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Eternal solutions to a porous medium

equation with strong nonhomogeneous

absorption. Part I: Radially

non-increasing profiles

Razvan Gabriel Iagar ∗

Philippe Laurençot †

Abstract

Existence of specific eternal solutions in exponential self-similar form to the fol-
lowing quasilinear diffusion equation with strong absorption

∂tu = ∆um − |x|σuq,

posed for (t, x) ∈ (0,∞)×R
N , with m > 1, q ∈ (0, 1) and σ = σc := 2(1− q)/(m− 1)

is proved. Looking for radially symmetric solutions of the form

u(t, x) = e−αtf(|x|eβt), α =
2

m− 1
β,

we show that there exists a unique exponent β∗ ∈ (0,∞) for which there exists a one-
parameter family (uA)A>0 of solutions with compactly supported and non-increasing
profiles (fA)A>0 satisfying fA(0) = A and f ′

A(0) = 0. An important feature of these
solutions is that they are bounded and do not vanish in finite time, a phenomenon
which is known to take place for all non-negative bounded solutions when σ ∈ (0, σc).

MSC Subject Classification 2020: 35C06, 34D05, 35A24, 35B33, 35K65.

Keywords and phrases: porous medium equation, spatially inhomogeneous absorption,
eternal solutions, exponential self-similarity, global solutions.

1 Introduction and main results

The goal of the present paper (and also of its second part [22]) is to address the problem
of existence and classification of some specific solutions to the following porous medium
equation with strong absorption

∂tu−∆um + |x|σuq = 0, (t, x) ∈ (0,∞) × R
N , (1.1)
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in the range of exponents

m > 1, q ∈ (0, 1), σ = σc :=
2(1 − q)

m− 1
. (1.2)

On the one hand, Eq. (1.1) features, in the range of exponents given in (1.2), a competition
between the degenerate diffusion term, which tends to conserve the total mass of the
solutions while expanding their supports, and the absorption term which leads to a loss
of mass. As it has been established and will be explained below, absorption becomes
stronger as its exponent q decreases and dominant in the range we are dealing with,
leading to specific, although sometimes surprising phenomena such as finite time extinction,
instantaneous shrinking and localization of the supports of the solutions. On the other
hand, the weight |x|σ with σ > 0 affects the absorption in the sense of enhancing its effect
over regions far away from the origin, where |x| is large, while reducing its strength near
x = 0, where |x|σ is almost zero (and formally there is even no absorption at x = 0).

The balance between these two effects has been best understood in the spatially homo-
geneous case σ = 0 of Eq. (1.1). A lot of development has been done several decades ago
in the range q > m > 1 where the diffusion is strong and the absorption is not leading
the dynamics of the equations, see for example [27–32, 34] and references therein. In this
range, the previous knowledge of the porous medium equation and its self-similar behavior
had a strong influence in developing the theory. The intermediate range 1 < q ≤ m is not
yet totally understood in higher space dimensions. In dimension N = 1 it has been shown
that solutions are global in time but their supports are localized if the initial condition is
compactly supported; that is, there exists a radius R > 0 not depending on time such that
suppu(t) ⊆ B(0, R) for any t > 0. Self-similar solutions might become unbounded [12,33]
and thus a delicate analysis of the large time behavior, involving the formation of boundary
layers, is needed, see [11]. Such descriptions are still lacking in dimension N ≥ 2.

More related to our study, still assuming that σ = 0, the range q ∈ (0, 1) is the most
striking one, where the absorption term dominates the diffusion and leads to two new
mathematical phenomena. On the one hand, the finite time extinction stemming from
the ordinary differential equation ∂tu = −uq obtained by neglecting the diffusion has been
established by Kalashnikov [25,26], emphasizing the dominance of the absorption term. On
the other hand, instantaneous shrinking of supports of solutions to Eq. (1.1) (with σ = 0)
emanating from a bounded initial condition u0 such that u0(x) → 0 as |x| → ∞ takes
place, that is, for any non-negative initial condition u0 ∈ L∞(RN ) such that u0(x) → 0
as |x| → ∞ and τ > 0, there is R(τ) > 0 such that suppu(t) ⊆ B(0, R(τ)) for all t ≥ τ .
This rather unexpected behavior is once more due to the strength of the absorption, which
involves a very quick loss of mass and has been proved in [1] after borrowing ideas from
previous works [14, 26] devoted to the semilinear case. Finer properties of the dynamics
of Eq. (1.1) for σ = 0 in this range, such as the behavior near the extinction time or even
the extinction rates, are still lacking in a number of cases and seem (up to our knowledge)
to be available only when m+ q = 2 in [16], revealing a case of asymptotic simplification.
Completing this picture with the cases when m+q 6= 2 appears to be a rather complicated
open problem.

Drawing our attention now to the spatially inhomogeneous Eq. (1.1) when σ > 0, recent
results have shown that the magnitude of σ has a very strong influence on the dynamics of
Eq. (1.1) and, in some cases, the weight actually allows for a better understanding of the
dynamics. More precisely, the analysis performed by Belaud and collaborators [3–5], along
with the instantaneous shrinking of supports for bounded solutions to Eq. (1.1) proved
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in [21], shows that, for 0 < σ < σc, any non-negative solution to Eq. (1.1) with bounded
initial condition vanishes in finite time. A more direct proof of this result is given by
the authors in the recent short note [20]. On the contrary, after developing the general
theory of well-posedness for Eq. (1.1), we have focused on the range σ > σc in our previous
work [21] and proved that, in the latter, finite time extinction depends strongly on how
concentrated is the initial condition in a neighborhood of the origin. More precisely, initial
data which are positive in a ball B(0, δ) give rise to solutions with a non-empty positivity
set for all times,

{x ∈ R
N : u(t, x) > 0} 6= ∅ for all t > 0, (1.3)

when σ > σc, while initial data which vanish in a suitable way as x → 0 and with a
sufficiently small L∞ norm lead to solutions vanishing in finite time, as proved in [20]
where optimal conditions are given. All these cases of different dynamics are consequences
of the two types of competitions explained in the previous paragraphs.

