated with ∂±C(f) will be the left and
right earthquake maps extending f .

5. The case of two spacelike planes

Before moving to the proof of Thurston’s earthquake theorem, we will now consider
another very concrete example, which is only slightly more complicated than Example 4.13.
Nevertheless, we will see that this example represents a very general situation, and its
comprehension is the essential step towards the proof of the full theorem.

5.1. The fundamental example. The idea here is to consider piecewise totally geodesic sur-
faces in AdS3, which are obtained as the union of two connected subsets, each contained in
a totally geodesic spacelike plane, meeting along a common geodesic. See Figure 3.

To formalize this idea, we will consider the union of two half-planes, each contained in a
totally geodesic spacelike plane Pγ1

or Pγ2
. The first important observation is the following.

Lemma 5.1. Let γ1 ̸= γ2 ∈ PSL(2,R). Then Pγ1
and Pγ2

intersect in AdS3 if and only if

γ2 ◦ γ−1
1 is a hyperbolic isometry.
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Proof. Since Pγi
is the convex envelope of ∂∞Pγi

= graph(γ−1
i ) (Example 4.3), the closures

P γ1 and P γ2 intersect in AdS3 if and only if graph(γ−1
1 ) ∩ graph(γ−1

2 ) ̸= ∅. Moreover, by

(11), Pγ1 and Pγ2 intersect in AdS3 if and only graph(γ−1
1 ) ∩ graph(γ−1

2 ) contains at least
two different points.

Now, (x, y) ∈ RP1×RP1 is in graph(γ−1
1 )∩graph(γ−1

2 ) if and only if y = γ−1
1 (x) = γ−1

2 (x),
which is equivalent to the condition that x is a fixed point of γ2 ◦ γ−1

1 . But γ2 ◦ γ−1
1 is an

element of PSL(2,R), hence it has two fixed points in RP1 if and only if it is a hyperbolic
isometry. □

Now, let I1 and I2 be two closed intervals in RP1 such that RP1 = I1 ∪ I2 and I1 ∩ I2
consists precisely of the two fixed points of γ2 ◦ γ−1

1 . Clearly there are two possibilities
to produce a homeomorphism of RP1 by combining the restrictions of γ−1

1 and γ−1
2 to the

intervals Ij ’s, that is:

f+γ1,γ2
(x) =

{
γ−1
1 if x ∈ I1

γ−1
2 if x ∈ I2

and f−γ1,γ2
(x) =

{
γ−1
2 if x ∈ I1

γ−1
1 if x ∈ I2

. (17)

One easily checks that f±γ1,γ2
actually are orientation-preserving homeomorphisms, since γ−1

1

and γ−1
2 map homeomorphically the intervals I1 and I2 to the same intervals J1 := γ−1

1 (I1) =
γ−1
2 (I1) and J2 := γ−1

1 (I2) = γ−1
2 (I2), which intersect only at their endpoints.

Let us also denote by Di the convex hull of Ii in H2, and by ℓ = D1 ∩ D2 the axis of
γ2 ◦ γ−1

1 .

Proposition 5.2. Suppose that γ2 ◦ γ−1
1 is a hyperbolic isometry that translates along ℓ to the

left, as seen from D1 to D2. Then:

• The future boundary component ∂+C(f+γ1,γ2
) coincides with the union of the convex

envelope of graph(γ−1
1 |I1) and of the convex envelope of graph(γ−1

2 |I2).
• The past boundary component ∂−C(f−γ1,γ2

) is the union of the convex envelope of

graph(γ−1
1 |I2) and of the convex envelope of graph(γ−1

2 |I1).
If instead γ2 ◦ γ−1

1 translates along ℓ to the right as seen from D1 to D2, then:

• The past boundary component ∂−C(f+γ1,γ2
) coincides with the union of the convex

envelope of graph(γ−1
1 |I1) and of the convex envelope of graph(γ−1

2 |I2).
• The future boundary component ∂+C(f−γ1,γ2

) is the union of the convex envelope of

graph(γ−1
1 |I2) and of the convex envelope of graph(γ−1

2 |I1).

Proof. Let us consider the case where γ2 ◦γ−1
1 translates to the left along ℓ, and let us prove

the first item. Let x, x′ be the fixed points of γ2 ◦ γ−1
1 , and let y = γ−1

1 (x) = γ−1
2 (x) and

y′ = γ−1
1 (x′) = γ−1

2 (x′). Then the convex envelope of graph(γ−1
i |Ii) is a half-plane Ai in Pγi

bounded by the geodesic Pγ1 ∩Pγ2 , which has endpoints (x, y) and (x′, y′). Clearly both the

convex envelope of graph(γ−1
1 |I1) and the convex envelope of graph(γ−1

2 |I2) are contained in
C(f+γ1,γ2

).
Nevertheless, we can be more precise. We claim that Pγ1

and Pγ2
are future support

planes for C(f+γ1,γ2
). This claim implies that the union of A1 and A2 is contained in the

future boundary component ∂+C(f+γ1,γ2
), because every point p ∈ A1 ∪ A2 admits a future

support plane through p, which is either Pγ1
or Pγ2

. However A1 ∪ A2 is a topological disc
in ∂+C(f+γ1,γ2

), whose boundary is precisely the curve graph(f+γ1,γ2
) by construction. Hence

the claim will imply that A1 ∪A2 = ∂+C(f+γ1,γ2
).

We prove the claim for Pγ1
, the proof for Pγ2

being completely analogous. it is convenient
to assume that γ1 = 1 and γ2 = γ is a hyperbolic isometry with fixed points x and x′,
translating to the left seen from D1 to D2. Indeed, we can apply the isometry (1, γ1), which
sends Pγ1

to P1, Pγ2
to Pγ2γ

−1
1

, and (by (5)) graph(f+γ1,γ2
) to graph(f+

1,γ2γ
−1
1

).
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Figure 3. Given two elements γ1, γ2 such that γ2 ◦ γ−1
1 is a hyperbolic

isometry, there are two possible configurations. On the left, we see the
future boundary component of C(f±γ1,γ2

), on the right the past boundary

component of C(f∓γ1,γ2
).

