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Upper-ocean turbulent flows at horizontal length scales smaller than the deformation radius depart from geostrophic
equilibrium and develop important vertical velocities, which are key to marine ecology and climatic processes. Due
to their small size and fast temporal evolution, these fine scales are difficult to measure during oceanographic cam-
paigns. Instruments such as Lagrangian drifters have provided another way to characterize these scales through the
analysis of pair-dispersion evolution, and have pointed out striking particle convergence events. By means of numerical
simulations, we investigate such processes in a model of surface-ocean turbulence that includes ageostrophic motions.
This model originates from a Rossby-number expansion of the primitive equations and reduces to the surface quasi-
geostrophic model, a paradigm of submesoscale dynamics, in the limit of vanishing Rossby number. We focus on the
effect of the ageostrophic dynamics on the pair-dispersion and clustering properties of Lagrangian tracer particles at
the ocean surface. Our results indicate that while over long times the pair separation process is barely affected by the
ageostrophic component of the velocity field, the latter is responsible for the formation of temporary particle aggre-
gates, and the intensity of this phenomenon increases with the Rossby number. We further show that Lagrangian tracers
preferentially accumulate in cyclonic frontal regions, which is in agreement with observations and other more realistic
modeling studies. These findings appear interesting to improve the understanding of the turbulent transport by ocean
fine scales, and in light of upcoming, new high-resolution satellite data of surface velocity fields.

I. INTRODUCTION

Ocean flows at scales comparable and smaller than the de-
formation radius, i.e. in the meso and submesoscale ranges,
are characterized by quasi two-dimensional (2D) turbulent dy-
namics. In spite of this important common feature, remark-
able differences distinguish submesoscales from mesoscales.
Flow structures in the mesoscale range have horizontal sizes
of several tens to few hundreds of kilometers and they extend
over depths of O(1000) m. Such eddies contain most of the
kinetic energy in the ocean. Their vertical velocities, however,
are quite small, namely of O(1− 10) m day−1. On the other
hand, submesoscales correspond to eddies and, importantly,
filaments with smaller horizontal scales of O(1 − 10) km.
These structures reach depths of only O(100) m, and evolve
on faster timescales of O(1) day. Theoretical arguments and
high-resolution numerical simulations indicate that their ver-
tical velocities can be up to an order of magnitude larger than
the mesoscale ones1,2. They are then expected to provide a
relevant contribution to vertical transport, and thus to play a
key role for both marine ecology and the coupling between
the ocean and the atmosphere3.

In recent years, many evidences about submesoscales have
emerged from Lagrangian drifter data. Based on the possibil-
ity to relate particle pair-dispersion statistics to the properties
of the underlying turbulent flow (see, e.g., Ref. 4), several au-
thors focused on the determination of the laws controlling the
spreading process of drifters deployed at the surface of the
ocean. By taking this approach, and computing the scale-by-
scale pair separation rate, regimes of enhanced relative disper-

sion at fine scales were detected in different regions, pointing
to energetic submesoscales (see, e.g., Refs. 5–8).

Another striking feature that was recently observed, first
in the Gulf of Mexico9 and later in other regions, is the oc-
currence of temporary drifter clustering. This means that
while globally Lagrangian particles still spread in time, ev-
ery now and then many of them occupy a region of very lim-
ited size. Such convergence events are associated with large
vorticity (and divergence) values highlighting the departure
from geostrophic balance - meaning that the Rossby number
Ro = ζ/ f (with ζ relative vorticity and f Coriolis frequency)
is not negligibly small - and with the onset of important verti-
cal velocities.

Explaining this phenomenon is currently an open point, and
requires going beyond the quasi-geostrophic (QG) approxi-
mation, obtained from a development of the basic equations
of motion (primitive equations) at the lowest order in Ro, in
which the flow is strictly horizontal and non-divergent. To
include the physics of both clustering and dispersion, a natu-
ral possibility is to improve the dynamics of an idealized QG
model by adding higher-order corrections when developing
(in Ro) the primitive equations. While, by construction, the re-
sulting model does not include important sources of ageostro-
phy, such as high-frequency motions (internal gravity waves
and tides), which are further off from geostrophic equilibrium,
it properly accounts for ageostrophic motions associated with
frontogenesis. Moreover, it allows separating the geostrophic
and ageostrophic flow components in a straightforward man-
ner.

Understanding the role of ageostrophic turbulent dynamics
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on Lagrangian transport is relevant in view of future satel-
lite measurements, such as those from the Surface Water and
Ocean Topography (SWOT) mission. This satellite, launched
at the end of 2022, has started measuring sea surface height
(SSH) at a spatial resolution of ≈ 15 km, which represents an
order of magnitude of improvement with respect to presently
available data10. Therefore, it is expected to allow access to
the fine mesoscale and submesoscale ranges at global scale.
Determining to what extent small-scale processes, associated
with non-negligible Rossby numbers, hinder the possibility to
retrieve surface currents from SSH through geostrophic bal-
ance represents an important challenge for the exploitation
and the theoretical interpretation of these new data. For this
purpose, Lagrangian statistics based on drifter datasets ap-
pear promising; differently from Eulerian ones, they reflect
the temporal evolution of fluid parcels, and may then allow
a clear separation between fast (ageostrophic) processes, that
could contaminate the satellite-derived velocity, and slower
(geostrophic) ones.