The exponent σc = 2(1 − q)/(m − 1) thus appears to separate the onset of extinction in
finite time for arbitrary non-negative and bounded initial conditions which occurs for lower
values of σ and the positivity property (1.3) which is known to take place for higher values
of σ, in particular for initial conditions which are positive in a ball B(0, δ). According
to [20], when σ = σc, there are non-negative solutions to Eq. (1.1) vanishing in finite
time, their initial conditions having a sufficiently small L∞-norm and decaying to zero in a
suitable way as x → 0, and the issue we address here is whether the positivity property (1.3)
also holds true for some solutions to Eq. (1.1) when σ = σc. We actually construct specific
solutions to Eq. (1.1) with σ = σc featuring this property and these solutions turn out to
have an exponential self-similar form as explained in detail below. In particular, they are
defined for all t ∈ R.

Main results. We are looking in this paper for some special solutions to Eq. (1.1) with
m, q and σ = σc as in (1.2) having an exponential self-similar form, that is,

u(t, x) = e−αtf(|x|eβt), (t, x) ∈ (0,∞)× R
N . (1.4)

Notice that solutions as in (1.4) are actually defined for all t ∈ (−∞,∞); that is, they
are not only global in time but eternal. Even if solutions of the form (1.4) are rather
unexpected for parabolic equations due to the irreversibility of time, several equations are
known to have such solutions but usually in critical cases separating different behaviors.
Parabolic equations featuring this property include the two-dimensional Ricci flow [13,18],
the fast diffusion equation with critical exponent mc = (N − 2)/N in space dimension
N ≥ 3 [15], a viscous Hamilton-Jacobi equation featuring singular diffusion of p-Laplacian
type, p ∈ (2N/(N + 1), 2), and critical gradient absorption [19], and the related reaction-
diffusion equation ∂tu−∆um−|x|σuq = 0 [23,24]. Concerning the latter, the critical value
of σ is exactly the same as in (1.2), but the dynamic properties of the solutions strongly
differ from the present work, since the spatially inhomogeneous part is there a source term,
introducing mass to the equation. Eternal solutions are also available for kinetic equations,
such as the spatially homogeneous Boltzmann equation for Maxwell molecules [7, 9] or
Smoluchowski’s coagulation equation with coagulation kernel of homogeneity one [6, 8].
Let us finally mention that, besides solutions of the form (1.4), another important class
of self-similar eternal solutions of evolution problems is that of traveling wave solutions
of the form (t, x) 7→ u(x − ct) in space dimension N = 1, which are available for scalar
conservation laws and parabolic equations such as the celebrated Fisher-KPP equation,
see [10,17,35] and the references therein.
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Returning to the ansatz (1.4), setting ξ = |x|eβt and performing some direct calculations,
we readily find that the self-similar exponents must satisfy the condition

α =
2

m− 1
β, (1.5)

where β becomes a free parameter for our analysis, while the profile f solves the differential
equation

(fm)′′(ξ) +
N − 1

ξ
(fm)′(ξ) + αf(ξ)− βξf ′(ξ)− ξσf q(ξ) = 0, ξ > 0. (1.6)

The solutions to Eq. (1.6) we are looking for in this first part of a two-parts work are
solutions taking positive values at ξ = 0. To this end, let us observe that we can fix,
without loss of generality, the initial condition as

f(0) = 1, f ′(0) = 0. (1.7)

Indeed, given a > 0 and a solution f to (1.6)-(1.7), we can readily obtain by direct
calculations that the rescaled function

g(ξ; a) = af(a−(m−1)/2ξ) (1.8)

solves (1.6) with initial conditions g(0; a) = a, g′(0; a) = 0. This leaves us with the task of
solving the Cauchy problem (1.6)-(1.7), which is performed in the next result.

Theorem 1.1. Let m, q and σ = σc as in (1.2). There exists a unique exponent β∗

(and corresponding α∗ = 2β∗/(m − 1)) such that, for α = α∗ and β = β∗, the Cauchy
problem (1.6)-(1.7) has a compactly supported and non-negative solution f∗. The function
U∗ defined by

U∗(t, x) = e−α∗tf∗(|x|eβ∗t), (t, x) ∈ R× R
N ,

is then a self-similar solution to Eq. (1.1) in exponential form (1.4).

Let us point out that, in strong contrast with the range σ > 2(1 − q)/(m − 1) analyzed
in [21] and where the self-similarity exponents were uniquely determined, in the present
case we have two free parameters for the shooting technique: both the initial value of the
solution at x = 0 and the self-similar exponent β. Thus, in order to have uniqueness, we
need to fix this initial value in view of the rescaling (1.8), as explained above.

One of the interesting features of this work is the fact that the proof of Theorem 1.1 is
based on a mix between various techniques. We employ mainly a shooting technique with
respect to the free parameter β, but in order to study the interface behavior and establish
the uniqueness in Theorem 1.1 we transform (1.6) into a quadratic three-dimensional
autonomous dynamical system and study a specific local behavior and critical point in the
associated phase space. Let us stress here that we have to go deeper than the analogous
study of the interface behavior in [21, Section 4], since in some cases we need a second
order local expansion near the interface point.

We end up this presentation by mentioning that the present work is the first part of a
two-parts analysis of eternal solutions to Eq. (1.1) and will be followed by a companion
work [22] in which a second and rather surprising type of profiles, presenting a dead-core,
is identified and classified, by employing a quite different bunch of techniques based on the
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complete analysis of an auxiliary dynamical system. Altogether, the existence of such a
variety of self-similar solutions in exponential form shows that the dynamics of Eq. (1.1)
in the critical case σ = σc is expected to be rather complex and to depend on many
features of the initial conditions (such as concentration near x = 0, magnitude of ‖u0‖∞
and location of the points where the maximum is attained, to name but a few) and is
definitely a challenging problem.

2 Proof of Theorem 1.1

The proof of Theorem 1.1 is based on a shooting method with respect to the free exponent
β and follows the same strategy as [21, Section 4]. However, a number of preparatory
results are proved in a different way and the analysis near the interface requires to be
improved in some cases with the help of a phase space analysis. We divide this section
into several subsections containing the main steps of the proof.

2.1 Existence of a compactly supported self-similar solution

Let β > 0 and α = 2β/(m − 1). Recalling the differential equation (1.6) satisfied by the
self-similar profiles f and setting for simplicity F = fm, we study, as explained in the
Introduction, the Cauchy problem

F ′′(ξ) +
N − 1

ξ
F ′(ξ) + αf(ξ)− βξf ′(ξ)− ξσf q(ξ) = 0, (2.1a)

F (0) = 1, F ′(0) = 0. (2.1b)

We obtain from the Cauchy-Lipschitz theorem that the problem (2.1) has a unique positive
solution F (·;β) ∈ C2([0, ξmax(β))) defined on a maximal existence interval for which we
have the following alternative: either ξmax(β) = ∞ or

ξmax(β) < ∞ and lim
ξ→ξmax(β)

[

F (ξ;β) +
1

F (ξ;β)

]

= ∞.