Having made this assumption, consider a path σt, for t ∈ [0, ϵ) of elliptic elements fixing
a given point z0 ∈ H2, that rotate clockwise by an angle t. As in the proof of Lemma 5.1,
the planes Pσt are pairwise disjoint in AdS3, because σt2 ◦ σ−1

t1 is still an elliptic element

fixing z0 for t1 ̸= t2, hence it has no fixed point in RP1. Moreover, observe that γ−1 is an
isometry fixing ℓ and translates along ℓ on the right as seen from D1 to D2. Since f

+
1,γ equals

the identity on I1 and γ−1 on I2, it fixes I1 pointwise, and moves points of I2 clockwise. In
particular, the equation f+

1,γ(x) = σ−1
t (x) has no solutions for t > 0, because σ−1

t = σ−t

moves all points counterclockwise if t is positive. This shows that Pσt
∩C(f+

1,γ) = ∅ for t > 0,

and thus P1 is a support plane for C(f+
1,γ) by Remark 4.7. Moreover it is a future support

plane: indeed one can check (for instance using (1)) that σt+π/2 = Rz0 ◦ σt ∈ Pσt
, and the

path t 7→ σt is future-directed because, from the discussion after (2), its tangent vector is
future-directed, hence C(f+

1,γ) is locally in the past of P1.
This concludes the proof of the first point. The other cases are completely analogous.

□

See also Figure 3 to visualize the different configurations. The following is an important
consequence of the proof of Proposition 5.2.

Corollary 5.3. Suppose that γ2 ◦ γ−1
1 is a hyperbolic isometry that translates along ℓ to the

left (resp. right), as seen from D1 to D2, and write γ2 ◦ γ−1
1 = exp(a) for a ∈ sl(2,R). Let

p be a point in the future (resp. past) boundary component of C(f+γ1,γ2
). Then:

• If p ∈ int(A1), then Pγ1
is the unique support plane of C(f+γ1,γ2

) at p.

• If p ∈ int(A2), then Pγ2
is the unique support plane of C(f+γ1,γ2

) at p.

• If p ∈ A1 ∩ A2 = Pγ1 ∩ Pγ2 , then the support planes of C(f+γ1,γ2
) at p are precisely

those of the form Pσγ1
where σ = exp(ta) for t ∈ [0, 1].

Recall the notation from the proof of Proposition 5.2: Ai ⊂ Pγi
is the convex envelope of

graph(γ−1
i |Ii), which is a half-plane bounded by the geodesic Pγ1 ∩ Pγ2 .
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Of course we could provide an analogous statement for C(f−γ1,γ2
), but we restrict to f+γ1,γ2

for simplicity.

Proof. From Proposition 5.2, the pleated surface which is obtained as the union of A1 ⊂ Pγ1

and A2 ⊂ Pγ2
coincides with ∂+C(f+γ1,γ2

) if γ2 ◦ γ−1
1 is a hyperbolic isometry that translates

along ℓ to the left, and with ∂−C(f+γ1,γ2
) if it translates to the right, by Proposition 5.2.

The first two items are then obvious, since Pγi
are smooth surfaces, hence Ai is smooth

at any interior point, and therefore has a unique support plane there. The last item can
be proved in the same spirit as Proposition 5.2. First, we can assume γ1 = 1 and γ2 = γ
is a hyperbolic isometry translating on the left (resp. right) along ℓ. By (11), if Pσ is a
support plane at p, then p is in the convex hull of the pairs (y, σ−1(y)) where y satisfies
σ−1(y) = f±

1,γ(y). The only possibility is then that p lies in the geodesic connecting the

points (x, x) and (x′, x′) in RP1 × RP1, where x and x′ are the fixed points of γ. Hence
σ must have the same fixed points of γ. That is, σ is a hyperbolic isometry with axis ℓ
(or the identity). Moreover, by an analogous argument as in Proposition 5.2, Pσ is in the
future (resp. past) of C(f+γ1,γ2

) if and only if σ translates on the left (resp. right), and its
translation length is less than that of γ. Hence σ is of the form exp(ta) for t ∈ [0, 1]. □

5.2. Simple earthquake. We can now conclude the study of orientation-preserving homeo-
morphisms obtained by combining two elements of PSL(2,R). The following proposition
shows that in that situation, the composition of the projections π±

l and π±
r provide the

earthquake map as in Example 2.3. This is not interesting in its own, since we recover
a simple earthquake map which we had already defined explicitly. However, the following
proposition will be an important tool to complete the proof of the earthquake theorem in
Section 6.

Proposition 5.4. Let γ1, γ2 ∈ PSL(2,R) be such that γ2 ◦ γ−1
1 is a hyperbolic isometry, and

let π±
l , π

±
r be the projections associated with the convex envelope of f+γ1,γ2

. Then:

(1) π±
l , π

±
r : ∂±C(f+γ1,γ2

) → H2 are bijections;

(2) Assume γ2 ◦ γ−1
1 translates along ℓ to the right (resp. left), as seen from D1 to D2.

Then the composition π−
r ◦ (π−

l )
−1 : H2 → H2 (resp. π+

r ◦ (π+
l )

−1 : H2 → H2) is a
left (resp. right) earthquake map extending f+γ1,γ2

.

Again, we considered the case of f+γ1,γ2
for the sake of simplicity, but one could give an

analogous statement for f−γ1,γ2
. Moreover, we remark that Proposition 5.4 holds for any

choice of support planes that is needed to define the projections.

Proof. For the first point, recall that Ai ⊂ Pγi , and that the union A1∪A2 is the past (resp.

future) boundary component of C(f+γ1,γ2
) if γ2 ◦ γ−1

1 translates along ℓ to the right (resp.
left).

