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Abstract.
We provide a procedure for deriving Hamiltonian reduced fluid models for plasmas,

starting from a Hamiltonian gyrokinetic system in the δf approximation. The
procedure generalizes, to a considerable extent, previous results. In particular, the
evolution of moments with respect to the magnetic moment coordinate is also taken
into account, together with background density and magnetic inhomogeneities. In the
limit of vanishing Finite Larmor Radius (FLR) effects, an infinite family of reduced
electron drift-fluid equations is derived, evolving all the electron moments gije , with
i = 0, · · · , N and j = 0, · · · ,M , where N and M are arbitrary non-negative integers
counting the maximum order of the moments taken with respect to the parallel velocity
and to the magnetic moment coordinates, respectively. An analogous result is found in
the gyrofluid case and applied to the ion species. The gyrofluid result holds forM ≤ 1,
finite FLR effects and a low ratio βe between electron internal pressure and magnetic
guide field pressure.

In both the drift and gyrofluid case, the key for the identification of the Hamiltonian
structure resides in changes of variables based on orthogonal matrices that diagonalize
the Jacobi matrices associated with Hermite and Laguerre polynomials. In terms of
the transformed variables, the drift and gyrofluid equations are cast in a simple form,
which reduces to advection equations for Lagrangian invariants in the two-dimensional
case with homogeneous background.

Because the procedure requires to evolve, for a particle species s, all and only
the moments gijs , with i = 0, · · · , N and j = 0, · · · ,M , not every choice for the set
of moments is admissible, for fixed N and M . This might also explain the scarcity
of Hamiltonian reduced fluid models obtained so far which account for anisotropic
temperature fluctuations.

1. Introduction

Reduced fluid models proved to be an effective tool to describe the dynamics of plasmas

in the presence of a strong guide field. These evolution equations are characterized by

quadratic nonlinear terms describing the dynamics perpendicular to the guide field and

by linear terms expressing weak variations along the guide field, as well as further effects

associated with additional weak inhomogeneities (e.g. weak density and temperature

equilibrium gradients or moderate spatial variations of the guide field). The paradigm

of such reduced fluid models is reduced magnetohydrodynamics [1, 2]. Several other

reduced fluid models have been derived in the last decades and applied to different

problems, such as, for instance, nonlinear tokamak dynamics [3], drift-wave turbulence

[4], magnetic reconnection [5] and astrophysical plasma turbulence [6, 7]. We refer to

such models as to "reduced", meaning that they have been derived from a parent model
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which, loosely speaking, consists of a set of partial differential equations with a larger

number of unknowns, with respect to the reduced model. For instance, in the case of

low-β reduced magnetohydrodynamics, the parent model used in Ref. [2] is the set of

magnetohydrodynamics equations evolving the three components of the magnetic field

plus the three components of the plasma bulk velocity field, whereas the reduced model

only evolves two scalar potentials. In this case the reduction is carried out by first

identifying a small parameter suggested by the physical problem of interest (the ratio

between the poloidal and the strong guide field component of the magnetic field) and

by applying to the physical quantities in the parent model an ordering based on the

small parameter. With such an ordering, the use of scalar potentials instead of vector

field components, becomes natural. Then, in the parent model equations, only terms

up to a certain order are retained. The advantage of the reduced model is that, in its

regime of validity, it is generally easier to treat analytically, with respect the parent

model. Not only the number of unknowns is lesser but also some nonlinearities are of

smaller order or eliminated (e.g., in the case of reduced magnetohydrodynamics, those

associated with terms expressing variations along the guide field).

While in the case of reduced magnetohydrodynamics the parent model is already

a fluid model, in the present paper we are concerned with reductions starting from

a gyrokinetic system, which has, as unknown variables, perturbations of distribution

functions, defined on domains described by spatial but also velocity coordinates. Such

functions can be written as an infinite series (see Eq. (27)) where the coefficients

are fluid moments. The reduction, in our case, consists of deriving, from the parent

gyrokinetic system, fluid systems evolving only a finite number of moments. From

this perspective, one can easily see how reduced fluid models can also provide faster

numerical computations, with respect to the parent gyrokinetic models.

In this article we will consider a drift-fluid reduction, valid for scales much larger

than the thermal Larmor radius, as well as a gyrofluid reduction, for which Finite

Larmor Radius (FLR) effects are retained. We recall that gyrokinetic systems, unlike
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kinetic systems such as Vlasov-Maxwell, evolve the distribution functions of gyrocenters,

rather than of actual particles. For phenomena occurring at frequencies much lower than

the ion cyclotron frequency based on the guide field amplitude, a convenient change

of coordinates (see, e.g. Ref. [8]) can transform the system describing the particle

dynamics, into a system in which the fast dynamics of the particle gyration motion

around the magnetic field, gets decoupled. When electromagnetic perturbations are

taken into account, the new system of coordinates is referred to as the gyrocenter

coordinates. Gyrofluid models evolve then quantities such as the densities, velocities

and temperatures of the gyrocenters. One of the advantages of gyrofluid models is

that they are valid on scales as small as the Larmor radius scales, but their derivation

bypasses the complications related to the so-called diamagnetic cancellation [9] which

arise in the derivation of FLR fluid models evolving ordinary particle moments. An

accurate modelling of FLR effects is important for describing, for instance, turbulent

transport in tokamaks [8] and turbulent cascades in astrophysical plasmas [6].

From the point of view of the analysis of both the linear and nonlinear dynamics

of such reduced models, a relevant question concerns the existence of a Hamiltonian

structure, when these models are taken in their supposedly non-dissipative limit. Besides

providing the expression for the total conserved energy of the system, the knowledge of

the Hamiltonian structure helps to find further conserved quantities (Casimir invariants,

in the noncanonical case) and to carry out stability analyses [10]. In this respect, a first

breakthrough came with the identification of the noncanonical Hamiltonian structure

of reduced magnetohydrodynamics [11]. Subsequently, the Hamiltonian structures of

a number of other reduced fluid models were identified (see, for instance Ref. [12]

for a review). In recent years, systematic procedures for deriving infinite families

of Hamiltonian reduced fluid models were developed [13, 14]. In these approaches,

reduced models are derived by taking moments of drift [13] and gyro-kinetic [14]

equations and truncating the resulting hierarchy of drift and gyrofluid equations with

an appropriate closure that guarantees the existence of a Hamiltonian structure. The
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parent drift and gyrokinetic systems, adopted within this approach, assume the so-

called δf approximation, in which the gyrocenter distribution function is decomposed

as the sum of an equilibrium distribution function with a small perturbation which

evolves in time. These procedures work for an arbitrary number of moments (of

the perturbation of the distribution function) retained in the hierarchy of drift and

gyrofluid equations, which leads to an infinite family of Hamiltonian reduced fluid

models. Previously known Hamiltonian reduced fluid models [5, 15, 16, 17, 18, 19],

when taken in the appropriate limits, were shown to be particular cases of such infinite

class of models. Although the procedures described in Refs. [13, 14] are rather general,

a strong limitation of theirs is that they only deal with moments with respect to the

velocity along the direction of the guide field. The evolution of moments involving the

perpendicular velocity, as, for instance, perpendicular temperature fluctuations and heat

fluxes, is then excluded by this approach. This limitation prevents the description of all

the anisotropies, for instance due to parallel and perpendicular temperature and heat

flux fluctuations, developing in collisionless plasmas in particular at finite β, with β

indicating the ratio between equilibrium kinetic pressure and magnetic pressure exerted

by the guide field. With regard to this, we also point out that, more in general, to

the best of our knowledge, no Hamiltonian reduced fluid model derived so far, accounts

for the evolution of both parallel and perpendicular moments, apart from the simple

electrostatic case for the perpendicular temperature [20] or from the electromagnetic case

[21, 22], but with "ad hoc" closures, without providing a general procedure or a physical

insight. Moreover, the procedures described in Refs. [13, 14], assumed a background

state with spatially uniform density and guide field. Although this might be appropriate

for some astrophysical applications, where the length scale of variations are so large that

background gradients can be neglected, in laboratory plasmas background gradients can

be important.

In this article, we considerably remedy these deficiencies, by providing a procedure

for obtaining Hamiltonian drift-fluid and gyrofluid reductions of gyrokinetic equations,
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including the evolution of both parallel and perpendicular moments, as well as density

and magnetic background gradients. For the drift-fluid case, valid in the limit of

vanishing FLR, the proposed Hamiltonian reduction permits to obtain, for a given

species, a set of equations evolving (N + 1)(M + 1) moments, where N and M are

arbitrary non-negative integers, referring to the highest order of the moments retained

in the parallel and perpendicular direction, respectively. We apply the Hamiltonian

reduction to the electron species, for which the small FLR approximation is more

appropriate, and leave the ions be described by a gyrokinetic equation, although other

choices are admissible. For the gyrofluid case, accounting for finite FLR effects, we

obtain a result valid in the low-βe regime and with M ≤ 1, i.e. retaining at most the

first two moments in the perpendicular direction. In this case, we apply the Hamiltonian

reduction to the ion species, and assume that the electrons are governed by a drift-kinetic

equation.

In both the drift-fluid and gyrofluid case, the presence of the Hamiltonian

structure is unveiled thanks to the identification of a change of variables (consisting

of two consecutive orthogonal transformations) which casts the drift-fluid and gyrofluid

equations in a particularly simple form. From such form, it becomes easy to see that the

Poisson bracket for the drift-fluid and gyrofluid equations can be written as the direct

sum of (N + 1)(M + 1) independent Poisson brackets, which, in particular, enormously

simplifies the verification of the Jacobi identity. In the two-dimensional (2D) limit

without background inhomogeneities, the transformed variables also reveal that the

drift-fluid and gyrofluid equations can be cast in the form of advection equations for

Lagrangian invariants transported by generalized velocity fields combining the E × B

drift, the free streaming along the perpendicular magnetic field and the nonlinear gradB

drift. A physical meaning to such transformed variables can be ascribed, by extending

the argument provided in Ref. [23].

The paper is organized as follows. In Sec. 2 we introduce the parent gyrokinetic

model from which we start our reduction procedure, present its Hamiltonian structure
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and introduce some notions about the moments we will use. In Sec. 3 we describe

the Hamiltonian drift-fluid reduction, applied to the electron species, which leads to

a Hamiltonian hybrid drift-fluid/gyrokinetic model. A physical interpretation of the

electron equations in terms of the transformed variables is also provided. Such general

procedure is illustrated with an example in Sec. 4, where a Hamiltonian four-moment

reduction of the electron equations is carried out in detail. The Hamiltonian gyrofluid

reduction is treated in Sec. 5 and applied to the ion species, yielding, in this case, a

hybrid drift-kinetic/gyrofluid model. We conclude in Sec. 6 and in Appendix A we show

that the Poisson bracket for the parent gyrokinetic model satisfies the Jacobi identity.

2. Parent gyrokinetic model and its Hamiltonian structure

The Hamiltonian gyrokinetic model that we adopt as starting point for drift-fluid and

gyrofluid Hamiltonian reductions is given by

∂gs
∂t

+ ρs

[
J0sφ−

τs
ρths

vsJ0sA‖ + sgn(qs)τsµsJ1sB‖, gs

]
s

+
ρs
ρths

vs
∂

∂zs

(
τsgs + sgn(qs)F0s

(
J0sφ−

τs
ρths

vsJ0sA‖ + sgn(qs)τsµsJ1sB‖

))
− sgn(qs)ρsτsµsζB

∂gs
∂ys
− ρsF0s(µsζB − ζn)

∂

∂ys

(
J0sφ−

τs
ρths

vsJ0sA‖ + sgn(qs)τsµsJ1sB‖

)
= 0,

(1)∑
s

sgn(qs)

∫
dWs J0sgs =

∑
s

∫
dWsF0s

(
(1− J 2

0s)
φ

τs
− sgn(qs)µsJ0sJ1sB‖

)
, (2)

∆⊥A‖ = −βe
2

∑
s

sgn(qs)
τs
ρths

∫
dWs vsJ0s

(
gs − sgn(qs)

vs
ρths
F0sJ0sA‖

)
, (3)

∑
s

βs

∫
dWs µsJ1sgs = −

∑
s

sgn(qs)βs

∫
dWs µsF0sJ0sJ1s

φ

τs

−

(
2 +

∑
s

βs

∫
dWsF0sµ

2
sJ 2

1s

)
B‖, (4)

where Eq. (1) indicates the gyrokinetic evolution equation for a given particle species

s, whereas Eqs. (2)-(4) are three static relations that permit to close the system and

which correspond to quasi-neutrality and to the parallel and perpendicular components

of Ampère’s law, respectively. The quantities appearing in system (1)-(4) will be defined
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below.

The model is formulated in a slab geometry and assumes the presence of a weakly

inhomogeneous, strong guide field directed along ẑ, which is the unit vector of a

Cartesian coordinate system {x, y, z}. The guide field is assumed to have a weak spatial

variation along the x coordinate. If we denote with B0 the guide field amplitude at

x = 0, the expression for the adopted total magnetic field, normalized with respect to

B0, reads

B(x, y, z, t) = ε∇A‖(x, y, z, t)× ẑ + ((1− εζBx) + εB‖(x, y, z, t))ẑ +O(ε2), (5)

where A‖ and B‖ are perturbations of the magnetic vector potential and of the magnetic

field parallel to the guide field, respectively, depending on space coordinates and on the

time coordinate t. The parameters ζB and ζn are defined by

ζB =
L‖
LB

, ζn =
L‖
Ln
, (6)

where L‖ is the characteristic scale of variation of the perturbations along the guide

field, while LB and Ln are the spatial scales of variation of the guide field and of

the equilibrium density (for both electrons and ions), respectively. While we account

for the presence of an equilibrium density gradient, we also assume no equilibrium

temperature gradients. This is mainly a simplifying assumption, although we believe

that the extension of the present theory to the case with inhomogeneous temperature

profiles should not be a major challenge.