We next define

ξ0(β) := inf{ξ ∈ (0, ξmax(β)) : f(ξ) = 0} ∈ (0, ξmax(β)], (2.2)

and
ξ1(β) := sup{ξ ∈ (0, ξ0(β)) : f ′ < 0 on (0, ξ)}. (2.3)

We readily notice from (2.1a) and the C2-regularity of F that

F ′′(0;β) = − 2β

(m− 1)N
< 0, (2.4)

so that ξ1(β) > 0. Let us now study more precisely the behavior of F (·;β) near ξ0(β)
when ξ0(β) is finite.

Lemma 2.1. Consider β > 0 such that ξ0(β) < ∞. Then ξmax(β) = ξ0(β) and F =
F (·;β) ∈ C1([0, ξ0(β)]) satisfies F (ξ0(β)) = 0 and

F ′(ξ0(β)) = ξ0(β)
1−N

∫ ξ0(β)

0
ξN−1
∗

[

ξσ∗ f
q(ξ∗)− (α+Nβ)f(ξ∗)

]

dξ∗,
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recalling that f = F 1/m. Furthermore, if ξ1(β) = ξ0(β), then the extension of F by zero
on (ξ0(β),∞) belongs to C2([0,∞)) and is a solution to (2.1) on [0,∞) with

F (ξ0(β)) = F ′(ξ0(β)) = F ′′(ξ0(β)) = 0.

Proof. As ξ0(β) < ∞, then the above alternative implies that ξmax(β) = ξ0(β) and

lim
ξ→ξ0(β)

F (ξ) = 0. (2.5)

Moreover, it follows from (2.1a) that

d

dξ

[

ξN−1F ′(ξ) + βξNf(ξ)
]

= ξN−1
[

ξσf q(ξ)− (α +Nβ)f(ξ)
]

for ξ ∈ [0, ξ0(β)); hence, after integration over (0, ξ),

ξN−1F ′(ξ) + βξNf(ξ) =

∫ ξ

0
ξN−1
∗

[

ξσ∗ f
q(ξ∗)− (α +Nβ)f(ξ∗)

]

dξ∗.

Since we have already established in (2.5) that F and f have a continuous extension on
[0, ξ0(β)], we may take the limit ξ → ξ0(β) in the above identity and complete the proof of
the first statement of Lemma 2.1. Owing to the definition of ξ1(β), the second statement
then readily follows with the help of (2.1a).

We now introduce the following three sets:

A := {β > 0 : ξ0(β) < ∞ and F ′(ξ;β) < 0 for ξ ∈ (0, ξ0(β)]},
C := {β > 0 : ξ1(β) < ξ0(β)},
B := (0,∞) \ (A ∪ C),

and observe that A ∩ C = ∅. Let us first show that the sets A and C are non-empty and
open.

Lemma 2.2. The set A is non-empty and open and there exists βu > 0 such that (βu,∞) ⊆
A.

Proof. Set g(ξ;β) = f(ξ/
√
β;β) for ξ ∈ [0,

√
βξ0(β)], or equivalently f(ξ;β) = g(ξ

√
β;β)

for ξ ∈ [0, ξ0(β)]. Setting also G := gm, we obtain by straightforward calculations that g
(and thus G) solves the Cauchy problem

G′′(ζ) +
N − 1

ζ
G′(ζ) +

2

m− 1
g(ζ)− ζg′(ζ)− β−(σ+2)/2ζσgq(ζ) = 0, (2.6a)

G(0) = 1, G′(0) = 0, (2.6b)

where ζ = ξ
√
β. Noticing that in the limit β → ∞ the last term in (2.6a) vanishes, we

proceed exactly as in the proof of [21, Lemma 4.4] (see also the proof of [36, Theorem 2]
from where the idea comes) to conclude that there exists βu > 0 such that (βu,∞) ⊆ A.
We omit here the details as they are totally similar to the ones in the quoted references.
That A is open is an immediate consequence of the continuous dependence of f(·;β) on
β.
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As for the set C, we do not need a rescaling in order to prove that it is non-empty.

Lemma 2.3. The set C is non-empty and open and there exists βl > 0 such that (0, βl) ⊆ C.

Proof. We obtain by letting β → 0 in (2.1) that the limit equation is

H ′′(ξ) +
N − 1

ξ
H ′(ξ)− ξσHq/m(ξ) = 0, (2.7a)

with initial conditions
H(0) = 1, H ′(0) = 0. (2.7b)

By the Cauchy-Lipschitz theorem, the problem (2.7) has a unique positive solution H ∈
C2([0, ξH)) defined on a maximal existence interval for which we have the following alter-
native: either ξH = ∞ or

ξH < ∞ and lim
ξ→ξH

[

H(ξ) +
1

H(ξ)

]

= ∞.

It follows from (2.7) that

d

dξ
(ξN−1H ′(ξ)) = ξN−1

[

H ′′(ξ) +
N − 1

ξ
H ′(ξ)

]

= ξN+σ−1Hq/m(ξ) > 0.

Hence ξN−1H ′(ξ) > 0 and thus H ′(ξ) > 0 for any ξ ∈ (0, ξH). Given δ ∈ (0, ξH) fixed, we
have H ′(δ) > 0 and H(ξ) > 1 for any ξ ∈ (0, δ). The continuous dependence with respect
to the parameter β in (2.1) ensures that there exists βl > 0 such that

F (ξ;β) >
1

2
, ξ ∈ [0, δ], F ′(δ;β) >

H ′(δ)

2
> 0

for any β ∈ (0, βl). Recalling (2.2) and (2.3), we conclude that ξ1(β) ∈ (0, δ) and ξ0(β) > δ
for any β ∈ (0, βl); that is, ξ1(β) < ξ0(β) for β ∈ (0, βl)and (0, βl) ⊆ C. We use once more
the continuous dependence with respect to the parameter β of F (·;β) to conclude that C
is open.

We infer from Lemmas 2.2 and 2.3 that the set B is non-empty and closed. The instanta-
neous shrinking of supports of bounded solutions to Eq. (1.1) proved in [21, Theorem 1.1],
together with the definition of the set A, readily gives the following characterization of the
elements in the set B.

Lemma 2.4. Let β ∈ B. Then ξ0(β) = ξ1(β) < ∞ and (fm)′(ξ0(β);β) = 0.