Hence (π±
l )int(Ai) and (π±

r )|int(Ai) are the restrictions of the projections associated with

the totally geodesic plane Pγi
, which are described in Example 4.13. In particular, (π±

l )int(Ai)

and (π±
r )|int(Ai) are the restrictions to int(Ai) of global isometries of AdS3 (defined by

multiplication on the left or on the right by γ−1
i ) sending Pγi

to P1, post-composed with
the usual isometry Fix : P1 → H2. As a consequence, (π±

l )int(Ai) and (π±
r )|int(Ai) map

geodesics of Pγi
to geodesics of H2. Moreover, by Equation (15), π±

l maps int(∂∞(Ai)) =

graph(γ−1
i |int(Ii)) to int(Ii). Hence π±

l (int(Ai)) = int(Di). Analogously, π±
r (int(Ai)) =

γ−1
1 (int(Di)) = γ−1

2 (int(Di)).
To see that π±

l and π±
r are bijective, it remains to show that the image of the geodesic

A1 ∩ A2 = Pγ1 ∩ Pγ2 via π±
l is the geodesic ℓ = D1 ∩ D2, while the image via π±

r is the

geodesic γ−1
1 (ℓ) = γ−1

2 (ℓ). The definition of π±
l and π±

r on A1 ∩ A2 actually depends on
the choice of a support plane. Recall that we must choose the same support plane at any
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point p ∈ A1 ∩A2. From Corollary 5.3, the possible choices of support planes at p are of the
form Pσγ1

, where σ has the same fixed points as γ2 ◦ γ−1
1 , which are precisely the common

endpoints of I1 and I2.
Using the notation from Lemma 5.1, we thus see that the endpoints at infinity of A1∩A2

are the points (x, y) and (x′, y′) where x, x′ are the fixed points of γ2 ◦ γ−1
1 (and of σ).

Hence from Equation (15) we have (for any choice of σ as in the third item of Corollary
5.3) π±

l (x, y) = x and π±
l (x

′, y′) = x′. Since π±
l is, as before, the restriction of an isometry

between Pσγ1 and H2, it maps geodesics to geodesics, hence π±
l (A1 ∩A2) = ℓ. Analogously,

π±
r (x, y) = y and π±

r (x
′, y′) = y′, from which it follows that π±

l (A1∩A2) = γ−1
1 (ℓ) = γ−1

2 (ℓ).
This concludes the proof of the first item.

For the second item, define E := π−
r ◦ (π−

l )
−1, which is a bijection of H2. Consider the

geodesic lamination of H2 which is composed by the sole geodesic ℓ. Hence the strata of ℓ
are: int(D1), int(D2) and ℓ. We will show that the comparison isometries Comp(S, S′) :=
(E|S)−1 ◦ E|S′ all translate to the right or to the left seen from one stratum to another,
according to as γ2 ◦ γ−1

1 translates to the left or to the right seen from D1 to D2.
Let us first consider S = int(D1) and S′ = int(D2). Then by Example 4.13 (see in par-

ticular Equation (16)) E equals γ−1
i on int(Di), because (π±

l )
−1(int(Di)) = int(Ai) ⊂ Pγ−1

i
.

Hence the comparison isometry Comp(int(D1), int(D2)) equals γ1 ◦ γ−1
2 , and it translates

to the left (resp. right) seen from int(D1) to int(D2) exactly when γ2 ◦ γ−1
1 , which is its

inverse, translates to the right (resp. left). The proof when one of the two strata S or S′ is ℓ
is completely analogous, by using the third item of Corollary 5.3. Indeed (recalling Remark
4.11), by any choice of σ of the form σ = exp(ta) with t ∈ (0, 1), Comp(ℓ, int(D2)) = σ ◦γ−1

2

translates to the left (resp. right) seen from ℓ to int(D2), and Comp(int(D1), ℓ) = γ1 ◦ σ−1

translates to the left (resp. right) seen from int(D1) to ℓ. If instead σ = exp(ta) with
t ∈ {0, 1}, then σ coincides either with γ1 or with γ2, which means that one of the com-
parison isometries Comp(int(D1), ℓ) and Comp(ℓ, int(D2)) translates to the left, and the
other is the identity, which is still allowed in the definition of earthquake because ℓ is in the
boundary of int(Di). □

5.3. The example is prototypical. The case of simple earthquakes that we have considered
above may appear as very special. However, it turns out that it is the prototypical example,
that will serve to treat the general case in the proof of the earthquake theorem. The following
lemma shows that the situation of two intersecting planes occurs quite often.

Lemma 5.5. Let f : RP1 → RP1 be an orientation-preserving homeomorphism which is not
in PSL(2,R). Then:

(1) Any two future support planes of C(f) at points of ∂+C(f) intersect in AdS3. Anal-
ogously, any two past support planes of C(f) at points of ∂−C(f) intersect in AdS3.

(2) Given a point p ∈ ∂±C(f), if there exist two support planes at p, then their intersec-
tion (which is a spacelike geodesic) is contained in ∂±C(f). As a consequence, any
other support plane at p contains this spacelike geodesic.

Proof. Let us consider future support planes, the other case being analogous. For the first
item, let P and Q be support planes intersecting ∂+C(f), which are spacelike by Proposition
4.8, and suppose by contradiction P and Q that they are disjoint. We can slightly move
them in the future to get spacelike planes P ′ and Q′ such that P , Q, P ′ and Q′ are mutually
disjoint and P ′ ∩ ∂+C(f) = Q′ ∩ ∂+C(f) = ∅. (For instance, if P = Pγ1 and Q = Pγ2 , then
we can use Lemma 5.1 and consider P ′ = Pσγ1 and Q′ = Pσγ1 for σ an elliptic element of
small clockwise angle of rotation.)

Now, observe that AdS3 \ (P ′ ∪ Q′) is the disjoint union of two cylinders and P and Q
lie in different connected components of this complement. See Figure 4. However, ∂+C(f)
is connected and has empty intersection with P and Q, leading to a contradiction.
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For the second item, let P = Pγ1
and Q = Pγ2

be support planes such that p ∈ ∂+C(f)∩
P ∩ Q. By Lemma 5.1, γ2 ◦ γ−1

1 is hyperbolic. Up to switching the roles of γ1 and γ2, we
can assume that γ2 ◦ γ−1

1 translates to the left seen from D1 to D2, where as usual Di is the
convex envelope of the interval Ii, and the common endpoints x, x′ of I1 and I2 are the fixed
points of γ2 ◦ γ−1

1 . Hence ∂∞Pγ1
∩ ∂∞Pγ2

= {(x, y), (x′, y′)} where y = γ−1
1 (x) = γ−1

2 (x)

and y′ = γ−1
1 (x′) = γ−1

2 (x′).
Now, by (11), Pγi

∩ graph(f) consists of at least two points for i = 1, 2. We claim that
graph(f) ∩ Pγi

contains at least (x, y) and (x′, y′). Indeed, since Pγ2
is a support plane,

C(f) ∩ Pγ1 is contained in the half-plane A1 ⊂ Pγ1 . If graph(f) ∩ Pγ1 had not contained
(x, y) and (x′, y′), then C(f) ∩ Pγ1 would not contain the boundary geodesic A1 ∩ A2, and
thus would not contain p. The same argument applies for Pγ2

. This shows that both (x, y)
and (x′, y′) are in graph(f), and therefore the spacelike geodesic Pγ1

∩Pγ2
is in ∂±C(f). □

Figure 4. The setting of the proof of Lemma 5.5.

