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Introduction

Different types of nonlinear passive absorbers have been developed since it was shown that the bands of working frequencies for such absorbers are larger than the ones for linear absorbers [START_REF] Roberson | Synthesis of a nonlinear dynamic vibration absorber[END_REF]. In the first studies, the nonlinear energy sink (NES) was composed of a cubic nonlinear restoring forcing function [START_REF] Vakakis | Inducing Passive Nonlinear Energy Sinks in Vibrating Systems[END_REF]. Then, different types of nonlinearities for these systems have been studied and fabricated, such as vibro-impact [START_REF] Gendelman | Analytic treatment of a system with a vibro-impact nonlinear energy sink[END_REF] and piece-wise linear [START_REF] Lamarque | Targeted energy transfer in mechanical systems by means of non-smooth nonlinear energy sink[END_REF] systems, with applications in acoustics and mechanics. The idea of this chapter is to study a mass-in-mass cell where the coupling term between the two masses is a combination of pure cubic and then piece-wise linear functions. The governing equations of considered model looks like a classical two degrees of freedom (dof) system with a general nonlinear coupling term [START_REF] Vakakis | Nonlinear targeted energy transfer in mechanical and structural systems[END_REF]. The inner mass can be used here as NES. The organization of this paper is as it follows: The system studied and its nondimensionalized equations are presented in Sect. 2. Analytical methods employed in this study are discussed in Sect. [START_REF] Gendelman | Analytic treatment of a system with a vibro-impact nonlinear energy sink[END_REF]. System behaviour at different time scales is detected in Sect. 4. Frequency response curves are presented in 5 and numerical results are discussed in Sect. 6. Finally, the paper is concluded in Sect. 7.

Studied system and equations

Let us consider the academic model of the non-dimensionalized system which is illustrated in Fig. 1. Its governing equations in the time domain τ reads: .

{ ü1 + u 1 + ϵζ 1 u1 + ϵr(u 1 -u 2 ) + ϵζ 2 ( u1 -u2 ) = ϵγ sin(ντ ) ϵü 2 + ϵr(u 2 -u 1 ) + ϵζ 2 ( u2 -u1 ) = 0 (1)
where ( ˙) stands for derivative of a variable with respect to τ . This system can correspond to a mass-in-mass cell with m2 m1 = ϵ ≪ 1, where m 1 and m 2 stand for masses of outer and inner oscillators, respectively. Both masses are coupled via a damping coefficient and a nonlinear restoring forcing term, r(α), which is function of the relative displacement of the two masses. r(α) combines smooth (cubic) and non-smooth (piece-wise linear) nonlinearities, reading as:

r(α) =    k N L α 3 if -δ ≤ α ≤ δ k L (α -δ) + k N L δ 3 if α > δ k L (α + δ) -k N L δ 3 if α < -δ (2)
In addition, the variables w and v, corresponding to the centre of mass and the relative displacement of two particles, respectively, are introduced as:

{ w = u 1 + ϵu 2 v = u 1 -u 2 (3) 
Thus, Eq. 1 is re-written in the following form:

{ ẅ + w + ϵv + ϵζ 1 ( ẇ + ϵ v) = ϵγ sin(ντ ) v + w + ϵv + ϵζ 1 ( ẇ + ϵ v) + r(v)(ϵ + 1) + ζ 2 v(ϵ + 1) = ϵγ sin(ντ ) (4) 

Complexification and multiple time scales method

Here, we will use the complexification method of Manevitch [START_REF] Manevitch | The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables[END_REF]. The following variables are introduced:

{ ϕ 1 e iντ = ẇ + iνw ϕ 2 e iντ = v + iνv ( 5 
)
with i 2 = -1.

In addition, as stated by the multiple time scales method [START_REF] Nayfeh | Nonlinear Oscillations[END_REF], the time is decomposed in fast (τ 0 ) and slow scales (τ j = ϵ j τ, j = 1, 2, ...).

