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THE ANTI-DE SITTER PROOF OF THURSTON'S EARTHQUAKE THEOREM

Thurston's earthquake theorem asserts that every orientation-preserving homeomorphism of the circle admits an extension to the hyperbolic plane which is a (left or right) earthquake. The purpose of these notes is to provide a proof of Thurston's earthquake theorem, using the bi-invariant geometry of the Lie group PSL(2, R), which is also called Anti-de Sitter three-space. The involved techniques are elementary, and no background knowledge is assumed apart from some two-dimensional hyperbolic geometry.

Introduction Mess' groundbreaking work and later developments A quick comparison of the two proofs

Main elements of the Anti-de Sitter proof Acknowledgements 2. Earthquake maps 3. Anti-de Sitter geometry 3.1. First definitions 3.2. Boundary at infinity 3.3. Spacelike planes 3.4. Timelike planes 3.5. Lightlike planes 4. Convexity notions 4.1. Affine charts 4.2. Convex hulls 4.3. Support planes 4.4. Left and right projections 5. The case of two spacelike planes 5.1. The fundamental example 5.2. Simple earthquake 5.3. The example is prototypical 6. Proof of the earthquake theorem 6.1. Extension to the boundary 6.2. Invertibility of the projections 6.3. Earthquake properties 6.4. Recovering earthquakes of closed surfaces Appendix: two lemmas in the hyperbolic plane References

Introduction

Since the 1980s, earthquake maps have played an important role in the study of hyperbolic geometry and Teichmüller theory. These are (possibly discontinuous) maps of the hyperbolic plane to itself that, roughly speaking, are isometric in the complement of a subset of the hyperbolic plane which is a disjoint union of geodesics, and they "slip" along the "faults" represented by these geodesics. In particular, they may have points of discontinuity there. In general, an earthquake map can be complicated, and it is an isometry only on the connected components of the complement of a measured geodesic lamination.

To achieve the solution of the Nielsen realization problem [START_REF] Kerckhoff | The Nielsen realization problem[END_REF], Steven Kerckhoff proved the so-called earthquake theorem for closed hyperbolic surfaces, that is, the existence of a left (right) earthquake map between any two closed hyperbolic surfaces of the same genus. In [20], William Thurston gave a generalization, proved by independent methods, to a universal setting, which is the statement that we consider in the present notes: he proved that every orientation-preserving homeomorphism of the circle admits an extension to the hyperbolic plane which is a (left or right) earthquake. Earthquake maps have been extensively studied later in various directions, see [9,10,13,14,[START_REF] Šarić | Real and complex earthquakes[END_REF]17,18] Mess' groundbreaking work and later developments. In his 1990 pioneering paper [12], Geoffrey Mess has first highlighted the deep connections between the Teichmüller theory of hyperbolic surfaces, and three-dimensional Lorentzian geometries of constant sectional curvature. In particular, the so-called Anti-de Sitter geometry is the Lorentzian geometry of constant negative curvature -that is, the Lorentzian analogue of hyperbolic geometry. One of the models of Anti-de Sitter three-space is simply the Lie group PSL(2, R), endowed with a Lorentzian metric which is induced by the (bi-invariant) Killing form on its Lie algebra. This is the model that we adopt in the present work.

Mess has then observed that convex hulls in Anti-de Sitter space can be used, together with a Gauss map construction for spacelike surfaces, to prove earthquake theorems in hyperbolic geometry. In [12], Mess outlined the proof of the earthquake theorem between closed hyperbolic surfaces. His groundbreaking ideas have been improved and implemented by several authors, leading to many results of existence of earthquake maps in various settings [START_REF] Bonsante | Multi-black holes and earthquakes on Riemann surfaces with boundaries[END_REF][START_REF] Bonsante | AdS manifolds with particles and earthquakes on singular surfaces[END_REF]4, 15] and of other interesting types of extensions [3,5,6,19]. See also the paper [7], which is a detailed introduction to Anti-de Sitter geometry, contains a general treatment of the Gauss map, but only sketches some of the ideas that appear in the proof of Mess.

The literature seems to lack a complete proof of the earthquake theorem, in Thurston's universal version, which relies on Anti-de Sitter geometry. In this note, we will provide a detailed proof of Thurston's earthquake theorem (Theorem 2.4), and we will then recover (Corollary 6.6) the existence of earthquake maps for closed hyperbolic surfaces. While the proofs that appear in [12], and in several of the aforementioned subsequent works, make use of a computation of the holonomy, here we will simply work with the definition of earthquake map.

In fact, the proof presented here, although going through several technical steps, entirely involves elementary tools. The only required knowledge for these notes is the hyperbolic plane geometry in the upper half-space model, and the very basic definitions of Lie groups theory and Lorentzian geometry.

A quick comparison of the two proofs. It is also worth remarking that the proof presented here, and suggested by Mess, is not entirely different in spirit from Thurston's proof in [20]. Indeed, the starting point of Thurston's proof consists in considering, given an orientationpreserving homeomorphism f or the circle, those isometries γ of the hyperbolic plane such that the composition h := γ • f is extreme left: that is, such that h has a lift h : R → R satisfying h(x) ≤ x and whose fixed point set is non-empty. In Thurston's words, "h moves points counterclockwise on the circle, except for those points that it fixes". Then Thurston defines the earthquake map to be equal to γ -1 on the convex hull of the fixed points of h.

This has an interpretation in terms of Anti-de Sitter geometry. Spacelike planes in Antide Sitter space, which is simply the Lie group PSL(2, R), are isometrically embedded copies of the hyperbolic plane, and are parameterized by elements of PSL(2, R) itself, via a natural duality. For instance, the dual plane to the identity consists of all elliptic elements of order two, which is identified with the hyperbolic plane itself via the fixed point map. The "extreme left condition" as above is then exactly equivalent to the condition that the spacelike plane dual to γ is a past support plane of the convex hull of the graph of f , which can be seen as a subset of the boundary at infinity of Anti-de Sitter space.

The proof presented here then consists in considering the left and right projections, defined on the past boundary components of the convex hull, and to consider the composition E of one projection with the inverse of the other. It turns out that this composition map E is indeed equal to γ -1 on the convex hull of the fixed points of γ • f , as in Thurston's ansatz. Of course one can replace extreme left by extreme right, and past boundary with future boundary, to obtain right earthquakes instead of left earthquakes.

We remark that the main statement proved by Thurston also includes a uniqueness part. In fact, the earthquake map is not quite unique, but it is up to a certain choice that has to be made at every geodesic where it is discontinuous. We will give an interpretation of this phenomenon in terms of a choice of support plane at the points of the boundary of the convex hull that admit several support planes, but we will not provide a proof of the uniqueness part here.

Main elements of the Anti-de Sitter proof. Despite the above analogies with Thurston's original proof of the existence of left and right earthquakes, developing the proof in the Anti-de Sitter setting then leads to remarkable differences with respect to Thurston's proof. A large part of our proof is actually achieved by a reduction to the situation of an orientationpreserving homeomorphism of the circle which is equal to the restriction of an element γ i of PSL(2, R) on an interval I i (i = 1, 2), where I 1 ∪ I 2 equals the circle. In this situation the earthquake extension is already well-known, and consists of a simple earthquake. However, understanding this example in detail from the perspective of Anti-de Sitter geometrywhich corresponds to the situation where a boundary component of the convex envelope of f is the union of two totally geodesic half-planes meeting along a geodesic -then permits to prove easily some of the fundamental properties that one has to verify in order to show that the composition map E is an earthquake map.

There are furthermore two main technical statements that we have to prove. The first is the fact that the left and right projections (although they can be discontinuous) are bijective -which is essential since the earthquake map is defined as the inverse of the left projection post-composed with the right projection, and implies that E itself is a bijection of the hyperbolic plane. While injectivity is easy using the aforementioned example of two totally geodesic planes meeting along a geodesic, surjectivity requires a more technical argument. The second statement is an extension lemma, which ensures that the left and right projections (although sometimes discontinuous) extend continuously to the boundary, and the extension is simply the projection from the graph of f onto the first and second factor. This ensures that the composition E of the right projection with the inverse of the left projection extends to f itself on the circle at infinity. Some of the above steps do of course involve a number of technical difficulties, but the language of Anti-de Sitter geometry is, in our opinion, extremely effective, and permits to stick to quite elementary techniques in the entire work.

3.4. We are grateful to Filippo Mazzoli and Athanase Papadopoulos for useful suggestions that helped improving the exposition.

Earthquake maps

Throughout this work, we will use the upper half-plane model of the hyperbolic plane H 2 , that is, H 2 is the half-space Im(z) > 0 in C endowed with the Riemannian metric |dz| 2 /Im(z) 2 of constant curvature -1. Its visual boundary ∂ ∞ H 2 is therefore identified with R ∪ {∞}, and

H 2 = H 2 ∪ ∂ ∞ H 2 is
endowed with the topology given by the one-point compactification of the closed half-plane Im(z) ≥ 0. The isometry group of H 2 is identified with the group PSL(2, R) acting by homographies, and its action naturally extends to ∂ ∞ H 2 . Definition 2.1. A geodesic lamination λ of H 2 is a collection of disjoint geodesics that foliate a closed subset X ⊆ H 2 . The closed set X is called the support of λ. The geodesics in λ are called leaves. The connected components of the complement H 2 \ X are called gaps. The strata of λ are the leaves and the gaps.

Given a hyperbolic isometry γ of H 2 , the axis of γ is the geodesic ℓ of H 2 connecting the two fixed points of γ in ∂ ∞ H 2 . Therefore the axis ℓ is preserved by γ, and when restricted to ℓ, γ| ℓ : ℓ → ℓ acts as a translation with respect to any constant speed parameterization of ℓ.

Given two subsets A, B of H 2 , we say that a geodesic ℓ weakly separates A and B if A and B are contained in the closure of different connected components of H 2 \ ℓ. Definition 2.2. A left (resp. right) earthquake of H 2 is a bijective map E : H 2 → H 2 such that there exists a geodesic lamination λ for which the restriction E| S of E to any stratum S of λ is equal to the restriction of an isometry of H 2 , and for any two strata S and S ′ of λ, the comparison isometry Comp(S,

S ′ ) := (E| S ) -1 • E| S ′
is the restriction of an isometry γ of H 2 , such that:

• γ is different from the identity, unless possibly when one of the two strata S and S ′ is contained in the closure of the other; • when it is not the identity, γ is a hyperbolic transformation whose axis ℓ weakly separates S and S ′ ; • moreover, γ translates to the left (resp. right), seen from S to S ′ .

Let us clarify the meaning of this last condition. Suppose f : [0, 1] → H 2 is smooth path such that f (0) ∈ S, f (1) ∈ S ′ and the image of f intersects ℓ transversely and exactly at one point z 0 = f (t 0 ) ∈ ℓ. Let v = f ′ (t 0 ) ∈ T z0 H 2 be the tangent vector at the intersection point. Let w ∈ T z0 H 2 be a vector tangent to the geodesic ℓ pointing towards γ(z 0 ). Then we say that γ translates to the left (resp. right) seen from S to S ′ if v, w is a positive (resp. negative) basis of T z0 H 2 , for the standard orientation of H 2 .

It is important to observe that this condition is independent of the order in which we choose S and S ′ . That is, if Comp(S, S ′ ) translates to the left (resp. right) seen from S to S ′ , then Comp(S ′ , S) translates to the left (resp. right) seen from S ′ to S.

We remark that an earthquake E is not required to be continuous. In fact, in some cases it will not be continuous, for instance when the lamination λ is finite, meaning that λ is a collection of a finite number of geodesics. This is best visualized in the following simple example.

Example 2.3. The map E :

H 2 → H 2
defined in the upper half-space model of H 2 by:

E(z) =      z if Re(z) < 0 az if Re(z) = 0 bz if Re(z) > 0
is a left earthquake if 1 < a < b, and a right earthquake if 0 < b < a < 1. The lamination λ that satisfies Definition 2.2 is composed of a unique geodesic, namely the geodesic ℓ with endpoints 0 and ∞.