Remark 5.6. In the first item of Lemma 5.5, the hypothesis that P and Q are support
planes at points of ∂±C(f) (hence not at points of graph(f) ⊂ ∂∞AdS3) is necessary. Recall
that by Proposition 4.8 support planes of C(f) are either spacelike or lightlike, and they are
necessarily spacelike if they intersect C(f) at points of ∂±C(f).

Now, if one of the two planes P or Q is a support plane at a point of graph(f), then the
proof only shows that P and Q must intersect in AdS3, but not necessarily in the interior.
It can perfectly happen that two future (or two past) support planes (one of which possibly
lightlike) at a point (x, f(x)) of graph(f) intersect at (x, f(x)) but not in the interior of
AdS3.

Lemma 5.5 has an important consequence. Recall that the definition of the projections
π±
l , π

±
r : ∂±C(f) → H2 depends on the choice of a support plane at all points p that admit

more than one support plane. Moreover, we require that this support plane is chosen to
be constant on any connected component of the subset of ∂±C(f) consisting of those points
that admit more than one support plane (Remark 4.11). We will now see that, roughly
speaking, their image does not depend on this choice of support plane.

Corollary 5.7. Let f : RP1 → RP1 be an orientation-preserving homeomorphism which is
not in PSL(2,R), and suppose p ∈ ∂±C(f) has at least two support planes. Then there
exist γ1, γ2 ∈ PSL(2,R) with γ2 ◦ γ−1

1 = exp(a) a hyperbolic element, such that all support



THE ANTI-DE SITTER PROOF OF THURSTON’S EARTHQUAKE THEOREM 21

planes at p are precisely those of the form Pσγ1
where σ = exp(ta) for t ∈ [0, 1]. The same

conclusion holds for all other points p′ ∈ Pγ1
∩ Pγ2

.
In particular, the image of the spacelike geodesic Pγ1

∩Pγ2
under the projections π±

l , π
±
r :

∂±C(f) → H2 is a geodesic in H2 that does not depend on the choice of the support plane as
in the definition of π±

l and π±
r .

Proof. Suppose Pγ̂1
and Pγ̂2

are (say, future) distinct support planes at p. Write γ̂2 ◦ γ̂−1
1 =

exp(â), which is a hyperbolic element by Lemma 5.1 and the first item of Lemma 5.5. By
the second item of Lemma 5.5, any other support plane at p must be of the form Pσγ̂1 for

σ an element having the same fixed points as γ̂2 ◦ γ̂−1
1 . That is, σ is of the form exp(sâ) for

some s ∈ R.
We claim that the set

I = {s ∈ R | exp(sâ) is a support plane of C(f) at p}
is a compact interval. This will conclude the proof, up to applying an affine change of
variable mapping the interval I = [s1, s2] to [0, 1], and defining γi = exp(siâ).

To prove the claim, suppose that s, s′ ∈ I. Then C(f) is contained in the past of a pleated
surface obtained as the union of two half-spaces, one contained in Pexp(sâ)γ̂1

and the other
in Pexp(s′â)γ̂1

, meeting along the spacelike geodesic Pγ̂1
∩Pγ̂2

. Then every support plane for
this pleated surface is a support plane for C(f) as well. That is, by the last item of Corollary
5.3, [s, s′] ⊂ I. This shows that I is an interval. It is compact by Lemma 4.9, applied to the
constant sequence pn = p and to γn = exp(snâ)γ̂1, showing that sn must be converging (up
to subsequences) and its limit is in I. This concludes the proof. □

6. Proof of the earthquake theorem

We are now ready to enter into the details of the proof of the earthquake theorem.
The outline of the proof is now clear: given an orientation-preserving homeomorphism f :
RP1 → RP1 (which we can assume is not in PSL(2,R)), we consider the projections π±

l , π
±
r :

∂±C(f) → H2, and we want to show that the composition π±
r ◦ (π±

l )
−1 is well-defined and is

a (left or right) earthquake map extending f . We will prove this in several steps: the proof
of Theorem 2.4 will follow from Proposition 6.3, Corollary 6.4 and Proposition 6.5 below.

6.1. Extension to the boundary. The first property we study is the extension of the projec-
tions π±

l and π±
r to the boundary.

Proposition 6.1. The projections π±
l , π

±
r : ∂±C(f) → H2 extend to graph(f). More precisely,

if pn ∈ ∂±C(f) → (x, y) ∈ graph(f), then π±
l (pn) → x and π±

r (pn) → y.

Observe that the conclusion of Proposition 6.1 holds for any choice of the projections
π±
l and π±

r , regardless of the chosen support planes when several choices are possible, as in
Remark 4.11. The proof involves two well-known properties of isometries in plane hyperbolic
geometry; for the sake of completeness, we provide elementary, self-contained proofs in the
Appendix.

Proof. Let pn ∈ ∂±C(f) be a sequence converging to (x, y) ∈ graph(f), and let Pγn be a
sequence of support planes of C(f) at pn, which are necessarily spacelike by Proposition 4.8.
By Lemma 4.9, up to extracting a subsequence, there are two possibilities: either γn → γ
and Pγn

converges to the spacelike support plane Pγ , or γn diverges in PSL(2,R) and Pγn

converges to the lightlike plane whose boundary is ({x} × RP1) ∪ (RP1 ∪ {y}). We will
treat these two situations separately, and we will always use the characterization of the
convergence to the boundary given in (4).