The proof is immediate and is given with details in [21, Lemma 4.6]. We thus conclude
that, for any element β ∈ B, we have an eternal self-similar solution to Eq. (1.1) in the
form (1.4) with profile f(·;β) as in Lemma 2.4.

2.2 Monotonicity

In this section we prove the following general monotonicity property of the profiles f(·;β)
solving (2.1) with respect to the parameter β.
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Lemma 2.5. Let 0 < β1 < β2 < ∞. Then

f(ξ;β1) > f(ξ;β2) for any ξ ∈
(

0,min{ξ1(β1), ξ1(β2)}
)

.

Proof. Consider β2 > β1 > 0 and pick X ∈
(

0,min{ξ1(β1), ξ1(β2)}
)

. Then

Fi := F (·;βi) > 0, F ′
i < 0, in (0,X).

Since β2 > β1 and F1(0) = F2(0) = 1, F ′
1(0) = F ′

2(0) = 0, we infer from (2.4) that F2 < F1

in a right-neighborhood of ξ = 0. We may thus define

ξ∗ := inf{ξ ∈ (0,X) : F1(ξ) = F2(ξ)} > 0,

and notice that F2(ξ) < F1(ξ) for any ξ ∈ (0, ξ∗). Assume for contradiction that ξ∗ < X.
Then F2(ξ∗) = F1(ξ∗). We introduce for any λ ≥ 1 the following family of rescaled
functions

Gλ(ξ) := λmF2(λ
−(m−1)/2ξ), ξ ∈ [0, ξ∗], (2.8)

which are also solutions to (2.1a) with β = β2, and adapt an optimal barrier argument
from [37] (see also [21, Lemma 4.12]). Owing to the monotonicity of F1 and F2 on [0,X],
we first note that

min
ξ∈[0,ξ∗]

Gλ(ξ) = Gλ(ξ∗) = λmF2(λ
−(m−1)/2ξ∗) ≥ λmF2(ξ∗),

whence
lim
λ→∞

min
ξ∈[0,ξ∗]

Gλ(ξ) = ∞,

while F1(ξ) ≤ 1 for ξ ∈ [0, ξ∗]. Consequently, the optimal parameter

λ0 := inf{λ ≥ 1 : Gλ(ξ) > F1(ξ), ξ ∈ [0, ξ∗]} (2.9)

is well defined and finite. Since F2 < F1 on (0, ξ∗), we also deduce that λ0 > 1. The
definition of λ0 guarantees that there exists η ∈ [0, ξ∗] such that

Gλ0
(η) = F1(η), Gλ0

≥ F1 in [0, ξ∗]. (2.10)

On the one hand, we infer from the monotonicity of F2 and the property λ0 > 1 that

F1(ξ∗) = F2(ξ∗) < λm
0 F2(ξ∗) < λm

0 F2(λ
−(m−1)/2
0 ξ∗) = Gλ0

(ξ∗),

which rules out the possibility that η = ξ∗. On the other hand,

Gλ0
(0) = λm

0 F2(0) = λm
0 > 1 = F1(0),

so that η > 0. Consequently, η ∈ (0, ξ∗) and we derive from (2.10) that Gλ0
− F1 attains

a strict minimum at ξ = η, which, together with the definition of η, implies that

Gλ0
(η) = F1(η), G′

λ0
(η) = F ′

1(η), G′′
λ0
(η) ≥ F ′′

1 (η). (2.11)
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Since both Gλ0
and F1 are solutions to (2.1a) with parameters β2 and β1, respectively, we

infer from (2.11) that

0 = G′′
λ0
(η) +

N − 1

η
G′

λ0
(η) +

2β2
m− 1

G
1/m
λ0

(η)− β2η
(

G
1/m
λ0

)′

(η)− ησG
q/m
λ0

(η)

≥ F ′′
1 (η) +

N − 1

η
F ′
1(η) +

2β2
m− 1

F
1/m
1 (η)− β2η

(

F
1/m
1

)′

(η) − ησF
q/m
1 (η)

= − 2β1
m− 1

F
1/m
1 (η) + β1

η

m
F

(1−m)/m
1 (η)F ′

1(η) +
2β2

m− 1
F

1/m
1 (η) − β2

η

m
F

(1−m)/m
1 (η)F ′

1(η)

= (β2 − β1)F
(1−m)/m
1 (η)

[

2

m− 1
F1(η) −

η

m
F ′
1(η)

]

> 0,

which leads to a contradiction. We have thus established that F2 < F1 on (0,X) and the
proof is complete due to the arbitrary choice of X ∈ (0, ξ1(β2)) ∩ (0, ξ1(β1)).

Let us remark that, in contrast to the range σ > σc studied in [21, Section 3], in our case
the profiles f(·;β) are ordered in a decreasing way with respect to the shooting parameter β.

2.3 Interface behavior

The goal of this section is deriving the local behavior near the interface point ξ0(β) for
profiles f(·;β) with β ∈ B. We begin with a formal calculation. Let us drop for simplicity
β from the notation and assume that, at the interface, we have

f(ξ) ∼ A(ξ0 − ξ)θ, f ′(ξ) ∼ −Aθ(ξ0 − ξ)θ−1, as ξ → ξ0 = ξ0(β),

for some A > 0 and θ > 0 to be determined. We also obtain formally that

(fm)′(ξ) ∼ −mθAm(ξ0 − ξ)mθ−1, (fm)′′(ξ) ∼ mθ(mθ − 1)Am(ξ0 − ξ)mθ−2,

both equivalences holding true as ξ → ξ0. Inserting this ansatz in (1.6) gives, as ξ → ξ0,

mθ(mθ − 1)Am(ξ0 − ξ)mθ−2 − N − 1

ξ0
mθAm(ξ0 − ξ)mθ−1

+ βξ0Aθ(ξ0 − ξ)θ−1 +
2β

m− 1
A(ξ0 − ξ)θ −Aqξσ0 (ξ0 − ξ)qθ = 0.

We thus have four possibilities of balancing the dominating powers.

• mθ − 2 = θ − 1 < qθ. This implies θ = 1/(m− 1), but in this case mθ − 1 = θ > 0 and
thus this choice leads to A = 0.

• θ−1 = qθ < mθ−2. This implies θ = 1/(1−q) and mθ−2 > qθ leads straightforwardly
to m+ q > 2.