It is clear that the earthquake map E from Example 2.3 is not continuous along ℓ. Despite the lack of continuity, Thurston proved that any earthquake map extends continuously to an orientation-preserving homeomorphism of ∂ ∞ H 2 , meaning that there exists a (unique) orientation-preserving homeomorphism f :

∂ ∞ H 2 → ∂ ∞ H 2 such that the map E(z) = E(z) if z ∈ H 2 f (z) if z ∈ ∂ ∞ H 2 is continuous at every point of ∂ ∞ H 2 .
Then Thurston provided a proof of the following theorem, that he called "geology is transitive":

Theorem 2.4. Given any orientation-preserving homeomorphism f : ∂ ∞ H 2 → ∂ ∞ H 2 ,
there exists a left earthquake map of H 2 , and a right earthquake map, that extend continuously to

f on ∂ ∞ H 2 .
We remark that the earthquake map is not unique, as shown by Example 2.3, which provides a family of left (resp. right) earthquake maps extending the homeomorphism

f (x) =      x if x ≤ 0 bx if x ≥ 0 ∞ if x = ∞ ,
parameterized by the choice of a ∈ (1, b) (resp. a ∈ (b, 1)). Thurston's theorem is actually stronger than the statement of Theorem 2.4 above, since it characterizes the non-uniqueness as well. In short, the range of choices of the earthquake extension as in Example 2.3 is essentially the only indeterminacy that occurs, and it happens exactly on each leaf of the lamination where the earthquake is discontinuous. We will not deal with the uniqueness part as in Thurston's work here. Nevertheless, in Subsection 6.4 we will show that our proof permits to recover the existence of earthquake maps between homeomorphic closed hyperbolic surfaces, not relying on the uniqueness property.

Anti-de Sitter geometry

In this section, we will introduce the fundamental notions in Anti-de Sitter geometry. For more details, the reader can consult [7, Section 3].

3.1. First definitions. The three-dimensional Anti-de Sitter space AdS 3 is the Lie group PSL(2, R), that is, the group of orientation-preserving isometries of H 2 , endowed with a biinvariant metric of signature (2, 1) (namely, a Lorentzian metric) which we now construct.

Consider first the double cover SL(2, R) of PSL(2, R), which we realize as the subset of matrices of unit determinant in the four-dimensional vector space M 2 (R) of 2-by-2 matrices. Endow M 2 (R) with the quadratic form q: q(A) = -det(A) .

It can be checked that q has signature (2, 2). The associated bilinear form is expressed by the formula:

⟨A, B⟩ = - 1 2 tr(A • adj(B)) (1) 
for A, B ∈ M 2 (R), where adj denotes the adjugate matrix, namely

adj a b c d = d -b -c a .
Then SL(2, R) is realized as the subset of M 2 (R) defined by the condition q(A) = -1, and the restriction of ⟨•, •⟩ to the tangent space of SL(2, R) at every point defines a pseudo-Riemannian metric of signature (2, 1). We will still denote by ⟨•, •⟩ this metric on SL(2, R), and by q the corresponding quadratic form. It can be shown that this metric has constant curvature -1, and the restriction of ⟨•, •⟩ to the Lie algebra sl(2, R) coincides with 1/8 times the Killing form of SL(2, R).

Clearly both SL(2, R) and q are invariant under multiplication by minus the identity matrix, hence the quotient PSL(2, R) = SL(2, R)/{±1} is endowed with a Lorentzian metric of constant curvature -1, and is what we call the (three-dimensional) Anti-de Sitter space AdS 3 . It turns out that the group of orientation-preserving and time-preserving isometries of AdS 3 is the group PSL(2, R) × PSL(2, R), acting by left and right multiplication on PSL(2, R)

∼ = AdS 3 : (α, β) • γ := αγβ -1 .
Although orientation-preserving and time-preserving are notions that do not depend on a chosen orientation, we will fix here an orientation and a time-orientation of AdS 3 ∼ = PSL(2, R). To define an orientation on a Lie group, it actually suffices to define it in the Lie algebra, namely the tangent space at the identity 1. Hence we declare that the following is an oriented basis (which is actually orthonormal) of sl(2, R):

V = 0 1 1 0 W = 1 0 0 -1 U = 0 -1 1 0 (2)
Observe that the vectors V, W are spacelike (i.e. q(V, V ) > 0 and q(W, W ) > 0), while U is timelike (q(U, U ) < 0). One can check that U is the tangent vector to the one-parameter group of elliptic isometries of H 2 fixing i ∈ H 2 , parameterized by the angle of clockwise rotation; V and W are vectors tangent to the one-parameter groups of hyperbolic isometries fixing the geodesics with endpoints (-1, 1) and (0, ∞) respectively. Analogously, to define a time-orientation it suffices to define it in the Lie algebra, and we declare that U is a future-pointing timelike vector.

3.2. Boundary at infinity. The boundary at infinity of AdS 3 is defined as the projectivization of the cone of rank one matrices in M 2 (R):

∂ ∞ AdS 3 = P{A | q(A) = 0, A ̸ = 0} .
We endow AdS 3 = AdS 3 ∪ ∂ ∞ AdS 3 with the topology induced by seeing both AdS 3 and ∂ ∞ AdS 3 as subsets of the (real) projective space PM 2 (R) over the vector space M 2 (R). Hence AdS 3 is the compactification of AdS 3 in PM 2 (R). It will be extremely useful to consider the homeomorphism between ∂ ∞ AdS 3 and RP 1 × RP 1 , which is defined as follows:

δ : ∂ ∞ AdS 3 → RP 1 × RP 1 [X] → (Im(X), Ker(X)) (3) 
where of course in the right-hand side we interpret RP 1 as the space of one-dimensional subspaces of R 2 . Since we have Im(AXB -1 ) = A • Im(X) and Ker(AXB -1 ) = B • Ker(X), the map δ is equivariant with respect to the action of the group PSL(2, R)×PSL(2, R), acting on ∂ ∞ AdS 3 as the natural extension of the group of isometries of AdS 3 , and on RP 1 × RP 1 by the obvious product action.

The following is a useful characterization of sequences in AdS 3 converging to a point in the boundary (see [7, Lemma 3.2.2]): for (γ n ) n∈N a sequence of isometries of H 2 , we have:

γ n → δ -1 (x, y) ⇔ there exists z ∈ H 2 such that γ n (z) → x and γ -1 n (z) → y ⇔ for every z ∈ H 2 , γ n (z) → x and γ -1 n (z) → y (4) 
where of course here we are using the standard identification between RP 1 and the visual boundary R ∪ {∞} = ∂ ∞ H 2 , mapping the line spanned by (a, b) to a/b. A fundamental step in the proof of the earthquake theorem is that to any map f :

∂ ∞ H 2 → ∂ ∞ H 2 we
can associate a subset of ∂ ∞ AdS 3 , namely (via the map δ) the graph of f . By the equivariance of the map δ introduced in (3), we see immediately that, for (α, β) ∈ PSL(2, R) × PSL(2, R):

(α, β) • graph(f ) = graph(βf α -1 ) .
(5)

In the rest of this paper, we will omit the map δ, and we will simply identify ∂ ∞ AdS 3 with RP 1 × RP 1 .

3.3. Spacelike planes. We conclude the preliminaries by an analysis of totally geodesic planes in AdS 3 . They are all obtained as the intersection of AdS 3 with a projective subspace in the projective space PM 2 (R) over M 2 (R). Hence they are all of the following form:

P [A] = {[X] ∈ PSL(2, R) | ⟨X, A⟩ = 0} (6) 
for some nonzero 2-by-2 matrix A. The notation P [A] is justified by the observation that the plane P A defined in the right-hand side of (6) depends only on the projective class of A. The totally geodesic plane P [A] is spacelike (resp. timelike, lightlike) if and only if q(A) = -det(A) is negative (resp. positive, null). It will be called the dual plane of [A], since it can be seen as a particular case of the usual projective duality between points and planes in projective space. In particular, the dual plane P γ of an element γ ∈ PSL(2, R) is a spacelike totally geodesic plane.

Example 3.1. The first example, which is of fundamental importance for the following, is for γ = 1 is the identity of PSL(2, R). By (1), P 1 is the subset of PSL(2, R) consisting of projective classes of unit matrices X with tr(X) = 0. By the Cayley-Hamilton theorem, X 2 = -id, hence the elements of P 1 are order-two isometries of H 2 , that is, elliptic elements with rotation angle π. Observe that P 1 is invariant under the action of PSL(2, R) by conjugation, which corresponds to the diagonal in the isometry group PSL(2, R) × PSL(2, R) of AdS 3 . Using (4), one immediately sees that the boundary of P 1 in ∂ ∞ AdS 3 ∼ = RP 1 × RP 1 is the diagonal; more precisely:

∂ ∞ P 1 = graph(1) ⊂ RP 1 × RP 1 . (7) 
Given a point z ∈ H 2 , let us denote by R z the order-two elliptic isometry with fixed point z. We claim that the map

ι : H 2 → P 1 ι(z) = R z
is an isometry with respect to the hyperbolic metric of H 2 and the induced metric on P 1 ⊂ AdS 3 . First, the inverse of ι is simply the fixed-point map Fix : P 1 → H 2 sending an elliptic isometry to its fixed point, which also shows that ι is equivariant with respect to the action of PSL(2, R) on H 2 by homographies and on P 1 by conjugation, since Fix(αγα -1 ) = α(Fix(γ)).

That is, we have the relation

ι(α • p) = α • ι(p) • α -1 . (8) 
This immediately implies that ι is isometric, since the pull-back of the metric of P 1 is necessarily PSL(2, R)-invariant and has constant curvature -1, hence it coincides with the standard hyperbolic metric on the upper half-space.

This example is actually the essential example to understand general spacelike totally geodesic planes. Indeed, every spacelike totally geodesic plane is of the form P γ for some γ ∈ PSL(2, R). To see this, observe that the action of the isometry group of AdS 3 on spacelike totally geodesic planes is transitive, and that P γ = (γ, 1)P 1 because the isometry (γ, 1) maps 1 to γ, and therefore maps the dual plane of 1 to the dual plane of γ. By ( 5) and ( 7), we immediately conclude the following: Lemma 3.2. Every spacelike totally geodesic plane of AdS 3 is of the form P γ for some orientation-preserving isometry γ of H 2 , and

∂ ∞ P γ = graph(γ -1 ) ⊂ RP 1 × RP 1 .

Timelike planes. Let us now consider a matrix

A ∈ M 2 (R) such that det(A) = -1.
Hence the plane defined by Equation ( 6) is a timelike totally geodesic plane. Associated with [A] is an orientation-reversing isometry η of H 2 . Indeed, the action of A by homography on CP 1 preserves RP 1 and switches the two connected components of the complement, that is, the upper and the lower half-spaces. The matrix A thus induces an orientation-reversing isometry, up to identifying these two components via z → z. We will thus denote P [A] by P η , by a small abuse of notation.

The totally geodesic plane P η can be parameterized as follows. Consider the map

I → Iη , (9) 
defined on the space of reflections I along geodesics of

H 2 , with values in PSL(2, R) ∼ = AdS 3 .
Its image is precisely P η . Indeed, it is useful to remark that by the Cayley-Hamilton theorem, a matrix X with det(X) = -1 is an involution if and only if and tr(X) = 0. Now, because det(A) = -1, adj(A) = -A -1 , and therefore ⟨XA, A⟩ = 0 if and only if tr(X) = 0, that is, if and only if X is an involution. This shows that the image of the map (9) is the entire plane P η .

Similarly to the spacelike case, using the transitivity of the action of the group of isometries on timelike planes, every timelike plane is of the form above. Thanks to this description, we can show the following. Lemma 3.3. Every timelike totally geodesic plane of AdS 3 is of the form P η for some orientation-reversing isometry η of H 2 , and

∂ ∞ P η = graph(η -1 ) ⊂ RP 1 × RP 1 .
Proof. It only remains to check the identity for ∂ ∞ P η . For this, we will use the characterization (4) together with the parameterization (9) of P η . Suppose the sequence I n is such that

I n η(z) → x ∈ ∂ ∞ H 2 ,
for any z ∈ H 2 . Then, using that I n is an involution and the continuity of the action of η on H 2 , (

I n η) -1 (z) = η -1 I -1 n (z) = η -1 I n (z) → η -1 (x)
. This concludes the proof. □ Remark 3.4. It is worth remarking that, since reflections of H 2 are uniquely determined by (unoriented) geodesics, we can consider the map (9) as a map from the space G(H 2 ) of unoriented geodesics of H 2 to PSL(2, R). It turns out that this map is isometric with respect to a natural metric on G(H 2 ) which makes it identified with the two-dimensional Anti-de Sitter space AdS 2 , see [8, Example 6.1] for more details.

