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Abstract

The weak disorder potential seen by the electrons of a two-dimensional electron gas in
high-mobility semiconductor heterostructures leads to fluctuations in the physical prop-
erties and can be an issue for nanodevices. In this paper, we show that a scanning gate
microscopy (SGM) image contains information about the disorder potential, and that a
machine learning approach based on SGM data can be used to determine the disorder.
We reconstruct the electric potential of a sample from its experimental SGM data and
validate the result through an estimate of its accuracy.
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1 Introduction

During the past decades, nanostructured two-dimensional electron gases (2DEGs) in high-
mobility semiconductor heterostructures have become a staple of condensed matter experi-
ments [1,2]. It is then crucial to have the best possible knowledge of their physical properties
in order to perform predictive simulations of the electronic properties of such systems [3].
However, the precise disorder potential remains unknown and leads to unpredictable sample-
to-sample fluctuations. In high-mobility modulation-doped heterostructures, it is expected
that the main contribution to the disorder stems from the electrostatic Coulomb potential of
ionized dopants [4]. The positions of those dopants vary from sample to sample, and the
different disorder configurations are at the origin of fluctuations in the quantum transport
properties of samples with the same macroscopic properties [5–7].

In order to determine the disorder potential seen by the electrons of a two-dimensional
electron gas in such samples, we propose a method that combines scanning gate microscopy
(SGM) and deep learning analysis. SGM is an experimental technique in which the conduc-
tance of a sample is measured while a biased Atomic Force Microscope tip scans over its sur-
face [8].1 The electrostatic potential of the tip locally modifies the potential landscape seen by
the electrons and leads to a change in the sample conductance that depends on the position
of the tip. The resulting spatially resolved conductance data contain rich information about
the electronic transport in the two-dimensional electron gas. Experimental SGM data of sys-
tems containing a quantum point contact (QPC) show the emergence of a branching pattern
in the conductance maps, ascribed to the branching of electrical current flow. The origin of
this phenomenon was ascribed to microscopic focusing mechanisms related to the details of
the disordered electrostatic background potential [9,10]. While mean quantities like the cor-
relation length of the SGM response depend on the tip strength [11], the branch structure and
the whole SGM response depend crucially on details of the disorder potential [12]. Therefore,
one can expect that the SGM response contains information that allows us to determine the
disorder potential seen by the electrons.

Theoretical approaches to the quantum transport of nanostructured systems allow com-
puting numerically the electronic quantum transport properties once the disorder potential is
known. An example is the widely used software package KWANT [13] that is based on a tight-
binding lattice approach. To determine the disorder potential from the transport properties
is then an inverse problem that can be tackled using machine learning approaches. A related

1Scanning tunneling microscopy (STM), where a current from the sample to the tip allows extracting the local
density of states, cannot be applied to usual heterostructures because of an insulating top layer.
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idea has appeared recently consisting in a proof of principle where the disorder is determined
in Majorana nanowire systems [14]. Another application which consists in using machine
learning to adjust device parameters to compensate for uncontrolled disorder effects has been
recently implemented in the case of a double quantum dot nanostructure [15]. It has also
been suggested that properties of the disorder between the fingers of a QPC can be extracted
from SGM data using cellular neural networks [16] or a swarming algorithm [17].

Our approach uses deep neural networks that are trained with simulated SGM-response
data to yield the disorder potential in a two-dimensional electron gas in which electrons are
injected through a QPC. We validate the found potentials and provide a quantitative estimate
of their accuracy by comparing results for different QPC transmissions. Our work builds on
previous researches [18] that have provided a proof of principle concerning the possibility
to extract disorder information from quantum transport properties of a QPC system. In that
work, the fast-to-compute but not directly measurable partial local density of states (PLDOS)
has been used as input, a quantity that presents similarities with the SGM response [19].
The trained neural networks could reproduce the disorder potential of simulated test samples
with high accuracy. In the present paper, we extend that approach to use SGM response data
as input, we apply the trained neural networks to experimental data, and we estimate the
accuracy of the resulting disorder potential.