• mθ − 2 = qθ < θ − 1. This implies θ = 2/(m − q) and the inequality θ − 1 > qθ easily
gives m+ q < 2.

• mθ − 2 = qθ = θ − 1. This implies that θ = 1/(m− 1) = 1/(1 − q) and m+ q = 2.

Looking now at the constant A in front of the previous ansatz, we find the following three
cases:

Case 1. m + q > 2. According to the formal calculation, we expect θ = 1/(1 − q) and
then βξ0Aθ = Aqξσ0 , which leads to

A1−q =
(1− q)ξσ−1

0

β
. (2.12)
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Case 2. m+ q = 2. We expect θ = 1/(1 − q) = 2/(m− q) and

mθ(mθ − 1)Am + βξ0Aθ −Aqξσ0 = 0;

that is, A = A∗ with A∗ being the unique positive solution to

m(m+ q − 1)

(1− q)2
Am−q

∗ +
βξ0
1− q

A1−q
∗ − ξσ0 = 0.

Since m+ q = 2 and σ = 2 in that case, the above equation simplifies to

m

(1− q)2
Am−q

∗ +
βξ0
1− q

A
(m−q)/2
∗ − ξ20 = 0. (2.13)

Case 3. m+ q < 2. We expect θ = 2/(m− q) and mθ(mθ − 1)Am = Aqξσ0 , hence

Am−q =
(m− q)2

2m(m+ q)
ξσ0 . (2.14)

In order to prove in a rigorous way all these estimates near the interface, we proceed as
in [21]. We start with some general upper bounds at the interface, but omit the proof, as
it is totally similar to that of [21, Lemma 4.7].

Lemma 2.6. Assume that β ∈ B and set f = f(·;β) and ξ0 = ξ0(β). Then

|(fm−q)′(ξ)| ≤ 2N−1ξσ0 (ξ0 − ξ), ξ ∈
(

ξ0
2
, ξ0

)

, (2.15)

and

f(ξ) ≤ βq−1ξ
(σ−1)/(1−q)
0 (ξ0 − ξ)1/(1−q), ξ ∈

(

ξ0
2
, ξ0

)

. (2.16)

Moreover, there exists C1 > 0 depending only on N , m and q such that

f(ξ) ≤ C1ξ
σ/(m−q)
0 (ξ0 − ξ)2/(m−q), ξ ∈

(

ξ0
2
, ξ0

)

. (2.17)

The following consequences of Lemma 2.6 are drawn in the same way as in [21, Lemmas 4.8
and 4.9].

Corollary 2.7. Let β ∈ B and set f = f(·;β) and ξ0 = ξ0(β). Then

lim sup
ξ→ξ0

(

f (m−q)/2
)′

(ξ) > −∞.

In addition, if m+ q > 2 then

lim sup
ξ→ξ0

(

fm−1
)′
(ξ) = 0.

The estimates given in Corollary 2.7 allow us to proceed as in [21, Propositions 4.10
and 4.11] in order to identify the precise algebraic rate at which f(·;β) vanishes at the
interface, which depends on the sign of m+ q − 2 as follows.
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Proposition 2.8. Let β ∈ B and set f = f(·;β) and ξ0 = ξ0(β).

(a) If m+ q < 2, then, as ξ → ξ0,

f(ξ) = K1ξ
σ/(m−q)
0 (ξ0 − ξ)2/(m−q) + o((ξ0 − ξ)2/(m−q)), (2.18)

where

K1 :=

[

m− q
√

2m(m+ q)

]2/(m−q)

.

(b) If m+ q = 2, then σ = 2 and, as ξ → ξ0,

f(ξ) = K1ξ
2/(m−q)
0 K2(β)(ξ0 − ξ)2/(m−q) + o((ξ0 − ξ)2/(m−q)), (2.19)

where K1 is defined in part (a) and

K2(β) :=

[
√

1 +
β2

4m
− β

2
√
m

]2/(m−q)

.

(c) If m+ q > 2, then, as ξ → ξ0,

f(ξ) = K3(β)ξ
(σ−1)/(1−q)
0 (ξ0 − ξ)1/(1−q) + o((ξ0 − ξ)1/(1−q)), (2.20)

where

K3(β) :=

[

1− q

β

]1/(1−q)

.

Let us notice here that the values of K1, K2(β) and K3(β) in (2.18), (2.19) and (2.20)
correspond to the values of A obtained through the formal deduction in (2.14), (2.13)
and (2.12), respectively. It is now worth pointing out that there is no explicit dependence
on β in the behavior (2.18) when m+ q < 2. This is why we need to perform some rather
serious extra work in order to identify the second order of the expansion at the interface
when m+ q ∈ (1, 2), as formal computations (which are rather tedious and we do not give
here) reveal that β shows up in an explicit way in this next order, a feature that will be
very helpful in the proof of the uniqueness issue. More precisely, we have the following
asymptotic expansions.

Proposition 2.9. Let m + q < 2, β ∈ B and set f = f(·;β) and ξ0 = ξ0(β). Then, as
ξ → ξ0,

f(ξ) = K1ξ
σ/(m−q)
0 (ξ0 − ξ)2/(m−q)

−K0(β)ξ
(σ+m+q−2)/(m−q)
0 (ξ0 − ξ)(4−m−q)/(m−q)

+ o((ξ0 − ξ)(4−m−q)/(m−q)),

(2.21)

where K1 is defined in (2.18) and

K0(β) :=
(m− q)βK2−m

1

m(1− q)(m+ q + 2)
. (2.22)
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Proof. As in the proof of [21, Proposition 4.10], we introduce the new dependent variables

X (ξ) :=
√
mξ−(σ+2)/2f (m−q)/2(ξ),

Y(ξ) := √
mξ−σ/2f (m−q−2)/2(ξ)f ′(ξ),

Z(ξ) :=
α√
m
ξ(2−σ)/2f (2−m−q)/2(ξ),

(2.23)

as well as a new independent variable η via the integral representation

η(ξ) :=
1√
m

∫ ξ

0
f (q−m)/2(ξ∗)ξ

σ/2
∗ dξ∗, ξ ∈ [0, ξ0). (2.24)

Introducing (X,Y,Z) defined by (X ,Y,Z) = (X ◦ η, Y ◦ η, Z ◦ η), we see that (X,Y,Z)
solves the quadratic autonomous dynamical system



































Ẋ = X

[

m− q

2
Y − σ + 2

2
X

]

Ẏ = −m+ q

2
Y 2 −

(

N − 1 +
σ

2

)

XY −XZ +
m− 1

2
Y Z + 1

Ż = Z

[

2−m− q

2
Y +

2− σ

2
X

]

.