3.5. Lightlike planes. The only case left to consider consists of lightlike totally geodesic planes. Those are of the form P [A] for a nonzero matrix A with det(A) = 0, that is, for rank(A) = 1. We describe their boundary in the following lemma. It is important to remark that, unlike spacelike and timelike planes considered above, the boundary will not be a graph in RP 1 × RP 1 .

Lemma 3.5. Every lightlike totally geodesic plane of AdS 3 is of the form P [A] for some rank one matrix A, and

∂ ∞ P [A] = Im(A) × RP 1 ∪ RP 1 × Ker(A) .
In other words,

∂ ∞ P [A]
is the union of two circles in RP 1 × RP 1 , one horizontal and one vertical, which intersect exactly at the point in

RP 1 × RP 1 corresponding to [A] ∈ ∂ ∞ AdS 3 via the map δ introduced in (3).
Proof. The points in ∂ ∞ P [A] are projective classes of rank one matrices X satisfying ⟨X, A⟩ = 0, that is, such that tr(Xadj(A)) = 0. Since Xadj(A) has vanishing determinant, by the Cayley-Hamilton theorem Xadj(A) is traceless if and only if it is nilpotent, that is, if and only if Xadj(A)Xadj(A) = 0. Since image and kernel of both X and adj(A) are all onedimensional, it is immediate to see that this happens if and only if

Im(adj(A)) = Ker(X) or Im(X) = Ker(adj(A)) . (10) 
Now, since det(A) = 0 implies adj(A)A = Aadj(A) = 0, the relations Ker(adj(A)) = Im(A) and Im(adj(A)) = Ker(A) hold. Hence X ∈ P [A] if and only if Im(X) = Im(A) or Ker(X) = Ker(A), which concludes the proof, by the definition of δ. □

Convexity notions

In this section we develop the necessary tools to tackle the proof of Thurston's earthquake theorem.

4.1. Affine charts. The starting point of the proof rests in considering the graph of an orientation-preserving homeomorphism f : RP 1 → RP 1 as a subset of ∂ ∞ AdS 3 , and taking its convex hull. However, the convex hull of a set in projective space can be defined in an affine chart, but AdS 3 is not contained in any affine chart. The following lemma serves to show that the convex hull of the graph of f is well-defined.

Lemma 4.1. Let f : RP 1 → RP 1 be an orientation-preserving homeomorphism. Then:

(1) There exists a spacelike plane P γ in AdS 3 such that

∂ ∞ P γ ∩ graph(f ) = ∅.
(2) Moreover, given any point (x 0 , y 0 ) / ∈ graph(f ), there exists a spacelike plane

P γ such that ∂ ∞ P γ ∩ graph(f ) = ∅ and (x 0 , y 0 ) ∈ ∂ ∞ P γ .
Before providing the proof, let us discuss an important consequence of the first item. Given a (spacelike) plane P γ in AdS 3 , let P γ be the unique projective subspace in PM 2 (R) that contains P γ , which is defined by the equation (6) (where γ = [A]). Let us denote by A γ the complement of P γ , which we will call a (spacelike) affine chart. The first item of Lemma 4.1 can be reformulated as follows:

Corollary 4.2. Let f : RP 1 → RP 1 be an orientation-preserving homeomorphism. There exists a spacelike affine chart A γ containing graph(f ).

The proof of Lemma 4.1 below is largely inspired by [1, Lemma 6.2, Lemma 6.3].

Proof of Lemma 4.1. Clearly the second item implies the first. However, we will first prove the first item, and then explain how to improve the proof to achieve the second item.

Recall that PSL(2, R) acts transitively on pairs of distinct points of RP 1 ∼ = R ∪ {∞}actually, it acts simply transitively on positively oriented triples. Hence for the first point we may assume, up to the action of the isometry group of AdS 3 by post-composition on f (recall (5)), that f (0) = 0 and f (∞) = ∞. Then f induces a monotone increasing homeomorphism from R to R. Since f (0) = 0, f preserves the two intervals (-∞, 0) and (0, ∞). Let now γ = R i be the order-two elliptic isometry fixing i. Clearly γ is an involution that maps 0 to ∞, and switches the two intervals (-∞, 0) and (0, ∞). Hence f (x) ̸ = γ(x) for all x ∈ R ∪ {∞}, that is, graph(f ) ∩ graph(γ) = ∅. By Lemma 3.2 and the fact that γ is an involution, graph(f ) ∩ ∂ ∞ P γ = ∅.

To prove the second item, we will make full use of the transitivity of the PSL(2, R)action on oriented triples, and we will apply both pre and post-composition of an element of PSL(2, R). As a preliminary step, let (x 0 , y 0 ) / ∈ graph(f ), and observe that we can find points x and x ′ such that f maps the unoriented arc of RP 1 connecting x and x ′ containing x 0 to the unoriented arc connecting f (x) and f (x ′ ) not containing y 0 . The proof is just a picture, see Figure 1. Since f preserves the orientation of RP 1 , up to switching x and x ′ , we have that (x, x 0 , x ′ ) is a positive triple in RP 1 , while (f (x), y 0 , f (x ′ )) is a negative triple.

Having made this observation, using simple transitivity on oriented triples we can assume (x, x 0 , x ′ ) = (0, 1, ∞) and (f (x), y 0 , f (x ′ )) = (0, -1, ∞). Then the choice γ = R i as in the first part of the proof satisfies the condition in the second item as well, since γ(1)

= -1. □ x x 0 x y 0 f (x) p graph(f ) f (x ) Figure 1.
The proof of a claim in Lemma 4.1, drawn in the torus RP 1 ×RP 1 (identify opposite sides by a translation). Given p / ∈ graph(f ), consider any orientation-reversing homeomorphism g of RP 1 . Then graph(f ) and graph(g) (dashed) intersect in two points, and let x, x ′ the corresponding solutions of the equation f = g. Then f maps an arc from x to x ′ containing x 0 , to an arc from f(x) to f(x ′ ) not containing y 0 . 4.2. Convex hulls. Corollary 4.2 permits to consider the convex hull of graph(f ), in any affine chart A γ that contains graph(f ).

Example 4.3. Given σ ∈ PSL(2, R), the convex hull of graph(σ) is the closure of the totally geodesic spacelike plane P σ -1 in AdS 3 . Indeed by Lemma 3.2 the boundary at infinity of P σ -1 equals graph(σ), and moreover P σ -1 is convex, since spacelike geodesics of AdS 3 (which are the intersections of two transverse spacelike planes) are lines in an affine chart, and any two points in ∂ ∞ H 2 are connected by a geodesic. Hence P σ -1 is clearly the smallest convex set containing graph(σ). This is the only case in which graph(f ) is contained in a plane, and therefore its convex hull has empty interior. If f is not the restriction to RP 1 of an element of PSL(2, R), then the convex hull of graph(f ) is a convex body in the affine chart A γ .

Let us study one more important property of the convex hull of graph(f ).

Proposition 4.4. Let f : RP 1 → RP 1 be an orientation-preserving homeomorphism, let P γ in AdS 3 be a spacelike plane such that ∂ ∞ P γ ∩ graph(f ) = ∅, and let K be the convex hull of graph(f ) in the affine chart A γ . Then:

• The interior of K is contained in AdS 3 .

• The intersection of K with ∂ ∞ AdS 3 equals graph(f ).

In particular, K ⊂ AdS 3 .

Before proving Proposition 4.4, we give another technical lemma, which is proved by an argument in a similar spirit as the proof of Lemma 4.1.

Lemma 4.5. Let f : RP 1 → RP 1 be an orientation-preserving homeomorphism and let P γ in AdS 3 be a spacelike plane such that ∂ ∞ P γ ∩ graph(f ) = ∅. Given any two distinct points (x, f (x)) and (x ′ , f (x ′ )) in graph(f ), there exists a spacelike plane, disjoint from P γ , containing them in its boundary at infinity.

Proof. Applying the action of PSL(2, R) × PSL(2, R) we can assume that γ = 1. The hypothesis ∂ ∞ P 1 ∩ graph(f ) = ∅ then tells us that f has no fixed point. We are looking for a σ ∈ PSL(2, R) such that

• P 1 ∩ P σ -1 = ∅; • (x, f (x)), (x ′ , f (x ′ )) ∈ ∂ ∞ P σ -1 = graph(σ).
For the first condition to hold, it clearly suffices that the boundaries of P 1 and P σ -1 do not intersect, that is to say, σ(y) ̸ = y for all y ∈ RP 1 . This is equivalent to saying that σ does not have fixed points on RP 1 , namely, σ is an elliptic isometry. The second condition is equivalent to σ

(x) = f (x) and σ(x ′ ) = f (x ′ ).
Since f has no fixed points, f (x) ̸ = x and f (x ′ ) ̸ = x ′ . There are various cases to distinguish (see also Figure 2). First, suppose (x, f (x), x ′ ) is a positive triple. Then either (x, f (x ′ ), f (x), x ′ ) or (x, f (x), x ′ , f (x ′ )) are in cyclic order, because the remaining possibility, namely that (x, f (x), f (x ′ ), x ′ ) are in cyclic order, would imply that f has a fixed point. If (x, f (x ′ ), f (x), x ′ ) are in cyclic order, then the hyperbolic geodesics ℓ connecting x to f (x) and ℓ ′ connecting x ′ to f (x ′ ) intersect, and the order two elliptic isometry σ fixing ℓ ∩ ℓ ′ maps x to f (x) and x ′ to f (x ′ ). If (x, f (x), x ′ , f (x ′ )) are in cyclic order, then the geodesics ℓ 1 connecting x to x ′ and ℓ 2 connecting f (x) to f (x ′ ) intersect, and one can find an elliptic element σ fixing ℓ 1 ∩ ℓ 2 sending x to f (x) and x ′ to f (x ′ ). Second, if (x, f (x), x ′ ) is a negative triple, then the argument is completely analogous. Finally, there is the possibility that f (x) = x ′ . If f (x ′ ) ̸ = x, the σ we are looking for is for instance an order-three elliptic isometry with fixed point in the barycenter of the triangle with vertices x, f (x) = x ′ and f (x ′ ). If instead f (x ′ ) = x, then clearly we can pick any order-two elliptic isometry with fixed point on the geodesic ℓ from x to x ′ . □

In particular, Lemma 4.5 shows that given any spacelike affine chart A γ containing graph(f ) and any two distinct points in graph(f ), the line connecting them is contained in AdS 3 ∩ A γ (except for its endpoints, which are in ∂ ∞ AdS 3 ), and is a spacelike geodesic of AdS 3 .

x f (x ) f (x) x x f (x ) f (x) x 2 x f (x ) f (x) = x 1 Figure 2.
Several cases in the proof of Lemma 4.5.

We are now ready to prove Proposition 4.4.

Proof of Proposition 4.4. Given a point p in ∂ ∞ AdS 3 \ graph(f ), by the second item of Lemma 4.1 there exists a spacelike plane P γ ′ passing through p that does not intersect graph(f ). This implies that P γ ′ ∩ K = ∅, and therefore K ∩ ∂ ∞ AdS 3 = graph(f ). Since K is connected, it is contained in the closure of one component of the complement of ∂ ∞ AdS 3 in A γ . But K is connected and intersects AdS 3 \ P γ because, by Lemma 4.5, the line segment connecting any two points of graph(f ) in the affine chart A γ is contained in AdS 3 ∩ A γ . Hence K is contained in AdS 3 and its interior is contained in AdS 3 . □ By Corollary 4.2 and Proposition 4.4, we can now give the following definition:

Definition 4.6. Given an orientation-preserving homeomorphism f : RP 1 → RP 1 , we define C(f ) to be the subset of AdS 3 which is obtained as the convex hull of graph(f ) in any spacelike affine chart A γ such that

∂ ∞ P γ ∩ graph(f ) = ∅.
The definition is well posed -that is, it does not depend on the chosen affine chart A γbecause lines and planes are well defined in projective space, hence the change of coordinates from an affine chart to another preserves convex sets. When referring to convexity notions in the following, we will implicitly assume we have chosen a spacelike affine chart A γ containing graph(f ). 4.3. Support planes. Let us recall a basic notion in convex analysis. Given a convex body K in an affine space of dimension three, a support plane of K is an affine plane Q such that K is contained in a closed half-space bounded by Q, and ∂K ∩ Q ̸ = ∅. If p ∈ ∂K ∩ Q, one says that Q is a support plane at the point p. As a consequence of the Hahn-Banach theorem, there exists a support plane at every point p ∈ ∂K.