In this study, by means of numerical simulations, we inves-
tigate the spreading of Lagrangian tracer particles in a model
of upper-ocean turbulence derived as an extension of the QG
approximation, and including ageostrophic effects. We partic-
ularly focus on the reproduction of Lagrangian convergence
events, and on the quantification of the importance of the lat-
ter with increasing Rossby number. Furthermore, by compar-
ing pair-dispersion statistics for particles advected by flows at
different values of Ro, we aim at assessing the relevance of
ageostrophic motions on the relative dispersion process.

This article is organized as follows. In Sec. II we introduce
the flow model; the main features of its turbulent dynamics are
discussed in Sec. III. The results of the analysis of Lagrangian
particle statistics are reported in Sec. IV. There, we separately
characterize the role of ageostrophic motions on relative dis-
persion (Sec. IV A), and the clustering properties, as well as
their relation with the flow structure (Sec. IV B). Finally, dis-
cussions and conclusions are presented in Sec. V.

II. MODEL

A convenient theoretical framework to address the dynam-
ics of the upper ocean in the fine-scale range (scales com-
parable and, to some extent, smaller than the deformation
radius) is offered by QG models. Indeed, these models al-
lowed a relatively good understanding of the larger mesoscale
[O(100) km] regime1, and can be taken as the basis for model
improvement when approaching the lower end [< O(10) km]
of the fine-scale range. They are obtained from an expansion
at lowest order in Ro of the momentum and buoyancy evo-
lution equations, within the Boussinesq and hydrostatic ap-
proximations (see, e.g., Ref. 11). The main dynamical equa-
tion, resulting from this approach, states that in the interior of
the considered fluid layer potential vorticity (PV) is conserved
along the geostrophic flow.

Surface quasi-geostrophy (SQG)12,13 is a special case of
QG dynamics. Within this model the interior PV is assumed
to be exactly equal to zero. The associated flow is then en-

tirely driven by the evolution of surface buoyancy (or, equiva-
lently, temperature). Previous studies highlighted the interest
of this model for ocean submesoscale turbulence (see Ref. 13
for a review), as well as for phytoplankton diversity14. In-
deed, SQG dynamics give rise to energetic small-scale flows,
and are considered as one of the possible mechanisms of
submesoscale generation via mesoscale straining processes.
While other mechanisms can also be invoked, such as mixed-
layer instabilities, which energize submesoscales also at depth
and can be related to the seasonal cycle15,16, the SQG model
presents the advantage of a simpler mathematical formulation.

Observations, as well as realistic or primitive-equation-
based simulations, however, revealed some important fea-
tures, such as the asymmetry of vorticity statistics, with cy-
clones prevailing over anticyclones17–19, and the occurrence
of Lagrangian convergence events9,20–22, which cannot be ex-
plained by QG theory. In order to overcome the limitations
of the QG framework, an interesting possibility is to extend it
by including ageostrophic motions through the development
of primitive equations to next order in Ro. By doing so, one
obtains the QG+1 system, which encompasses ageostrophic
corrections23,24, potentially responsible of those phenomena.
In the case of surface-driven dynamics, this approach leads to
the so-called SQG+1 model. The latter was first introduced
in an atmospheric context in Ref. 25, where it was shown
through free-decay simulations that it gives rise to the ex-
pected cyclone-anticyclone asymmetry.

Here we consider the SQG+1 system to investigate surface-
ocean turbulence in the fine-scale range, a question that to our
knowledge has not been addressed before. Our main aim is
to provide a minimal model, based on the fundamental dy-
namical equations, accounting for the above mentioned sub-
mesoscale features, and to use it to investigate the effect of the
ageostrophic flow on the spatial distribution of tracer particles.
Other models based on a Rossby-number development of
primitive equations exist, such as the surface semi-geostrophic
one26, which reproduces both cyclone-anticyclone asymme-
tries and strong vertical velocities at fronts. Here we chose
the SQG+1 model as several of its properties have been well
documented.

In the following we shortly introduce the mathematical for-
mulation of the model, adapting the original derivation (see
Ref. 25 for more details) to the present oceanic conditions.
We assume that the vertical coordinate is −∞ < z ≤ 0, and
that the dynamics are controlled by the lateral advection of
temperature (buoyancy) at the surface (z = 0). The main gov-
erning equation retains the same form as in the SQG system
(corresponding to Ro = 0), and it expresses the conservation
of surface temperature along the surface flow. This reads:

∂tθ
(s)+u

(s) ·∇θ (s) = 0, (1)

where θ (x, t) is the temperature fluctuation field, the super-
script (s) indicates quantities evaluated at z = 0, and the total
velocity field is given by the sum of the geostrophic compo-
nent ug (computed at the lowest order in Ro) and two (next
order in Ro) ageostrophic terms uϕ and ua,

u= ug +Ro
(

uϕ +ua

)

. (2)
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The geostrophic velocity can be expressed in terms of the
streamfunction φ :

ug = (−∂yφ ,∂xφ) , (3)

where x and y denote the horizontal coordinates. Note that
here and in what follows we use nondimensional units. As
in SQG, the streamfunction is related to surface temperature
through

φ = F
−1

[

F (θ (s))

k
ekz

]

, (4)

where θ is here taken at lowest order, F stands for the hor-
izontal Fourier transform and k for the horizontal wavenum-
ber modulus. The above relation is a direct consequence of
the assumption of zero interior PV, ∇2

Hφ + ∂ 2
z φ = 0 (with

∇
2 the Laplacian operator and the subscript H indicating that

only horizontal coordinates are considered), with the bound-
ary conditions θ (s) = ∂zφ |z=0 and ∂zφ → 0 for z →−∞. The
ageostrophic velocity components, absent in SQG, can be ex-
pressed as

uϕ = (−∂yϕ ,∂xϕ) , (5)

ua =−∂zA, (6)

where the functions ϕ and A are related to surface and lower-
order quantities by:

ϕ =
θ 2

2
−F

−1







F

[

θ (s)(∂zθ )
(s)
]

k
ekz







, (7)

A=−θug +F
−1

[

F (θ (s)
u
(s)
g )ekz

]

, (8)

again with θ taken at lowest order. Let us note that Eq. (7)
follows from the requirement of having zero interior PV at all
orders, while Eq. (8) expresses the link of A with the dynam-
ical variables and, essentially, it is a form of the omega equa-
tion obeyed by vertical velocities (see also Refs. 13, 23, and
25).