Consider the former case, namely when γn → γ. We have by hypothesis that

pn(z0) → x and p−1
n (z0) → y , (18)
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for any point z0 ∈ H2. Observe moreover that, from the definition of the projections,

π±
l (pn) = Fix(pnγ

−1
n ) and π±

r (pn) = Fix(γ−1
n pn) . (19)

Recalling (see (7)) that the boundary of P1 is identified with RP1 via the map (x, x) 7→ x,
we thus have to show (choosing for instance the point z0 = i) that: pnγ

−1
n (i) → x and

γ−1
n pn(i) → y. However, since γn → γ, pnγ

−1
n (i) is at bounded distance from pnγ

−1(i). Ap-
plying the hypothesis (18) to z0 = γ−1(i), we have pnγ

−1(i) → x and therefore pnγ
−1
n (i) →

x. The argument is analogous to show that γ−1
n pn(i) → y, except that it is useful to observe

that γ−1
n pn = p−1

n γn since it is an order–two isometry. Now p−1
n γn(i) is at bounded distance

from p−1
n γ(i), which converges to y by hypothesis. Hence p−1

n γn(i) → y and the proof is
complete for this case.

Let us move on to the latter case, that is, γn diverges in PSL(2,R). Here we must use
not only the previous assumption (18), but also the following:

γn(z0) → x and γ−1
n (z0) → y , (20)

for any z0 ∈ H2. The condition (20) holds because γn converges to the projective class of
a rank one matrix A, such that P[A] is a lightlike support plane; we have already observed

that the boundary at infinity of P[A] must be equal to ({x}×RP1)∪(RP1∪{y}). Combining

(3), (4) and Lemma 3.5, we deduce that γn(z0) → x and γ−1
n (z0) → y as claimed.

Having made this preliminary observation, now we can rewrite (19) as the identities:

pn = Rπ±
l (pn)

◦ γn and p−1
n = Rπ±

r (pn)
◦ γ−1

n , (21)

where we recall that Rw denotes the order two elliptic isometry with fixed point w ∈ H2.
Up to extracting a subsequence, we can assume that π±

l (pn) → x̂± and π±
r (pn) → ŷ±, for

some points x̂±, ŷ± ∈ H2 ∪ ∂∞H2. We need to show that x̂± = x and ŷ± = y.
For this purpose, suppose by contradiction x̂± ̸= x. Suppose first that x̂± ∈ H2. We will

use the fact (Lemma 6.7 in the Appendix) that if wn → w ∈ H2, then Rwn
converges to Rw

uniformly on H2∪∂∞H2. From (21), and the fact that, from (18) and (20), both pn(z0) and
γn(z0) converge to x, we would then have

x = lim
n
pn(z0) = lim

n
(Rπ±

l (pn)
(γn(z0))) = Rx̂±(x) ̸= x

since Rx̂± does not have fixed points on ∂∞H2, thus giving a contradiction. If ŷ± ∈ H2, we
get a contradiction by an analogous argument.

Finally, if x̂± ∈ ∂∞H2, we can find a neighbourhood U of x̂± not containing x, such that
for n large Rπ±

l (pn)
maps the complement of U inside U (see Lemma 6.8 in the Appendix).

This gives a contradiction with (21) because pn(z0) and γn(z0) are in the complement of U
for n large, but at the same time Rπ±

l (pn)
(γn(z0)) should be in U for n large. The argument

for ŷ± is completely analogous. □

Remark 6.2. We remark that the proof of Proposition 6.1 does not use the full hypothesis
that the surface on which the projections are defined is a boundary component of C(f), but
only the property that whenever a sequence Pγn

of spacelike support planes converges to a
lightlike plane, then this limit is a support plane too, which is true for any convex surface.

6.2. Invertibility of the projections. The next step in the proof is to show that the projec-
tions π±

l and π±
r are bijective.

Proposition 6.3. The projections π±
l , π

±
r : ∂±C(f) → H2 are bijective.

Proof. We give the proof for π±
l , the proof for π±

r being completely identical. Let us first

show that π±
l and π±

r are injective. Given p1, p2 ∈ ∂±C(f), let Pγ1
and Pγ2

be the support
planes at p1 and p2 respectively. (If there are several support planes, we choose one, as in
the definition of π±

l and π±
r — see Remark 4.11.) By Lemma 5.1 and Lemma 5.5, γ2 ◦ γ−1

1
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is a hyperbolic isometry; let D1 and D2 be the convex envelopes in H2 of the two intervals
I1 and I2 with endpoints the fixed points of γ2 ◦ γ−1

1 . Up to switching γ1 and γ2, we can
moreover assume that γ2 ◦ γ−1

1 translates to the left seen from D1 to D2.
Now, we will use the example studied in Section 5. Let f+γ1,γ2

be defined as in (17). By

Corollary 5.3, Pγi
is the support plane of C(f+γ1,γ2

) at the point pi ∈ ∂±C(f+γ1,γ2
), for i = 1, 2.

Hence π±
l (pi) = π̂±

l (pi), where π̂
±
l is the left projection associated with C(f+γ1,γ2

). Since

π̂±
l (pi) is bijective by Proposition 5.4, π±

l (p1) ̸= π±
l (p2). This shows the injectivity.

To prove the surjectivity, we first show that the image is closed. Suppose zn = π±
l (pn) is a

sequence in the image, with lim zn = z ∈ H2. Up to extracting a subsequence, we can assume
pn → p ∈ ∂±C(f) ∪ graph(f). From Proposition 6.1, we have that p ∈ ∂±C(f), because
if p = (x, y) ∈ graph(f), then π±

l (pn) → x ∈ ∂∞H2, thus contradicting the hypothesis
zn → z ∈ H2. Now, let Pγn be a support plane at pn, which is spacelike by Proposition 4.8.
By Lemma 4.9, up to extracting a subsequence, γn → γ ∈ PSL(2,R) and Pγ is a spacelike
support plane at p. It is important to remark that ∂±C(f) might admit several support planes
at p, and Pγ might not be the support plane that has been chosen in the definition of π±

l ;
however, by Corollary 5.7 the image does not depend on this choice. Hence we can assume
that Pγ is the support plane chosen at p. That is, from (12), π±

l (p) = Fix(p ◦ γ−1). We can

now conclude that z is in the image of π±
l : on the one hand zn = π±

l (pn) = Fix(pn ◦ γ−1
n )

converges to z by hypothesis, and on the other it converges to π±
l (p) = Fix(p ◦γ−1) because

pn → p, γn → γ and Fix is continuous. This shows that z ∈ π±
l (∂±C(f)), and therefore the

image is closed.
We now proceed to show that π±

l is surjective. Suppose by contradiction that there is a

point w ∈ H2 which is not in the image of π±
l . Let r0 = inf{r |B(w, r) ∩ π±

l (∂±C(f)) ̸= ∅},
where B(w, r) is the open ball centered at w of radius r with respect to the hyperbolic metric
of H2. Since the image of π±

l is closed, we have that r0 > 0, B(w, r0) is disjoint from the

image of π±
l , and there exists a point z ∈ ∂B(w, r0) which is in the image of π±

l . Say that

z = π±
l (p). We will obtain a contradiction by finding points close to p which are mapped

by π±
l inside B(w, r0).