We will adopt this terminology for the convex hulls C(f ) in AdS 3 : we say that a totally geodesic plane P is a support plane of C(f ) (at p ∈ ∂C(f )) if p ∈ C(f ) ∩ P ⊂ AdS 3 and, in an affine chart containing graph(f ), C(f ) lies in a closed half-space bounded by the affine plane that contains P . As usual, one easily sees that this definition does not depend on the affine chart as long as it contains graph(f ).

Remark 4.7. Equivalently, we can say that a totally geodesic plane P is a support plane for C(f ) if there exists a continuous family {P t } t∈[0,ϵ) of totally geodesic planes, pairwise disjoint in AdS 3 , such that P 0 = P and P t ∩ C(f ) = ∅ for t > 0.

Also, recall that we have the following identity for convex hulls: if X is a set, C(X) its convex hull and Q an affine support plane for C(X), then Q ∩ C(X) = C(Q ∩ X). Applying this identity in our setting, we obtain for any totally geodesic support plane P :

P ∩ C(f ) = C(∂ ∞ P ∩ graph(f )) . (11) 
In the following proposition, we see that all support planes of C(f ) are allowed to be spacelike, and lightlike only if they touch C(f ) at a boundary point.

Proposition 4.8. Let f : RP 1 → RP 1 be an orientation-preserving homeomorphism, and let P be a support plane of C(f ) at a point p ∈ ∂C(f ). Then:

• If p ∈ AdS 3 , then P is a spacelike plane.

• If p ∈ ∂ ∞ AdS 3 , then P is either spacelike or lightlike.

Proof. The basic observation is that if P is a support plane, then ∂ ∞ P and graph(f ) = C(f )∩ ∂ ∞ AdS 3 do not intersect transversely. To clarify this notion, we say that an intersection point p ∈ ∂ ∞ P ∩ graph(f ) is transverse if, for a small neighbourhood U of p such that (graph(f ) \ p) ∩ U has two connected components, these two connected components are contained in different connected components of U \ ∂ ∞ P . From Lemma 3.3, if P is timelike, then ∂ ∞ P is the graph of an orientation-reversing homeomorphism of RP 1 , hence it intersects graph(f ) transversely. From Lemma 3.5, if P is lightlike, then ∂ ∞ P is the union of the two circles {x}×RP 1 and RP 1 ×{y}. So if p ∈ ∂ ∞ P ∩graph(f ) and p is not the point p 0 = (x, y), then ∂ ∞ P and graph(f ) intersect transversely. So the sole possibility for P to be a lightlike support plane is to intersect graph(f ) only at the point p 0 . It remains to show that P ∩ C(f ) consists only of the point p 0 , that is, it does not contain any point of AdS 3 . By contradiction, if q ∈ P ∩ C(f ) is different from p 0 , then by (11) ∂ ∞ P ∩ graph(f ) would contain another point different by p 0 as well, because the left-hand side must contain not only p 0 but also q. This would give a contradiction as above. □

Given a spacelike support plane P of C(f ) at a point p, we say that P is a future (resp. past) support plane if in a small simply connected neighbourhood U of p in AdS 3 , C(f ) is contained in the closure of the connected component of U \ P which is in the past (resp. future) of P . This means that there exist future-oriented (resp. past-oriented) timelike curves in U leaving C(f ) ∩ U and reaching P ∩ U .

Clearly C(f ) cannot have a future and past support plane at p at the same time, unless C(f ) has empty interior, which is precisely the situation when f is an element of PSL(2, R) as in Example 4.3. In the following we will always assume int C(f ) ̸ = ∅. As a consequence of the previous discussion, we have the following useful statement on the convergence of support planes. Lemma 4.9. Let f : RP 1 → RP 1 be an orientation-preserving homeomorphism which is not in PSL(2, R), p n a sequence of points in ∂C(f ), and P γn a sequence of future (resp. past) spacelike support planes at p n , for γ n ∈ PSL(2, R). Up to extracting a subsequence, we can assume p n → p and P γn → P . Then:

• If p ∈ AdS 3 , then P = P γ is a future (resp. past) support plane of C(f ), for γ n → γ ∈ PSL(2, R). • If p ∈ ∂ ∞ AdS 3 ,
then either P is a lightlike plane whose boundary is the union of two circles meeting at p, or the conclusion of the previous point holds.

Proof. The proof is straightforward, having developed all the necessary elements above. It is clear that we can extract converging subsequences from p n and P γn , by compactness of C(f ) and of the space of planes in projective space. Also, the limit of the sequence of support planes P γn at p n is a support plane P at p, since both conditions that p n ∈ C(f ) and that C(f ) is contained in a closed half-space bounded by P γn are closed conditions. By Proposition 4.8, if the limit p is in AdS 3 , then P is a spacelike support plane, which is of course future (resp. past) if all the P γn are future (resp. past). This situation can also occur analogously if p ∈ ∂ ∞ AdS 3 ; the other possibility being that P is lightlike, and in this case the proof of Proposition 4.8 shows that P = P [A] if p is represented by the projective class of the rank-one matrix A. □ Corollary 4.10. Let f : RP 1 → RP 1 be an orientation-preserving homeomorphism which is not in PSL(2, R). Then ∂C(f ) is the disjoint union of graph(f ) = C(f )∩∂ ∞ AdS 3 and of two topological discs, of which one only admits future support plane, and the other only admits past support planes.

Proof. It is a basic fact in convex analysis that ∂C(f ) is homeomorphic to S 2 ; by Proposition 4.4, its intersection with ∂ ∞ AdS 3 equals graph(f ) and is therefore a simple closed curve. By the Jordan curve theorem, the complement of graph(f ) is the disjoint union of two topological discs, each of which is contained in AdS 3 again by Proposition 4.4. By Lemma 4.9, the set of points p ∈ ∂C(f ) admitting a future support plane is closed. But it is also open because its complement is the set of points admitting a past support plane, for which the same argument applies. Hence each connected component of the complement of graph(f ) admits only future support planes, or only past support planes. Finally, C(f ) necessarily admits both a past and a future support plane, otherwise it would not be compact in an affine chart. This concludes the proof. □ By virtue of Corollary 4.10, we will call the connected component of ∂C(f ) \ graph(f ) that only admits future support planes the future boundary component, and denote it by ∂ + C(f ); similarly, the connected component that only admits past support planes is the past boundary component, denoted by ∂ -C(f ). 4.4. Left and right projections. We are now ready to introduce the left and right projections, which will play a central role in the proof of the earthquake theorem. These are maps

π ± l : ∂ ± C(f ) → H 2 π ± r : ∂ ± C(f ) → H 2 defined
on the future or past components of ∂C(f ), constructed as follows. Given a point p ∈ ∂ ± C(f ), let P be a support plane of C(f ) at p. By Proposition 4.8, the support plane is necessarily spacelike, hence of the form P = P γ for some γ ∈ PSL(2, R).

Remark 4.11. It is important to remark here that P γ might not be unique, if ∂ ± C(f ) is not C 1 at p. Hence we choose a support plane P γ at p. Moreover we require that the choice of support planes is made so that the support plane is constant on any connected component of the subset of ∂ ± C(f ) consisting of those points that admit more than one support plane. The definition of the projections then depends (although quite mildly, see Corollary 5.7 below) on the choice of P γ . Now, having chosen the support plane P γ at p, left or right multiplication by γ -1 maps γ to 1, and therefore maps P γ to P 1 , which we recall from Example 3.1 is the space of order-two elliptic elements and is therefore naturally identified with H 2 via the map Fix :

P 1 → H 2 . Denote by L γ -1 : PSL(2, R) → PSL(2, R) and R γ -1 : PSL(2, R) → PSL(2, R) the left
and right multiplications by γ -1 ; in other words, there are the actions of the elements (γ, 1)

and (1, γ -1 ) of PSL(2, R) × PSL(2, R)
. By what we said above, L γ -1 (p) and R γ -1 (p) are elements of P 1 , since p ∈ P γ , and L γ -1 (p) (resp. R γ -1 (p)) maps bijectively P γ to P 1 . We can finally define:

π ± l (p) = Fix(R γ -1 (p)) π ± r (p) = Fix(L γ -1 (p)) . (12) 
It might seem counterintuitive to define the left projection using right multiplication, and vice versa. However, this is the most natural choice by virtue of the property of Lemma 4.12 below. Another reason to justify this choice is that these projections can be naturally seen as the left and right components of the Gauss map of spacelike surfaces in AdS 3 with values in the space of timelike geodesics of AdS 3 , which is naturally identified with H 2 × H 2 , see [7, Section 6.3] for more details and for several other equivalent definitions.

Lemma 4.12. Let f : RP 1 → RP 1 be an orientation-preserving homeomorphism, and let (α, β) ∈ PSL(2, R) × PSL(2, R). Let us denote K = C(f ) and K = (α, β) • C(f ) and let π ± l , π ± r : ∂ ± K → H 2 and π± l , π± r : ∂ ± K → H 2 be the left and right projections of K and K respectively. Then

π± l • (α, β) = α • π ± l π± r • (α, β) = β • π ± r . (13) 
To clarify the statement, let us remark that the isometry (α, β) maps a point p ∈ K to a point p ∈ K, and maps support planes at p ∈ K to support planes at p. Hence the relation (13) holds when we consider the projections π± l and π± r defined with the choice of support planes of K given by the images P of the support planes P chosen in the definitions of π ± l and π ± r .

Proof. As remarked above, for any p ∈ ∂ ± K, we have p := (α, β) • p ∈ K, and for a chosen support plane P = P γ for K at p, (α, β) • P = P γ is the chosen support plane for K at p.

By the duality, γ = (α, β) • γ = αγβ -1 . Hence we have:

π± l (p) = Fix R γ-1 (p) = Fix R (βγ -1 α -1 ) (αpβ -1 ) = Fix R (γ -1 α -1 ) (αp) = Fix α • R γ -1 (p) • α -1 = α(Fix(R γ -1 (p))) = απ ± l (p)
. The computation is completely analogous for the right projection. □

Example 4.13. The simplest example that we can consider is the situation where f = σ ∈ PSL(2, R), so that C(f ) = P σ -1 as in Example 4.3. This case is somehow degenerate, because C(σ) has empty interior, hence Corollary 4.10 does not hold and it does not quite make sense to talk about the future and past components of the boundary. However, we can still define the left and right projections. Since P σ -1 itself is the unique support plane at any of its points, from (12) we have the following simple expressions for the left and right projections π l , π r :

P σ -1 → H 2 . π l (p) = Fix(p • σ) π r (p) = Fix(σ • p) . (14) 
Observe that π l and π r extend to the boundary of P σ -1 : recalling that the boundary of P σ -1 is the graph of σ (Lemma 3.2), we have

π l (x, σ(x)) = x π r (x, σ(x)) = σ(x) . (15) 
Equation ( 15) is indeed immediately checked when σ = 1, because in that case π l and π r coincide with the fixed point map Fix : P 1 → H 2 , and we have already observed in Example 4.3, using (4), that Fix extends to the map (x,

x) → x from ∂ ∞ P 1 to ∂ ∞ H 2 .
The general case of Equation ( 15) then follows from Equations ( 5) and ( 13), that is, by observing that the isometry (1, σ) maps graph(1) to graph(σ) and P 1 to P σ -1 . Finally, we can compute the map of H 2 obtained by composing the inverse of the left projection with the right projection. Indeed, this is induced by the map P 1 → P 1 sending an order-two elliptic element

R = p • σ ∈ P 1 to σ • p = σ • R • σ -1 . Hence we have π r • π -1 l = σ : H 2 → H 2 . ( 16 
)
In conclusion, the composition π r • π -1 l is an isometry and its extension to ∂ ∞ H 2 is precisely the map f = σ of which ∂ ∞ P σ -1 is the graph. In the next sections we will see that this fact is extremely general, that is, for any orientation-preserving homeomorphism of the circle f , the compositions π ± r • (π ± l ) -1 associated with ∂ ± C(f ) will be the left and right earthquake maps extending f .