Remark that the model specified by Eqs. (1)-(8), by con-
struction, accounts for ageostrophic motions related to fronts,
meaning those associated with next-order corrections to the
balanced (i.e. geostrophic) flow. Other sources of ageostro-
phy are instead excluded. In particular, this applies to higher-
frequency motions, such as internal gravity waves and tides,
which are not close to geostrophic equilibrium.

III. TURBULENT FLOW PROPERTIES

The model evolution equations (Sec. II) are numerically
integrated by means of a pseudospectral method on a dou-
bly periodic square domain of side L0 = 2π at resolution

N2 = 10242, starting from an initial condition correspond-
ing to a streamfunction whose Fourier modes have random
phases and small amplitudes. The code was adapted from
an original one developed by Ref. 27 and previously used in
Refs. 16, 28, and 29. In view of the Lagrangian dynamics in-
tegrations, we consider the forced and dissipated version of
Eq. (1), which allows reaching a statistically stationary flow
state. Specifically, we add on the right-hand side of the equa-
tion a random (δ -correlated in time) forcing acting over a nar-
row range of wavenumbers 4 ≤ k f ≤ 6 (and whose intensity
is F = 0.02), as well as a hypofriction term −α∇

−n
H θ (with

n even) to remove energy from the largest scales, and a hy-
perdiffusion term (−1)p/2+1 ν∇p

Hθ (with p even) to assure
small-scale dissipation and numerical stability. For the dissi-
pative terms we adopt the values n = 2, α = 0.5, p = 4, and
we set ν according to the condition kmaxlν & 6, with lν the
dissipative scale (estimated for Ro = 0). These choices corre-
spond to quite large dissipations, and will limit the number of
active scales; however, they were found to be needed in order
to control the numerical stability of the code at the largest Ro

value explored. Indeed, the integration of the SQG+1 system
is delicate due to the effective compressibility of the horizon-
tal flow introduced by the ageostrophic corrections, which cre-
ates strong gradients that are difficult to resolve. The surface-
temperature evolution equation, Eq. (1) with forcing and dis-
sipation terms, is advanced in time using a third-order Adams-
Bashforth scheme. We verified that the results are essentially
unchanged when using a fourth-order Runge-Kutta algorithm,
but the latter is computationally less efficient. The time step
was set to the quite small value dt = 10−4, which was verified
to ensure temporally converged results for different values of
the Rossby number. The latter being the main control param-
eter, we performed different simulations by increasing it from
Ro= 0 to Ro= 0.075, which is the largest value we can safely
reach.

In the following we present the main characteristics of the
turbulent flows, for both Ro = 0 (SQG) and Ro > 0 (SQG+1)
that will be of interest for the dynamics of Lagrangian tracer
particles.

A. Kinetic energy spectra

When the Rossby number is increased, starting from Ro =
0, the flow develops stronger and stronger gradients and the
total kinetic energy grows monotonically with Ro (not shown).
Its spatial structure is characterized by eddies of different sizes
and, especially, by sharp fronts (see also Sec. IV).

Kinetic energy spectra E(k) computed from the total veloc-
ity u, for the smallest (Ro = 0) and the largest (Ro = 0.075)
Rossby number are shown in Fig. 1. They display a scaling
close to k−2 (see inset of Fig. 1) over about a decade. They
are flatter than in QG barotropic dynamics, where E(k)∼ k−3.
However they are slightly steeper than the theoretical predic-
tion k−5/3 for the direct cascade of buoyancy variance in the
SQG system. This steepening effect is essentially independent
of Ro and is more important at low wavenumbers, suggesting
that its origin likely lies in the presence of large-scale per-
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FIG. 1. Kinetic energy spectra, temporally averaged over several
flow realizations in the statistically steady state for Ro = 0 and Ro =
0.075. The dashed black line in the main panel corresponds to the
expectation for SQG dynamics. Inset: the same spectra compensated
by k−2 and rescaled with a coefficient such that, in both cases, the
scaling range corresponds to the wavenumbers for which E(k)k2 ≃ 1.

sistent structures of size ≈ 2π/k f , as also noted in previous
studies of SQG and SQG+1 turbulence13,25,28,30.

At high wavenumbers the scaling range is limited by the
large values of the dissipation coefficients, which are needed
to control the formation of very intense gradients.

B. Vorticity statistics

As mentioned earlier, an important feature of oceanic (and
atmospheric) flows, which is not captured by QG theory, is
the asymmetry of vorticity statistics. This was detected in
data from both observations17,19 and primitive-equation sim-
ulations18,31. The latter numerical works also highlighted the
role of surface dynamics on the prevalence of cyclonic over
anticyclonic flow regions.