(2.25)

Observe that, owing to (2.18),
lim
ξ→ξ0

η(ξ) = ∞,

so that studying the behavior of (X ,Y,Z)(ξ) as ξ → ξ0 amounts to that of (X,Y,Z)(η)
as η → ∞. Furthermore, we argue as in [21, Proposition 4.10] to deduce from (2.18) and
Corollary 2.7 that

(X,Y,Z)(η) ∈ (0,∞) × (−∞, 0)× (0,∞), η > 0,

and

lim
η→∞

(X,Y,Z)(η) =

(

0,−
√

2

m− q
, 0

)

.

We are thus interested in the behavior near the critical point (0,−
√

2/(m+ q), 0). We
translate this point to the origin of coordinates by setting

W = Y +

√

2

m+ q
. (2.26)

We then find by direct calculation that the system (2.25) becomes


























































Ẋ = − m− q
√

2(m+ q)
X +

m− q

2
XW − σ + 2

2
X2

Ẇ =
(

N − 1 +
σ

2

)

√

2

m+ q
X +

√

2(m+ q)W − m− 1
√

2(m+ q)
Z

−
(

N − 1 +
σ

2

)

XW −XZ − m+ q

2
W 2 +

m− 1

2
WZ

Ż = − 2−m− q
√

2(m+ q)
Z +

2−m− q

2
WZ +

2− σ

2
XZ.

(2.27)
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Introducing F(V) = (F1, F2, F3)(V) defined for V = (V1, V2, V3) ∈ R
3 by

F1(V) := − m− q
√

2(m+ q)
V1 +

m− q

2
V1V2 −

σ + 2

2
V 2
1

F2(V) :=
(

N − 1 +
σ

2

)

√

2

m+ q
V1 +

√

2(m+ q)V2 −
m− 1

√

2(m+ q)
V3

−
(

N − 1 +
σ

2

)

V1V2 − V1V3 −
m+ q

2
V 2
2 +

m− 1

2
V2V3

F3(V) := − 2−m− q
√

2(m+ q)
V3 +

2−m− q

2
V2V3 +

2− σ

2
V1V3,

and denoting the semiflow associated with the dynamical system

V̇(η) = F(V(η)), η > 0, V(0) = V0 ∈ R
3, (2.28)

by ϕ(·;V0), we deduce from (2.27) that V∗ := (X,W,Z) = ϕ(·;V∗(0)) is defined on [0,∞)
with

lim
η→∞

V∗(η) = 0. (2.29)

The matrix associated with the linearization of the system (2.28) at the origin is

M =

√

2

m+ q













−m− q

2
0 0

N − 1 +
σ

2
m+ q −m− 1

2

0 0 −2−m− q

2













having three distinct eigenvalues

λ1 = − m− q
√

2(m+ q)
, λ2 =

√

2(m+ q), λ3 = − 2−m− q
√

2(m+ q)
,

with corresponding eigenvectors (not normalized)

E1 =

(

1,−2(N − 1) + σ

3m+ q
, 0

)

, E2 = (0, 1, 0), E3 =

(

0,
m− 1

2 +m+ q
, 1

)

.

Then 0 is an hyperbolic point of ϕ and has a two-dimensional stable manifold Ws(0).
According to the proof of the stable manifold theorem (see for example [2, Theorem 19.11]),
there is an open neighborhood V of zero in R

3, an open neighborhood V0 of zero in R
2 and

a C2-smooth function h : V0 → R such that h(0, 0) = ∂xh(0, 0) = ∂zh(0, 0) = 0 and the
local stable manifold

WV
s (0) := {V0 ∈ Ws(0) : ϕ(η;V0) ∈ V for all η ≥ 0}

satisfies
WV

s (0) ⊆ {xE1 + h(x, z)E2 + zE3 : (x, z) ∈ V0},
its tangent space at 0 being RE1 ⊕ RE3. Since {ϕ(η;V∗(0)) : η ≥ η0} is included in
Ws(0) ∩ V for η0 large enough by (2.29), we conclude that ϕ(η;V∗(0)) belongs to WV

s (0)
for η ≥ η0. Consequently, there are functions (x, z) : [η0,∞) → V0 such that

(X,W,Z)(η) = ϕ(η;V∗(0)) = x(η)E1 + h(x(η), z(η))E2 + z(η)E3
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for η ≥ η0. In fact, x(η) = X(η), z(η) = Z(η) and

W (η) = −2(N − 1) + σ

3m+ q
X(η) +

m− 1

2 +m+ q
Z(η) + h(X(η), Z(η)). (2.30)

Let us notice from (2.23) that

Z(ξ) = αm(q−1)/(m−q)X (2−m−q)/(m−q)(ξ),

which implies that X(η) = o(Z(η)) as η → ∞, since (2 −m − q)/(m − q) < 1. Recalling
also that h is C2-smooth with h(0, 0) = ∂xh(0, 0) = ∂zh(0, 0) = 0, we infer from (2.30)
that

W (η) =
m− 1

2 +m+ q
Z(η) + o(Z(η)) as η → ∞,

or equivalently, undoing the change of variable (2.24) and the translation (2.26), we get as
ξ → ξ0,

Y(ξ) = −
√

2

m+ q
+

m− 1

2 +m+ q
Z(ξ) + o(Z(ξ)). (2.31)

Moreover, we readily infer from the already obtained local behavior (2.18) and the defini-
tion of Z in (2.23) that, as ξ → ξ0,

Z(ξ) ∼ α√
m
K

(2−m−q)/2
1 ξ

(2−σ)/2+σ(2−m−q)/2(m−q)
0 (ξ0 − ξ)(2−m−q)/(m−q).