In order to keep only the first harmonics of the system, a Galerkin method is used. For a generic function Y (ϕ 1 , ϕ 2 , ϕ * 1 , ϕ * 2 ), this task is achieved by:

Z(ϕ 1 , ϕ 2 , ϕ * 1 , ϕ * 2 ) = ν 2π ∫ 2π ν 0 Y (ϕ 1 , ϕ 2 , ϕ * 1 , ϕ * 2 )e -iντ dτ (6) 
where (.) * is the complex conjugate of a variable. It is assumed that

ϕ 1 , ϕ 2 , ϕ * 1 , ϕ * 2
do not depend on fast timescale, i.e., τ 0 = τ , which is checked during the multiple scale analysis, or via searching an asymptotic state when τ 0 → ∞ [START_REF] Savadkoohi | Analysis of the 1:1 resonant energy exchanges between coupled oscillators with rheologies[END_REF]. Applying Eq. 5 and 6 in system 4, yields:

                     1 2 φ1 + iνϕ 1 2 + ϕ 1 2iν + ϵζ 1 ( ϕ 1 2 + ϵ ϕ 2 2 ) + ϵ ϕ 2 2iν - ϵγ 2i = 0 1 2 φ2 + iν 2 ϕ 2 + ϕ 1 2iν + ϵ ϕ 2 2iν + ϵζ 1 ( ϕ 1 2 + ϵ ϕ 2 2 ) + R(ϕ 2 , ϕ * 2 )(ϵ + 1) + ζ 2 ϕ 2 2 (ϵ + 1) - ϵγ 2i = 0 (7) Where R(ϕ 2 , ϕ * 2 ) is: R(ϕ 2 , ϕ * 2 ) = - iϕ 2 2ν G(|ϕ 2 | 2 ), (8) 
G(|ϕ 2 | 2 ) depends on the relative displacement of the two masses and can be written as:

G(|ϕ 2 | 2 ) =                                3K N L |ϕ 2 | 2 4ν 3 if |ϕ 2 | ν < δ 3K N L |ϕ 2 | 2 4ν 3 + 1 4πν 3 |ϕ 2 | [( -8δK L ν 3 √ 1 - δ 2 ν 2 |ϕ 2 | 2 ) +K N L ( -6δ|ϕ 2 | 2 ν √ 1 - δ 2 ν 2 |ϕ 2 | 2 + 12δ 3 ν 3 √ 1 - δ 2 ν 2 |ϕ 2 | 2 ) +(8K L |ϕ 2 |ν 2 -6K N L |ϕ 2 | 3 ) arccos ( δν |ϕ 2 | )] if |ϕ 2 | ν ≥ δ (9) So one can write: G(|ϕ 2 | 2 ) = g(|ϕ 2 | 2 ) + O(ϵ 1 ) (10)

Detection of system behaviour at different time scales

In this section, Eq. 7 will be treated in different scales of ϵ, leading to the determination of different system dynamics, i.e., fast and slow ones [START_REF] Charlemagne | Interactions Between Two Coupled Nonlinear Forced Systems: Fast/Slow Dynamics[END_REF].

Fast time scale

The first equation of system 7 at O(ϵ 0 ) reads:

∂ϕ 1 ∂τ 0 = 0 ⇒ ϕ 1 = ϕ 1 (τ 1 , τ 2 , ...) (11) 
while the second equation at O(ϵ 0 ) reads:

∂ϕ 2 ∂τ 0 = H(ϕ 1 , ϕ 2 , ϕ * 1 , ϕ * 2 ) (12) 
with

H = -iϕ 2 + iϕ 1 + iϕ 2 g(|ϕ 2 | 2 ) -ζ 2 ϕ 2 (13) 
when we look for an asymptotic state of the system, that is when τ 0 → ∞ and ∂ϕ2 ∂τ0 → 0, considering the system behaviours around a 1:1 resonance and setting ν = 1+σϵ, where σ is a detuning parameter. H is called Slow Invariant Manifold (SIM), which is a geometrical curve corresponding to dynamical destinations of the system. Furthermore, looking to Eq. 11 and 13, the hypothesis of applying Eq. 6 is verified.