The interest of our study is based on the absence of a direct experimental method to de-
termine the disorder potential. However, this leads to important difficulties. One of them is
that the disorder of an experimental device is unknown and it is not possible to use exper-
imental data to train our neural network. We thus have to use simulated training data. To
generate a training dataset, we generate many different random configurations of the disor-
der potential and compute the corresponding quantum transport properties. Since the quality
of the prediction depends strongly on the quality of the training data, we made a special effort
to determine the electric potential seen by the electrons by solving the quantum electrostatic
problem self-consistently [20]. Furthermore, we fixed the macroscopic sample parameters to
the values of the sample of Ref. [21], for which SGM-response data are available. Another
difficulty arising from the impossibility to directly measure the disorder in a sample is the lack
of a direct verification of the disorder prediction of our neural network when fed with experi-
mental SGM data. In this paper, we propose a method to quantify the quality of the prediction,
based on observations made with simulated data and on comparisons of disorder predictions
for different QPC transmission values.

Our paper is organized as follows: The experimental parameters of the chosen sample
and the model used to reproduce the real sample are described in Sec. 2. The simulation of
the training data based on that model is detailed in Sec. 3. The application of the trained
neural network to the experimental data and the evaluation of the reliability of the results is
presented and discussed in Sec. 4. After the conclusions in Sec. 5, appendices offer detailed
information on the implementation of the electrostatic environment (App. A), the learning
procedure (App. B), the used neural network (App. C), and the estimation of the precision of
the potential prediction (App. D).

2 System description

2.1 Experimental conditions

This paper is dedicated to the disorder potential prediction of a two-dimensional electron gas
in a heterostructure based on SGM measurements. For illustration, we apply our study to a
paradigmatic type of nanostructured 2DEG containing a QPC. Within the applications of the
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SGM technique that are available in the literature, this type of nanostructure is the most widely
studied one.

In order to apply our machine learning method, we have to create training data from
simulated samples (i.e. simulated disorders and their associated SGM response). As it will
be detailed later, the numerical generation of samples takes a considerable amount of time.
Therefore, we choose for our study samples that can be simulated in a reasonable amount of
time. The most obvious restriction concerns the size of the sample that has to be small enough.
The temperature is another parameter that has an important impact on the computation time,
since high temperature implies to compute the transmission factor at different energies.

The chosen experimental sample consists in a QPC defined on top of a Al0.3Ga0.7As/GaAs
heterostructure, that has been measured in Louvain-La-Neuve [21]. The 2DEG is located in
the GaAs layer 67nm below the following stacking of layers (from the surface of the sample
to the 2DEG):

• Hafnium oxide 10nm.

• GaAs 7nm (capping).

• AlGaAs undoped 5nm.

• AlGaAs 15nm (Si doped [4.8× 1024 m−3]).

• AlGaAs 30nm (spacer).

The 2DEG inside the heterostructure has an electron density of ns = 2.53 × 1015 m−2 and
a mobility of µ = 3.25 × 106 cm2 V−1 s−1. The Fermi wavelength has been experimentally
determined from the periodicity of the interference fringes in the SGM maps, yielding about
λF = 40 nm. A similar value λF =