The parameter ε is given by

ε =
L

L‖
, (7)

with L indicating the characteristic scale of variations along directions perpendicular to

the guide field. Consistently with the gyrokinetic ordering, one has

ε� 1. (8)

The function φ = φ(x, y, z, t) represents the electrostatic potential perturbation, whereas

gs = gs(xs, ys, zs, vs, µs, t) is referred to as generalized perturbed distribution function.
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We indicated with xs, ys, zs the spatial coordinates of the guiding centers of species s,

with vs and µs the parallel and lowest order magnetic moment, respectively, referring

to the species s. The subscript s labels the particle species. We consider a plasma

composed by electrons and one ion species, assuming the latter to be singly ionized.

The index s can then take values s = e or s = i when referring to the electron or ion

species, respectively.

The generalized perturbed distribution function gs is related to the corresponding

perturbation of the gyrocenter distribution function fs by

gs(xs, ys, zs, vs, µs, t) = fs(xs, ys, zs, vs, µs, t) + sgn(qs)F0s

vs
ρths

(J0sA)(xs, ys, zs, µs, t).

(9)

In Eq. (9) qs and ρths are the charge and the thermal Larmor radius of the particle

of species s, respectively, so that qe = −e and qi = e, and ρths = vths/ωcs, with

vths =
√
T0s/ms and ωcs = |qs|B0/(msc). In the latter expression we indicated with

T0s and ms the equilibrium temperature and the mass of the particles of species s,

whereas c is the speed of light. The symbol ρs, on the other hand, represents the sonic

Larmor radius, which can be defined as ρs = ρthe/(me/mi)
1/2 (note that, unlike in the

symbol ρths for the thermal Larmor radii, in the symbol ρs the subscript s, following a

standard notation, is not an index for the particle species).

The lowest order equilibrium distribution functions F0s are homogeneous

Maxwellian distribution functions defined as:

F0s(vs, µs) =
e−

v2s
2
−µs

(2π)3/2
. (10)

The weak spatial variations of the equilibrium density, associated with the parameter

ζn, in Eq. (1), come from the gradient of contributions of order ε to the equilibrium

distribution functions given by F1s(xs, vs, µs) = −εζnxsF0s(vs, µs).

Next, we define the parameters

βs = 8π
n0T0s
B2

0

, τs =
T0s
T0e

(11)
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and the operators

[f, g]s =
∂f

∂xs

∂g

∂ys
− ∂f

∂ys

∂g

∂xs
, ∆⊥f =

∂2f

∂x2
+
∂2f

∂y2
. (12)

We also recall [24] that, from Ampère’s law, the balance among equilibrium contributions

at order ε implies the relation

ζB + ζn (1 + τi)
βe
2

= 0, (13)

which corresponds to perpendicular pressure balance among contributions due to spatial

variations of the equilibrium magnetic and density fields.

The normalization adopted for the system (1)-(4) reads

t =

√
βe
2

vA
L‖
t̂, x =

x̂

L
, y =

ŷ

L
, z =

ẑ

L‖
, vs =

v̂

vths
, µs =

µ̂sB0

T0s
,

F0s =
v3ths
n0

F̂0s, fs =
L‖
L

v3ths
n0

f̂s, φ =
L‖
L

eφ̂

T0e
, A‖ =

L‖
L

Â

B0L
, B‖ =

L‖
L

B̂‖
B0

,

(14)

where vA = B0/
√

4πmin0 is the Alfvèn speed based on the guide field, and where we

denoted with a hat the dimensional variables. This normalization is consistent with the

ordering adopted in Refs. [6, 25] which is suitable, in particular, for the expansion in

the limit be → 0 that will be carried out in Sec. 3.1.‡

The coordinates of the perturbed distribution functions belong to the domain

D = {|xs| ≤ Lx , |ys| ≤ Ly , |zs| ≤ Lz , −∞ < vs < +∞ , 0 ≤ µs < +∞}, for both

species s, with Lx, Ly and Lz positive constants. Periodic conditions are imposed at

the boundaries of the spatial coordinates. The condition gs = 0 is assumed at µs = 0,

whereas gs → 0 is the condition for µs → +∞ and vs → 0. The velocity volume

element dWs corresponds to dWs = 2πdvsdµs. The electromagnetic quantities φ, A‖

and B‖ also have to satisfy periodic boundary conditions on the spatial domain given

by D = {|x| ≤ Lx , |y| ≤ Ly , |z| ≤ Lz}.

‡ Actually, in Refs. [6, 25], frequencies ω are supposed to be of order ω ∼ vA/L‖, whereas, according
to our normalization of the time coordinate in Eq. (14), we have ω ∼

√
βe/2vA/L‖. Therefore, our

normalization remains compatible with that of Refs. [6, 25] as long as we do not take the βe → 0

limit, which occurs in Sec. 5. On the other hand, our normalization simplifies the expressions of the
gyrokinetic evolution equations.
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We complete the required definitions by providing the expressions for the

gyroaverage operators J0s and J1s. We begin with the former by expressing it, as

customary in gyrokinetic theory, in Fourier space. Given a function f(x, y, z, t) periodic

on the above defined spatial domain D, we write its Fourier series as

f(x, y, z, t) =
∑
k∈D

fk(t)eik·x, (15)

where x = (x, y, z) and k = (kx, ky, kz) is the wave vector, the components of which

belong to the lattice D = {(2πl/(2Lx), 2πm/(2Ly), 2πn/(2Lz)) : (l,m, n) ∈ Z3}. The

Fourier series representation of the operator J0s acting on f is then defined as

(J0sf)(xs, ys, zs, µs, t) =
∑
k∈D

(J0sf)k(µs, t)e
ik·xs , (16)

where, for every k ∈ D , one has

(J0sf)k(µs, t) = J0(
√

2bsµs)fk(t), where bs = k2⊥ρ
2
ths
, (17)

with J0 indicating the zeroth order Bessel function of the first kind and k⊥ =
√
k2x + k2y

indicating the perpendicular wave number. In an analogous way, the operator J1s is

defined in terms of the Fourier coefficients of (J1sf), which are given by

(J1sf)k(µs, t) = 2
J1(
√

2bsµs)√
2bsµs

fk(t), (18)

with J1 representing the first order Bessel function of the first kind §. We recall that,

according to the gyrokinetic approach, in the evolution equation (1), the gyroaveraged

fields are evaluated at the guiding center position xs, whereas in the static relations

(2)-(4), the gyroaveraged generalized perturbed distribution functions J0sgs and J1sgs

are evaluated at a given position x.

The model (1)-(4) can be obtained as a particular limit of the gyrokinetic equations

derived, for instance, in Refs. [26, 9, 24]. With respect to such more general models,

§ We remark that a different notation is used, with respect for instance to Ref. [14], for indicating the
dependence of J0sf and J1sf on the independent variables. In the present paper, when the dependence
on such variables is written explicitly, as in Eq. (16), the expressions are written between parentheses,
as for instance (J0sf) in Eq. (16). When the dependence is not explicit, as for instance in Eq. (1), the
parentheses are omitted.



Generalized Hamiltonian drift-fluid and gyrofluid reductions 12

we point out in particular that the model we are considering assumes no curvature of

the guide field and no equilibrium temperature gradients. Similar equations are also

presented as starting point from the derivation of gyrofluid models in Refs. [27, 28] and

also account for more general background states, although they refer to low-β plasmas

and, as a consequence, parallel magnetic fluctuations are neglected.

2.1. Hamiltonian formulation of the parent gyrokinetic model

We show that the system (1)-(4) admits a Hamiltonian formulation, i.e., it can be cast

in the form
∂Ξα

∂t
= {Ξα, H}, α = 1, · · · ,N , (19)

where Ξ1, · · · ,ΞN is a set of dynamical field variables, { , } is a Poisson bracket and

H = H(Ξ1, · · · ,ΞN ) is the Hamiltonian functional. In our case one has N = 2 and a

natural choice for the field variables is Ξ1 = ge, Ξ2 = gi. The electromagnetic quantities

φ,A‖ and B‖ can be expressed in terms of ge,i by means of the static relations (2)-(4).

We could then write

φ = Lφege + Lφigi, (20)

A‖ = LAege + LAi
gi, (21)

B‖ = LBege + LBi
gi, (22)

where Lφs ,LAs and LBs are linear operators, the explicit expressions of which can be

obtained in Fourier space from Eqs. (2)-(4).

As is customary with infinite-dimensional Hamiltonian systems describing

continuous media from the Eulerian point of view, the Hamiltonian structure of

our gyrokinetic model is of noncanonical type [10]. Such structure is given by the

Hamiltonian

H(ge, gi) =
1

2

∑
s=e,i

∫
d3xsdWs

(
τs
g2s
F0s

+ sgn(qs)gsχs − 2τsζnxsgs

)
, (23)
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and by the noncanonical Poisson bracket

{F,G} = −ρs
∑
s=e,i

sgn(qs)

∫
d3xsdWs

(
gs[Fgs , Ggs ]s +

sgn(qs)

ρths
vsF0sFgs

∂Ggs

∂zs

−(µsζB − ζn)F0sFgs
∂Ggs

∂ys

)
, (24)

where F and G are functionals of ge and gi. In Eq. (24) the subscripts on functionals

denote functional derivatives (so that, for instance, Fgs = δF/δgs), while in Eq. (23) we

introduced the following short-hand notation for the gyroaveraged potential

χs = J0sφ−
τs
ρths

vsJ0sA‖ + sgn(qs)τsµsJ1sB‖. (25)

One can verify by direct calculations that, from the expression (19), one obtains Eq.

(1) when one chooses as Hamiltonian and Poisson bracket those given by Eq. (23) and

(24), respectively. With regard to this, it is useful to note that

Hgs = τs
gs
F0s

+ sgn(qs)χs − τsζnxs. (26)

We find it appropriate to point out that, in order to derive the second term on the

right-hand side of Eq. (26), one has to recall that, for each s, χs in Eq. (23)

depends on ge and gi through φ,A‖ and B‖ (see Eqs. (20)-(22)). The second term

on the right-hand side of Eq. (23) is therefore a quadratic form applied to the vector

(ge, gi). Also, one needs to use in the Hamiltonian the explicit form, in Fourier space,

of the operators Lφs ,LAs ,LBs obtained from Eqs. (2)-(4). Finally, the identities∫
d3xsdWs g(xs, vs, µs, t)(J0sf)(xs, µs, t) =

∫
d3xdWs f(x, t)(J0sgs)(x, vs, µs, t) and∫

d3xsdWs g(xs, vs, µs, t)(J1sf)(xs, µs, t) =
∫
d3xdWs f(x, t)(J0sgs)(x, vs, µs, t), valid

for a function f of the form (15), must also be used. Note also that the Poisson

bracket (24) consists of the direct sum of two independent noncanonical Poisson brackets,

one depending only on ge and involving functional derivatives with respect to ge, and

the other one depending only on gi and possessing only functional derivatives with

respect to gi. The coupling between the species, in the dynamics, comes indeed from

the Hamiltonian (23) through the electromagnetic fields, in particular from the term

involving the gyroaveraged potentials χs.



Generalized Hamiltonian drift-fluid and gyrofluid reductions 14

The Hamiltonian structure (23)-(24) can actually be obtained as a simple extension

of the Hamiltonian structure of the gyrokinetic system treated in Ref. [14], in the limit

of isotropic equilibrium temperature. The extension concerns the inclusion of the terms

associated with the weak background inhomogeneities. Indeed, for ζB = ζn = 0, one

retrieves, up to the normalization, the system of Ref. [14] with isotropic equilibrium

temperatures. Note that the presence of the equilibrium magnetic inhomogeneity only

affects the Poisson bracket, whereas the equilibrium density inhomogeneity modifies

both the bracket and the Hamiltonian.

The Poisson bracket (24) can be shown to satisfy the properties defining a Poisson

bracket, i.e. bilinearity, antisymmetry, the Leibniz identity and the Jacobi identity. The

first three of these properties are rather straightforward to show, whereas the proof of

the Jacobi identity is slightly more involved. However, one can take advantage from the

fact that, for ζB = ζn = 0, one has a valid Poisson bracket [29, 30, 23], as can be shown

by using a procedure analogous to the one adopted in Ref. [31] for three-dimensional

reduced fluid models. Taking advantage from the results (in particular Theorem 1) of

Ref. [32], one can show that the Jacobi identity holds also for the expression (24). The

explicit calculation is provided in Appendix A.

2.2. Moments

We introduce in this Section the dynamical variables (moments) that will be used for the

fluid models. Following a customary procedure in gyrokinetic theory (see, for instance,

Refs.[28, 33, 6]), it is convenient to perform an expansion of the perturbed distribution

functions fs, in terms of Hermite and Laguerre polynomials:

fs(xs, ys, zs, vs, µs, t) = F0s(vs, µs)
+∞∑
i=0

+∞∑
j=0

Hi(vs)√
i!