The case of two spacelike planes

Before moving to the proof of Thurston's earthquake theorem, we will now consider another very concrete example, which is only slightly more complicated than Example 4.13. Nevertheless, we will see that this example represents a very general situation, and its comprehension is the essential step towards the proof of the full theorem. 5.1. The fundamental example. The idea here is to consider piecewise totally geodesic surfaces in AdS 3 , which are obtained as the union of two connected subsets, each contained in a totally geodesic spacelike plane, meeting along a common geodesic. See Figure 3.

To formalize this idea, we will consider the union of two half-planes, each contained in a totally geodesic spacelike plane P γ1 or P γ2 . The first important observation is the following.

Lemma 5.1. Let γ 1 ̸ = γ 2 ∈ PSL(2, R). Then P γ1 and P γ2 intersect in AdS 3 if and only if

γ 2 • γ -1 1 is a hyperbolic isometry.
Proof. Since P γi is the convex envelope of ∂ ∞ P γi = graph(γ -1 i ) (Example 4.3), the closures P γ1 and P γ2 intersect in AdS 3 if and only if graph(γ -1 1 ) ∩ graph(γ -1 2 ) ̸ = ∅. Moreover, by [START_REF] Kerckhoff | The Nielsen realization problem[END_REF], P γ1 and P γ2 intersect in AdS 3 if and only graph(γ -1 1 ) ∩ graph(γ -1 2 ) contains at least two different points. Now, (x, y)

∈ RP 1 ×RP 1 is in graph(γ -1 1 )∩graph(γ -1 2 ) if and only if y = γ -1 1 (x) = γ -1 2 (x), which is equivalent to the condition that x is a fixed point of γ 2 • γ -1 1 . But γ 2 • γ -1
1 is an element of PSL(2, R), hence it has two fixed points in RP 1 if and only if it is a hyperbolic isometry. □ Now, let I 1 and I 2 be two closed intervals in RP 1 such that RP 1 = I 1 ∪ I 2 and I 1 ∩ I 2 consists precisely of the two fixed points of γ 2 • γ -1

1 . Clearly there are two possibilities to produce a homeomorphism of RP 1 by combining the restrictions of γ -1 1 and γ -1 2 to the intervals I j 's, that is:

f + γ1,γ2 (x) = γ -1 1 if x ∈ I 1 γ -1 2 if x ∈ I 2 and f - γ1,γ2 (x) = γ -1 2 if x ∈ I 1 γ -1 1 if x ∈ I 2 . ( 17 
)
One easily checks that f ± γ1,γ2 actually are orientation-preserving homeomorphisms, since γ -1 1 and γ -1 2 map homeomorphically the intervals I 1 and I 2 to the same intervals

J 1 := γ -1 1 (I 1 ) = γ -1 2 (I 1 ) and J 2 := γ -1 1 (I 2 ) = γ -1 2 (I 2 )
, which intersect only at their endpoints. Let us also denote by D i the convex hull of I i in H 2 , and by ℓ = D 1 ∩ D 2 the axis of

γ 2 • γ -1 1 . Proposition 5.2. Suppose that γ 2 • γ -1 1
is a hyperbolic isometry that translates along ℓ to the left, as seen from D 1 to D 2 . Then:

• The future boundary component

∂ + C(f + γ1,γ2
) coincides with the union of the convex envelope of graph(γ -1 1 | I1 ) and of the convex envelope of graph(γ Proof. Let us consider the case where γ 2 • γ -1 1 translates to the left along ℓ, and let us prove the first item. Let x, x ′ be the fixed points of γ 2 • γ -1 1 , and let y = γ -1 1 (x) = γ -1 2 (x) and

-1 2 | I2 ). • The past boundary component ∂ -C(f - γ1,γ2 ) is the union of the convex envelope of graph(γ -1 1 | I2 ) and of the convex envelope of graph(γ -1 2 | I1 ). If instead γ 2 • γ -1
y ′ = γ -1 1 (x ′ ) = γ -1 2 (x ′ ).
Then the convex envelope of graph(γ -1 i | Ii ) is a half-plane A i in P γi bounded by the geodesic P γ1 ∩ P γ2 , which has endpoints (x, y) and (x ′ , y ′ ). Clearly both the convex envelope of graph(γ -1 1 | I1 ) and the convex envelope of graph(γ

-1 2 | I2 ) are contained in C(f + γ1,γ2
). Nevertheless, we can be more precise. We claim that P γ1 and P γ2 are future support planes for C(f + γ1,γ2 ). This claim implies that the union of A 1 and A 2 is contained in the future boundary component

∂ + C(f + γ1,γ2
), because every point p ∈ A 1 ∪ A 2 admits a future support plane through p, which is either P γ1 or P γ2 . However

A 1 ∪ A 2 is a topological disc in ∂ + C(f + γ1,γ2
), whose boundary is precisely the curve graph(f + γ1,γ2 ) by construction. Hence the claim will imply that

A 1 ∪ A 2 = ∂ + C(f + γ1,γ2
). We prove the claim for P γ1 , the proof for P γ2 being completely analogous. it is convenient to assume that γ 1 = 1 and γ 2 = γ is a hyperbolic isometry with fixed points x and x ′ , translating to the left seen from D 1 to D 2 . Indeed, we can apply the isometry (1, γ 1 ), which sends P γ1 to P 1 , P γ2 to P γ2γ - Having made this assumption, consider a path σ t , for t ∈ [0, ϵ) of elliptic elements fixing a given point z 0 ∈ H 2 , that rotate clockwise by an angle t. As in the proof of Lemma 5.1, the planes P σt are pairwise disjoint in AdS 3 , because σ t2 • σ -1 t1 is still an elliptic element fixing z 0 for t 1 ̸ = t 2 , hence it has no fixed point in RP 1 . Moreover, observe that γ -1 is an isometry fixing ℓ and translates along ℓ on the right as seen from D 1 to D 2 . Since f + 1,γ equals the identity on I 1 and γ -1 on I 2 , it fixes I 1 pointwise, and moves points of I 2 clockwise. In particular, the equation f + 1,γ (x) = σ -1 t (x) has no solutions for t > 0, because σ -1 t = σ -t moves all points counterclockwise if t is positive. This shows that P σt ∩ C(f + 1,γ ) = ∅ for t > 0, and thus P 1 is a support plane for C(f + 1,γ ) by Remark 4.7. Moreover it is a future support plane: indeed one can check (for instance using (1)) that σ t+π/2 = R z0 • σ t ∈ P σt , and the path t → σ t is future-directed because, from the discussion after (2), its tangent vector is future-directed, hence C(f + 1,γ ) is locally in the past of P 1 . This concludes the proof of the first point. The other cases are completely analogous. □ See also Figure 3 to visualize the different configurations. The following is an important consequence of the proof of Proposition 5.2.

Corollary 5.3. Suppose that γ 2 • γ -1 1
is a hyperbolic isometry that translates along ℓ to the left (resp. right), as seen from D 1 to D 2 , and write γ 2 • γ -1 1 = exp(a) for a ∈ sl(2, R). Let p be a point in the future (resp. past) boundary component of C(f + γ1,γ2 ). Then:

• If p ∈ int(A 1 ), then P γ1 is the unique support plane of C(f + γ1,γ2 ) at p. • If p ∈ int(A 2 ), then P γ2 is the unique support plane of C(f + γ1,γ2 ) at p. • If p ∈ A 1 ∩ A 2 = P γ1 ∩ P γ2 , then the support planes of C(f + γ1,γ2
) at p are precisely those of the form P σγ1 where σ = exp(ta) for t ∈ [0, 1].

Recall the notation from the proof of Proposition 5.2: A i ⊂ P γi is the convex envelope of graph(γ -1 i | Ii ), which is a half-plane bounded by the geodesic P γ1 ∩ P γ2 .

Of course we could provide an analogous statement for C(f - γ1,γ2 ), but we restrict to f + γ1,γ2

for simplicity.

Proof. From Proposition 5.2, the pleated surface which is obtained as the union of A 1 ⊂ P γ1 and A 2 ⊂ P γ2 coincides with

∂ + C(f + γ1,γ2 ) if γ 2 • γ -1
1 is a hyperbolic isometry that translates along ℓ to the left, and with ∂ -C(f + γ1,γ2 ) if it translates to the right, by Proposition 5.2. The first two items are then obvious, since P γi are smooth surfaces, hence A i is smooth at any interior point, and therefore has a unique support plane there. The last item can be proved in the same spirit as Proposition 5.2. First, we can assume γ 1 = 1 and γ 2 = γ is a hyperbolic isometry translating on the left (resp. right) along ℓ. By [START_REF] Kerckhoff | The Nielsen realization problem[END_REF], if P σ is a support plane at p, then p is in the convex hull of the pairs (y, σ -1 (y)) where y satisfies σ -1 (y) = f ± 1,γ (y). The only possibility is then that p lies in the geodesic connecting the points (x, x) and (x ′ , x ′ ) in RP 1 × RP 1 , where x and x ′ are the fixed points of γ. Hence σ must have the same fixed points of γ. That is, σ is a hyperbolic isometry with axis ℓ (or the identity). Moreover, by an analogous argument as in Proposition 5.2, P σ is in the future (resp. past) of C(f + γ1,γ2 ) if and only if σ translates on the left (resp. right), and its translation length is less than that of γ. Hence σ is of the form exp(ta) for t ∈ [0, 1]. □ 5.2. Simple earthquake. We can now conclude the study of orientation-preserving homeomorphisms obtained by combining two elements of PSL(2, R). The following proposition shows that in that situation, the composition of the projections π ± l and π ± r provide the earthquake map as in Example 2.3. This is not interesting in its own, since we recover a simple earthquake map which we had already defined explicitly. However, the following proposition will be an important tool to complete the proof of the earthquake theorem in Section 6.

Proposition 5.4. Let γ 1 , γ 2 ∈ PSL(2, R) be such that γ 2 • γ -1
1 is a hyperbolic isometry, and let π ± l , π ± r be the projections associated with the convex envelope of f + γ1,γ2 . Then:

(1) π ± l , π ± r : ∂ ± C(f + γ1,γ2 ) → H 2 are bijections; (2) Assume γ 2 • γ -1 1
translates along ℓ to the right (resp. left), as seen from

D 1 to D 2 . Then the composition π - r • (π - l ) -1 : H 2 → H 2 (resp. π + r • (π + l ) -1 : H 2 → H 2
) is a left (resp. right) earthquake map extending f + γ1,γ2 . Again, we considered the case of f + γ1,γ2 for the sake of simplicity, but one could give an analogous statement for f - γ1,γ2 . Moreover, we remark that Proposition 5.4 holds for any choice of support planes that is needed to define the projections.

Proof. For the first point, recall that A i ⊂ P γi , and that the union

A 1 ∪ A 2 is the past (resp. future) boundary component of C(f + γ1,γ2 ) if γ 2 • γ -1 1
translates along ℓ to the right (resp. left).