p

2π/ns = 49.8 nm is derived from ns with the assumption
of a parabolic dispersion. The QPC is realized by applying a negative voltage on two metallic
gates that have a width of 150 nm, an opening of 250nm and a thickness of 105 nm. SGM
scans have been performed at four different values of the QPC gate voltage that are such that
the unperturbed conductances (i.e. without the tip) of the sample are equal to 1.0 G0, 1.3 G0,
1.7 G0 and 2.0 G0, where G0 = 2e2/h is the conductance quantum. The SGM scan has been
performed in a cryostat with a base temperature set to 100 mK. The metallic tip used for the
SGM is placed 30 nm above the heterostructure2 and has a curvature radius of 50nm. The
voltage applied on the tip is maintained to −6 V during the scan, creating a depletion radius
rdep = 60nm. More details concerning the tip are presented in Ref. [22]. The scan is performed
in a rectangular zone of dimension 520nm× 260nm located at 100 nm from the edge of the
QPC. While the tip is scanning, the conductance is recorded by applying a 10µV AC voltage
excitation at 77 Hz. The current flowing through the device is recorded, simultaneously with
the voltage drop in the device using two additional ohmic contacts.

2.2 Model of the sample

To model the experimental sample described in Sec. 2.1, we consider the heterostructure (de-
picted in the left panel of Fig. 1) as a stacking of four different layers. The first one is the sub-
strate that is represented as a block of dielectric material with a relative permittivity εr = 12.
Then, we have the 2DEG located at z = 0. The AlGaAs/GaAs stacking is represented as another
block of dielectric material (εr = 12) where the dopants are represented by positive charges.
Their positions are randomly chosen from a Poisson distribution3 in a 15 nm thick region that

2Since the tip never touches the surface of the structure, piezoelectric effects are not expected to occur.
3We choose the independent random positions for the dopants while the dopant positions in a real sample are

believed to be correlated [23]. However, for a sufficiently large number of samples, the whole configuration space
should nevertheless be represented.
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Figure 1: Sketch of the model that represents the experimental sample. The side view
of the left panel highlights the layer stacking. The right panel depicts the top view
of the sample and shows the location of the leads used for the quantum transport
computations.

begins 30 nm above the 2DEG. Finally, the Hafnium oxide is represented by a layer with a
dielectric permittivity of εr = 20. All the electrostatic computations are performed using the
Poisson Thomas-Fermi solver (PTFS) that is detailed in Sec. 3 and App. A.

The two metallic gates that create the QPC are represented by two cuboid elements with
a width of 150nm, a thickness4 of 40 nm and a length such that they cover the entire lateral
width of the sample except for an opening of 250nm in the center. The tip is represented by a
metallic half sphere with a radius of 50nm and located 30nm above the sample. To perform
the scan, the tip moves in a plane parallel to the one of the 2DEG. The scanning zone for the
simulations is a rectangle of 240nm × 384 nm that begins 240 nm after the QPC. The latter
zone has been reduced as compared to the available experimental data since the conductance
is often very low when the tip is close to the QPC. This is due to the combined electrostatic
effect of the tip and the QPC that closes the contact between the source and the drain.

In our simulation of the quantum transport, we use zero-temperature calculations as an
approximation for the measurements at a very low experimental temperature. The leads are
located as depicted in the right panel of Fig. 1. In order to avoid a discontinuity between
the scattering region and the leads that can create reflection phenomena, we extend the edge
of the sample by decreasing the potential smoothly to zero. It is also important to note that
the quantum transport simulations are performed within an effective one-particle picture and
do not take into account the electron-electron correlations beyond the mean field level. Such
correlations are expected to become relevant at very low electron density, but they should not
be important for the regime of experimental parameters considered in our study. Such an
expectation is confirmed by the recent study of Ref. [3] where the behavior of a large number
of samples was compared to simulated transport data.