Let Pγ be a support plane of C(f) at p. By (11), Pγ ∩ C(f) is the convex hull of ∂∞Pγ ∩
graph(f), which contains at least two points. If p is in the interior of Pγ ∩ C(f) (which is
non-empty if and only if ∂∞Pγ∩graph(f) contains at least three points), then the restriction
of π±

l to the interior of Pγ ∩ C(f) is an isometry onto its image in H2, because Pγ is the

unique support plane at interior points p′, and π±
l (p

′) = Fix(p′ ◦ γ−1). Hence π±
l maps

a small neighbourhood of p to a neighbourhood of z, which intersects B(w, r0), giving a
contradiction.

We are only left with the case where p is not in the interior of Pγ ∩ C(f). In this case,
there is a geodesic L contained in Pγ ∩ C(f) such that p ∈ L. (The geodesic L might be
equal to Pγ ∩ C(f) or not.) As before, the image of L is a geodesic ℓ in H2 because (π±

l )|L
is an isometry onto its image, and z ∈ ℓ. We claim that in the image of π±

l there are two

sequences of geodesics ℓn ⊂ Im(π±
l ) converging to ℓ (in other words, such that the endpoints

of ℓn converge to the endpoint of ℓ); moreover the two sequences are contained in different
connected components of H2 \ ℓ. This will give a contradiction, because for one of these two
sequences, ℓn must intersect B(w, r0) for n large.

To show the claim, and thus conclude the proof, observe that L disconnects ∂±C(f) in two
connected components, and let pn be a sequence converging to p contained in one connected
component of ∂±C(f) \ L. Let Pγn

be the support plane for C(f) at pn which has been
chosen to define π±

l . By Lemma 4.9, Pγn converges to a support plane Pγ at p, which as

before we can assume is the support plane that defined π±
l at p, since the image does not

depend on this choice by Corollary 5.7. Also, we can assume that each pn is contained in a



THE ANTI-DE SITTER PROOF OF THURSTON’S EARTHQUAKE THEOREM 24

geodesic Ln in Pγn
∩ ∂±C(f): indeed, it suffices to replace pn by the point in Pγn

∩ ∂±C(f)
which is closest to p (where closest is with respect to the induced metric on ∂±C(f), or
to any auxiliary Riemannian metric). If Pγn ∩ ∂±C(f) is not already a geodesic, with this
assumption pn now belongs to a boundary component which is the geodesic Ln. As observed
before, π±

l maps the geodesic Ln to a geodesic ℓn = π±
l (Ln) in H2, and (as in the argument

that showed that Im(π±
l ) is closed), the limit of π±

l (pn) is a point in ℓ = π±
l (L).

Moreover ℓn ∩ ℓ = ∅, and the ℓn are all contained in the same connected component of
H2 \ ℓ: this follows from observing again (compare with the injectivity at the beginning of
this proof) that (π±

l )|Ln∪L equals the left projection associated with the surface ∂±C(f+γn,γ)

studied in Section 5, where f+γ1,γ2
is defined in (17), and thus maps ∂±C(f) ∩ Pγn (which

in particular contains Ln) to a subset (containing ℓn) disjoint from ℓ and included in a
connected component of H2 \ ℓ which does not depend on n.

This implies that ℓn converges to ℓ as n→ +∞. Clearly if we had chosen pn in the other
connected component of ∂±C(f) \L, then the ℓn would be contained in the other connected
component of H2 \ ℓ. This concludes the claim and thus the proof. □

As a consequence, the composition π±
r ◦ (π±

l )
−1 is well-defined and is a bijection of H2 to

itself. Combining with Proposition 6.1, we get:

Corollary 6.4. The composition π±
r ◦ (π±

l )
−1 extends to a bijection from H2∪∂∞H2 to itself,

which equals f on ∂∞H2 and is continuous at any point of ∂∞H2.

Proof. Since π±
l and π±

r are bijective and extend to the bijections from graph(f) to ∂∞H2

sending (x, y) to x and y = f(x) respectively, the composition π±
r ◦ (π±

l )
−1 extends to a

bijection of H2 ∪ ∂∞H2 to itself sending x to f(x).
We need to check that this extension is continuous at any point of ∂∞H2. Proposition 6.1

shows that the extensions of π±
l and π±

r to ∂±C(f) ∪ graph(f) are continuous at any point

of graph(f). Hence it remains to check that (π±
l )

−1 is continuous at any point of ∂∞H2.
This follows from a standard argument: let zn be a sequence in H2 ∪ ∂∞H2 converging

to x ∈ ∂∞H2, and let pn = (π±
l )

−1(zn). Up to extracting a subsequence, pn → p. The limit

p must be in graph(f), because if p ∈ ∂±C(f), although π±
l might not be continuous there,

we have already seen in Proposition 6.3 (see the proof that the image of π±
l is closed) that

limn π
±
l (pn) = limn zn is a point of H2, thus giving a contradiction with limn zn = x ∈ ∂∞H2.

If p ∈ graph(f), then we can use the continuity and injectivity of π±
l on graph(f) to infer

that p = (π±
l )

−1(x). This concludes the proof. □

6.3. Earthquake properties. The last step which is left to prove is the verification that
π±
r ◦ (π±

l )
−1 satisfies the properties defining earthquake maps.

Proposition 6.5. The composition π−
r ◦ (π−

l )
−1 : H2 → H2 is a left earthquake map. Analo-

gously, π+
r ◦ (π+

l )
−1 : H2 → H2 is a right earthquake map.