The main origin of the phenomenon can be grasped by
considering the evolution equation of vertical vorticity ζ =
∂xv−∂yu [where u= (u,v) is the horizontal flow], and partic-
ularly the effect of the vortex-stretching term ( f +ζ )∂zw (with
w the vertical velocity) at finite Rossby numbers. As discussed
in previous works (see, e.g., Refs. 1, 25, and 32), at fronts,
through the ageostrophic term ζ∂zw, vortex stretching ampli-
fies more cyclonic vorticity (on the heavy side of the front)
than anticyclonic vorticity (on the light side of the front).
Note that within a purely QG framework vortex stretching
would instead give a contribution to the vorticity growth rate
(∂tζ ≈ f ∂zw) that is independent of the sign of ζ . More-
over, in dense filaments associated to fronts, the same mech-
anism leads to the amplification of cyclonic vorticity since
the ageostrophic circulation is characterized by convergence
at the surface and downwelling just below1.

By adding ageostrophic (next-order in Ro) corrections to
QG dynamics, within the QG+1 model23, it was shown that,
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FIG. 2. Probability density function of vorticity ζ (rescaled by its
rms value sζ ), temporally averaged over several flow realizations in
the statistically steady state, for Ro = 0 (empty black points) and
Ro = 0.075 (filled red points), with different point types indicating
ζ > 0 and ζ < 0. For reference, the standard Gaussian distribution
is also shown (dashed gray curve). Inset: vorticity skewness Sζ as a
function of the Rossby number; the solid green line corresponds to
Sζ ∼ Ro1.87.

from the mathematical viewpoint, the asymmetry arises from
the quadratic dependency of the vector potential A, from
which the divergent velocity is obtained, on the geostrophic
streamfunction24. The SQG+1 system is a limiting case of the
previous QG+1 one. Using decaying turbulence simulations,
in the original work, where the model was introduced25, it
was provided evidence that a clear cyclone-anticyclone asym-
metry characterizes such dynamics. It was further argued
that the symmetry is broken because the divergence due to
ageostrophic frontogenesis at small scales accelerates (slows
down) the contraction of dense (light) filaments25,33, which
gives rise to intense and localized cyclones, and weaker more
broadly spread anticyclones.

In our forced simulations of SQG+1 turbulence, cyclones
prevail over anticyclones whenever Ro > 0, and vorticity
statistics are similar to those in decaying turbulence at fixed
Rossby number25. The probability density function (pdf) of
ζ , rescaled by its standard deviation sζ and averaged over
time, is shown in Fig. 2 for Ro = 0 and Ro = 0.075. As it
can be seen in the figure, the right tail of the pdf (ζ > 0)
is much higher than the left one (ζ < 0) when Ro = 0.075,
while the two tails essentially overlap over a whole range of
|ζ | values for Ro = 0. The skewness of the vorticity distribu-
tion Sζ = 〈ζ 3〉/〈ζ 2〉3/2 grows, approximately quadratically,
with Ro (see inset of Fig. 2), indicating that the significance of
the asymmetry increases with the intensity of the ageostrophic
flow.

Based on the results in this section, the SQG+1 simulations
considered here appear appealing to explore the transport and
dispersion properties of Lagrangian tracers in turbulent flows,
relevant for surface-ocean dynamics and possessing (weakly)
ageostrophic components.
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IV. LAGRANGIAN DYNAMICS

We now consider the dynamics of Lagrangian tracer parti-
cles in the turbulent flows produced by the model of Sec. II,
both at Ro = 0 and at Ro > 0. Aiming to compare the main
features of our results with those from ocean drifters, we re-
strict the motion to occur at the surface. Particles then move
according to the following equation:

dxi

dt
= u(xi(t), t), (9)

where xi = (xi,yi) is the horizontal position of particle i (with
i = 1, ...,Np) and u(xi, t) is the total velocity (meaning it in-
cludes also the ageostrophic component, for Ro 6= 0) at its po-
sition.

Equation (9) is numerically integrated using a third-order
Adams-Bashforth scheme and bicubic interpolation in space
of the velocity field at particle positions34. Except where ex-
plicitly stated, we assume that the particle motion occurs in
an infinite domain and use the spatial periodicity of the Eu-
lerian flow to compute the Lagrangian velocities outside the
computational box. The temporal accuracy of the resulting
trajectories was verified by varying the time step, and also
according to the Lagrangian acceleration criteria proposed in
Ref. 35. A total of Np = 49152 particles are seeded in the tur-
bulent flows once the latter are at a statistically steady state.
Their initial positions correspond to a regular arrangement of
M = 128× 128 triplets over the entire domain. Each triplet
forms an isosceles right triangle, with a particle pair along x

and one along y, both of which are characterized by an initial
separation R(0) = ∆x/2 (with ∆x the grid spacing). To com-
pute dispersion statistics only original pairs were used. It was
verified that all results are mostly insensitive to the specific
form of the Lagrangian initial condition and to the number of
particles used. Below we will use the total distance between

two particles R =
√

R2
x +R2

y (where Rx and Ry are the sepa-

rations along x and y, respectively) to construct the different
statistical indicators, and we verified that the statistics do not
depend on the initial orientation (along x or y) of the pairs, as
expected.

An illustration of typical particle spatial distributions, at a
given instant of time in the statistically steady state of the flow,
is shown in Fig. 3 for both Ro = 0 and Ro = 0.075, together
with the corresponding vorticity fields. Independently of the
value of Ro, vorticity is characterized by quite a filamentary
structure. However, for nonzero Ro cyclonic eddies (ζ > 0)
are better defined than anticyclonic ones (ζ < 0), and vortic-
ity is globally more intense in root-mean-square (rms) value
(not shown). Concerning particles, it is here apparent that
at Ro = 0.075 they do not uniformly spread over the spatial
domain (as is the case for Ro = 0), which highlights the oc-
currence of clustering. In the following, we will separately
address the characterization of their relative dispersion pro-
cess, and of their aggregation properties in the flow, for vary-
ing Rossby number.