Hence (π ± l ) int(Ai) and (π ± r )| int(Ai) are the restrictions of the projections associated with the totally geodesic plane P γi , which are described in Example 4.13. In particular, (π ± l ) int(Ai) and (π ± r )| int(Ai) are the restrictions to int(A i ) of global isometries of AdS 3 (defined by multiplication on the left or on the right by γ -1 i ) sending P γi to P 1 , post-composed with the usual isometry Fix :

P 1 → H 2 . As a consequence, (π ± l ) int(Ai) and (π ± r )| int(Ai) map geodesics of P γi to geodesics of H 2 . Moreover, by Equation (15), π ± l maps int(∂ ∞ (A i )) = graph(γ -1 i | int(Ii) ) to int(I i ). Hence π ± l (int(A i )) = int(D i ). Analogously, π ± r (int(A i )) = γ -1 1 (int(D i )) = γ -1 2 (int(D i )).
To see that π ± l and π ± r are bijective, it remains to show that the image of the geodesic

A 1 ∩ A 2 = P γ1 ∩ P γ2 via π ± l is the geodesic ℓ = D 1 ∩ D 2 , while the image via π ± r is the geodesic γ -1 1 (ℓ) = γ -1 2 (ℓ).
The definition of π ± l and π ± r on A 1 ∩ A 2 actually depends on the choice of a support plane. Recall that we must choose the same support plane at any point p ∈ A 1 ∩ A 2 . From Corollary 5.3, the possible choices of support planes at p are of the form P σγ1 , where σ has the same fixed points as γ 2 • γ -1 1 , which are precisely the common endpoints of I 1 and I 2 .

Using the notation from Lemma 5.1, we thus see that the endpoints at infinity of A 1 ∩ A 2 are the points (x, y) and (x ′ , y ′ ) where x, x ′ are the fixed points of γ 2 • γ -1 1 (and of σ). Hence from Equation (15) we have (for any choice of σ as in the third item of Corollary 5.3) π ± l (x, y) = x and π ± l (x ′ , y ′ ) = x ′ . Since π ± l is, as before, the restriction of an isometry between P σγ1 and H 2 , it maps geodesics to geodesics, hence

π ± l (A 1 ∩ A 2 ) = ℓ. Analogously, π ± r (x, y) = y and π ± r (x ′ , y ′ ) = y ′ , from which it follows that π ± l (A 1 ∩ A 2 ) = γ -1 1 (ℓ) = γ -1 2 (ℓ)
. This concludes the proof of the first item.

For the second item, define

E := π - r • (π - l ) -1
, which is a bijection of H 2 . Consider the geodesic lamination of H 2 which is composed by the sole geodesic ℓ. Hence the strata of ℓ are: int(D 1 ), int(D 2 ) and ℓ. We will show that the comparison isometries Comp(S, S ′ ) := (E| S ) -1 • E| S ′ all translate to the right or to the left seen from one stratum to another, according to as γ 2 • γ -1 1 translates to the left or to the right seen from D 1 to D 2 . Let us first consider S = int(D 1 ) and S ′ = int(D 2 ). Then by Example 4.13 (see in particular Equation ( 16)

) E equals γ -1 i on int(D i ), because (π ± l ) -1 (int(D i )) = int(A i ) ⊂ P γ -1 i .
Hence the comparison isometry Comp(int(D 1 ), int(D 2 )) equals γ 1 • γ -1 2 , and it translates to the left (resp. right) seen from int(D 1 ) to int(D 2 ) exactly when γ 2 • γ -1 1 , which is its inverse, translates to the right (resp. left). The proof when one of the two strata S or S ′ is ℓ is completely analogous, by using the third item of Corollary 5.3. Indeed (recalling Remark 4.11), by any choice of σ of the form σ = exp(ta) with t ∈ (0, 1), Comp(ℓ, int(D 2 )) = σ • γ -1 2 translates to the left (resp. right) seen from ℓ to int(D 2 ), and Comp(int(D 1 ), ℓ) = γ 1 • σ -1 translates to the left (resp. right) seen from int(D 1 ) to ℓ. If instead σ = exp(ta) with t ∈ {0, 1}, then σ coincides either with γ 1 or with γ 2 , which means that one of the comparison isometries Comp(int(D 1 ), ℓ) and Comp(ℓ, int(D 2 )) translates to the left, and the other is the identity, which is still allowed in the definition of earthquake because ℓ is in the boundary of int(D i ). □ 5.3. The example is prototypical. The case of simple earthquakes that we have considered above may appear as very special. However, it turns out that it is the prototypical example, that will serve to treat the general case in the proof of the earthquake theorem. The following lemma shows that the situation of two intersecting planes occurs quite often.

Lemma 5.5. Let f : RP 1 → RP 1 be an orientation-preserving homeomorphism which is not in PSL(2, R). Then:

(1) Any two future support planes of C(f ) at points of ∂ + C(f ) intersect in AdS 3 . Analogously, any two past support planes of C(f ) at points of ∂ -C(f ) intersect in AdS 3 . (2) Given a point p ∈ ∂ ± C(f ), if there exist two support planes at p, then their intersection (which is a spacelike geodesic) is contained in ∂ ± C(f ). As a consequence, any other support plane at p contains this spacelike geodesic.

Proof. Let us consider future support planes, the other case being analogous. For the first item, let P and Q be support planes intersecting ∂ + C(f ), which are spacelike by Proposition 4.8, and suppose by contradiction P and Q that they are disjoint. We can slightly move them in the future to get spacelike planes P ′ and Q ′ such that P , Q, P ′ and Q ′ are mutually disjoint and

P ′ ∩ ∂ + C(f ) = Q ′ ∩ ∂ + C(f ) = ∅.
(For instance, if P = P γ1 and Q = P γ2 , then we can use Lemma 5.1 and consider P ′ = P σγ1 and Q ′ = P σγ1 for σ an elliptic element of small clockwise angle of rotation.) Now, observe that AdS 3 \ (P ′ ∪ Q ′ ) is the disjoint union of two cylinders and P and Q lie in different connected components of this complement. See Figure 4. However, ∂ + C(f ) is connected and has empty intersection with P and Q, leading to a contradiction.

For the second item, let P = P γ1 and Q = P γ2 be support planes such that p ∈ ∂ + C(f ) ∩ P ∩ Q. By Lemma 5.1, γ 2 • γ -1 1 is hyperbolic. Up to switching the roles of γ 1 and γ 2 , we can assume that γ 2 • γ -1 1 translates to the left seen from D 1 to D 2 , where as usual D i is the convex envelope of the interval I i , and the common endpoints x, x ′ of I 1 and I 2 are the fixed points of γ 2 • γ -1 1 . Hence ∂ ∞ P γ1 ∩ ∂ ∞ P γ2 = {(x, y), (x ′ , y ′ )} where y = γ -1 1 (x) = γ -1 2 (x) and y ′ = γ -1 1 (x ′ ) = γ -1 2 (x ′ ). Now, by [START_REF] Kerckhoff | The Nielsen realization problem[END_REF], P γi ∩ graph(f ) consists of at least two points for i = 1, 2. We claim that graph(f ) ∩ P γi contains at least (x, y) and (x ′ , y ′ ). Indeed, since P γ2 is a support plane, C(f ) ∩ P γ1 is contained in the half-plane A 1 ⊂ P γ1 . If graph(f ) ∩ P γ1 had not contained (x, y) and (x ′ , y ′ ), then C(f ) ∩ P γ1 would not contain the boundary geodesic A 1 ∩ A 2 , and thus would not contain p. The same argument applies for P γ2 . This shows that both (x, y) and (x ′ , y ′ ) are in graph(f ), and therefore the spacelike geodesic P γ1 ∩ P γ2 is in ∂ ± C(f ). □ Now, if one of the two planes P or Q is a support plane at a point of graph(f ), then the proof only shows that P and Q must intersect in AdS 3 , but not necessarily in the interior. It can perfectly happen that two future (or two past) support planes (one of which possibly lightlike) at a point (x, f (x)) of graph(f ) intersect at (x, f (x)) but not in the interior of AdS 3 . Lemma 5.5 has an important consequence. Recall that the definition of the projections π ± l , π ± r : ∂ ± C(f ) → H 2 depends on the choice of a support plane at all points p that admit more than one support plane. Moreover, we require that this support plane is chosen to be constant on any connected component of the subset of ∂ ± C(f ) consisting of those points that admit more than one support plane (Remark 4.11). We will now see that, roughly speaking, their image does not depend on this choice of support plane.

Corollary 5.7. Let f : RP 1 → RP 1 be an orientation-preserving homeomorphism which is not in PSL(2, R), and suppose p ∈ ∂ ± C(f ) has at least two support planes. Then there exist γ 1 , γ 2 ∈ PSL(2, R) with γ 2 • γ -1 1 = exp(a) a hyperbolic element, such that all support planes at p are precisely those of the form P σγ1 where σ = exp(ta) for t ∈ [0, 1]. The same conclusion holds for all other points p ′ ∈ P γ1 ∩ P γ2 .

In particular, the image of the spacelike geodesic P γ1 ∩ P γ2 under the projections π ± l , π ± r : ∂ ± C(f ) → H 2 is a geodesic in H 2 that does not depend on the choice of the support plane as in the definition of π ± l and π ± r . Proof. Suppose P γ1 and P γ2 are (say, future) distinct support planes at p. Write γ2 • γ-1 1 = exp(â), which is a hyperbolic element by Lemma 5.1 and the first item of Lemma 5.5. By the second item of Lemma 5.5, any other support plane at p must be of the form P σγ1 for σ an element having the same fixed points as γ2 • γ-1

1 . That is, σ is of the form exp(sâ) for some s ∈ R.

We claim that the set

I = {s ∈ R | exp(sâ) is a support plane of C(f ) at p}
is a compact interval. This will conclude the proof, up to applying an affine change of variable mapping the interval I = [s 1 , s 2 ] to [0, 1], and defining γ i = exp(s i â).

To prove the claim, suppose that s, s ′ ∈ I. Then C(f ) is contained in the past of a pleated surface obtained as the union of two half-spaces, one contained in P exp(sâ)γ1 and the other in P exp(s ′ â)γ1 , meeting along the spacelike geodesic P γ1 ∩ P γ2 . Then every support plane for this pleated surface is a support plane for C(f ) as well. That is, by the last item of Corollary 5.3, [s, s ′ ] ⊂ I. This shows that I is an interval. It is compact by Lemma 4.9, applied to the constant sequence p n = p and to γ n = exp(s n â)γ 1 , showing that s n must be converging (up to subsequences) and its limit is in I. This concludes the proof. □

Proof of the earthquake theorem

We are now ready to enter into the details of the proof of the earthquake theorem. The outline of the proof is now clear: given an orientation-preserving homeomorphism f : RP 1 → RP 1 (which we can assume is not in PSL(2, R)), we consider the projections π ± l , π ± r : ∂ ± C(f ) → H 2 , and we want to show that the composition π ± r • (π ± l ) -1 is well-defined and is a (left or right) earthquake map extending f . We will prove this in several steps: the proof of Theorem 2.4 will follow from Proposition 6.3, Corollary 6.4 and Proposition 6.5 below.

6.1. Extension to the boundary. The first property we study is the extension of the projections π ± l and π ± r to the boundary. Proposition 6.1. The projections π ± l , π ± r :

∂ ± C(f ) → H 2 extend to graph(f ). More precisely, if p n ∈ ∂ ± C(f ) → (x, y) ∈ graph(f ), then π ± l (p n ) → x and π ± r (p n ) → y.
Observe that the conclusion of Proposition 6.1 holds for any choice of the projections π ± l and π ± r , regardless of the chosen support planes when several choices are possible, as in Remark 4.11. The proof involves two well-known properties of isometries in plane hyperbolic geometry; for the sake of completeness, we provide elementary, self-contained proofs in the Appendix.

Proof. Let p n ∈ ∂ ± C(f ) be a sequence converging to (x, y) ∈ graph(f ), and let P γn be a sequence of support planes of C(f ) at p n , which are necessarily spacelike by Proposition 4.8. By Lemma 4.9, up to extracting a subsequence, there are two possibilities: either γ n → γ and P γn converges to the spacelike support plane P γ , or γ n diverges in PSL(2, R) and P γn converges to the lightlike plane whose boundary is ({x} × RP 1 ) ∪ (RP 1 ∪ {y}). We will treat these two situations separately, and we will always use the characterization of the convergence to the boundary given in (4).