Lj(µs)fijs(xs, ys, zs, t), (27)

where Hi and Lj are the Hermite and Laguerre polynomial of order i and j, respectively.

Analogously, by virtue of the relation (9), it is possible to expand the perturbed
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generalized distribution function:

gs(xs, ys, zs, vs, µs, t) = F0s(vs, µs)
+∞∑
i=0

+∞∑
j=0

Hi(vs)√
i!

Lj(µs)gijs(xs, ys, zs, t), (28)

We refer to the quantities gijs as to moments (possibly with a slight abuse of language,

as these are perturbations of the actual moments of the distribution functions) of order

ij for the species s. In particular, from the orthogonality relation∫
dWs

Hi(vs)√
i!

Hh(vs)√
h!

Lj(µs)Lk(µs)F0s(vs, µs) = δihδjk, (29)

where δ is the Kronecker delta, it follows that

gijs =

∫
dWs

Hi(vs)√
i!

Lj(µs)gs. (30)

The moments gijs are proportional to normalized fluctuations of physically relevant

macroscopic quantities. Indeed, for instance, given that H0(vs) = 1, H1(vs) =

vs, H2(vs) = v2s − 1, H3(vs) = v3s − 3vs, L0(µs) = 1, L1(µs) = 1 − µs, the following

relations hold:

g00s = Ns, g10s = Ms, (31)

g20s =
T‖s√

2
, g30s =

√
2

3
q‖s, (32)

g01s = −T⊥s, g11s = −Qs, (33)

where Ns,Ms, T‖s, q‖s, T⊥s, Qs indicate the gyrocenter fluctuations of density , parallel

canonical momentum, parallel temperature , parallel heat flux, perpendicular

temperature and what we refer to as canonical perpendicular heat flux, respectively.

Through Eq. (9), the moments gijs are related to the quantities fijs , which are

obviously interpreted as moments of the gyrocenter perturbed distribution function.

For the lowest order moments we thus have the following relations:

g00s = f00s = Ns, g10s = f10s + sgn(qs)
G10sA‖
ρths

= U‖s + sgn(qs)
G10sA‖
ρths

, (34)

g20s = f20s =
T‖s√

2
, g30s = f30s =

√
2

3
q‖s, (35)

g01s = f01s = −T⊥s, g11s = f11s + sgn(qs)
G11sA‖
ρths

= −q⊥s + sgn(qs)
G11sA‖
ρths

, (36)
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where U‖s and q⊥s indicate the gyrocenter parallel velocity and the perpendicular heat

flux, respectively. In order to obtain the relations (34)-(36), we also made use of the

orthogonality relation (29), as well as of the following decomposition of the Bessel

function J0 in terms of Laguerre polynomials:

J0(
√

2bsµs) =
+∞∑
n=0

G1ns(bs)Ln(µs), (37)

where

G1ns(bs) =
e−

bs
2

n!

(
bs
2

)n
(38)

are gyroaverage operators commonly appearing in gyrofluid and FLR models [9, 34, 35].

The definitions of the operators in Eq. (38) has to be intended as those of multiplication

operators in Fourier space, analogously to the definitions (17) and (18) for the gyroaverge

operators J0s and J1s.

3. Hamiltonian drift-fluid reduction

In this Section we show how a Hamiltonian fluid reduction can be obtained from the

parent Hamiltonian gyrokinetic model (1)-(4), in the limit of small FLR effects. We

refer to this, as to a Hamiltonian drift-fluid reduction, as opposed to the Hamiltonian

gyrofluid reduction that will be considered in Sec. 5, and for which finite FLR effects

will be retained.

Taking a small FLR limit for a species s, in the parent gyrokinetic system leads to

a drift-kinetic equation for that species. This is obtained in principle by expanding in

the limit bs → 0. The most straightforward expansion is the zero-th order expansion,

formally leading to

J0s → 1, J1s → 1, (39)

so that the gyroaverage operators reduce to the identity operator.

Recently [35], a more refined expansion was adopted, corresponding to

J0s → e−
bs
2 , J1s → (1− e−

bs
2 )

2

bs
. (40)
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Such approximation consists of retaining, for both gyroaverage operators, only the

first term in the corresponding series expansions of the operators in terms of Laguerre

polynomials. For bs → 0, these terms dominate over all the remaining terms in the

corresponding series.

Other expansions can be chosen, in principle. In general, the drift-fluid reduction

that will be presented in this Section, requires the gyrokinetic gyroaverage operators

J0s and J1s to be replaced by drift-kinetic operators Ḡ0s and Ḡ1s, so that

J0s(
√

2bsµs)→ Ḡ0s(bs), J1s(
√

2bsµs)→ Ḡ1s(bs), (41)

where Ḡ0s and Ḡ1s no longer depend on µs and are multiplication operators in Fourier

space, symmetric with respect to integration over space, i.e.
∫
d3xsf Ḡ0sg =

∫
d3xsgḠ0sf

and
∫
d3xsf Ḡ1sg =

∫
d3xsgḠ1sf , for two functions f and g.

In the following, we will leave the expression for Ḡ0s and Ḡ1s unspecified, but the

Reader can make use, for instance, of the options (39) or (40) for having concrete

examples.

We will also apply the drift-kinetic limit (and consequently the drift-fluid reduction)

only to the electron species, leaving the ion species be described by gyrokinetics. On

one hand, this is justified by physical relevance, given that the condition be � bi is

often met, due to the small electron-to-ion mass ratio. Moreover, one also sees that,

when applying the zero-th order drift-kinetic approximation (39) to both species in Eq.

(2), the gyrokinetic equations get constrained by the relation
∫
dWi gi −

∫
dWege = 0

and the three static equations (2)-(4) no longer provide relations of the form (20)-

(22). In particular, φ is not uniquely determined in terms of ge and gi. This indicates

that, at least the zero-th order approximation (39) does not yield a well-posed system

when applied to both species. Consequently, we aim at deriving a Hamiltonian hybrid

gyrokinetic/drift-fluid model. However, the procedure is flexible and can be generalized

to other cases, for instance carrying out a Hamiltonian gyrofluid reduction of the ion

species, to obtain an actual drift-fluid/gyrofluid model, or focusing on sub-ion scales,

which greatly simplifies the ion dynamics in such a way that the resulting system still
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allows for a Hamiltonian structure.

The derivation of the Hamiltonian hybrid model proceeds by first obtaining the

model equations and then by identifying the Hamiltonian structure. The model

equations are obtained by neglecting electron FLR effects (see Sec. 3.1) and by taking

moments of the electron gyrokinetic equation, after having replaced, in the system,

the series expansion of the generalized electron perturbed distribution with a truncated

version (see Sec. 3.2). Two change of variables are then carried out in Sec. 3.3. Such

transformations permit to cast the resulting electron drift-fluid equations in a very

simple form, from which the Poisson bracket for the electron drift-fluid equations can be

"guessed". The corresponding Hamiltonian, on the other hand, is obtained by replacing

the truncated generalized distribution function for the electrons, in the Hamiltonian of

the parent model.

3.1. Hybrid drift-fluid/gyro-kinetic parent model

We begin the Hamiltonian electron drift-fluid reduction by first applying the

replacements

J0e → Ḡ0e, J1e → Ḡ1e (42)
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in the parent system (1)-(4). Upon solving also well known integrals (see, for instance,

Ref. [9]) in the right-hand sides of Eqs. (2)-(4), the parent system becomes

∂ge
∂t

+ ρs [χ̄e, ge]e +
ρs
ρthe

ve
∂

∂ze
(ge − χ̄eF0e) + ρsµeζB

∂ge
∂ye
− ρsF0e(µeζB − ζn)

∂χ̄e
∂ye

= 0,

(43)
∂gi
∂t

+ ρs [χi, gi]i +
ρs
ρthi

vi
∂

∂zi
(τigi + χiF0i)− ρsτiµiζB

∂gi
∂yi
− ρsF0i(µiζB − ζn)

∂χi
∂yi

= 0,

(44)∫
dWi J0igi − Ḡ0e

∫
dWe ge = (1− Γ0i)

φ

τi
+ (1− Ḡ20e)φ− (Γ0i − Γ1i)B‖ + Ḡ0eḠ1eB‖,

(45)

∆⊥A‖ −
βe
2

τi
ρ2thi

Γ0iA‖ −
βe
2

Ḡ20eA‖
ρ2the

= −βe
2

τi
ρthi

∫
dWi viJ0igi +

βe
2

Ḡ0e
ρthe

∫
dWe vege, (46)

βi

∫
dWi µiJ1igi + βeḠ1e

∫
dWe µege = −βe(Γ0i − Γ1i)φ+ βeḠ0eḠ1eφ

− (2 + 2βi(Γ0i − Γ1i) + 2βeḠ21e)B‖. (47)

In Eqs. (45)-(47) we introduced the operators

Γ0s(bs) = I0(bs)e
−bs , Γ1s(bs) = I1(bs)e

−bs , (48)

where I0 and I1 are modified Bessel functions of the first kind. The operators (48) are

also to be intended as multiplication operators in Fourier space.

We also found it convenient to introduce an electron drift-fluid counterpart of the

gyroaveraged potentials (25), defined by

χ̄e = Ḡ0eφ− ve
Ḡ0eA‖
ρthe

− µeḠ1eB‖. (49)

Equations (45)-(47) provide relations of the form (20)-(22), with Lφs ,LAs and LBs

integro-differential operators, defined in Fourier space.

The Hamiltonian functional of the system (43)-(47) descends from Eq. (23) and we

find it convenient to decompose it as

H(ge, gi) = Hdke(ge) +Hgki(gi) +Hdk gk(ge, gi), (50)
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where

Hdke(ge) =
1

2

∫
d3xedWe

(
g2e
F0e

− 2ζnxege

)
, (51)

Hgki(gi) =
1

2

∫
d3xidWi

(
τi
g2i
F0i

− 2τiζnxigi

)
, (52)

Hdk gk(ge, gi) =
1

2

∫
d3xidWi gi

(
J0iφ−

τi
ρthi

viJ0iA‖ + τiµiJ1iB‖

)
− 1

2

∫
d3xedWe ge

(
Ḡ0eφ− ve

Ḡ0eA‖
ρthe

− µeḠ1eB‖
)
. (53)

The modifications introduced by neglecting electron FLR only affect the Hamiltonian.

The Poisson bracket remains identical to (24), which we rewrite in the form

{F,G}(ge, gi) = {F,G}gke(ge) + {F,G}gki(gi), (54)

where

{F,G}gks(gs) = − sgn(qs)ρs

∫
d3xsdWs

(
gs[Fgs , Ggs ]s +

sgn(qs)

ρths
vsF0sFgs

∂Ggs

∂zs

−(µsζB − ζn)F0sFgs
∂Ggs

∂ys

)
. (55)

Note that the coupling between ge and gi in the system, occurs only through the term

Hdk gk(ge, gi) in the Hamiltonian. In particular, as above mentioned, the Poisson bracket

writes as the direct sum (54) of two Poisson brackets depending only on ge and gi,

respectively.

3.1.1. Remarks on the ordering The system (43)-(47) represents a hybrid model

combining a drift-kinetic description for the electrons with a gyrokinetic description

for the ions. As mentioned earlier in Sec. 3, the electron drift-kinetic limit is obtained

letting be = k2⊥ρ
2
the
→ 0. If the scales of the derivatives do not change, this corresponds

to ρthe → 0 or, equivalently, assuming that ρs remains finite, to (me/mi)
1/2 → 0. In

Refs. [6, 25] it was shown that considering an expansion fe = fe0+(me/mi)
1/2fe1 for the

perturbed electron distribution function and solving the system order by order in powers

of (me/mi)
1/2, leads to a condition compatible with isothermal electrons. This indicates
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that temporal evolution of temperatures, heat fluxes and higher order moments come

from higher order terms in the mass ratio (or electron thermal Larmor radius) expansion.

Assuming that all the quantities k⊥, ∂z, ∂t, fi,F0e,F0i, A‖, φ, B‖, ρthi , βe, τi, ζB, ζn remain

finite in the limit ρthe → 0, the drift-kinetic equation (43) contains all the dominant

contributions of order O(ρ−1the), all the terms of order O(1) and some sub-dominant

contributions of order O(ρthe). Indeed, for instance, the inspection of the last term on

the right-hand side of the parallel Ampère’s law (46), reveals that U‖e should be of order

O(ρthe). Therefore, the expansion (27) of fe, contains terms of order O(ρthe). Also, if

one chooses approximations for Ḡ0e and Ḡ1e depending on be, this also introduces higher

order contributions of order at least O(ρthe). The resulting moment equations will also

contain the contributions of the first two leading orders in ρthe and some subdominant

contributions of higher order, but not all those that would be present if all the fields

and gyroaverage operators had been expanded in powers of ρthe up to a certain order.

So, in this respect, the drift-kinetic equation (43), and the resulting moment equations,

do not strictly respect the ordering in ρthe . However, the concomitance of a non-trivial

evolution of temperatures, heat fluxes and higher order moments, with the Hamiltonian

structure, appears to occur in the presence of such higher order corrections. Although

this could be unsatisfactory from the point of view of asymptotic analysis, from the

point of view of physical relevance of the system, one could argue that the fact that

such higher-order corrections are not retained consistently, should have little impact

on the dynamics, as the the first two leading orders are, on the other hand, treated

consistently.