3 Production of simulated training data

The generation of simulated sample data for the training of a neural network is performed
in two steps. First we generate a random configuration of the dopants in the dopant layer,

4The thickness of the QPC gates does not impact the results.
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Figure 2: Example of training data. For one of the disorder configurations, the
position-dependent potential is shown in the left panel, and the map of simulated
SGM conductances is depicted in the right panel as a function of tip-position. A neu-
ral network is trained to solve the inverse problem, that is to take the SGM map as
input and to predict the potential as its output. The inset of the right panel repre-
sents the cumulative distribution of unperturbed conductances for all samples of the
dataset.

then we use the PTFS from the Python package called PESCADO [24] that solves the Poisson
equation

∆U =
ϱ

ε
, (1)

and takes into account the density of states of the 2DEG within the Thomas-Fermi approxima-
tion. Once the self-consistent electrostatic potential is determined, we perform the electronic
transport simulation with KWANT [13]. The discretization of the 2D space for the simulations
is done with a lattice parameter a∥ = 6nm (see (A.2)) which leads to the ratio λF/a∥ ≈ 8,
large enough for reliable simulations. The SGM response consists of conductance values for
various tip positions. In order to compute a full SGM conductance image, we therefore have
to compute the electric potential created by the dopants, the QPC and the tip located at each
of the considered positions. Thus, the number of potential maps that has to be computed for
creating the entire dataset is equal to the product of the number of samples times the number
of tip positions. Considering a dataset of a few thousand samples and even a low-resolution
SGM response composed of a few thousand different tip positions, this sums up to require
an enormous amount of numerical resources. The approximations detailed in App. A allow
us to considerably reduce the number of electrostatic potential computations, while keeping
a satisfying reliability. Moreover, considering the low temperature of the experimental sam-
ple, we perform the quantum transport computation at zero temperature, meaning that the
conductance is computed only at E = EF = 9.1meV.

The correspondence between the simulation and the experimental sample is ensured by
the following calibrations: the density of ionized dopants ndop, the voltage to apply on the tip
Vtip and the QPC gate voltage VQPC. Considering that all the supplementary electrons of these
dopants go to the 2DEG, the density of ionized dopants is ndop = ns/ddop = 1.69× 1023 m−3,
where ddop = 15nm is the thickness of the doping layer. The tip voltage is set to Vtip = −5.8 V
such that the depletion radius is equal to the experimental one. The QPC gate voltage is chosen
such that the conductance values G without tip correspond to the experimental ones, which
are located between the first (G = G0) and the second (G = 2G0) conductance plateau. The
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conductance of a sample without tip varies with the disorder configuration. For the fixed QPC
gate voltage that we choose, Vgate = −0.82V, most of the samples have a conductance around
the first and the second plateau.

Using those parameters, we generated 2650 SGM-potential pairs. The resulting images
have a resolution of 40 × 64 pixels. Using the symmetry of the problem with respect to the
reflection at the x-axis (see Fig. 1), we double the number of training samples by reversing
the SGM and the corresponding potential. Fig. 2 shows an example of such a potential (left)
and the simulated SGM-response (right). The neural network is trained with those data pairs
to solve the inverse problem, that is to predict the potential from the SGM-response. The
statistics of the conductance of the generated samples in the absence of the tip is depicted in
the inset of the right panel of Fig. 2 through the cumulative distribution function.

4 Prediction of the potential from an experimental SGM image

To obtain the potential prediction from an SGM image, we use a neural network trained with
the data described in Sec. 3. Considering the complexity of the task, the number of SGM-
potential pairs is relatively small. In order to improve the quality of the results in spite of
the limited size of the available dataset, we use transfer learning. That method consists in a
pre-training of the neural network to determine the potential from the partial local density
of states (PLDOS) with a large number of training data. The pre-training dataset composed
of PLDOS-potential pairs is significantly faster to create than SGM data, which allows us to
generate a large dataset as described in App. B. After being pre-trained with PLDOS-disorder
pairs, the network is trained with the SGM-disorder dataset to determine the disorder potential
from the SGM response. Since both PLDOS and SGM share the same branching pattern for a
similar disorder configuration (see Fig. 7), the two tasks of predicting the disorder potential
from PLDOS and from SGM are similar, and the pre-training allows for significantly better
results as compared to the usual random initialization of the neural network parameters. Of
course, one can also improve the accuracy of the prediction by increasing the number of SGM-
potential pairs that compose the training set. However, the dependence of the accuracy on
the training set size presented in Fig. 9 shows that a considerable increase of the number of
samples is needed to achieve a small improvement.