Consider the former case, namely when γ n → γ. We have by hypothesis that

p n (z 0 ) → x and p -1 n (z 0 ) → y , (18) 
for any point z 0 ∈ H 2 . Observe moreover that, from the definition of the projections,

π ± l (p n ) = Fix(p n γ -1 n ) and π ± r (p n ) = Fix(γ -1 n p n ) . (19) 
Recalling (see ( 7)) that the boundary of P 1 is identified with RP 1 via the map (x, x) → x, we thus have to show (choosing for instance the point z 0 = i) that: p n γ -1 n (i) → x and γ -1 n p n (i) → y. However, since γ n → γ, p n γ -1 n (i) is at bounded distance from p n γ -1 (i). Applying the hypothesis (18) to z 0 = γ -1 (i), we have p n γ -1 (i) → x and therefore p n γ -1 n (i) → x. The argument is analogous to show that γ -1 n p n (i) → y, except that it is useful to observe that γ -1 n p n = p -1 n γ n since it is an order-two isometry. Now p -1 n γ n (i) is at bounded distance from p -1 n γ(i), which converges to y by hypothesis. Hence p -1 n γ n (i) → y and the proof is complete for this case.

Let us move on to the latter case, that is, γ n diverges in PSL(2, R). Here we must use not only the previous assumption (18), but also the following:

γ n (z 0 ) → x and γ -1 n (z 0 ) → y , (20) 
for any z 0 ∈ H 2 . The condition (20) holds because γ n converges to the projective class of a rank one matrix A, such that P [A] is a lightlike support plane; we have already observed that the boundary at infinity of P [A] must be equal to ({x} × RP 1 ) ∪ (RP 1 ∪ {y}). Combining (3), (4) and Lemma 3.5, we deduce that γ n (z 0 ) → x and γ -1 n (z 0 ) → y as claimed. Having made this preliminary observation, now we can rewrite (19) as the identities:

p n = R π ± l (pn) • γ n and p -1 n = R π ± r (pn) • γ -1 n , (21) 
where we recall that R w denotes the order two elliptic isometry with fixed point w ∈ H 2 . Up to extracting a subsequence, we can assume that π ± l (p n ) → x± and π ± r (p n ) → ŷ± , for some points x± , ŷ± ∈ H 2 ∪ ∂ ∞ H 2 . We need to show that x± = x and ŷ± = y.

For this purpose, suppose by contradiction x± ̸ = x. Suppose first that x± ∈ H 2 . We will use the fact (Lemma 6.7 in the Appendix) that if w n → w ∈ H 2 , then R wn converges to R w uniformly on H 2 ∪ ∂ ∞ H 2 . From (21), and the fact that, from (18) and (20), both p n (z 0 ) and γ n (z 0 ) converge to x, we would then have

x = lim n p n (z 0 ) = lim n (R π ± l (pn) (γ n (z 0 ))) = R x± (x) ̸ = x since R x± does not have fixed points on ∂ ∞ H 2 ,
thus giving a contradiction. If ŷ± ∈ H 2 , we get a contradiction by an analogous argument.

Finally, if x± ∈ ∂ ∞ H 2 , we can find a neighbourhood U of x± not containing x, such that for n large R π ± l (pn) maps the complement of U inside U (see Lemma 6.8 in the Appendix). This gives a contradiction with (21) because p n (z 0 ) and γ n (z 0 ) are in the complement of U for n large, but at the same time R π ± l (pn) (γ n (z 0 )) should be in U for n large. The argument for ŷ± is completely analogous. □ Remark 6.2. We remark that the proof of Proposition 6.1 does not use the full hypothesis that the surface on which the projections are defined is a boundary component of C(f ), but only the property that whenever a sequence P γn of spacelike support planes converges to a lightlike plane, then this limit is a support plane too, which is true for any convex surface.

6.2. Invertibility of the projections. The next step in the proof is to show that the projections π ± l and π ± r are bijective. Proposition 6.3. The projections π ± l , π ± r : ∂ ± C(f ) → H 2 are bijective. Proof. We give the proof for π ± l , the proof for π ± r being completely identical. Let us first show that π ± l and π ± r are injective. Given p 1 , p 2 ∈ ∂ ± C(f ), let P γ1 and P γ2 be the support planes at p 1 and p 2 respectively. (If there are several support planes, we choose one, as in the definition of π ± l and π ± r -see Remark 4.11.) By Lemma 5.1 and Lemma 5.5, γ 

= π ± l (L n ) in H 2
, and (as in the argument that showed that Im(π ± l ) is closed), the limit of π ± l (p n ) is a point in ℓ = π ± l (L). Moreover ℓ n ∩ ℓ = ∅, and the ℓ n are all contained in the same connected component of H 2 \ ℓ: this follows from observing again (compare with the injectivity at the beginning of this proof) that (π ± l )| Ln∪L equals the left projection associated with the surface ∂ ± C(f + γn,γ ) studied in Section 5, where f + γ1,γ2 is defined in (17), and thus maps ∂ ± C(f ) ∩ P γn (which in particular contains L n ) to a subset (containing ℓ n ) disjoint from ℓ and included in a connected component of H 2 \ ℓ which does not depend on n.

This implies that ℓ n converges to ℓ as n → +∞. Clearly if we had chosen p n in the other connected component of ∂ ± C(f ) \ L, then the ℓ n would be contained in the other connected component of H 2 \ ℓ. This concludes the claim and thus the proof. □

As a consequence, the composition π ± r • (π ± l ) -1 is well-defined and is a bijection of H 2 to itself. Combining with Proposition 6.1, we get:

Corollary 6.4. The composition π ± r • (π ± l ) -1 extends to a bijection from H 2 ∪ ∂ ∞ H 2 to itself, which equals f on ∂ ∞ H 2 and is continuous at any point of ∂ ∞ H 2 .
Proof. Since π ± l and π ± r are bijective and extend to the bijections from graph(f ) to ∂ ∞ H 2 sending (x, y) to x and y = f (x) respectively, the composition π

± r • (π ± l ) -1 extends to a bijection of H 2 ∪ ∂ ∞ H 2 to itself sending x to f (x).
We need to check that this extension is continuous at any point of ∂ ∞ H 2 . Proposition 6.1 shows that the extensions of π ± l and π ± r to ∂ ± C(f ) ∪ graph(f ) are continuous at any point of graph(f ). Hence it remains to check that (π ± l ) -1 is continuous at any point of ∂ ∞ H 2 . This follows from a standard argument: let z n be a sequence in H 2 ∪ ∂ ∞ H 2 converging to x ∈ ∂ ∞ H 2 , and let p n = (π ± l ) -1 (z n ). Up to extracting a subsequence, p n → p. The limit p must be in graph(f ), because if p ∈ ∂ ± C(f ), although π ± l might not be continuous there, we have already seen in Proposition 6.3 (see the proof that the image of π ± l is closed) that lim n π ± l (p n ) = lim n z n is a point of H 2 , thus giving a contradiction with lim n z n = x ∈ ∂ ∞ H 2 . If p ∈ graph(f ), then we can use the continuity and injectivity of π ± l on graph(f ) to infer that p = (π ± l ) -1 (x). This concludes the proof. □ 6.3. Earthquake properties. The last step which is left to prove is the verification that π ± r • (π ± l ) -1 satisfies the properties defining earthquake maps. Proposition 6.5. The composition π - r • (π - l ) -1 : H 2 → H 2 is a left earthquake map. Analogously, π + r • (π + l ) -1 : H 2 → H 2 is a right earthquake map. Proof. First, let us define a geodesic lamination λ. Let us consider all the support planes P γ of C(f ) at points of ∂ ± C(f ) (which are necessarily spacelike by Proposition 4.8). Define L to be the collection of all the connected components of (P γ ∩ ∂ ± C(f )) \ int(P γ ∩ ∂ ± C(f )), as P γ varies over all support planes. As observed before, by (11) P γ ∩ ∂ ± C(f ) is the convex hull in P γ of ∂ ∞ P γ ∩ graph(f ), which consists of at least two points. If it consists of exactly two points, then P γ ∩ ∂ ± C(f ) is a spacelike geodesic L; otherwise P γ ∩ ∂ ± C(f ) has nonempty interior and each connected component of its boundary is a spacelike geodesic. Now, π ± l is an isometry onto its image when restricted to any L ∈ L (which might depend on the choice of a support plane if there are several support planes at points of L, but the image does not depend on this choice by Corollary 5.7). Hence we define λ to be the collection of all the π ± l (L) as L varies in L.

Hence the convex hull C(f ) is preserved by the action of (ρ(g), ϱ(g)) for all g ∈ π 1 (S).

To conclude the proof, we need to show that we can choose support planes at every point of both boundary components of C(f ) \ graph(f ) in such a way that this choice of support planes is also preserved by the action of (ρ(g), ϱ(g)) for all g ∈ π 1 (S). (Clearly it suffices to consider the situation at points that admit more than one support plane, because if p ∈ ∂ ± C(f ) has a unique support plane P , then (ρ(g), ϱ(g)) • P is the unique support plane at (ρ(g), ϱ(g)) • p.)

When we have shown this, we will take the left and right projections π ± l , π ± r defined via this invariant choice of support planes. By Lemma 4.12, we will then deduce that the left projection π ± l : ∂ ± C(f ) → H 2 is equivariant with respect to the action of (ρ(g), ϱ(g)) on ∂ ± C(f ) and the action of ρ(g) on H 2 ; analogously the right projection π ± r : ∂ ± C(f ) → H 2 is equivariant with respect to the action of (ρ(g), ϱ(g)) on ∂ ± C(f ) and the action of ϱ(g) on H 2 . Following the proof of Theorem 2.4, the left and right earthquake maps obtained as the composition (π ∓ r ) -1 • π ∓ l will be (ρ, ϱ)-equivariant, and the proof will be concluded. First, we need to prove an intermediate claim. Suppose p ∈ ∂ ± C(f ) admits several support planes. By Lemma 5.5, there is a spacelike geodesic L ⊂ ∂ ± C(f ) containing p. Let g ∈ π 1 (S) be such that (ρ(g), ϱ(g)) • L = L. Then we claim that (ρ(g), ϱ(g)) maps every support plane at p to itself. To prove this claim, we use Corollary 5.7 and suppose up to an isometry (so that, in the notation of Corollary 5.7, γ 1 = 1) that all the support planes at p are of the form P exp(ta) with t ∈ [0, 1], where γ := exp(a) is a hyperbolic element.

Clearly (ρ(g), ϱ(g)) must preserve the pair of "extreme" support planes P 1 and P γ . Hence there are two possibilities: either (ρ(g), ϱ(g)) maps 1 to 1 and γ to γ, or it switches 1 and γ. However, the latter possibility cannot be realized, since the identities ρ(g)ϱ(g) -1 = γ and ρ(g)γϱ(g) -1 = 1 would imply that γ has order two, and this is not possible for a hyperbolic element. We thus have (ρ(g), ϱ(g)) • 1 = 1 and (ρ(g), ϱ(g)) • γ = γ. This implies first that ρ(g) = ϱ(g). Moreover ρ(g)γρ(g) -1 = γ, which shows that ρ(g) = ϱ(g) = exp(sa) for some s ∈ R. Therefore ρ(g) exp(ta)ρ(g) -1 = exp(ta) for all t, that is (ρ(g), ϱ(g)) = (ρ(g), ρ(g)) maps every support plane P exp(ta) to itself.

Having shown the claim, we can conclude as follows. Observe that the set of points p ∈ ∂ ± C(f ) that admit several support planes form a disjoint union of spacelike geodesics in ∂ ± C(f ), and that this set (say X) is invariant under the action of (ρ(g), ϱ(g)) for all g ∈ π 1 (S). Pick a subset {L i } i∈I of this family of geodesics such that its π 1 (S)-orbit is X, and that the orbits of L i and L j are disjoint if i ̸ = j. Pick a support plane P i at p ∈ L i , and then we declare that (ρ(g 0 ), ϱ(g 0 )) • P i is the chosen support plane at every point of (ρ(g 0 ), ϱ(g 0 )) • L i . This choice is well-defined by the above claim, which showed that if (ρ(g), ϱ(g)) leaves L i invariant, then it also leaves every support plane at L i invariant. Moreover this choice of support planes is invariant by the action of π 1 (S) by construction. This concludes the proof. □ Appendix: two lemmas in the hyperbolic plane

We provide here the proofs of two properties on the action on H 2 ∪ ∂ ∞ H 2 of sequences of elements in PSL(2, R). We prove them by elementary arguments in the specific case of sequences of order-two elliptic isometries.