Proof. First, let us define a geodesic lamination λ. Let us consider all the support planes
Pγ of C(f) at points of ∂±C(f) (which are necessarily spacelike by Proposition 4.8). Define
L to be the collection of all the connected components of (Pγ ∩ ∂±C(f)) \ int(Pγ ∩ ∂±C(f)),
as Pγ varies over all support planes. As observed before, by (11) Pγ ∩ ∂±C(f) is the convex
hull in Pγ of ∂∞Pγ ∩ graph(f), which consists of at least two points. If it consists of exactly
two points, then Pγ ∩∂±C(f) is a spacelike geodesic L; otherwise Pγ ∩∂±C(f) has nonempty
interior and each connected component of its boundary is a spacelike geodesic. Now, π±

l is
an isometry onto its image when restricted to any L ∈ L (which might depend on the choice
of a support plane if there are several support planes at points of L, but the image does not
depend on this choice by Corollary 5.7). Hence we define λ to be the collection of all the
π±
l (L) as L varies in L.
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To show that λ is a geodesic lamination, we first observe that the geodesics ℓ ∈ λ are
pairwise disjoint, because the spacelike geodesics L in L are pairwise disjoint and π±

l is
injective. Then it remains to show that their union is a closed subset of H2. This follows
immediately from the proof of Proposition 6.3. Indeed, suppose that ℓn = π±

l (Ln) converges

to ℓ = π±
l (L), and let zn = π±

l (pn) ∈ ℓn be a sequence converging to z ∈ ℓ. Since Im(π±
l ) is

closed, z ∈ Im(π±
l ), and since π±

l is injective, z = π±
l (p) for some p ∈ L. Then in the last

part of the proof of Proposition 6.3 we have shown that in this situation ℓn converges to ℓ.
Having shown that λ is a geodesic lamination, we are ready to check that π−

r ◦ (π−
l )

−1

is an earthquake map. Observe that the gaps of λ are precisely the images under π±
l of the

interior of the sets Pγ ∩ ∂±C(f) (when this intersection is not reduced to a geodesic), as Pγ

varies among all support planes.
Let S1 and S2 be two strata of λ, and let Σi = (π±

l )
−1(Si). Hence Σi ⊂ Pγi

∩ ∂±C(f),
where Pγi

is a support plane. As usual, there might be several support planes at points of
Σi, and this can occur only if Σi is reduced to a geodesic by Lemma 5.5. Recalling from
Remark 4.11 that the chosen support plane is assumed to be constant along Σi, we can
suppose that Pγi

is the support plane chosen in the definition of π±
l and π±

r .
Now we proceed as in the proof of injectivity in Proposition 6.3. Consider first the case

that γ1 ̸= γ2. By Lemma 5.1 and Lemma 5.5, γ2 ◦ γ−1
1 is a hyperbolic isometry; let D1

and D2 be the convex envelopes in H2 of the two intervals I1 and I2 with endpoints the
fixed points of γ2 ◦ γ−1

1 . Up to switching γ1 and γ2, we assume that γ2 ◦ γ−1
1 translates to

the left seen from D1 to D2. Then (π±
l )|Σi = (π̂±

l )|Σi and (π±
r )|Σi = (π̂±

r )|Σi , where π̂
±
l

and π̂±
r are the left and right projections associated with C(f+γ1,γ2

), and moreover Si ⊂ Di.

By the second part of Proposition 5.4, the comparison isometry Ĉomp(D1, D2) of the map
π̂±
r ◦ (π̂±

l )
−1 translates to the left (for π−

r and π−
l ) or right (for π

+
r and π+

l ) seen from D1 to

D2. Then Comp(S1, S2), which is indeed equal to Ĉomp(D1, D2), translates to the left (or
right) seen from S1 to S2.

Finally, we instead consider the case γ1 = γ2, which can only happen either if Σ1 = Σ2

(hence S1 = S2) or if Σ1 has nonempty interior and Σ2 is one of its boundary components (or
vice versa). In this case we clearly have Comp(S1, S2) = id. But the comparison isometry is
indeed allowed in Definition 2.2 to be the identity, when one of the two strata is contained
in the closure of the other. This concludes the proof. □

The proof of Thurston’s earthquake theorem (Theorem 2.4) is thus complete.

6.4. Recovering earthquakes of closed surfaces. In this final section, we recover (Corollary
6.6) the existence of earthquake maps between two homeomorphic closed hyperbolic surfaces.

Given a group G and two representations ρ, ϱ : G → PSL(2,R), we say that a map F
from H2 (or ∂∞H2) to itself is (ρ, ϱ)-equivariant if it satisfies

F ◦ ρ(g) = ϱ(g) ◦ F
for every g ∈ G.

Corollary 6.6. Let S be a closed oriented surface and let ρ, ϱ : π1(S) → PSL(2,R) be two
Fuchsian representations. Then there exists a (ρ, ϱ)-equivariant left earthquake map of H2,
and a (ρ, ϱ)-equivariant right earthquake map.

Proof. Let f : ∂∞H2 → ∂∞H2 be the unique (ρ, ϱ)-equivariant orientation-preserving home-
omorphism. We claim that there exists a left (resp. right) earthquake as in Theorem 2.4,
which is itself (ρ, ϱ)-equivariant. For this purpose, observe that for any g ∈ π1(S), the pair
(ρ(g), ϱ(g)) ∈ PSL(2,R)×PSL(2,R) acts on ∂∞AdS3 preserving graph(f), since by (5) and
the definition of (ρ, ϱ)-equivariant,

(ρ(g), ϱ(g)) · graph(f) = graph(ϱ(g) ◦ f ◦ ρ−1(g)) = graph(f) .
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Hence the convex hull C(f) is preserved by the action of (ρ(g), ϱ(g)) for all g ∈ π1(S).
To conclude the proof, we need to show that we can choose support planes at every

point of both boundary components of C(f) \ graph(f) in such a way that this choice of
support planes is also preserved by the action of (ρ(g), ϱ(g)) for all g ∈ π1(S). (Clearly it
suffices to consider the situation at points that admit more than one support plane, because
if p ∈ ∂±C(f) has a unique support plane P , then (ρ(g), ϱ(g)) ·P is the unique support plane
at (ρ(g), ϱ(g)) · p.)