Inserting the previous expansion into (2.31) and recalling the definition of Y in (2.23), we
find

2
√
m

m− q
ξ−σ/2

(

f (m−q)/2
)′

(ξ) = −
√

2

m+ q

+
α(m− 1)K

(2−m−q)/2
1

(2 +m+ q)
√
m

ξ
(2−σ)/2+σ(2−m−q)/2(m−q)
0 (ξ0 − ξ)(2−m−q)/(m−q)

+ o
(

(ξ0 − ξ)(2−m−q)/(m−q)
)

,

which leads to, since α = 2β/(m − 1),

(

f (m−q)/2
)′

(ξ)

= −K
(m−q)/2
1 ξ

σ/2
0

(

1− ξ0 − ξ

ξ0

)σ/2

+ (1− q)K0(β)K
(m−q−2)/2
1 ξ

[2(m−q)+σ(2−m−q)]/2(m−q)
0 (ξ0 − ξ)(2−m−q)/(m−q)

×
(

1− ξ0 − ξ

ξ0

)σ/2

+ o
(

(ξ0 − ξ)(2−m−q)/(m−q)
)

= −K
(m−q)/2
1 ξ

σ/2
0

(

1− σ(ξ0 − ξ)

2ξ0

)

+ (1− q)K0(β)K
(m−q−2)/2
1 ξ

[2(m−q)+σ(2−m−q)]/2(m−q)
0 (ξ0 − ξ)(2−m−q)/(m−q)

+ o
(

(ξ0 − ξ)(2−m−q)/(m−q)
)

.
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Recalling that (2−m− q)/(m− q) < 1, we end up with

(

f (m−q)/2
)′

(ξ) = −K
(m−q)/2
1 ξ

σ/2
0

+ (1− q)K0(β)K
(m−q−2)/2
1 ξ

[2(m−q)+σ(2−m−q)]/2(m−q)
0 (ξ0 − ξ)(2−m−q)/(m−q)

+ o
(

(ξ0 − ξ)(2−m−q)/(m−q)
)

.

(2.32)

Integrating (2.32) over (ξ, ξ0) and then taking powers 2/(m− q) give

f(ξ) = K1ξ
σ/(m−q)
0 (ξ0 − ξ)2/(m−q)

×
[

1− (m− q)K0(β)

2K1
ξ
(m+q−2)/(m−q)
0 (ξ0 − ξ)(2−m−q)/(m−q)

+o
(

(ξ0 − ξ)(2−m−q)/(m−q)
)]2/(m−q)

= K1ξ
σ/(m−q)
0 (ξ0 − ξ)2/(m−q) −K0(β)ξ

(σ+m+q−2)/(m−q)
0 (ξ0 − ξ)(4−m−q)/(m−q)

+ o
(

(ξ0 − ξ)(4−m−q)/(m−q)
)

,

as stated.

2.4 Uniqueness

We are now ready to complete the proof of Theorem 1.1 by showing that the set B contains
at most one element. Taking into account the previous preparations, this proof borrows
ideas from the analogous one in [21, Section 4.4].

Proof of Theorem 1.1: uniqueness. Assume for contradiction that there are β1 ∈ B and
β2 ∈ B such that 0 < β1 < β2 < ∞. By Lemma 2.4, we have ξ0(β1) = ξ1(β1) and
ξ0(β2) = ξ1(β2), so that Lemma 2.5 implies that f1(ξ) > f2(ξ) and F1(ξ) > F2(ξ) for any

ξ ∈
(

0,min{ξ0(β1), ξ0(β2)}
)

, with fi := f(·;βi) and Fi := fm
i for i = 1, 2. In particular,

ξ0(β2) < ξ0(β1).

As in the proof of Lemma 2.5, see (2.8)-(2.9), we introduce the rescaled version Gλ of F2

defined by
Gλ(ξ) := λmF2

(

λ−(m−1)/2ξ
)

, ξ ∈ [0,∞), λ ≥ 1, (2.33)

recalling that F2 is well-defined on [0,∞) by Lemma 2.1, and define the optimal parameter

λ0 := inf {λ ≥ 1 : Gλ(ξ) > F1(ξ), ξ ∈ [0, ξ0(β1)]} ∈ (1,∞), (2.34)

its existence being ensured by the fact that

lim
λ→∞

min
ξ∈[0,ξ0(β1)]

Gλ(ξ) = lim
λ→∞

Gλ(ξ0(β1)) = lim
λ→∞

λmF2(λ
−(m−1)/2ξ0(β1))

≥ lim
λ→∞

λmF2

(

ξ0(β2)

2

)

= ∞.

According to the definition of λ0 in (2.34) and the compactness of the interval [0, ξ0(β1)],
we deduce that there is η ∈ [0, ξ0(β1)] such that F1(η) = Gλ0

(η) and F1 ≤ Gλ0
on

[0, ξ0(β1)]. Arguments very similar to the ones employed in the proof of Lemma 2.5, along
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with Lemma 2.1, then discard the possibility that either η = 0 or η ∈ (0, ξ0(β1)), thus
showing that η = ξ0(β1). Consequently,

F1(ξ0(β1)) = 0 = Gλ0
(ξ0(β1)), 0 < F1(ξ) < Gλ0

(ξ), ξ ∈ [0, ξ0(β1)), (2.35)

and we also obtain the following equality implied by the equality of the supports in (2.35)
and the rescaling (2.33)

ξ0(β1) = λ
(m−1)/2
0 ξ0(β2). (2.36)

We now split the analysis into the three cases already set apart at the beginning of Sec-
tion 2.3, according to the sign of m+ q − 2.

Case 1. m+ q < 2. We recall that, in this case, Proposition 2.9 gives

fi(ξ) = K1ξ0(βi)
σ/(m−q)(ξ0(βi)− ξ)2/(m−q)

−K0(βi)ξ0(βi)
(σ+m+q−2)/(m−q)(ξ0(βi)− ξ)(4−m−q)/(m−q)

+ o((ξ0(βi)− ξ)(4−m−q)/(m−q)),

(2.37)

as ξ → ξ0(βi), i = 1, 2. In order to simplify the calculations, we can work at the level of fi
by noticing that the rescaling (2.33) reduces to

gλ0
(ξ) := G

1/m
λ0

(ξ) = λ0f2

(

λ
−(m−1)/2
0 ξ

)

. (2.38)

We thus infer from (2.37) and (2.38) that

gλ0
(ξ) = λ0K1ξ0(β2)

σ/(m−q)
(

ξ0(β2)− λ
−(m−1)/2
0 ξ

)2/(m−q)

−K0(β2)λ0ξ0(β2)
(σ+m+q−2)/(m−q)(ξ0(β2)− λ

−(m−1)/2
0 ξ)(4−m−q)/(m−q)

+ o

(

(

ξ0(β2)− λ
−(m−1)/2
0 ξ

)(4−m−q)/(m−q)
)

= λ0K1

(

λ
−(m−1)/2
0 ξ0(β1)

)σ/(m−q)
λ
−(m−1)/(m−q)
0 (ξ0(β1)− ξ)2/(m−q)

−K0(β2)λ0

(

λ
−(m−1)/2
0 ξ0(β1)

)(σ+m+q−2)/(m−q)
λ
−(m−1)(4−m−q)/2(m−q)
0

× (ξ0(β1)− ξ)(4−m−q)/(m−q) + o
(

(ξ0(β1)− ξ)(4−m−q)/(m−q)
)

.