A. Pair-dispersion statistics

Here, we examine the effect of varying the Rossby number
on particle pair dispersion, using both fixed-time and fixed-
scale indicators. The latter typically better allow to disentan-
gle contributions from different flow scales6,29,36,37. We then
mainly focus on the scale-by-scale dispersion rate, by com-
puting the finite-size Lyapunov exponent (FSLE)36,37, defined
as:

λ (δ ) =
logr

〈τ(δ )〉 , (10)

where the average is over all pairs and τ(δ ) is the time needed
to observe the growth of separation from a scale δ to a scale
rδ (with r > 1).

In a nonlocal dispersion regime, for which the separation
process is controlled by the largest flow features, and nor-
mally associated with a steep kinetic energy spectrum of the
flow [E(k)∼ k−β , with β > 3], the FSLE is expected to attain
a scale-independent, constant value. This reflects in an expo-
nential growth of the mean squared pair separation distance,
i.e. relative dispersion:

〈R2(t)〉= 〈|xi(t)−x j(t)|2〉. (11)

Note that relative dispersion is a fixed-time metric, with the
average computed at time t, over all pairs (i, j) such that at
t = 0 (the release time) |xi(0)−x j(0)| = R(0). When the
turbulent flow possesses more energetic small scales [E(k) ∼
k−β , with β < 3], instead, the separation process should be
controlled by velocity increments at a lengthscale comparable
with the distance among the particles in a pair. The dispersion
regime is therefore referred to as a local one, and both the
FSLE and relative dispersion are expected to display power-
law behaviors: λ (δ ) ∼ δ (β−3)/2 and 〈R2(t)〉 ∼ t4/(3−β ), re-
spectively. At separations larger than the largest flow scales,
or at very large times, the particles in a pair experience es-
sentially uncorrelated velocities and their separation distance
grows diffusively, implying that the FSLE scales as λ (δ ) ∼
δ−2 and relative dispersion as 〈R2(t)〉 ∼ t.

Another indicator that is commonly used to discriminate
between different dispersion regimes is the kurtosis of the sep-
aration distance:

ku(t) =
〈R4(t)〉
〈R2(t)〉2

. (12)

Under nonlocal dispersion, ku(t) should grow exponentially
fast in time, while for local dispersion it should attain a con-
stant value (equal to 5.6 for Richardson dispersion, expected
for β = 5/3) at intermediate times29,38. At very large times,
the kurtosis should in any case converge to ku= 2 correspond-
ing to the diffusive limit of dispersion29,38.

The FSLE measured in our simulations for different val-
ues of the Rossby number is shown in Fig. 4. Inde-
pendently of Ro, the curves are remarkably flat at small
separations, and approach the diffusive behavior at the
largest ones [larger than the flow integral lengthscale ℓI =
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Panels (b) and (d) show a closeup view of the region in the black rectangle in the main panels (a) and (c), respectively, including the particle
distribution at that time.

2π
∫ ∞

0 k−1E(k)dk/
∫ ∞

0 E(k)dk]. No clear evidence of a power-
law scaling λ (δ ) ∼ δ−1/2 [following from a kinetic energy
spectrum E(k)∼ k−2] is detected, except perhaps on a narrow
range of intermediate separations (see inset of Fig. 4). This
behavior, pointing to nonlocal dispersion, may appear quite
surprising. Nevertheless, as already remarked, our flows are
characterized by the presence of large-scale coherent struc-
tures, which can provide a dominant contribution to the dis-
persion process30. To test this hypothesis, we rescale the
FSLE with the flow integral timescale TI = ℓI/

√
E , with E

the total kinetic energy. As it can be seen in Fig. 4, for all Ro,
the plateau values of the rescaled FSLE range between 1.1 and
0.8, which is close to 1, supporting this explanation.

The essentially nonlocal character of the dispersion process
is confirmed by the temporal evolution of the kurtosis (Fig. 5),
which displays a fast growth at short times, and approaches 2
at large times. At intermediate times, it never approaches a

constant plateau, which would correspond to a local disper-
sion regime.

The values of FSLE (not rescaled by TI) at small δ slightly
increase with the Rossby number (inset of Fig. 4), consistently
with the increase of velocity gradients with Ro. A similar
trend is observed from the short-time behavior of relative dis-
persion, which grows faster for larger Ro (inset of Fig. 5). At
later times, 〈R2(t)〉 does not present a clear scaling, though
on a limited time interval it may not be far from the t4 theo-
retical expectation. More interestingly, its growth slows down
when the Rossby number is increased, which hints to tempo-
rary phases during which some particles aggregate and thus
the efficiency of the global separation process is reduced.

We conclude that the Ro-dependence of the different mea-
sures of pair separation is overall weak, indicating that
ageostrophic motions do not substantially alter pair-dispersion
statistics. This suggests that, in this system, when the Rossby
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number is increased, large eddies conserve their capacity to
drive the dispersion process.