The first elementary property that we prove here is the uniform convergence of the action of elliptic isometries on the compactification of H 2 . Lemma 6.7. Let w n be a sequence in H 2 converging to w ∈ H 2 . Then R wn converges to R w uniformly on H 2 ∪ ∂ ∞ H 2 .

Proof. Up to conjugation, we may assume w = i. Writing w n = |w n |e iηn , it is easy to check that R wn (z) = cos(η n )z -|w n | |w n | -1 z -cos(η n ) .

Let us conjugate R wn by the map ψ(z) = (iz + 1)/(z + i), which maps H 2 to the disc, and show that it converges to z → -z uniformly on the closed disc. The second property is a special case of the so-called North-South dynamics.

Lemma 6.8. Let w n be a sequence in H 2 converging to w ∈ ∂ ∞ H 2 . Then, for every neighbourhood U of w, there exists n 0 such that R wn ((H 2 ∪ ∂ ∞ H 2 ) \ U ) ⊂ U for n ≥ n 0 .

Proof. We adopt the same notation as in the proof of Lemma 6.7. Up to conjugation, we may assume that w = ∞. It is sufficient to consider neighbourhoods U of the form It follows that |R wn (z)| > r for n ≥ n 0 , that is, R wn maps the complement of U r to U r . □

U r = {|z| > r} ⊂ H 2 ∪ ∂ ∞ H 2 .

1

  translates along ℓ to the right as seen from D 1 to D 2 , then: • The past boundary component ∂ -C(f + γ1,γ2 ) coincides with the union of the convex envelope of graph(γ -1 1 | I1 ) and of the convex envelope of graph(γ -1 2 | I2 ). • The future boundary component ∂ + C(f - γ1,γ2 ) is the union of the convex envelope of graph(γ -1 1 | I2 ) and of the convex envelope of graph(γ -1 2 | I1 ).

1

 1 

1 ,

 1 and (by (5)) graph(f + γ1,γ2 ) to graph(f +

Figure 3 .

 3 Figure 3. Given two elements γ 1 , γ 2 such that γ 2 • γ -1 1 is a hyperbolic isometry, there are two possible configurations. On the left, we see the future boundary component of C(f ± γ1,γ2 ), on the right the past boundary component of C(f ∓ γ1,γ2 ).

Figure 4 .

 4 Figure 4. The setting of the proof of Lemma 5.5.

  For z ∈ H 2 ∪ ∂ ∞ H 2 we have ψ • R wn • ψ -1 (z) + z = (|w n | -1 -|w n | -2i cos(η n ))z 2 + (|w n | -1 -|w n | + 2i cos(η n )) (|w n | -1 -|w n | -2i cos(η n ))z + i(|w n | + |w n | -1 ) Hence |ψ • R wn • ψ -1 (z) + z| ≤ 2|α n | |α n z + β n | where α n = ||w n | -1 -|w n | -2i cos(η n )| and β n = i(|w n | + |w n | -1 ). Thus |ψ • R wn • ψ -1 (z) + z| ≤ 2 |z + βn αn | ≤ 2 || βn αn | -|z|| Since |β n | ≥ 2, |α n |→ 0 and |z| ≤ 1, there exists n 0 ∈ N such that the right-hand side is smaller than ϵ for all z in the closed disc. This completes the proof. □

  By a direct computation,|R wn (z)| = | cos(η n )z -|w n || ||w n | -1 z -cos(η n )| ≥ |w n | -| cos(η n )||z| |w n | -1 |z| + | cos η n | .Since w n converges to ∞, for all r we have |w n | ≥ r ≥ |z| ≥ | cos η n ||z| if n is sufficiently large and z is in the complement of U r . Then |R wn (z)| ≥ |w n | -r |w n | -1 r + | cos η n | -→ +∞.

  2 • γ -1geodesic L n in P γn ∩ ∂ ± C(f ): indeed, it suffices to replace p n by the point in P γn ∩ ∂ ± C(f ) which is closest to p (where closest is with respect to the induced metric on ∂ ± C(f ), or to any auxiliary Riemannian metric). If P γn ∩ ∂ ± C(f ) is not already a geodesic, with this assumption p n now belongs to a boundary component which is the geodesic L n . As observed before, π ± l maps the geodesic L n to a geodesic ℓ n
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is a hyperbolic isometry; let D 1 and D 2 be the convex envelopes in H 2 of the two intervals I 1 and I 2 with endpoints the fixed points of γ 2 • γ -1

1 . Up to switching γ 1 and γ 2 , we can moreover assume that γ 2 • γ -1 1 translates to the left seen from D 1 to D 2 . Now, we will use the example studied in Section 5. Let f + γ1,γ2 be defined as in (17). By Corollary 5.3, P γi is the support plane of C(f + γ1,γ2 ) at the point p i ∈ ∂ ± C(f + γ1,γ2 ), for i = 1, 2. Hence π ± l (p i ) = π± l (p i ), where π± l is the left projection associated with C(f + γ1,γ2 ). Since π± l (p i ) is bijective by Proposition 5.4, π ± l (p 1 ) ̸ = π ± l (p 2 ). This shows the injectivity. To prove the surjectivity, we first show that the image is closed. Suppose z n = π ± l (p n ) is a sequence in the image, with lim z n = z ∈ H 2 . Up to extracting a subsequence, we can assume

, thus contradicting the hypothesis z n → z ∈ H 2 . Now, let P γn be a support plane at p n , which is spacelike by Proposition 4.8. By Lemma 4.9, up to extracting a subsequence, γ n → γ ∈ PSL(2, R) and P γ is a spacelike support plane at p. It is important to remark that ∂ ± C(f ) might admit several support planes at p, and P γ might not be the support plane that has been chosen in the definition of π ± l ; however, by Corollary 5.7 the image does not depend on this choice. Hence we can assume that P γ is the support plane chosen at p. That is, from (12), π ± l (p) = Fix(p • γ -1 ). We can now conclude that z is in the image of π ± l : on the one hand

n ) converges to z by hypothesis, and on the other it converges to π ± l (p) = Fix(p • γ -1 ) because p n → p, γ n → γ and Fix is continuous. This shows that z ∈ π ± l (∂ ± C(f )), and therefore the image is closed.

We now proceed to show that π ± l is surjective. Suppose by contradiction that there is a point w ∈ H 2 which is not in the image of

) is the open ball centered at w of radius r with respect to the hyperbolic metric of H 2 . Since the image of π ± l is closed, we have that r 0 > 0, B(w, r 0 ) is disjoint from the image of π ± l , and there exists a point z ∈ ∂B(w, r 0 ) which is in the image of π ± l . Say that z = π ± l (p). We will obtain a contradiction by finding points close to p which are mapped by π ± l inside B(w, r 0 ). Let P γ be a support plane of C(f ) at p. By [START_REF] Kerckhoff | The Nielsen realization problem[END_REF], P γ ∩ C(f ) is the convex hull of ∂ ∞ P γ ∩ graph(f ), which contains at least two points. If p is in the interior of P γ ∩ C(f ) (which is non-empty if and only if ∂ ∞ P γ ∩graph(f ) contains at least three points), then the restriction of π ± l to the interior of P γ ∩ C(f ) is an isometry onto its image in H 2 , because P γ is the unique support plane at interior points p ′ , and π ± l (p ′ ) = Fix(p ′ • γ -1 ). Hence π ± l maps a small neighbourhood of p to a neighbourhood of z, which intersects B(w, r 0 ), giving a contradiction.

We are only left with the case where p is not in the interior of P γ ∩ C(f ). In this case, there is a geodesic L contained in P γ ∩ C(f ) such that p ∈ L. (The geodesic L might be equal to P γ ∩ C(f ) or not.) As before, the image of L is a geodesic ℓ in H 2 because (π ± l )| L is an isometry onto its image, and z ∈ ℓ. We claim that in the image of π ± l there are two sequences of geodesics ℓ n ⊂ Im(π ± l ) converging to ℓ (in other words, such that the endpoints of ℓ n converge to the endpoint of ℓ); moreover the two sequences are contained in different connected components of H 2 \ ℓ. This will give a contradiction, because for one of these two sequences, ℓ n must intersect B(w, r 0 ) for n large.

To show the claim, and thus conclude the proof, observe that L disconnects ∂ ± C(f ) in two connected components, and let p n be a sequence converging to p contained in one connected component of ∂ ± C(f ) \ L. Let P γn be the support plane for C(f ) at p n which has been chosen to define π ± l . By Lemma 4.9, P γn converges to a support plane P γ at p, which as before we can assume is the support plane that defined π ± l at p, since the image does not depend on this choice by Corollary 5.7. Also, we can assume that each p n is contained in a To show that λ is a geodesic lamination, we first observe that the geodesics ℓ ∈ λ are pairwise disjoint, because the spacelike geodesics L in L are pairwise disjoint and π ± l is injective. Then it remains to show that their union is a closed subset of H 2 . This follows immediately from the proof of Proposition 6.3. Indeed, suppose that ℓ n = π ± l (L n ) converges to ℓ = π ± l (L), and let z n = π ± l (p n ) ∈ ℓ n be a sequence converging to z ∈ ℓ. Since Im(π ± l ) is closed, z ∈ Im(π ± l ), and since π ± l is injective, z = π ± l (p) for some p ∈ L. Then in the last part of the proof of Proposition 6.3 we have shown that in this situation ℓ n converges to ℓ.

Having shown that λ is a geodesic lamination, we are ready to check that π - r • (π - l ) -1 is an earthquake map. Observe that the gaps of λ are precisely the images under π ± l of the interior of the sets P γ ∩ ∂ ± C(f ) (when this intersection is not reduced to a geodesic), as P γ varies among all support planes.

Let S 1 and S 2 be two strata of λ, and let

, where P γi is a support plane. As usual, there might be several support planes at points of Σ i , and this can occur only if Σ i is reduced to a geodesic by Lemma 5.5. Recalling from Remark 4.11 that the chosen support plane is assumed to be constant along Σ i , we can suppose that P γi is the support plane chosen in the definition of π ± l and π ± r . Now we proceed as in the proof of injectivity in Proposition 6.3. Consider first the case that γ 1 ̸ = γ 2 . By Lemma 5.1 and Lemma 5.5, γ 2 • γ -1 1 is a hyperbolic isometry; let D 1 and D 2 be the convex envelopes in H 2 of the two intervals I 1 and I 2 with endpoints the fixed points of γ 2 • γ -1

1 . Up to switching γ 1 and γ 2 , we assume that Finally, we instead consider the case γ 1 = γ 2 , which can only happen either if Σ 1 = Σ 2 (hence S 1 = S 2 ) or if Σ 1 has nonempty interior and Σ 2 is one of its boundary components (or vice versa). In this case we clearly have Comp(S 1 , S 2 ) = id. But the comparison isometry is indeed allowed in Definition 2.2 to be the identity, when one of the two strata is contained in the closure of the other. This concludes the proof. □

The proof of Thurston's earthquake theorem (Theorem 2.4) is thus complete.

6.4. Recovering earthquakes of closed surfaces. In this final section, we recover (Corollary 6.6) the existence of earthquake maps between two homeomorphic closed hyperbolic surfaces. Given a group G and two representations ρ, ϱ : G → PSL(2, R), we say that a map F from H

for every g ∈ G.

Corollary 6.6. Let S be a closed oriented surface and let ρ, ϱ : π 1 (S) → PSL(2, R) be two Fuchsian representations. Then there exists a (ρ, ϱ)-equivariant left earthquake map of H 2 , and a (ρ, ϱ)-equivariant right earthquake map.

Proof. Let f : ∂ ∞ H 2 → ∂ ∞ H 2 be the unique (ρ, ϱ)-equivariant orientation-preserving homeomorphism. We claim that there exists a left (resp. right) earthquake as in Theorem 2.4, which is itself (ρ, ϱ)-equivariant. For this purpose, observe that for any g ∈ π 1 (S), the pair (ρ(g), ϱ(g)) ∈ PSL(2, R) × PSL(2, R) acts on ∂ ∞ AdS 3 preserving graph(f ), since by (5) and the definition of (ρ, ϱ)-equivariant, (ρ(g), ϱ(g)) • graph(f ) = graph(ϱ(g) • f • ρ -1 (g)) = graph(f ) .