3.2. Electron drift-fluid equations

The Hamiltonian electron drift-fluid reduction is carried out considering a truncation of

the expansion (28) for the electron species. More precisely, we consider the truncated

expansion

ḡe(xe, ye, ze, ve, µe, t) = F0e(ve, µe)
N∑
i=0

M∑
j=0

Hi(vs)√
i!

Lj(µe)gije(xe, ye, ze, t), (56)
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with arbitrary integers M,N ≥ 0. The numbers M and N will of course determine the

highest order of the moment that one wants retain, along the perpendicular and parallel

direction, respectively, in the electron drift-fluid description.

Inserting the truncated expansion (56) into the static relations (45)-(47) leads to∫
dWi J0igi − Ḡ0eg00e = (1− Γ0i)

φ

τi
+ (1− Ḡ20e)φ− (Γ0i − Γ1i)B‖ + Ḡ0eḠ1eB‖, (57)

∆⊥A‖ −
βe
2

τi
ρ2thi

Γ0iA‖ −
βe
2

Ḡ20eA‖
ρ2the

= −βe
2

τi
ρthi

∫
dWi viJ0igi +

βe
2

Ḡ0eg10e
ρthe

, (58)

βi

∫
dWi µiJ1igi + βeḠ1e(g00e − g01e) = −βe(Γ0i − Γ1i)φ+ βeḠ0eḠ1eφ

− (2 + 2βi(Γ0i − Γ1i) + 2βeḠ21e)B‖. (59)

Therefore, in the electron drift-fluid reduction, electromagnetic perturbations are

expressed in terms of the dynamical variables via relations of the form

φ = Lφe00g00e + Lφe01g01e + Lφigi, (60)

A‖ = LAe10g10e + LAi
gi, (61)

B‖ = LBe00g00e + LBe01g01e + LBi
gi, (62)

where Lφe00 ,Lφe01 ,LAe10 ,LBe00 ,LBe01 are linear operators.

We can then define the matrix Γe, with N+1 rows andM+1 columns, the elements

of which correspond to the moments gije , so that

Γeij = gije , i = 0, · · ·N, j = 0, · · ·M. (63)

The evolution equations for the moments gije can be obtained by inserting the truncated

expansion (56) into the drift-kinetic equation (43), multiplying every term of the

resulting equation by (Hi(ve)/
√
i!)Lj(µe) and integrating over dWe. Using the matrix

notation introduced in Eq. (63), the evolution equations for the moments can be written
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as

∂ΓTeji
∂t

+ ρs

(
[Ḡ0eφ,ΓTeji ]e −

[
Ḡ0eA‖
ρthe

,ΓTejlW
T
li

]
e

− [Ḡ1eB‖, VjlΓTeli ]e
)

+
ρs
ρthe

∂

∂ze
ΓTejlW

T
li −

ρs
ρthe

∂

∂ze

(
δj0δ1iḠ0eφ− δj0(

√
2δ2i + δ0i)

Ḡ0eA‖
ρthe

− (δj0 − δj1)δ1iḠ1eB‖
)

(64)

+ ρsζB
∂

∂ye
VjlΓ

T
eli
− ρs

∂

∂ye

(
(δj0 − δj1)δ0iζBḠ0eφ− (δj0 − δj1)δ1iζB

Ḡ0eA‖
ρthe

−((2j + 1)(δj0 − δj1)− (j + 1)(δj+1,0 − δj+1,1)− j(δj−1,0 − δj−1,1))δ0iζBḠ1eB‖

−δj0δ0iζnḠ0eφ+ δj0δ1iζn
Ḡ0eA‖
ρthe

+ (δj0 − δj1)δ0iζnḠ1eB‖
)

= 0,

where sum over repeated indices is understood, while j = 0, · · · ,M and i = 0, · · · , N .

For a matrix A, we also indicated with AT the transpose of A.

In order to derive Eq. (64) we made use of the recurrence relations

veHn(ve) = Hn+1(ve) + nHn−1(ve), (65)

µeLn(µe) = (2n+ 1)Ln(µe)− (n+ 1)Ln+1(µe)− nLn−1(µe), (66)

for Hermite and Laguerre polynomials, respectively. Also, we introduced the Jacobi

matrices W and V , the elements of which are given by

Wmn =
√
mδm,n+1 +

√
m+ 1δm,n−1, 0 ≤ m,n ≤ N, (67)

Vmn = −mδm,n+1 + (2m+ 1)δmn − (m+ 1)δm,n−1, 0 ≤ m,n ≤M. (68)

The matrices W and V are (N + 1)× (N + 1) and (M + 1)× (M + 1), respectively, and

their expressions are of the form

W =



0 1 0 0 ... 0

1 0
√

2 0 ... 0

0
√

2 0
√

3 ... 0

0 0
√

3 0 ... 0

... ...

... ...

0 0 0 ... 0
√
N

0 0 0 ...
√
N 0


, V =



1 −1 0 ... 0

−1 3 −2 ... 0

0 −2 5 ... 0

0 0 0 ... 0

... ...

0 0 0 2M − 1 −M
0 0 0 −M 2M + 1


.

(69)
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These matrices are symmetric and can be diagonalized, so that

UTWU = diag(λ0, λ1, · · · , λN), ZTV Z = diag(η0, η1, · · · , ηM), (70)

where U ∈ O(N + 1) and Z ∈ O(M + 1) are (N + 1)× (N + 1) and (M + 1)× (M + 1)

orthogonal matrices, respectively. We indicated with λ0, λ1, · · · , λN and η0, η1, · · · , ηM

the eigenvalues of W and V , respectively. It is well known [36] that λ0, λ1, · · · , λN

correspond to the zeros of the Hermite polynomial of order N+1, whereas η0, η1, · · · , ηM

correspond to the zeros of the Laguerre polynomial of order M + 1. Also, it is known

that, for 0 ≤ i ≤ N , the eigenvector associated with the eigenvalue λi is proportional to

(H0(λi), H1(λi), · · · , HN(λi))
T . Likewise, for 0 ≤ i ≤M the eigenvector associated with

ηi is proportional to (L0(ηi), L1(ηi), · · · , LM(ηi))
T . With the help of the Christoffel-

Darboux identity [36], it is possible to write in a compact form the proportionality

constant that makes such eigenvectors orthonormal. For the case of the matrix W this

was carried out in Refs. [37, 38]. As a result, we obtain that the elements of the matrices

U and Z are given explicitly by

Umn =

√
N !

N + 1

Ĥm(λn)

|HN(λn)|
, m, n = 0, · · · , N, (71)

Zmn =

√
ηn

M + 1

Lm(ηn)

|LM(ηn)|
, m, n = 0, · · · ,M, (72)

where

Ĥn(ve) =
Hn(ve)√

n!
, n ≥ 0. (73)

Consequently, the matrices U and Z have the forms

U =



√
N !
N+1

Ĥ0(λ0)
|HN (λ0)|

√
N !
N+1

Ĥ0(λ1)
|HN (λ1)| ... ...

√
N !
N+1

Ĥ0(λN )
|HN (λN )|√

N !
N+1

Ĥ1(λ0)
|HN (λ0)|

√
N !
N+1

Ĥ1(λ1)
|HN (λ1)| ... ...

√
N !
N+1

Ĥ1(λN )
|HN (λN )|

... ... ... ... ...

... ... ... ... ...

... ... ... ... ...√
N !
N+1

ĤN (λ0)
|HN (λ0)|

√
N !
N+1

ĤN (λ1)
|HN (λ1)|

√
N !
N+1

ĤN (λN )
|HN (λN )|


, (74)
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Z =



√
η0

M+1
L0(η0)
|LM (η0)|

√
η1

M+1
L0(η1)
|LM (η1)| ... ...

√
ηM

M+1
L0(ηM )
|LM (ηM )|√

η0
M+1

L1(η0)
|LM (η0)|

√
η1

M+1
L1(η1)
|LM (η1)| ... ...

√
ηM

M+1
L1(ηM )
|LM (ηM )|

... ... ... ... ...

... ... ... ... ...

√
η0

M+1
LM (η0)
|LM (η0)|

√
η1

M+1
LM (η1)
|LM (η1)|

√
ηM

M+1
LM (ηM )
|LM (ηM )|


. (75)

3.3. Changes of variables

We carry out two consecutive changes of variables that cast the electron drift-fluid

equations (64) in a remarkably simple form. The first change of variables (but the order

can be inverted) is given, in matrix form, by

Je = ZTΓTe . (76)

The new variables are the elements of the (M +1)× (N +1) matrix Je and their explicit

expression is given by

Jemi
= ZT

mlΓ
T
eli

=

√
ηm

M + 1

Ll(ηm)

|LM(ηm)|
gile , m = 0, · · · ,M, i = 0, · · · , N. (77)

Note also that, due to the orthogonality of Z, one has ZZT = I, so that the relation

ΓTe = ZJe (78)

holds.

By multiplying Eqs. (64) by the matrix ZT one can obtain the following moment

equations, formulated in terms of the variables Jemi
:

∂Jemi

∂t
+ ρs

(
[Ḡ0eφ, Jemi

]e −
[
Ḡ0eA‖
ρthe

, Jeml
W T
li

]
e

− ηm[Ḡ1eB‖, Jemi
]e

)
+

ρs
ρthe

∂

∂ze
Jeml

W T
li −

ρs
ρthe

∂

∂ze

(
ZT
m0δ1iḠ0eφ− ZT

m0(
√

2δ2i + δ0i)
Ḡ0eA‖
ρthe

− (ZT
m0 − ZT

m1)δ1iḠ1eB‖
)

(79)

+ ρsζBηm
∂

∂ye
Jemi
− ρs

∂

∂ye

(
(ZT

m0 − ZT
m1)δ0iζBḠ0eφ− (ZT

m0 − ZT
m1)δ1iζB

Ḡ0eA‖
ρthe

−(ZT
m0 − 3ZT

m1 + ZT
m0 − ZT

m1 + 2ZT
m2)δ0iζBḠ1eB‖

−ZT
m0δ0iζnḠ0eφ+ ZT

m0δ1iζn
Ḡ0eA‖
ρthe

+ (ZT
m0 − ZT

m1)δ0iζnḠ1eB‖
)

= 0,
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for m = 0, · · · ,M and i = 0, · · · , N . To derive Eq. (79) we also made use of the

relation (78). We point out that, when an eigenvalue multiplies a matrix element, as in

the fourth term of Eq. (79), the repeated indices do not imply a summation (the indices

m and i are indeed fixed in Eq. (79)). When carrying out this change of variables

(and the following one) we also assume it is understood that the relations (60)-(62) are

replaced by the corresponding relations expressing φ, A‖ and B‖ in terms of the new

variables.

The second orthogonal transformation that we perform is given by

Ge = UTJTe . (80)

The matrix Ge is therefore a (N + 1)× (M + 1) matrix with elements

Genm = UT
nlΓelkZkm =

√
N !

N + 1

Ĥl(λn)

|HN(λn)|
glke

√
ηm

M + 1

Lk(ηm)

|LM(ηm)|
,

n = 0, · · · , N, m = 0, · · · ,M. (81)

Analogously to Eq. (78), due to the orthogonality of U , one has also the relation

JTe = UGe. (82)

Note that the transformation (80) is analogous to the transformation already adopted

in Refs. [13, 14, 23] for the case of moments only with respect to the parallel velocity.

Equation (79) possesses indeed terms of form analogous to those appearing in the simpler

case treated in such References.

Taking the transpose of Eq. (79) and multiplying it by the matrix UT , one obtains
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the following set of equations in terms of the variables Genm :

∂Genm

∂t
+ ρs

[
Ḡ0eφ− λn

Ḡ0eA‖
ρthe

− ηmḠ1eB‖, Genm

]
e

+
ρs
ρthe

λn
∂

∂ze
Genm −

ρs
ρthe

∂

∂ze

(
UT
n1Z0mḠ0eφ− (

√
2UT

n2 + UT
n0)Z0m

Ḡ0eA‖
ρthe

− UT
n1(Z0m − Z1m)Ḡ1eB‖

)
(83)

+ ρsζBηm
∂

∂ye
Genm − ρs

∂

∂ye

(
UT
n0(Z0m − Z1m)ζBḠ0eφ− UT

n1(Z0m − Z1m)ζB
Ḡ0eA‖
ρthe

−UT
n0(2Z0m − 4Z1m + 2Z2m)ζBḠ1eB‖

−UT
n0Z0mζnḠ0eφ+ UT

n1Z0mζn
Ḡ0eA‖
ρthe

+ UT
n0(Z0m − Z1m)ζnḠ1eB‖

)
= 0.