B. Particle clustering and relation with the Eulerian flow
structure

While on average, over long times, Lagrangian tracers sepa-
rate, their spatial distribution is not homogeneous and clusters
can form in the course of time. To investigate this point, the
first quantity we consider is the averaged divergence experi-
enced by particles along their trajectories, also known as the
dilation rate20, a numerically efficient single-particle indicator

-0.35
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-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0  0.0125  0.025  0.0375  0.05  0.0625  0.075

〈∇⋅
u

〉 x
i,t

Ro

FIG. 6. Velocity divergence sampled by particles, averaged over time
and over all particles, as a function of the Rossby number. Here
the error bars correspond to the standard deviation of the temporal
statistics. The black dashed line is proportional to −Roα , with α ≃
2.07 from a best fit.

of tracer accumulation.
The divergence of the velocity field 〈∇ ·u〉xi,t , computed

at particle positions xi and averaged over time and all par-
ticles, is shown as a function of Ro in Fig. 6. It is nega-
tive for nonzero Rossby numbers and grows roughly quadrat-
ically in Ro in absolute value, indicating that particles aggre-
gate more when ageostrophic motions are more intense. Due
to the compressibility they experience, particles are attracted
to contracting flow regions and hence do not homogeneously
sample the phase space. This fact has been shown to give rise
to differences between Lagrangian and Eulerian statistics in
other situations, such as that of time-correlated compressible
flows39,40. A qualitative understanding on what occurs in our
experiments can be obtained by looking at the pdf of the Eule-
rian divergence, P(∇ ·u) (Fig. 7). When Ro is increased, the
tails of this pdf rise, highlighting the more likely occurrence of
very intense divergence events. Its shape is remarkably sym-
metric, though, meaning that positive and negative values of
∇ ·u are equally probable. The negative sign of the average
Lagrangian divergence 〈∇ ·u〉xi,t then results from particles
getting trapped in convergence regions and spending a rele-
vant fraction of the time there, a phenomenon which increases
in intensity with increasing Rossby number.

The occurrence of clustering in our system is clearly
demonstrated by the pdf of Voronoï normalized cell areas,
a statistical tool that is often used to characterize the ag-
gregation of inertial particles in (incompressible) turbulent
flows41,42. The cells are constructed by partitioning the
spatial domain into regions containing one particle and all the
points that are closer to that particle than to any other41–43.
The nonhomogeneity of the particle distribution produces
deviations of the pdf P(A/〈A〉xi

) (the average being taken
over all areas, containing each one particle) from the corre-
sponding one computed for uniformly random distributed
particles. As it can be seen in Fig. 8, for Ro = 0, P(A/〈A〉xi

)
agrees with the probability distribution expected for uni-
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number. The curve labeled by (Ro = 0.075)g has been obtained
from particles advected by the geostrophic flow only. The solid gray
line is the theoretical prediction for uniformly distributed particles
f2D (A/〈A〉xi

) (see text).

formly spread particles in a 2D domain44, f2D (A/〈A〉xi
) =

343/15
√

7/(2π)(A/〈A〉xi
)5/2 exp(−7/2A/〈A〉xi

) (solid
gray line in the figure). When the Rossby number increases,
however, its left tail gets monotonically higher, indicating
that the probability of finding particles at small distances,
and hence to observe clustering, is larger. Interestingly, by
advecting particles with the geostrophic component of the
flow only, [case (Ro = 0.075)g in Fig. 8] the pdf correspond-
ing to uniformly distributed particles is recovered, which
further proves that this phenomenon is entirely due to the
ageostrophic flow component.

Aiming to understand where particles accumulate, we first
look at the fine-scale properties of clustering. The latter origi-
nate from the contraction of volumes in the phase space of the

dissipative (∇ ·u < 0) dynamical system of Eq. (9). Conse-
quently, after a transient, the Lagrangian dynamics take place
on a fractal set. A common quantitative indicator of clustering
is the correlation dimension45, D2, namely the fractal dimen-
sion of the projection, in physical space, of the attractor of the
dynamics. A decrease to values D2 < d, with d the dimension
of the physical space (d = 2 in the present case), indicates
an increased occurrence of small distances separating particle
pairs. This fractal dimension is defined as:

D2 = lim
rp→0

log[C(rp)]

log(rp)
, (13)

with the correlation sum C(rp) given by

C(rp) = lim
Np→∞

2

Np(Np − 1)

Np

∑
i, j>i

Θ(rp −
∣

∣xi −x j

∣

∣),

where Θ is the Heaviside step function, xi and x j are the po-
sitions of particles belonging to pair (i, j), and the distance
∣

∣xi −x j

∣

∣ is the shortest one, after taking into account the
2π-periodicity of the computational box. Equation (13) then
means that, for small rp, the probability to find particle pairs

separated by a distance less than rp scales as C(rp)∼ r
D2
p .

Figure 9 shows the measurement of the correlation dimen-
sion as a function of the Rossby number. For Ro = 0, as
expected, D2 = 2 within statistical accuracy, which confirms
the spatially homogeneous distribution of particles in the SQG
system. Here, the small deviation from the theoretical value 2
may be attributed to the finite number of particles. At nonzero
values of Ro, D2 decreases monotonically, highlighting that
clustering now takes place and that its intensity grows with
the Rossby number. Again, this is a direct consequence of the
transport of Lagrangian tracers by the ageostrophic flow. In-
deed, when advection is realized by the geostrophic velocity
only in the SQG+1 model, the nonhomogeneity of the parti-
cle distribution disappears and D2 ≃ 2, as shown by the blue
empty point in the figure for the highest value of Ro explored
(but the same holds for all Ro). Overall, these results suggest
that particles aggregate on flow structures with a dimension-
ality smaller than that of the physical space and progressively
more unidimensional with increasing Ro.

We now discuss in what regions of the flow particles tend to
cluster. The question is of primary importance in oceanogra-
phy, e.g. to identify areas of pollutant accumulation in surface
flows, or locations of intense vertical velocities relevant for
nutrient upwelling and plankton dynamics.