The complex variables of Manevitch [START_REF] Manevitch | The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables[END_REF] can be written in the polar domain as:

ϕ j = N j e iδj ( 14 
)
where N j ∈ R + and δ j ∈ R, j = 1, 2. Then Eq. 13 in real domain reads:

N 1 = N 2 √ (1 -g(N 2 2 )) 2 + ζ 2 2 ( 15 
)
An example of the SIM Considering the parameters of the system presented in Table 1, the SIM, obtained from Eq. 15, is plotted in Fig. 2. The geometry of the SIM exhibits four local extrema, differing from corresponding ones of systems with pure cubic and also with only piecewise-linear nonlinearities, which present two local extrema [START_REF] Gendelman | Targeted energy transfer in systems with non-polynomial nonlinearity[END_REF][START_REF] Gendelman | Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: Description of response regimes[END_REF].

Table 1: Parameters of the system. The SIM of the system with given parameters in Table 1.

Slow time scale

The first equation of system 7 at O(ϵ 1 ) reads:

dϕ 1 dτ 1 = E 1 (ϕ 1 , ϕ 2 , ϕ * 1 , ϕ * 2 ) ( 16 
)
where

E 1 (ϕ 1 , ϕ 2 , ϕ * 1 , ϕ * 2 ) = -2iσϕ 1 -ζ 1 ϕ 1 + iϕ 2 -iγ = 0 ( 17 
)
The evolution of the SIM (see Eq. 13) in τ 1 time scale can be written in matrix form as:

     ∂H ∂ϕ 2 ∂H ∂ϕ * 2 ∂H * ∂ϕ 2 ∂H * ∂ϕ * 2      B      ∂ϕ 2 ∂τ 1 ∂ϕ * 2 ∂τ 1      = -      ∂H ∂ϕ 1 ∂H ∂ϕ * 1 ∂H * ∂ϕ 1 ∂H * ∂ϕ * 1           ∂ϕ 1 ∂τ 1 ∂ϕ * 1 ∂τ 1      (18) 
Let us seek for singular and equilibrium points, which correspond to non-periodic and periodic regimes, respectively [START_REF] Savadkoohi | Analysis of the 1:1 resonant energy exchanges between coupled oscillators with rheologies[END_REF]:

Singular points The following conditions are set:

   E 1 (ϕ 1 , ϕ 2 , ϕ * 1 , ϕ * 2 ) = 0 H(ϕ 1 , ϕ 2 , ϕ * 1 , ϕ * 2 ) = 0 det(B) = 0 (19)
From det(B) = 0, the position of possible singular points are determined as:

1 + g 2 (N 2 2 ) -2g(N 2 2 ) -2N 2 2 g ′ (N 2 2 ) + 2N 2 2 g(N 2 2 )g ′ (N 2 2 ) + ζ 2 2 = 0 (20)

Equilibrium points

The following conditions are set:

   E 1 (ϕ 1 , ϕ 2 , ϕ * 1 , ϕ * 2 ) = 0 H(ϕ 1 , ϕ 2 , ϕ * 1 , ϕ * 2 ) = 0 det(B) ̸ = 0 (21)
Fig. 3: Possible equilibrium points of the system with respect to the de-tuning parameter σ for the system with γ = 1. Results are obtained from Eqs. 23 and 15.

From 21, equilibrium points are computed as:

N 2 2 g 2 (N 2 2 )(4σ 2 + ζ 2 1 ) + N 2 2 g(N 2 2 )(-8σ 2 + 4σ -2ζ 2 1 ) +N 2 2 (ζ 2 1 ζ 2 2 + 2ζ 1 ζ 2 + 4σ 2 -4σ + 1 + ζ 2 1 + 4σ 2 ζ 2 2 ) -γ 2 = 0 (22)
Solving this equation directly is challenging due to its non-smooth nature. However, this equation can be reorganized with respect to σ parameter, becoming a polynomial of degree two (Eq. 23) which can easily be solved.