Making use of the expressions (71) and (72), we can provide a more explicit formulation

of Eq. (83) in terms of known quantities, such as the zeros of Hermite and Laguerre

polynomials λn and ηm, and the parameters M and N . In particular, we can make use

of the relations

UT
n0 =

1

u(n)
, UT

n1 =
λn
u(n)

, UT
n2 =

λ2n − 1√
2u(n)

, n = 0, · · · , N, (84)

Z0m =
1

z(m)

, Z1m =
1− ηm
z(m)

, Z2m =
η2m − 4ηm + 2

2z(m)

, m = 0, · · · ,M, (85)

where we defined the normalization constants

u(n) =

√
N + 1

N !
|HN(λn)|, z(m) =

M + 1
√
ηm
|LM(ηm)|. (86)

Inserting the relations (84) and (85) into Eq. (83) we obtain

∂Genm

∂t
+ ρs

[
Ḡ0eφ− λn

Ḡ0eA‖
ρthe

− ηmḠ1eB‖, Genm

]
e

+
ρs
ρthe

λn
∂

∂ze
Genm −

ρs
ρthe

λn
u(n)z(m)

∂

∂ze

(
Ḡ0eφ− λn

Ḡ0eA‖
ρthe

− ηmḠ1eB‖
)

(87)

+ ρsζBηm
∂

∂ye
Genm − ρs

ηm
u(n)z(m)

∂

∂ye

(
ζBḠ0eφ− ζBλn

Ḡ0eA‖
ρthe

− ζBηmḠ1eB‖
)

+ ρs
ζn

u(n)z(m)

∂

∂ye

(
Ḡ0eφ− λn

Ḡ0eA‖
ρthe

− ηmḠ1eB‖
)

= 0,

or, in an even more compact form,

∂Genm

∂t
+ ρs [χenm , Genm ]e + ρs

(
λn
ρthe

∂

∂ze
+ ζBηm

∂

∂ye

)(
Genm −

χenm

u(n)z(m)

)
+ ρs

ζn
u(n)z(m)

∂χenm

∂ye
= 0, (88)
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where we introduced the potentials

χenm = Ḡ0eφ− λn
Ḡ0eA‖
ρthe

− ηmḠ1eB‖. (89)

The formulation (88) shows how, thanks to the transformations (76) and (80), the set of

drift-fluid equations (64) can be cast in a much simpler form. In particular, we note that

in each evolution equation (88) with fixed m and n, only quantities indexed by m and n

appear explicitly. Thus, the mixing with moments of different order in m and n, which

occurred in the original formulation (64) has been removed. This "diagonalization"

of the system will turn out to be useful, in particular, for identifying the Hamiltonian

structure. The dependence on variablesGen′m′ withm′ 6= m and n′ 6= n remains of course

present, in each equation, in implicit form, through the electromagnetic quantities φ,A‖

and B‖.

3.4. Remarks on the interpretation of the system in terms of the new variables

The formulation (88) generalizes to an arbitrary number of moments in both parallel and

perpendicular velocities, as well as to the case of inhomogeneous background magnetic

field and density profiles, the formulations found for the drift-fluid electron dynamics in

simpler cases [5, 16, 18, 13]. We remark that the potentials χenm can be interpreted as

stream functions for generalized perpendicular velocity fields

venm = ẑ ×∇χenm = vE×B +
λn
ρthe

vB⊥ + ηmvnl∇B (90)

where

vE×B = ẑ ×∇Ḡ0eφ, vB⊥ = ∇Ḡ0eA‖ × ẑ, vnl∇B = −ẑ ×∇Ḡ1eB‖. (91)

The vector fields vE×B, vB⊥ and vnl∇B corresponds to normalized versions of the E×B

velocity, of the free streaming velocity along the perpendicular perturbation of the

magnetic field and of the nonlinear gradB drift, respectively. These velocity fields

account also for small FLR corrections possibly induced by the operators Ḡ0e and Ḡ1e.
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In the 2D limit (where ∂z = ∂ze = 0) in the absence of background inhomogeneities (i.e.

ζB = ζn = 0), the electron fluid equations (88) reduce to

∂Genm

∂t
+ ρsvenm · ∇Genm = 0. (92)

The fields Gnm become then Lagrangian invariants advected by the velocity fields

venm . This generalizes, with the inclusion of the nonlinear gradB drift, the Lagrangian

invariant formulation found in Refs. [13, 23]. Considering Eq. (90), it follows that the

advecting fields venm consist of linear combination of the E×B drift with the magnetic

drift vB⊥ and the nonlinear gradB drift vnl∇B. The relative amplitudes, with respect to

the E×B drift, of the magnetic and nonlinear gradB drift, are given by the eigenvalues

λn and ηm, corresponding to zeros of Hermite and Laguerre polynomials. From known

properties of such polynomials, it is possible to infer some features of how the magnetic

and nonlinear gradB drift add up to the E×B drift, as the number of retained moments

N andM increases. As already recalled in Ref. [23], the zeros of the Hermite polynomial

HN+1(ve), corresponding to λn, are real, distinct and symmetrically distributed around

ve = 0. Therefore, when N is even, so that the number of zeros is odd, one of the λn

will be equal to zero, implying no contribution from the perpendicular magnetic drift for

that particular value of n. Also, the zeros of Hermite polynomials interlace. Therefore,

if λi and λi+1 are two consecutive eigenvalues for a given N , with λi ≤ λi+1, then, for

N + 1, there will be an eigenvalue λi′ such that λi ≤ λi′ ≤ λi+1. Moreover, for any

interval v1 ≤ ve ≤ v2, it is always possible to find a zero λi such that v1 ≤ λi ≤ v2,

provided N is large enough. This indicates how the relative weight between E×B and

magnetic drifts will fill the set of roots of the Hermite polynomials as the number of

retained parallel moments N increases. Most of these properties are shared also by zeros

of Laguerre polynomials, and therefore by the relative weights ηm between E ×B and

nonlinear gradB drift. Also in this case, the zeros are distinct, real, they interlace and it

is always possible, for any interval µ1 ≤ µe ≤ µ2, to find a zero ηi such that µ1 ≤ ηi ≤ µ2,

providedM is large enough. However, zeros of Laguerre polynomials are positive, unlike

zeros of Hermite polynomials, for which we noticed, in particular, that λi = 0 is always
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an eigenvalue if N is even. Therefore, for every Genm we expect a finite contribution of

the nonlinear gradB drift in the advecting velocity field venm . Also, because ηm > 0,

for every m and every M , such contribution always adds up with the same sign to the

E × B drift. When the nonlinear gradB drift is negligible, which we expect to occur

for low-β plasmas, and N is even, one of the Lagrangian invariants is purely advected,

also in 3D, by the E×B drift, in the absence of background inhomogeneities [23]. We

also remark that, from the third term on the left-hand side of Eq. (88), it follows that

the above mentioned properties of λn and ηm concern of course also the amplitudes of

the transport of the quantities Genm − χenm/(u(n)z(m)) along the guide field and due to

the linear gradB drift, respectively. The last term on the left-hand side of Eq. (88),

which originates from the electron diamagnetic drift, on the other hand, is influenced

by the values of λn and ηm in a more implicit way, through the normalization constants

u(n) and z(m). Further properties about the location of the eigenvalues λn and ηm can

be found, for instance in Refs. [36, 39].

With regard to the fields Genm , it is possible to generalize the physical interpretation

provided in Ref. [23]. Indeed, we can consider the truncated expansion (56):

ḡe(xe, ye, ze, ve, µe, t) = F0e(ve, µe)
N∑
i=0

M∑
j=0

Hi(ve)√
i!

Lj(µe)gije(xe, ye, ze, t). (93)

Combining the relations (63), (76) and (82), one obtains

gije = UilGelkZ
T
kj, (94)

which, when inserted into Eq. (93), yields

ḡe(xe, ye, ze, ve, µe, t) = F0e(ve, µe)
N∑

i,l=0

M∑
j,k=0

Hi(vs)√
i!

Lj(µe)UilGelk(xe, ye, ze, t)Z
T
kj. (95)

Then one evaluates Eq. (95) at ve = λn and µe = ηm, for n = 0, · · · , N and

m = 0, · · · ,M . In the resulting expression one can make use of the relations

N !

N + 1

N∑
i=0

Ĥi(λn)

|HN(λn)|
Ĥi(λl)

|HN(λl)|
= δnl,

√
ηm
√
ηk

(M + 1)2

M∑
j=0

Lj(ηm)

|LM(ηm)|
Lj(ηk)

|LM(ηk)|
= δmk, (96)
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which descend from UTU = I and ZTZ = I, respectively. As a result, one obtains

ḡe(xe, ye, ze, λn, ηm, t) = F0e(λn, ηm)

√
N + 1

N !
(M+1)|HN(λn)| |LM(ηm)|

√
ηm

Genm(xe, ye, ze, t),

(97)

from which it follows that

Genm(xe, ye, ze, t) =

√
N !

N + 1

1

|HN(λn)|

√
ηm

(M + 1)|LM(ηm)|
ḡe(xe, ye, ze, λn, ηm, t)

F0e(λn, ηm)
. (98)

Therefore, the values of the new field variables Genm are proportional to those of the

truncated perturbed generalized distribution function ḡe, evaluated at ve = λn and

at µe = ηm. Studying the dynamics of Genm permits then to follow directly the

evolution (up to the proportionality coefficient) of the truncated version of ge, at specific

values of the parallel velocity and of the magnetic moment. Of course, increasing the

number of variables Genm by increasing M and N , provides a more and more accurate

reconstruction of ḡe. We notice that a similarity between the structures formed by the

drift-kinetic distribution functions at a fixed value of the parallel velocity, and those

formed by Lagrangian invariants of drift-fluid models was pointed out, by means of

numerical simulations, in Refs. [40, 41, 42].

3.5. Hamiltonian structure of the hybrid drift-fluid/gyrokinetic model

We finally proceed with providing the Hamiltonian structure of the model we derived

combining a drift-fluid description for the electrons with the gyrokinetic description for

the ions. We first write the complete system, in terms of the dynamical variables gi and
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Genm , for n = 0, · · · , N and m = 0, · · · ,M :

∂Genm

∂t
+ ρs [χenm , Genm ]e + ρs

(
λn
ρthe

∂

∂ze
+ ζBηm

∂

∂ye

)(
Genm −

χenm

u(n)z(m)

)
+ ρs

ζn
u(n)z(m)

∂χenm

∂ye
= 0, (99)

∂gi
∂t

+ ρs

[
J0iφ−

τi
ρthi

viJ0iA‖ + τiµiJ1iB‖, gi

]
i

+
ρs
ρthi

vi
∂

∂zi

(
τigi + F0i

(
J0iφ−

τi
ρthi

viJ0iA‖ + τiµiJ1iB‖

))
− ρsτiµiζB

∂gi
∂yi
− ρsF0i(µiζB − ζn)

∂

∂yi

(
J0iφ−

τi
ρthi

viJ0iA‖ + τiµiJ1iB‖

)
= 0, (100)∫

dWi J0igi −
N∑
l=0

M∑
k=0

Ḡ0eGelk

u(l)z(k)
= (1− Γ0i)

φ

τi
+ (1− Ḡ20e)φ− (Γ0i − Γ1i)B‖ + Ḡ0eḠ1eB‖,

(101)

∆⊥A‖ −
βe
2

τi
ρ2thi

Γ0iA‖ −
βe
2

Ḡ20eA‖
ρ2the

= −βe
2

τi
ρthi

∫
dWi viJ0igi +

βe
2ρthe

N∑
l=0

M∑
k=0

λl
Ḡ0eGelk

u(l)z(k)
,

(102)

βi

∫
dWi µiJ0igi + βe

N∑
l=0

M∑
k=0

ηk
Ḡ1eGelk

u(l)z(k)
= −βe(Γ0i − Γ1i)φ+ βeḠ0eḠ1eφ

− (2 + 2βi(Γ0i − Γ1i) + 2βeḠ21e)B‖. (103)

The Hamiltonian of the system (99)-(103) is obtained by analogy with the procedure

adopted in Refs. [28, 14, 23] for finding a conserved energy. The procedure consists of

replacing in the Hamiltonian of the parent gyrokinetic model, the truncated expansion

of the perturbed generalized distribution function. Because in our hybrid model the

fluid reduction concerns only the electron species, we will only perform the replacement

ge → ḡe (104)

into the parent Hamiltonian (50). We denote the resulting functional as

H̄(ge00 , · · · , geNM
, gi) = H̄dfe(ge00 , · · · , geNM

) +Hgki(gi) + H̄df gk(ge00 , ge10 , ge01 , gi), (105)

where H̄dfe and H̄df gk correspond to the functionals that one obtains by inserting the

replacement (104) into Hdke and Hdk gk, respectively. Note in particular that, inserting
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the truncated expansion ḡe intoHdk gk, the resulting coupling Hamiltonian H̄df gk depends

on only three electron moments.

However, because we are expressing the system using Genm as fluid variables, rather

than genm , we consider, as candidate Hamiltonian, the functional H(Ge00 , · · · , GeNM
, gi)

given by

H(Ge00 , · · · , GeNM
, gi) = Hdfe(Ge00 , · · · , GeNM

) +Hgki(gi) +Hdf gk(Ge00 , · · · , GeNM
, gi),

(106)

where

Hdfe(Ge00 , · · · , GeNM
) = H̄dfe(ge00 , · · · , geNM

),

Hdf gk(Ge00 , · · · , GeNM
, gi) = H̄df gk(ge00 , ge10 , ge01 , gi). (107)

In explicit form we have

Hdfe(Ge00 , · · · , GeNM
) =

1

2

N∑
i=0

M∑
j=0

∫
d3xe

(
G2
eij
− 2ζnxe

Geij

u(i)z(j)

)
, (108)

Hgki(gi) =
1

2

∫
d3xidWi

(
τi
g2i
F0i

− 2τiζnxigi

)
, (109)

Hdf gk(Ge00 , · · · , GeNM
, gi) =

1

2

∫
d3xidWi gi

(
J0iφ−

τi
ρthi

viJ0iA‖ + τiµiJ1iB‖

)
− 1

2

N∑
i=0

M∑
j=0

∫
d3xeGeij

χeij
u(i)z(j)

. (110)

Therefore, the functional derivatives read

δH

δgi
= τi

gi
F0i

+ χi − τiζnxi, (111)

δH

δGenm

= Genm −
χenm

u(n)z(m)

− ζn
u(n)z(m)

xe. (112)

Note that, thanks to the orthogonality of the matrices U and Z, the first term in the

expression of Hdfe remains a sum of squares when moving from the moments gekl to the

variables Geij .