While inspection of Fig. 3d already suggests some tendency
of particles to avoid negative-vorticity (anticyclonic) regions
and to concentrate along filamentary structures, a more quan-
titative approach is needed. A classical tool to identify differ-
ent (2D) flow regions, and to characterize their role in trans-
port phenomena, is the Okubo-Weiss parameter46,47,

Q = σ2 − ζ 2, (14)

where σ =
√

σ2
n +σ2

s is the total strain (σn = ∂xu− ∂yv and
σs = ∂xv+∂yu being the normal and shear strain, respectively)
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0.075. The black dashed line corresponds to the second-order Taylor
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and ζ is vorticity. The parameter Q allows to discriminate be-
tween strain-dominated (Q > 0, i.e. σ > |ζ |) and rotation-
dominated (Q < 0, i.e. σ < |ζ |) regions, and reveals use-
ful, for instance, to explain the dynamics of tracer-field gra-
dients48. Note that a more refined criterion was further ob-
tained in incompressible flows to take into account the rotation
of the strain eigenvectors that can affect the straining prop-
erties49. Using the linearization d(xi −x j)/dt = ui −u j ≃
(∇u)(xi − x j), it is clear that velocity gradients will also
determine the particle small-scale dispersion or aggregation
properties.

In order to determine the regions where particles preferen-
tially cluster, we follow Ref. 50 and compute the mean flow

divergence conditioned on vorticity and strain ∆
ζσ

. This is a
robust statistical tool originally introduced to investigate the
vertical fluxes of a passive scalar field in submesoscale tur-
bulence50. Figure 10a shows its measurement in our SQG+1

simulations for Ro = 0.075. The divergence in Fig. 10a is
computed at the same instant of time chosen for the visual-
ization of Fig. 3d (but it was verified that its features do not
significantly change when a time-average is also taken). It is
here apparent that strong divergence (∆ > 0) and convergence
(∆ < 0) predominantly occur in strain-dominated regions, ex-
tending along tails above the lines σ = |ζ |. The asymmetric
shape of the tails is a direct consequence of the dominance
of cyclonic vorticity (see Fig. 2), due to ageostrophic dynam-
ics. Here, the association of convergence with ζ > 0 values
is arguably due to the same vortex-stretching effects that am-
plify cyclonic vorticity (Sec. III B). Note, too, that in rotation-
dominated regions, divergence is more likely to take both pos-
itive and negative values that tend to cancel out more. The
above features are generic, and also appear at smaller values
of Ro (not shown), except that the tails associated with large
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FIG. 10. Mean divergence ∆
ζ σ

conditioned on vorticity (ζ ) and
strain (σ ), from Eulerian (a) and Lagrangian (b) statistics, at a fixed
instant of time in the statistically steady state of the flow, for Ro =
0.075. For the Lagrangian estimate, the subscript xi indicates that ∆,
ζ and σ are computed at particle positions. In both (a) and (b) the
dashed lines correspond to σ = |ζ |.

positive and negative values of ∆
ζσ

become more symmetric,
and divergence is smaller in absolute value, when the Rossby
number is decreased.

To complete the picture, we also show in Fig. 10b the di-
vergence, in vorticity-strain space, computed at particle posi-

tions, ∆
ζσ
xi

. The Rossby number and the instant of time are
the same as in Fig. 10a (and, again, we verified that averaging
over time does not considerably modify the results). By com-
paring Fig. 10a and Fig. 10b, it is evident that the Lagrangian
and Eulerian divergence (conditioned on vorticity and strain)
share the same general characteristics (similarly to what is
found for vertical velocity in Ref. 51). The partial attenuation
of extreme events when using Lagrangian statistics is likely
due to the smaller sample. Apart from this, it can be noted that
the Lagrangian divergence patterns are sharper and character-
ized by a reduced frequency of ∆ > 0 events, in comparison
with the Eulerian ones. This is due to the tendency of parti-
cles to aggregate in flow-convergence regions, and hence to
predominantly sample negative values of divergence. Over-
all, Fig. 10b confirms the preference of Lagrangian tracers
to concentrate in regions of positive vorticity and large strain
(σ > |ζ |). This finding quite nicely matches the spatial orga-
nization of particles that can be observed from a closeup view
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of a portion of the full domain at the same instant of time
(Fig. 3d). Indeed, regions of negative vorticity (ζ < 0) tend to
be relatively particle-free. On the contrary, particles are abun-
dant in filamentary, positive vorticity regions (corresponding
to ζ > 0 and σ > ζ ) while it is less the case inside cyclonic
eddies (corresponding to ζ > 0 and σ < ζ ).

The previous analysis indicates that particle clustering takes
place in cyclonic strain-dominated regions. These correspond
mostly to filaments and fronts outside coherent eddies. In-
deed, a straight front is characterized by negative divergence
in its crosswise direction (which sustains the front) and by
strain exceeding vorticity. The fact that σ > ζ follows from
the expressions of the velocity gradients, which only depend
on the cross-front coordinate in such a case. It is then not
difficult to obtain that σ2 = ∆2 + ζ 2 and, hence, that σ > ζ .

These findings support those from a recent, more complex
modeling study, which, taking an Eulerian point of view, re-
ported on strong vertical velocities and flow convergence in
cyclonic submesoscale fronts50. Furthermore, they provide
clear evidence of Lagrangian-tracer clustering in cyclonic re-
gions, also observed from real surface-drifter data9, and a pos-
sible explanation of the basic mechanisms controlling the phe-
nomenon in the framework of a minimal model accounting for
ageostrophic dynamics.