( 4N 2 2 g 2 (N 2 2 ) -8N 2 2 g(N 2 2 ) + 4N 2 2 + 4N 2 2 ζ 2 2 ) σ 2 + ( 4N 2 2 g(N 2 2 ) -4N 2 2 ) σ +N 2 2 ( g 2 (N 2 2 )ζ 2 1 -2g(N 2 2 )ζ 2 1 + ζ 2 1 ζ 2 2 + 2ζ 1 ζ 2 + 1 + ζ 2 1 ) -γ 2 = 0 (23)
For a given forcing amplitude γ and a given N 2 , Eq. 23 can be solved with respect to σ, then the frequency response curve in term of N 2 can be obtained. Subsequently, from Eq. 15, the frequency response curve in term of N 1 can also be obtained.

Frequency response curves

In this section, some examples of frequency response curves will be presented. Figure 3 presents the three-dimensional view of frequency responses corresponding to the forcing amplitude γ = 1. This curve is obtained from Eq. 23. This figure shows the position of all possible equilibrium points with respect to the de-tuning parameter σ for the system with γ = 1. Two-dimensional views of Fig. 3 are presented in Figs. 4a, 4b and4c. Figure 4c is in fact a part of the SIM of the system, showing the position of all possible equilibrium points on the SIM for γ = 1, as it is highlighted in Fig. 4d. Figure 5 shows the three-dimensional frequency response curve of the system with the amplitude forcing term γ = 1.5. It is seen that the system presents an isola, which possesses high energy level for N 1 in comparison to the ones situated in the main part of the frequency responses. Figure 6 presents the twodimensional views of Fig. 5. From Figs. 6a and 6b, it is seen that, depending on the position of σ, the system can present more than one equilibrium point. 

Numerical responses

In this section, some numerical responses, obtained by direct numerical integration of Eq. 4, will be presented and confronted with quasi-analytical ones. Figure 7a presents the SIM accompanied by free numerical responses of the system for the initial conditions (w, v, ẇ, v) = (7, 7, 0, 0). It is seen that, starting from the initial condition, the system follows the SIM and it bifurcates twice before going to the rest position (as expected for free responses). The behaviours of N 1 and N 2 over time are depicted in Figs. 7b and7c, respectively. Figure 8a presents numerical responses of the system for γ = 1 and σ = 0 under the initial conditions (w, v, ẇ, v) = (7, 7, 0, 0). Comparing Figs. 8b and8c with Figs. 4a and4b, respectively, we see that the numerical responses converge to the equilibrium points already predicted by our developments .

Conclusion

The studied system can be considered as mass-in-mass cell with a nonlinear compound restoring forcing function, which couples two masses. This system can be used for the control of the outer mass, representing the principal system. The nondimensionalized equations of the system are complexified, thuncated and treated by the time multiple scale method. Thus, the slow invariant manifold of the system is detected, which presents four local extrema and differs from corresponding ones of system with pure cubic nonlinearities, for example. Singular and equilibrium points are also obtained, leading to the detection of frequency responses of the system, which provides a three-dimensional view of possible equilibrium points for a given forcing ampitude. Finally, quasi-analytical 
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 21 Fig. 1: Model of the nondimensionalized mass-in-mass meta-cell.
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 12 Fig.2:The SIM of the system with given parameters in Table1.
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 4 Fig. 4: Two-dimensional views of Fig. 3. a) N 1 with respect to the de-tuning parameter σ; b) N 2 with respect to σ; c) N 1 versus N 2 ; d) Superposition of Fig. 4c on the SIM of Fig. 2.
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 5 Fig. 5: Possible equilibrium points of the system with respect to the de-tuning parameter σ for the system with γ = 1.5. Results are obtained from Eqs. 23 and 15.
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 6 Fig. 6: Two-dimensional views of Fig. 5. a) N 1 with respect to the de-tuning parameter σ; b) N 2 with respect to σ; c) N 1 versus N 2 ; d) Superposition of Fig. 6c on the SIM of Fig. 2.
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 7 Fig.7: a) The SIM of the system and corresponding numerical responses for γ = 0 and the initial conditions (w, v, ẇ, v) = (7, 7, 0, 0); b) N 1 versus τ ; c) N 2 versus τ .
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 8 Fig.8: The SIM of the system and corresponding numerical responses for γ = 1, σ = 0 and the initial conditions (w, v, ẇ, v) = (7, 7, 0, 0); b) N 1 versus τ ; c) N 2 versus τ .
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