With regard to the Poisson bracket, we first notice that the ion gyrokinetic equation

(100) can be obtained from ∂tgi = {gi, H}gki , where H is the candidate Hamiltonian
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(106) and { , }gki , given in Eq. (55), is the Poisson bracket, referring to ions, of the

parent drift/gyrokinetic model. Because the ion gyrokinetic equation is left untouched

by replacing the parent Hamiltonian (50) with the candidate Hamiltonian (106), we

assume the Poisson bracket of the hybrid drift fluid/gyrokinetic model still has a direct

sum structure of the form { , } = { , }gki(gi)+{ , }dfe(Ge00 , · · · , GeNM
) , where the Poisson

bracket { , }dfe generates the electron dynamics, when combined with H given by Eq.

(106). Moreover, the form of the equations (99) and the functional derivatives (112)

suggest the ansatz

{F,G}dfe(Ge00 , · · · , GeNM
) =

N∑
n=0

M∑
m=0

{F,G}enm(Genm)

=
N∑
n=0

M∑
m=0

∫
d3xe

(
anmGenm

[
δF

δGenm

,
δG

δGenm

]
e

+ bnm
δF

δGenm

∂

∂ze

δG

δGenm

(113)

+cnm
δF

δGenm

∂

∂ye

δG

δGenm

)
,

where anm, bnm and cnm are coefficients to be determined. The formulation in terms of

the Genm variables, as mentioned in Sec. 3.3, has the advantage of casting the electron

moments equations in a diagonal form, in which the evolution equation for each Genm

explicitly depends only on quantities with the same indices n and m. Together with the

expression for δH/δGenm in Eq. (112), which also only depends on quantities indexed by

n and m, this suggests that, in terms of these variables, the Poisson bracket { , }dfe has

the direct sum structure (113), given by the sum of (N+1)(M+1) independent Poisson

brackets, each of which only depends on Genm . In particular, this greatly simplifies the

proof of the Jacobi identity, which follows as a straightforward modification of the proof

provided in Appendix A for the gyrokinetic Poisson bracket. The specific ansatz for

the individual Poisson brackets {F,G}emn also comes from a rather intuitive extension

of the ansatz adopted in Ref. [13] for the case with no perpendicular moments and no

background inhomogeneities.

By comparing the expressions {Genm , H}emn , where H is the candidate Hamiltonian

(106), with the equations of motion (99), it is possible to see that ∂tGenm = {Genm , H}emn
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if

anm = ρsu(n)z(m), bnm = − ρs
ρthe

λn, cnm = −ρs(ζBηm − ζn). (114)

This permits to completely identify the Poisson bracket of the system and confirms that

the candidate Hamiltonian is the Hamiltonian of the system.

To summarize, for any choice of the numbers of moments N andM , the hybrid drift

fluid/gyrokinetic model (100)-(103) is a Hamiltonian system with Hamiltonian given by

the functional (106) and with a noncanonical Poisson bracket given by

{F,G} = {F,G}gki +
N∑
n=0

M∑
m=0

{F,G}enm , (115)

where {F,G}gki can be found in Eq. (55) and

{F,G}enm =

∫
d3xe

(
ρsu(n)z(m)Genm

[
δF

δGenm

,
δG

δGenm

]
e

− ρs
ρthe

λn
δF

δGenm

∂

∂ze

δG

δGenm

−ρs(ζBηm − ζn)
δF

δGenm

∂

∂ye

δG

δGenm

)
. (116)

By means of the relation (98) and of its inverse, it is possible to express the Hamiltonian

(106) and the Poisson bracket (115) in terms of the original moment variables, if one so

wishes.

We finally remark that, in the 2D limit with homogeneous background, each Poisson

bracket { , }enm admits the infinite families of Casimir invariants given by

Cenm =

∫
d2xe Cnm(Genm), (117)

where Cnm are arbitrary functions. This property reflects in the fact that Genm are

Lagrangian invariants with respect to the velocity fields venm , and generalizes the results

obtained in special cases [5, 43, 15, 16, 17, 18].

4. Example: a four-moment drift-fluid reduction

We illustrate the general theory developed in Sec. 3 by considering the simple case

N = 1, M = 1. This amounts to consider the evolution of four moments, corresponding

to combinations of the first two moments with respect to the ve coordinate with the
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first two moments with respect to the µe coordinate. Because the ion evolution remains

unchanged, we focus on the electron dynamics.

The matrix of the moments, for this case, is given by

Γe =

(
g00e g01e
g10e g11e

)
, (118)

and the equations of motion (64) read

∂g00e
∂t

+ ρs

(
[Ḡ0eφ, g00e ]e −

[
Ḡ0eA‖
ρthe

, g10e

]
e

− [Ḡ1eB‖, g00e − g01e ]e
)

+
ρs
ρthe

∂

∂ze

(
g10e +

Ḡ0eA‖
ρthe

)
+ ρsζB

∂

∂ye

(
g00e − g01e − Ḡ0eφ+ 2Ḡ1eB‖

)
+ ρsζn

∂

∂ye

(
Ḡ0eφ− Ḡ1eB‖

)
= 0,

(119)

∂g10e
∂t

+ ρs

(
[Ḡ0eφ, g10e ]e −

[
Ḡ0eA‖
ρthe

, g00e

]
e

− [Ḡ1eB‖, g10e − g11e ]e
)

+
ρs
ρthe

∂

∂ze

(
g00e − Ḡ0eφ+ Ḡ1eB‖

)
+ ρsζB

∂

∂ye

(
g10e − g11e +

Ḡ0eA‖
ρthe

)
− ρsζn

∂

∂ye

Ḡ0eA‖
ρthe

= 0,

(120)

∂g01e
∂t

+ ρs

(
[Ḡ0eφ, g01e ]e −

[
Ḡ0eA‖
ρthe

, g11e

]
e

− [Ḡ1eB‖, 3g01e − g00e ]e
)

+
ρs
ρthe

∂

∂ze
g11e + ρsζB

∂

∂ye

(
3g01e − g00e + Ḡ0eφ− 4Ḡ1eB‖

)
+ ρsζn

∂

∂ye
Ḡ1eB‖ = 0, (121)

∂g11e
∂t

+ ρs

(
[Ḡ0eφ, g11e ]e −

[
Ḡ0eA‖
ρthe

, g01e

]
e

− [Ḡ1eB‖, 3g11e − g10e ]e
)

+
ρs
ρthe

∂

∂ze

(
g01e − Ḡ1eB‖

)
+ ρsζB

∂

∂ye

(
3g11e − g10e −

Ḡ0eA‖
ρthe

)
= 0, (122)

or, in a physically more perspicuous form,

deNe

dt
+∇‖eU‖e +∇Be(Ne + T⊥e)− ρsζB

∂

∂ye
(Ḡ0eφ− 2Ḡ1eB‖) + ρsζn

∂

∂ye
(Ḡ0eφ− Ḡ1eB‖) = 0,

(123)

de
dt

(
U‖e −

Ḡ0eA‖
ρthe

)
+∇‖eNe +∇Be

(
U‖e −

Ḡ0eA‖
ρthe

+ q⊥e

)
− ρs
ρthe

∂

∂ze
(Ḡ0eφ− Ḡ1eB‖)

+ ρs(ζB − ζn)
∂

∂ye

Ḡ0eA‖
ρthe

= 0, (124)

deT⊥e
dt

+∇‖eq⊥e +∇Be(Ne + 3T⊥e)− ρsζB
∂

∂ye
(Ḡ0eφ− 4Ḡ1eB‖)− ρsζn

∂Ḡ1eB‖
∂ye

= 0,

(125)

deq⊥e
dt

+∇‖eT⊥e +∇Be

(
U‖e −

Ḡ0eA‖
ρthe

+ 3q⊥e

)
+

ρs
ρthe

∂Ḡ1eB‖
∂ze

+ ρsζB
∂

∂ye

Ḡ0eA‖
ρthe

= 0.

(126)
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In Eqs. (123)-(126) we expressed the moments in terms of the physical quantities

introduced in Eqs. (34)-(36) and we also introduced the operators

de
dt

=
∂

∂t
+ ρs[Ḡ0eφ, · ]e,

∇‖e = −ρs
[
Ḡ0eA‖
ρthe

, ·
]
e

+
ρs
ρthe

∂

∂ze
,

∇Be = −ρs[Ḡ1eB‖, · ]e + ρsζB
∂

∂ye
(127)

representing the advective derivative with respect to the vE×B, the leading order gradient

along the magnetic field and the advection with respect to nonlinear and linear gradB

velocities, respectively.

The Jacobi matrices are

W =

(
0 1

1 0

)
, V =

(
1 −1

−1 3

)
, (128)

and the corresponding eigenvalues are

λ0 = −1, λ1 = 1, (129)

η0 = 2 +
√

2, η1 = 2−
√

2. (130)

The orthogonal matrices read

U =

(
1√
2

1√
2

− 1√
2

1√
2

)
, Z =

(√
2−1
2

√
2 +
√

2
√
2+1
2

√
2−
√

2

−
√

2+
√
2

2

√
2−
√
2

2

)
, (131)

and the normalization constants are

u(0) =
√

2, u(1) =
√

2, (132)

z(0) =
2√

2 +
√

2(
√

2− 1)
, z(1) =

2√
2−
√

2(
√

2 + 1)
. (133)

From Eq. (81) one obtains the expression for the new variables

Ge00 =

√
2 +
√

2

2
√

2

(
(
√

2− 1)Ne − (
√

2− 1)

(
U‖e −

Ḡ0eA‖
ρthe

)
+ T⊥e − q⊥e

)
, (134)

Ge10 =

√
2 +
√

2

2
√

2

(
(
√

2− 1)Ne + (
√

2− 1)

(
U‖e −

Ḡ0eA‖
ρthe

)
+ T⊥e + q⊥e

)
, (135)

Ge01 =

√
2−
√

2

2
√

2

(
(
√

2 + 1)Ne − (
√

2 + 1)

(
U‖e −

Ḡ0eA‖
ρthe

)
− T⊥e + q⊥e

)
, (136)

Ge11 =

√
2−
√

2

2
√

2

(
(
√

2 + 1)Ne + (
√

2 + 1)

(
U‖e −

Ḡ0eA‖
ρthe

)
− T⊥e − q⊥e

)
. (137)
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In terms of such variables, as described in Sec. 3.3, Eqs. (123)-(126) can be cast in the

simple form

∂Genm

∂t
+ ρs [χenm , Genm ]e + ρs

(
λn
ρthe

∂

∂ze
+ ζBηm

∂

∂ye

)(
Genm −

χenm

u(n)z(m)

)
+ ρs

ζn
u(n)z(m)

∂χenm

∂ye
= 0, (138)

with n = 0, 1 and m = 0, 1. The expression for the generalized stream functions χenm is

provided in Eq. (89).

The Hamiltonian structure of the hybrid system consisting of Eqs. (138), (100) and

(101)-(103) (with N = 1,M = 1), is then given by the Hamiltonian

H(Ge00 , Ge10 , Ge01 , Ge11 , gi) =
1

2

1∑
i=0

1∑
j=0

∫
d3xe

(
G2
eij
− 2ζnxe

Geij

u(i)z(j)

)
+

1

2

∫
d3xidWi

(
τi
g2i
F0i

− 2τiζnxigi

)
+

1

2

∫
d3xidWi gi

(
J0iφ−

τi
ρthi

viJ0iA‖ + τiµiJ1iB‖

)
− 1

2

1∑
i=0

1∑
j=0

∫
d3xeGeij

χeij
u(i)z(j)

(139)

and the Poisson bracket

{F,G} = −ρs
∫
d3xidWi

(
gi

[
δF

δgi
,
δG

δgi

]
i

+
1

ρthi
viF0i

δF

δgi

∂

∂zi

δG

δgi
− (µiζB − ζn)F0i

δF

δgi

∂

∂yi

δG

δgi

)
+

1∑
n=0

1∑
m=0

∫
d3xe

(
ρsu(n)z(m)Genm

[
δF

δGenm

,
δG

δGenm

]
e

− ρs
ρthe

λn
δF

δGenm

∂

∂ze

δG

δGenm

−ρs(ζBηm − ζn)
δF

δGenm

∂

∂ye

δG

δGenm

)
. (140)

Using Eqs. (139) and (140) in the general expression (19) one indeed retrieves the

evolution equations of the hybrid model.

All the considerations of Sec. 3.4 can of course be applied to this case. So,

for instance, the fields Gemn are proportional to the truncation of ge, evaluated at

(ve, µe) = (λn, ηm). The generalized stream functions χenm correspond to linear

combinations of stream functions for E × B drift, velocity along the magnetic field

and gradB drift, with relative amplitudes depending on the coefficients λn and ηm.