V. CONCLUSIONS

We studied Lagrangian particle dynamics in an idealized
model of surface-ocean turbulence that includes ageostrophic
motions by means of numerical simulations. We particularly
focused on the effect of ageostrophy on the spreading process
of tracer particles, by examining both relative dispersion and
clustering properties.

The turbulent dynamics were assumed to be described
by the SQG+1 system, which accounts for frontogenetic
ageostrophic motions, and is obtained from a development of
primitive equations to next order in Ro, with respect to stan-
dard QG models. This approach, originally introduced in an
atmospheric context25, allowed us to reproduce the cyclone-
anticyclone asymmetry, a phenomenon that is observed in
both primitive-equation simulations18 and data from observa-
tions17,19 of ocean turbulence at sufficiently fine scales, but is
missed by QG models. The turbulent flows from our simu-
lations for different Rossby numbers are characterized by en-
ergetic small scales, particularly in the form of filamentary
structures associated with intense gradients. Kinetic energy
spectra are not far from the theoretical expectation in the SQG
system (recovered by setting Ro = 0 in the governing equa-
tions), although slightly steeper. Their scaling behavior is
close to E(k) ∼ k−2, as also found at submesoscales in more
realistic simulations52–54. In the present case, the steepening
of the spectrum is most likely due to the presence of large-
scale coherent structures, a feature that was already observed
in both the SQG13,30 and the SQG+1 systems25.

To explore how ageostrophic fluid motions impact the par-
ticle separation process, we compared the measurements from
different indicators of pair dispersion as a function of Ro. We

found that, irrespective of the Rossby number, dispersion is
essentially nonlocal, except perhaps on a narrow range of sep-
arations, as highlighted by the extended region of scale in-
dependent FSLE and by the fast initial growth in time of the
kurtosis of relative displacements. As the FSLE, where con-
stant, was found to be close to the inverse large-eddy turnover
time of the flow, we could show that this apparently surprising
result is due to the presence of large persistent flow structures,
which dominate the dispersion process. Overall, the general
picture emerging from different metrics is that, in the present
simulations, relative dispersion only weakly depends on the
intensity of the ageostrophic flow dynamics (i.e. Ro). Never-
theless, when increasing Ro, the latter manifest in a small, but
measurable, increase of the separation rate at short times (and
small distances), due to velocity gradients becoming stronger,
and in a subsequent slowdown of relative dispersion at later
times, possibly arising from the formation of temporary parti-
cle aggregations.

The occurrence of clustering events was demonstrated by
computing the average divergence experienced by particles,
and the pdf of cell areas from a Voronoï tessellation. The de-
crease of the Lagrangian divergence to more and more neg-
ative values, and the rise of the left tail of the Voronoï cell-
area pdf, both indicate that particles are progressively more
likely to be at small distances one from the other, when Ro

is increased. While this phenomenon is a direct consequence
of the compressibility of the ageostrophic flow component, it
is not straightforward to relate Eulerian and Lagrangian di-
agnostics quantifying clustering, as already noted in previous
studies of Lagrangian tracer dynamics in compressible turbu-
lence39,40. Here, at a qualitative level, we argued that clus-
tering arises from the increased probability of very large flow
divergence values, at larger Ro, and hence the longer fraction
of time spent by particles in negative-divergence regions.

Determining where convergence, and thus particle cluster-
ing, takes place in surface-ocean flows is of paramount im-
portance, both to predict the accumulation of biogeochemi-
cal substances or pollutants, and to identify locations of large
vertical velocities. To address this question, we first computed
the correlation dimension of the sets over which particles con-
centrate, which is directly related to the probability of finding
a pair of them within a given distance. With increasing Ro,
this was found to decrease from D2 = 2 (corresponding to uni-
formly distributed particles) to smaller values, indicative of
clustering and pointing to less than 2D aggregates (possibly
quasi one-dimensional ones, for large enough Rossby num-
bers). To further understand in what flow regions clusters can
be found, we examined the mean flow divergence conditioned
on vorticity and strain. This quantity was recently introduced
as a generalization of Okubo-Weiss parameter to divergent
flows, in order to partition 2D flows into regions with dif-
ferent stirring properties50. We found that divergence has an
asymmetric distribution in vorticity-strain space that reflects
the cyclone-anticyclone asymmetry. More interestingly, it is
predominantly negative and large (in absolute value) where
strain overcomes vorticity and the latter is positive, which in-
dicates that clusters form in cyclonic frontal regions. Such a
picture agrees with the results in more realistic simulations of
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submesoscale dynamics in the Antarctic Circumpolar Current,
focused on the vertical fluxes of tracer fields50. It may also
be useful to better understand observations of surface-drifter
clustering in cyclonic regions in the Gulf of Mexico9.

To conclude, the SQG+1 system revealed a useful mini-
mal model to investigate some basic mechanisms controlling
the separation and clustering of Lagrangian tracer particles
in ageostrophic turbulent flows. A natural perspective of this
study is to extend the analysis to realistic simulations, in order
to explore the effects of the ocean fast variability, which can-
not be accounted for by the modeling framework considered
here.

Finally, the present results appear to us interesting also in
consideration of the satellite data at high spatial resolution
that will be made available soon by SWOT mission10. The
weak dependence of pair-dispersion indicators on the Rossby
number suggests that the geostrophically derived surface ve-
locities may be essentially accurate for relative-dispersion ap-
plications. On the other hand, to access finer details of the
particle dynamics, such as clustering phenomena, further in-
formation on the ageostrophic flow components would clearly
be required.
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