When we have shown this, we will take the left and right projections π±
l , π

±
r defined via

this invariant choice of support planes. By Lemma 4.12, we will then deduce that the left
projection π±

l : ∂±C(f) → H2 is equivariant with respect to the action of (ρ(g), ϱ(g)) on
∂±C(f) and the action of ρ(g) on H2; analogously the right projection π±

r : ∂±C(f) → H2

is equivariant with respect to the action of (ρ(g), ϱ(g)) on ∂±C(f) and the action of ϱ(g) on
H2. Following the proof of Theorem 2.4, the left and right earthquake maps obtained as the
composition (π∓

r )
−1 ◦ π∓

l will be (ρ, ϱ)-equivariant, and the proof will be concluded.
First, we need to prove an intermediate claim. Suppose p ∈ ∂±C(f) admits several support

planes. By Lemma 5.5, there is a spacelike geodesic L ⊂ ∂±C(f) containing p. Let g ∈ π1(S)
be such that (ρ(g), ϱ(g)) ·L = L. Then we claim that (ρ(g), ϱ(g)) maps every support plane
at p to itself. To prove this claim, we use Corollary 5.7 and suppose up to an isometry (so
that, in the notation of Corollary 5.7, γ1 = 1) that all the support planes at p are of the
form Pexp(ta) with t ∈ [0, 1], where γ := exp(a) is a hyperbolic element.

Clearly (ρ(g), ϱ(g)) must preserve the pair of ”extreme” support planes P1 and Pγ . Hence
there are two possibilities: either (ρ(g), ϱ(g)) maps 1 to 1 and γ to γ, or it switches 1 and
γ. However, the latter possibility cannot be realized, since the identities ρ(g)ϱ(g)−1 = γ and
ρ(g)γϱ(g)−1 = 1 would imply that γ has order two, and this is not possible for a hyperbolic
element. We thus have (ρ(g), ϱ(g)) · 1 = 1 and (ρ(g), ϱ(g)) · γ = γ. This implies first that
ρ(g) = ϱ(g). Moreover ρ(g)γρ(g)−1 = γ, which shows that ρ(g) = ϱ(g) = exp(sa) for some
s ∈ R. Therefore ρ(g) exp(ta)ρ(g)−1 = exp(ta) for all t, that is (ρ(g), ϱ(g)) = (ρ(g), ρ(g))
maps every support plane Pexp(ta) to itself.

Having shown the claim, we can conclude as follows. Observe that the set of points
p ∈ ∂±C(f) that admit several support planes form a disjoint union of spacelike geodesics
in ∂±C(f), and that this set (say X) is invariant under the action of (ρ(g), ϱ(g)) for all
g ∈ π1(S). Pick a subset {Li}i∈I of this family of geodesics such that its π1(S)-orbit is
X, and that the orbits of Li and Lj are disjoint if i ̸= j. Pick a support plane Pi at
p ∈ Li, and then we declare that (ρ(g0), ϱ(g0)) · Pi is the chosen support plane at every
point of (ρ(g0), ϱ(g0)) ·Li. This choice is well-defined by the above claim, which showed that
if (ρ(g), ϱ(g)) leaves Li invariant, then it also leaves every support plane at Li invariant.
Moreover this choice of support planes is invariant by the action of π1(S) by construction.
This concludes the proof. □

Appendix: two lemmas in the hyperbolic plane

We provide here the proofs of two properties on the action on H2 ∪ ∂∞H2 of sequences
of elements in PSL(2,R). We prove them by elementary arguments in the specific case of
sequences of order–two elliptic isometries.

The first elementary property that we prove here is the uniform convergence of the action
of elliptic isometries on the compactification of H2.

Lemma 6.7. Let wn be a sequence in H2 converging to w ∈ H2. Then Rwn converges to Rw

uniformly on H2 ∪ ∂∞H2.
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Proof. Up to conjugation, we may assume w = i. Writing wn = |wn|eiηn , it is easy to check
that

Rwn
(z) =

cos(ηn)z − |wn|
|wn|−1z − cos(ηn)

.

Let us conjugate Rwn
by the map ψ(z) = (iz + 1)/(z + i), which maps H2 to the disc, and

show that it converges to z 7→ −z uniformly on the closed disc. For z ∈ H2 ∪ ∂∞H2 we have

ψ ◦ Rwn
◦ ψ−1(z) + z =

(|wn|−1 − |wn| − 2i cos(ηn))z
2 + (|wn|−1 − |wn|+ 2i cos(ηn))

(|wn|−1 − |wn| − 2i cos(ηn))z + i(|wn|+ |wn|−1)

Hence

|ψ ◦ Rwn
◦ ψ−1(z) + z| ≤ 2|αn|

|αnz + βn|
where αn = ||wn|−1 − |wn| − 2i cos(ηn)| and βn = i(|wn|+ |wn|−1). Thus

|ψ ◦ Rwn ◦ ψ−1(z) + z| ≤ 2

|z + βn

αn
|
≤ 2

|| βn

αn
| − |z||

Since |βn| ≥ 2, |αn| → 0 and |z| ≤ 1, there exists n0 ∈ N such that the right-hand side is
smaller than ϵ for all z in the closed disc. This completes the proof. □

The second property is a special case of the so-called North-South dynamics.

Lemma 6.8. Let wn be a sequence in H2 converging to w ∈ ∂∞H2. Then, for every neigh-
bourhood U of w, there exists n0 such that Rwn((H2 ∪ ∂∞H2) \ U) ⊂ U for n ≥ n0.

Proof. We adopt the same notation as in the proof of Lemma 6.7. Up to conjugation,
we may assume that w = ∞. It is sufficient to consider neighbourhoods U of the form
Ur = {|z| > r} ⊂ H2 ∪ ∂∞H2. By a direct computation,

|Rwn
(z)| = | cos(ηn)z − |wn||

||wn|−1z − cos(ηn)|
≥ |wn| − | cos(ηn)||z|

|wn|−1|z|+ | cos ηn|
.

Since wn converges to ∞, for all r we have |wn| ≥ r ≥ |z| ≥ | cos ηn||z| if n is sufficiently
large and z is in the complement of Ur. Then

|Rwn
(z)| ≥ |wn| − r

|wn|−1r + | cos ηn|
−→ +∞.

It follows that |Rwn(z)| > r for n ≥ n0, that is, Rwn maps the complement of Ur to Ur. □
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[17] Šarić, Dragomir, Bounded earthquakes. Proc. Am. Math. Soc. 136, No. 3, 889-897, 2008. 2
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