In the 2D limit without background gradients, the electron dynamics reduced to the

advection of Gemn by the corresponding generalized velocity fields venm .
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This example shows how one can build a Hamiltonian drift-fluid model for the

electrons (coupled with gyrokinetic ions) describing the evolution of gyrocenter density,

parallel momentum, perpendicular temperature and heat flux fluctuations, for a finite

plasma β. The resulting electron drift-fluid dynamics generalizes that described by the

Hamiltonian two-field model of Refs. [5, 43], by adding perpendicular temperature and

heat flux dynamics. To the best of our knowledge, this model was not present in the

literature before. By considering the case N = 2, M = 1, one can easily add parallel

temperature fluctuations, thus providing a Hamiltonian model describing anisotropic

electron temperature fluctuations by a fluid approach. However, if parallel temperature

fluctuations are added, our procedure requires the inclusion also of another moment,

namely g21e . Indeed, in order to be able to initiate the procedure with the matrix Γe,

one is forced to consider a total number of (N + 1)(M + 1) moments, according to Eq.

(63). This could explain why, as mentioned in Sec. 1, although so far some Hamiltonian

reduced fluid models evolving temperature fluctuations were derived [18, 15, 20, 22],

none of such models accounted also for perpendicular temperature fluctuations, if not

for the case of trivial or not systematic closures. The present procedure indeed reveals

that, in order to preserve in a systematic way the Hamiltonian structure, while adding

moments to evolve, the condition of considering the (N + 1)(M + 1) moments dictated

by Eq. (63) has to be respected.

We also stress that the presence of a Hamiltonian structure automatically implies

the existence of a total conserved energy, but the converse is not true. Requiring

a Hamiltonian structure is thus more demanding than requiring energy conservation,

which makes Hamiltonian models more difficult to build.

5. Hamiltonian gyrofluid reduction

In the presence of FLR effects, the general procedure described in Sec. 3 does not work.

Indeed, the dependence on µs of the gyroaverage operators J0s and J1s, prevents the

presence of the two commutative transformations that allow to diagonalize the system.
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Nevertheless, in a simplified setting, an analogous diagonalization procedure is still

possible, also in the presence of FLR effects. When applied to ions, the simplified setting

consists of considering, at most, the first two ion moments along the perpendicular

direction (i.e. imposing M ≤ 1), taking the βe → 0 limit and approximating

the gyroaverage operators arising when taking moments of the gyrokinetic equations.

Electrons are still treated in the limit ρthe → 0. In particular, we assume

ρthe ∼
(
βe
2

)1/2

, for βe → 0. (141)

In this βe → 0 limit, we also rescale the z variable in the following way

z =

√
βe
2

ẑ

L‖
. (142)

Moreover, although not necessary, we retain background magnetic inhomogeneity, even

though the equilibrium balance relation (13) would give ζB → 0 as βe → 0.

Inspection of the perpendicular Ampère’s law (4) in the parent model, yields that

B‖ = O(βe). (143)

Taking into account the assumption (141) and neglecting terms of order βe, while

retaining contributions of order β1/2
e , the parent gyrokinetic model (1)-(4) reduces to

∂ge
∂t

+ ρs

[
Ḡ0eφ− ve

Ḡ0eA‖
ρthe

, ge

]
e

+

√
βe
2

ρs
ρthe

ve
∂

∂ze

(
ge −F0e

(
Ḡ0eφ− ve

Ḡ0eA‖
ρthe

))
+ ρsµeζB

∂ge
∂ye
− ρsF0e(µeζB − ζn)

∂

∂ye

(
Ḡ0eφ− ve

Ḡ0eA‖
ρthe

)
= 0, (144)

∂gi
∂t

+ ρs

[
J0iφ−

τi
ρthi

viJ0iA‖, gi

]
i

+

√
βe
2

ρs
ρthi

vi
∂

∂zi

(
τigi + F0i

(
J0iφ−

τi
ρthi

viJ0iA‖

))
− ρsτiµiζB

∂gi
∂yi
− ρsF0i(µiζB − ζn)

∂

∂yi

(
J0iφ−

τi
ρthi

viJ0iA‖

)
= 0, (145)∫

dWi J0igi − Ḡ0e
∫
dWe ge = (1− Γ0i)

φ

τi
+ (1− Ḡ20e)φ, (146)

∆⊥A‖ −
βe
2

τi
ρ2thi

Γ0iA‖ −
βe
2

Ḡ20eA‖
ρ2the

= −βe
2

τi
ρthi

∫
dWi viJ0igi +

βe
2

Ḡ0e
ρthe

∫
dWe vege.

(147)
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The contributions of B‖ are no longer present in the system and parallel Ampère’s law

(147) implies, due to assumption (141), that

A‖ = O(β1/2
e ). (148)

We also notice that the parallel current is mainly provided by the electron parallel

velocity, as the parallel ion velocity is smaller by a factor of order β1/2
e . In the electron

drift-kinetic equation (144) all terms are of order 1, whereas in the ion gyrokinetic

equation (145) higher order contributions of order β1/2
e , associated with gradients along

the magnetic field, are also present. Neglecting such higher order contributions and

background inhomogeneities leads to the electrostatic limit considered in Ref. [44].

The Hamiltonian of the model is given by

H(ge, gi) = Hdke(ge) +Hgki(gi) +Hdk gk(ge, gi), (149)

where

Hdk gk(ge, gi) =
1

2

∫
d3xidWi gi

(
J0iφ−

τi
ρthi

viJ0iA‖

)
− 1

2

∫
d3xedWe ge

(
Ḡ0eφ− ve

Ḡ0eA‖
ρthe

)
, (150)

no longer contains the contributions of B‖. The Poisson bracket is still given by Eq.

(54).

5.1. Hamiltonian gyrofluid reduction

As above anticipated, we carry out the Hamiltonian gyrofluid reduction on the ion

species. We assume that the evolution of the electron species remains governed by

the drift-kinetic equation (144), so that the final result of the reduction will be a

Hamiltonian hybrid drift-kinetic/gyrofluid model. However, one could also obtain

a Hamiltonian drift-fluid/gyrofluid model by applying to the electron species, the

Hamiltonian reduction described in Sec. 3, although in the low-βe limit, if one wants to

maintain consistency with the hypotheses for the ion gyrofluid equations.
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Focusing on the ion species, we consider the truncated expansion

ḡi(xi, yi, zi, vi, µi, t) = F0i(vi, µi)
N∑
h=0

1∑
j=0

Hi(vi)√
i!

Lj(µi)ghji(xi, yi, zi, t). (151)

As above anticipated, we only consider the first two orders in the moments with respect

to µi. The number of moments with respect to vi, on the other hand, remains arbitrary

and is given by N + 1.

We introduce the matrix Γi with elements

Γihj = ghji , h = 0, · · ·N, j = 0, 1, (152)

and consider the evolution equations for the ion moments

∂ΓTijh
∂t

+ ρs

(
[G10iφ,ΓTijh ]i + [G11iφ, SjlΓTilh ]i − τi

[
G10iA‖
ρthi

,ΓTijlW
T
lh

]
i

− τi
[
G11iA‖
ρthi

, SjkΓ
T
ikl
W T
lh

]
i

)
+

√
βe
2
τi
ρs
ρthi

∂

∂zi
ΓTijlW

T
lh +

√
βe
2

ρs
ρthi

∂

∂zi

(
G1jiφδ1h − τi

G1jiA‖
ρthi

(
√

2δ2h + δ0h)

)
(153)

− ρsτiζB
∂

∂yi
VjlΓ

T
ilh
− ρs

∂

∂yi

(
(ζBVjl − ζnδjl)

(
G1liφδ0h −

τi
ρthi
G1liA‖δ1h

))
.

In Eqs. (153), FLR terms have been treated in an approximated way. In particular, the

FLR contributions arising from the electromagnetic nonlinearity [J0iφ,J0iA‖]i in Eq.

(1), when calculated exactly [9], yield additional contributions that we omitted, because

we approximated the exact expansion (37) with J0(
√

2bsµs) ≈
∑1

n=0 G1ns(bs)Ln(µs).

The adopted approximation results in the gyrofluid model depending on only two

gyroaverage operators, namely G10i and G11i , defined in Eq. (38).

In Eq. (153) we also introduced the matrix

S =

(
0 1

1 −2

)
. (154)

Insertion of the expression (151) into Eqs. (146) and (147), on the other hand, leads to

the following quasi-neutrality relation and parallel Ampère’s law:

G10ig00i + G11ig01i − Ḡ0e
∫
dWe ge = (1− Γ0i)

φ

τi
+ (1− Ḡ20e)φ, (155)

∆⊥A‖ −
βe
2

τi
ρ2thi

Γ0iA‖ −
βe
2

Ḡ20eA‖
ρ2the

= −βe
2

τi
ρthi

(G10ig10i + G11ig11i) +
βe
2

Ḡ0e
ρthe

∫
dWe vege.

(156)
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Consequently, the electromagnetic potentials are determined from the dynamical

variables by relations of the form

φ = Lφi00g00i + Lφi01g01i + Lφege, (157)

A‖ = LAi10
g10i + LAi11

g11i + LAege. (158)

Note that, compared to Eqs. (60)-(61), in the gyrofluid case, FLR effects make the field

g01i (or, equivalently, ion gyrocenter perpendicular temperature fluctuations) intervene

in the quasi-neutrality relation (157). Similarly, gyrocenter perpendicular heat flux

fluctuations (embedded in g11i) affect parallel Ampère’s law (158) in the gyrofluid case.

5.2. Changes of variables

It is possible to cast Eq. (153) in a simpler form by a procedure totally analogous to

the one described in Sec. 3.3. In particular, we notice that, for M = 1, the relation

ZTSZ = diag(1− η0, 1− η1) =

(
−1−

√
2 0

0 −1 +
√

2

)
(159)

holds. Therefore, the orthogonal matrix Z diagonalizes also S (which commutes with

V ).

Analogously to the procedure followed for the drift-fluid case, we introduce

Ji = ZTΓTi , (160)

Gi = UTJTi . (161)

In terms of the variables Ginm , the gyrofluid equations (153) read

∂Ginm

∂t
+ ρs

(
[(G10i + (1− ηm)G11i)φ,Ginm ]i −

τi
ρthi

λn[(G10i + (1− ηm)G11i)A‖, Ginm ]i

)
+

√
βe
2
τi
ρs
ρthi

λn
∂Ginm

∂zi
+

√
βe
2

ρs
ρthi

λn
u(n)z(m)

∂

∂zi
((G10i + (1− ηm)G11i)φ

− τi
ρthi

λn(G10i + (1− ηm)G11i)A‖
)
− ρsτiζBηm

∂Ginm

∂yi
(162)

− ρs
ηmζB − ζn
u(n)z(m)

∂

∂yi

(
(G10i + (1− ηm)G11i)φ−

τi
ρthi

λn(G10i + (1− ηm)G11i)A‖
)
,

for n = 0, · · · , N and m = 0, 1.
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In a compact form, Eq. (162) reads

∂Ginm

∂t
+ ρs [χinm , Ginm ]i + ρs

(
λn
ρthi

√
βe
2

∂

∂zi
− ζBηm

∂

∂yi

)(
τiGinm +

χinm

u(n)z(m)

)
+ ρs

ζn
u(n)z(m)

∂χinm

∂yi
= 0, (163)

where the ion gyrofluid potentials χinm are defined by

χinm = (G10i + (1− ηm)G11i)φ−
τi
ρthi

λn(G10i + (1− ηm)G11i)A‖. (164)

Equation (163) has a form analogous to that of its electron drift-fluid counterpart (88).

The ion gyrofluid potentials do not contain the contribution due to the nonlinear gradB

drift but, on the other hand, they include the gyroaverage operators G10i and G11i , valid

for finite bi. We also point out that alternative expressions for the gyroaverage operators

(38) can be used. For instance, in Refs. [45, 27, 34], approximated forms for such

operators are given, which provide a better agreement with linear theory for a finite

number of moments in the perpendicular direction is retained.

Because of the formal analogy between the two equations, the considerations of Sec.

3.4 on Eq. (88) can be transferred, with the appropriate replacements, to Eq. (163). We

only remark that the relative weights, 1−η0 and 1−η1, between the zero and first order

gyroaveraged electromagnetic potentials, have opposite signs. Therefore we expect such

higher order gyroaveraged potentials to modify in opposite ways the advection of Ginm

due to the zeroth order potentials G10iφ− (τi/ρthi)λnG10iA‖.