Noticing that the powers of λ0 appearing in the (rather tedious) previous calculations
cancel out due to the precise value of σ given in (1.2), we further obtain

gλ0
(ξ) = K1ξ0(β1)

σ/(m−q)(ξ0(β1)− ξ)2/(m−q)

−K0(β2)ξ0(β1)
(σ+m+q−2)/(m−q)(ξ0(β1)− ξ)(4−m−q)/(m−q)

+ o
(

(ξ0(β1)− ξ)(4−m−q)/(m−q)
)

= f1(ξ) + (K0(β1)−K0(β2))ξ0(β1)
(σ+m+q−2)/(m−q)(ξ0(β1)− ξ)(4−m−q)/(m−q)

+ o
(

(ξ0(β1)− ξ)(4−m−q)/(m−q)
)

.

Since β1 < β2, we deduce from (2.22) that K0(β1) < K0(β2). Thus gλ0
(ξ) < f1(ξ) in a left

neighborhood of ξ0(β1), whence (by raising to power m) Gλ0
(ξ) < F1(ξ) in the same left

neighborhood of ξ0(β1), and we have reached a contradiction to (2.35).
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Case 2. m+ q = 2. In this case, Proposition 2.8 (b) gives

Fi(ξ) = Km
1 ξ0(βi)

2m/(m−q)Km
2 (βi)(ξ0(βi)− ξ)2m/(m−q) + o

(

(ξ0(βi)− ξ)2m/(m−q)
)

as ξ → ξ0(βi), i = 1, 2. We thus have

Gλ0
(ξ) = λm

0 Km
1 ξ0(β2)

2m/(m−q)Km
2 (β2)

(

ξ0(β2)− λ
−(m−1)/2
0 ξ

)2m/(m−q)

+ o
(

(ξ0(β2)− λ
−(m−1)/2
0 ξ)2m/(m−q)

)

= λm
0 Km

1 (λ
−(m−1)/2
0 ξ0(β1))

2m/(m−q)Km
2 (β2)λ

−m(m−1)/(m−q)
0 (ξ0(β1)− ξ)2m/(m−q)

+ o
(

(ξ0(β1)− ξ)2m/(m−q)
)

= Km
1 ξ0(β1)

2m/(m−q)Km
2 (β2)(ξ0(β1)− ξ)2m/(m−q)

+ o
(

(ξ0(β1)− ξ)2m/(m−q)
)

=

[

K2(β2)

K2(β1)

]m

F1(ξ) + o
(

(ξ0(β1)− ξ)2m/(m−q)
)

,

the powers of λ0 canceling out due to m+ q = 2. Noticing that we can write

K2(β) =

[
√

1 +
β2

4m
+

β

2
√
m

]−2/(m−q)

,

we easily observe that K2 is a decreasing function of β, thus K2(β2) < K2(β1) since
β2 > β1. Therefore, Gλ0

(ξ) < F1(ξ) in a left neighborhood of ξ0(β1), which contradicts
(2.35).

Case 3. m+ q > 2. We recall that, in this case, Proposition 2.8 (c) gives

Fi(ξ) = Km
3 (βi)ξ0(βi)

m(σ−1)/(1−q)(ξ0(βi)− ξ)m/(1−q) + o((ξ0(βi)− ξ)m/(1−q))

as ξ → ξ0(βi), i = 1, 2. Using then the rescaling (2.33) and the identity (2.36), we readily
infer that

Gλ0
(ξ) = λm

0 Km
3 (β2)ξ0(β2)

m(σ−1)/(1−q)
(

ξ0(β2)− λ
−(m−1)/2
0 ξ

)m/(1−q)

+ o

(

(

ξ0(β2)− λ
−(m−1)/2
0 ξ

)m/(1−q)
)

= λm
0 Km

3 (β2)
(

λ
−(m−1)/2
0 ξ0(β1)

)m(σ−1)/(1−q)
λ
−(m−1)m/2(1−q)
0 (ξ0(β1)− ξ)m/(1−q)

+ o
(

(ξ0(β1)− ξ)m/(1−q)
)

= Km
3 (β2)ξ0(β1)

m(σ−1)/(1−q)(ξ0(β1)− ξ)m/(1−q) + o((ξ0(β1)− ξ)m/(1−q))

=

[

K3(β2)

K3(β1)

]m

F1(ξ) + o((ξ0(β1)− ξ)m/(1−q)).

Since K3(β2) < K3(β1) for β2 > β1, we find that Gλ0
(ξ) < F1(ξ) in a left neighborhood of

ξ0(β1), which is again a contradiction to (2.35).

The previous contradictions imply that there cannot be two different values of the expo-
nent β in the set B, completing the proof.
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[30] S. Kamin and L. Véron, Existence and uniqueness of the very singular solution of the
porous media equation with absorption, J. Analyse Math., 51 (1988), 245–258.

[31] M. Kwak, A porous media equation with absorption. I. Long time behavior, J. Math.
Anal. Appl., 223 (1998), no. 1, 96–110.

[32] G. Leoni, On very singular self-similar solutions for the porous media equation with
absorption, Differential Integral Equations, 10 (1997), no. 6, 1123–1140.

[33] J. B. McLeod, L. A. Peletier and J. L. Vázquez, Solutions of a nonlinear ODE ap-
pearing in the theory of diffusion with absorption, Differential Integral Equations, 4
(1991), no. 1, 1–14.

[34] L. A. Peletier and D. Terman, A very singular solution of the porous media equation
with absorption, J. Differential Equations, 65 (1986), no. 3, 396–410.

[35] D. Serre, L1-stability of nonlinear waves in scalar conservation laws, in Evolutionary
equations. Vol. I, Handb. Differ. Equ. (2004), North-Holland, Amsterdam, 473–553.

[36] P. Shi, Self-similar very singular solution to a p-Laplacian equation with gradient
absorption: existence and uniqueness, J. Southeast Univ., 20 (2004), no. 3, 381–386.

[37] H. Ye and J. Yin, Uniqueness of self-similar very singular solution for non-Newtonian
polytropic filtration equations with gradient absorption, Electronic J. Differential Equa-
tions, 2015 (2015), no. 83, 1–9.

20