5.3. Hamiltonian structure of the hybrid drift-kinetic/gyrofluid model

The Hamiltonian structure of the hybrid model under consideration follows in a

straightforward way from the procedure adopted in Sec. 3.5. In particular, the

Hamiltonian functional is obtained upon inserting the truncated expansion (151) into

the parent Hamiltonian (149) and expressing the result using the variables Ginm instead

of the moments gnmi
. The Poisson bracket is the direct sum of the parent Poisson

bracket { , }gke for the electrons, with the Poisson bracket for the ions which is totally
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analogous to bracket found for the drift-fluid electrons in Sec. 3.5, as both are intuited

from analogous equations for the transformed variables. Therefore, we present the final

result stating that, for arbitrary N , the hybrid drift-kinetic/gyrofluid model given by

∂ge
∂t

+ ρs

[
Ḡ0eφ− ve

Ḡ0eA‖
ρthe

, ge

]
e

+

√
βe
2

ρs
ρthe

ve
∂

∂ze

(
ge −F0e

(
Ḡ0eφ− ve

Ḡ0eA‖
ρthe

))
+ ρsµeζB

∂ge
∂ye
− ρsF0e(µeζB − ζn)

∂

∂ye

(
Ḡ0eφ− ve

Ḡ0eA‖
ρthe

)
= 0, (165)

∂Ginm

∂t
+ ρs [χinm , Ginm ]i + ρs

(
λn
ρthi

√
βe
2

∂

∂zi
− ζBηm

∂

∂yi

)(
τiGinm +

χinm

u(n)z(m)

)
+ ρs

ζn
u(n)z(m)

∂χinm

∂yi
= 0, (166)

N∑
l=0

1∑
k=0

G10iGilk + (1− ηk)G11iGilk

u(l)z(k)
− Ḡ0e

∫
dWe ge = (1− Γ0i)

φ

τi
+ (1− Ḡ20e)φ, (167)

∆⊥A‖ −
βe
2

τi
ρ2thi

Γ0iA‖ −
βe
2

Ḡ20eA‖
ρ2the

= −βe
2

τi
ρthi

N∑
l=0

1∑
k=0

λl
G10iGilk + (1− ηk)G11iGilk

u(l)z(k)
+
βe
2

Ḡ0e
ρthe

∫
dWe vege, (168)

with n = 0, · · · , N and m = 0, 1, is a Hamiltonian system with Hamiltonian given by

H(Gi00 , · · · , GiN1
, ge) = Hgfi(Gi00 , · · · , GiN1

) +Hdke(ge) +Hdk gf (Gi00 , · · · , GiN1
, ge),

(169)

where

Hgfi(Gi00 , · · · , GiN1
) =

1

2

N∑
h=0

1∑
j=0

∫
d3xi

(
τiG

2
ihj
− 2ζnxi

Gihj

u(h)z(j)

)
, (170)

Hdke(ge) =
1

2

∫
d3xedWe

(
g2e
F0e

− 2ζnxege

)
, (171)

Hdk gf (Gi00 , · · · , GiN1
, ge) =

1

2

N∑
h=0

1∑
j=0

∫
d3xiGihj

χihj
u(h)z(j)

− 1

2

∫
d3xedWege

(
Ḡ0eφ− ve

Ḡ0eA‖
ρthe

)
and Poisson bracket corresponding to

{F,G} = {F,G}gke +
N∑
n=0

1∑
m=0

{F,G}inm , (172)
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where {F,G}gke is given in Eq. (55) and

{F,G}inm = −
∫
d3xi

(
ρsu(n)z(m)Ginm

[
δF

δGinm

,
δG

δGinm

]
i

+
ρs
ρthi

λn
δF

δGinm

∂

∂zi

δG

δGinm

−ρs(ζBηm − ζn)
δF

δGinm

∂

∂yi

δG

δGinm

)
. (173)

The procedure adopted to identify the Hamiltonian structure of the ion gyrofluid

equations can be used to generalize low-β Hamiltonian gyrofluid models present in the

literature [16, 17, 18] with the inclusion of moments also in the perpendicular direction.

For instance, in the case N = 1, the ion gyrofluid evolution equations read

diNi

dt
+ τi∇‖iU‖i − ρs[G11iφ, T⊥i]i + ρsτi

[
G11iA‖
ρthi

, q⊥i

]
i

− ρsτiζB
∂

∂yi
(Ni + T⊥i + G10iφ− G11iφ) + ρsζn

∂G10iφ
∂yi

= 0, (174)

di
dt

(
U‖i +

G10iA‖
ρthi

)
+ τi∇‖iNi + ρsτi

[
G11iA‖
ρthi

, T⊥i

]
i

− ρs
[
G11iφ, q⊥i −

G11iA‖
ρthi

]
i

+

√
βe
2

ρs
ρthi

∂G10iφ
∂zi

− ρsτiζB
∂

∂yi

(
U‖i + q⊥i

)
− ρsζnτi

∂

∂yi

G10iA‖
ρthi

= 0, (175)

diT⊥i
dt

+ τi∇‖iq⊥i − ρs[G11iφ,Ni + 2T⊥i]i + ρsτi

[
G11iA‖
ρthi

, U‖i + 2q⊥i

]
i

− ρsζB
∂

∂yi
(τi(Ni + 3T⊥i) + G10iφ− 3G11iφ)− ρsζn

∂G11iφ
∂yi

= 0, (176)

di
dt

(
q⊥i −

G11iA‖
ρthi

)
+ τi∇‖iT⊥i − ρs

[
G11iφ, U‖i + 2q⊥i +

G10iA‖
ρthi

− 2
G11iA‖
ρthi

]
i

+ ρsτi

[
G11iA‖
ρthi

, Ni + 2T⊥i

]
i

−
√
βe
2

ρs
ρthi

∂

∂zi
G11iφ− ρsτiζB

∂

∂yi
(U‖i + 3q⊥i) (177)

+ ρsζnτi
∂

∂yi

G11iA‖
ρthi

= 0,

where we introduced the operators

di
dt

=
∂

∂t
+ ρs[G10iφ, · ]i,

∇‖i = −ρs
[
G10iA‖
ρthi

, ·
]
i

+

√
βe
2

ρs
ρthi

∂

∂zi
. (178)

(179)

Equations (174)-(177) generalize the two ion equations, for density and parallel

momentum, of the gyrofluid model of Ref. [17]. The four equations (174)-(177) can
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be cast in the simple form (163) making use of the transformed variables Gimn defined

in Eq. (161). Note that, because the matrices U and Z do not depend on the species, but

only on the number of retained moments, i.e. N andM , the expressions for the variables

Gimn , in the case of the system (174)-(177), are totally analogous to Eqs. (134)-(137)

of the example for the electron drift-fluid equations. The generalized stream functions

χinm are obtained from Eq. (164) and the Hamiltonian structure of the total hybrid

drift-kinetic/gyrofluid system follows immediately from Eqs. (169) and (172).

Also in this case, we point out that Hamiltonian structure, associated with the

possibility of casting the evolution equations in the form (163), requires evolving the

2(N + 1) moments necessary to construct the matrix Γi. Therefore, for instance, the

six-field (for each species) gyrofluid model of Ref. [28], although energy-conserving,

is not amenable to our Hamiltonian formulation. In fact, it evolves, for the ions (in

our notation) the moments g00i , g10i , g01i , g11i , g20i and g30i . Our Hamiltonian gyrofluid

reduction for a six-field model, on the other hand, would require evolving g21i instead

of g30i .

6. Conclusions

We presented a systematic framework for building Hamiltonian drift-fluid and gyrofluid

reductions from Hamiltonian gyrokinetic equations. This procedure considerably

extends previous results [13, 14] by including the evolution of an arbitrary number

of moments in the perpendicular direction for the drift-fluid case, and of the first two

perpendicular moments in the gyrofluid case. The systematic inclusion of background

density and magnetic gradients is a further new feature of the present procedure.

Although the final result of the derivations are hybrid models, the procedure can easily

be extended to obtain fluid reductions for both species, provided that the evolutions of

the species are governed by independent Poisson brackets.

The potential for deriving Hamiltonian reduced fluid models is thus considerably

increased and, as a consequence, also the number of possible applications. The
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inclusion of perpendicular temperature fluctuations would allow to study secondary

instabilities due to temperature anisotropy (e.g. secondary firehose instability).

Investigations of the distribution of the total energy (given by the Hamiltonian), or

of other conserved quantities, among energy contributions due to fluctuations also of

perpendicular moments becomes now possible in the Hamiltonian framework. This can

have relevance for turbulence and reconnection studies. Concerning 2D Hamiltonian

magnetic reconnection, in particular, the approach based on the Lagrangian invariants

[43, 46, 47, 15, 48] can now be extended in a substantial way using the generalized

Lagrangian invariants Ge,imn introduced in this paper. The inclusion of the background

density gradient should also allow to study, for instance, drift-waves and magnetic island

rotations, in a Hamiltonian context, accounting for a considerable number of moments,

as an alternative to full gyrokinetic or kinetic models. Of course, dissipative terms can

be added to all models obtained with our procedure, in order to account for effects that

are ruled out in the Hamiltonian core of the model.

As already pointed out, the Hamiltonian character of our models is based on

the diagonalization procedure obtained with the change of variables, and this imposes

constraints on the number of moments to be retained.

As mentioned in Sec. 3.1.1, a price to pay for the Hamiltonian structure in the

drift-fluid, finite βe case, is the presence of subdominant terms in the small parameter

ρthe . To the best of our knowledge, few examples of non-dissipative reduced fluid models

possess a Hamiltonian structure and, at the same time, can be derived from a consistent

asymptotic expansion. This appears to be a main obstacle in the derivation of such

models, where the Hamiltonian structure is of noncanonical type and orderings have

to be applied both to the Hamiltonian and to the noncanonical Poisson bracket. On

the other hand, asymptotic limits taken directly on the equations of motion, do not

necessarily preserve structures (such as a Hamiltonian structure) of the equations.

Although progress has been made in the derivation of Hamiltonian reduced fluid

models for plasmas, some problems remain open. In the context of reduced fluid
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models, the general scheme presented in this paper still misses the inclusion of magnetic

curvature, which is of course relevant for local models of tokamak dynamics. The

systematic inclusion of perpendicular moments with m > 1 in gyrofluid models, appears

to remain a much more complex problem, in particular at finite βe. Background

temperature anisotropy, on the other hand, could be incorporated adopting, as parent

gyrokinetic model, the one presented in Ref. [25], as it was done in Ref. [14].

From a more theoretical point of view, an aspect of the present approach which

remains unsatisfactory is that the Poisson bracket of the fluid models is not derived

from the Poisson bracket of the parent gyrokinetic model, but rather "guessed" from

the equations of motion. Unlike what happens with the Hamiltonian, the replacement

of the functions gs, in the gyrokinetic Poisson bracket, with their truncated expansions,

was shown not to lead to the fluid Poisson brackets [23], already in the case with only

parallel moments. Therefore, the connection between the gyrokinetic and the fluid

Poisson brackets still remains to be understood.

Finally, beyond the domain of reduced fluid models, which are derived from so-

called δf gyrokinetic equations, the derivation of Hamiltonian full-f drift- and gyrofluid

models is a subject that still remains largely unexplored, although some of such models

(e.g. those in Refs. [49, 50, 33] ) have already been shown to be energy-conserving.

7. Acknowledgments

This work was carried out within the framework of the activities of the GNFM.

Appendix A. Jacobi identity for the Poisson bracket (24)

To show that the bracket (24) satisfies the Jacobi identity, we need to show that it

satisfies

J(F,G,K) = {{F,G}, K}+ {{G,K}, F}+ {{K,F}, G} = 0, (A.1)

for arbitrary functionals F,G,K of the dynamical variables ge and gi.

The bracket (24) is the direct sum of two independent brackets depending on ge
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and gi, respectively. Therefore, in order to prove the Jacobi identity, it is sufficient to

prove it for such independent brackets. To this purpose, it is convenient to decompose

the bracket for the species s in the following way:

{F,G}gks = {F,G}0s + {F,G}1s, (A.2)

where

{F,G}0s = − sgn(qs)ρs

∫
d3xsdWs

(
gs[Fgs , Ggs ]s + sgn(qs)

vs
ρths
F0sFgs

∂Ggs

∂zs

)
, (A.3)

{F,G}1s = sgn(qs)ρs

∫
d3xsdWs (µsζB − ζn)F0sFgs

∂Ggs

∂ys
. (A.4)

We can define, for each species s, the expression

Js = {{F,G}0s, K}0s+{{F,G}0s, K}1s+{{F,G}1s, K}0s+{{F,G}1s, K}1s+ 	, (A.5)

where the symbol 	 indicates all the terms obtained by cyclic permutation of F,G and

K. Then, we take advantage from the fact that { , }0s and { , }1s are both Poisson

brackets on their own and thus satisfy the Jacobi identity. Indeed, { , }0s is the Poisson

bracket appearing in Refs. [29, 30, 23], whereas { , }1s satisfies the Jacobi identity

because it is constant, i.e. independent on the dynamical variables.

Moreover, Theorem 1 of Ref. [32] implies that the contributions of second functional

derivatives of F,G and K do not contribute to the expression of Js, as they cancel by

virtue of antisymmetry. Because only the functional derivative of the cosymplectic form

contributes, we can conclude that the contribution to Js due to the third term in Eq.

(A.5) (together with the corresponding terms obtained by cyclic permutation) vanishes.

As above said, the cosymplectic operator of { , }1s is indeed constant, and thus its

functional derivatives vanish.

The expression (A.5) then reduces to

Js = {{F,G}0s, K}1s+ 	 . (A.6)
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Making use of the above mentioned Theorem 1 of Ref. [32], we obtain that

Js = −ρ2s
∫
d3xsdWs (µsζB − ζn)F0s[Fgs , Ggs ]s

∂Kgs

∂ys
+ 	,

= −ρ2s
∫
d3xsdWs (µsζB − ζn)F0s

(
[Fgs , Ggs ]s

∂Kgs

∂ys
+ [Ggs , Kgs ]s

∂Fgs
∂ys

+ [Kgs , Fgs ]s
∂Ggs

∂ys

)
= −ρ2s

∫
d3xsdWs (µsζB − ζn)F0s

(
−
[
∂Fgs
∂ys

, Ggs

]
s

Kgs −
[
Fgs ,

∂Ggs

∂ys

]
s

Kgs

+[Ggs , Kgs ]s
∂Fgs
∂ys

+ [Kgs , Fgs ]s
∂Ggs

∂ys

)
= 0, (A.7)

where integration by parts was carried out in the last two steps.

This shows that the bracket { , }gks satisfies the Jacobi identity. Consequently, the

gyrokinetic Poisson bracket { , } =
∑

s{ , }gks satisfies the Jacobi identity.
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