We quantify the performance of the completely trained network by the correlation between
expected and predicted images F (i) and F ( j) using the Pearson coefficient5

ci j =

∑

p

�

F (i)p − F̄ (i)
��

F ( j)p − F̄ ( j)
�

È

∑

p

�

F (i)p − F̄ (i)
�2
È

∑

p

�

F ( j)p − F̄ ( j)
�2

, (2)

where the sums run over all N pixels p of the images, while F̄ (i/ j) = 1
N

∑

p F (i/ j)
p denotes the

average value. On our test set, we obtain an average correlation between the expected and
predicted potentials c̄ep = 89%. While it can be expected that an increase of the size of the
training set leads to a further improvement of that correlation (see App. C for quantitative
details), we found no significant influence of the sample conductance on the performance of
the neural network.

Using the previously described trained neural network combined with an additional data
augmentation by smoothing the SGM response as discussed in Sec. 4.1, we are able to predict
the potential associated to the four experimental SGM maps. The results are depicted in Fig. 3.

5This coefficient is equal to 1 in case of a perfect matching between the expected and predicted output and
equal to zero when the two images are not correlated at all.
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Figure 3: The top line represents the four experimental SGM maps obtained at the
indicated QPC conductance values. The second line shows the corresponding predic-
tions of the disorder potential obtained from the trained neural network when fed
with the experimental SGM data as input. The estimated precision is indicated in
the upper left corner of the predicted potentials (see Sec. 4.2). The SGM simulations
corresponding to these predictions are shown in Fig. 12.

The estimated correlation between the predicted potential and the one actually present in the
sample, indicated in the colorplots of the potentials, is determined through a method detailed
in Sec. 4.2. Finally, an indirect evaluation method, applied to our sample in Sec. 4.3, confirms
the validity of the predicted potentials.

4.1 Smoothing of simulated SGM response to approach experimental data

To perform the SGM experiment, a commercial AFM tip is glued to a tuning fork. During
scanning, a small excitation is also applied to the tuning fork at its bare resonance frequency
(32 kHz), resulting in a vibrating tip. Consequently, the depletion spot at the 2DEG level
experiences a fast “breathing” motion, and the experimental SGM image in the end is a con-
volution of the different depletion spot radii. This could account for the blurring requiring the
application of a Gaussian filter to reproduce the data.6

In order to take this issue into account, we train our neural network with a new data
augmentation which works as follows: Before feeding the neural network with the simulated
data to train it, we apply a Gaussian filter which corresponds to the convolution of the SGM
image with a Gaussian bump of width σ that is randomly chosen from a normal distribution
with variance7 η2

σ = 23nm2.

6The main source of difference between the simulation and the experiments in the SGM-response is the vibrating
tip effect. To a lesser extent, the non-zero temperature, during the experimental measurements, is also responsible
for the difference between the experiments and the simulations.

7The study that is used to determine the optimal variance is detailed in Ref. [25].
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Figure 4: Average correlation between the predicted disorders with the exact one,
obtained for the simulated test data with inputs blurred by a Gaussian filter with a
width of σ. The inset represents the evolution of the coefficient α defined in Eq. D.1
as a function of the blur factor σ. The model used in this figure is the one that was
used for the disorder predictions of Fig. 3.

While the application of a Gaussian filter on the simulated data allows us to get closer to
the appearance of the experimental data, it seems important to evaluate the predictive power
of the neural network on the simulated test set that has also been blurred with a Gaussian
filter σ. Fig. 4 represents the evolution of the prediction performance with the parameter σ.
The latter evaluations have been performed by averaging the Pearson correlation coefficient
between the expected and predicted potential over all the samples of the test set. We notice
that the neural network performs well on the test data while the blurring parameter remains
below the value8 of σ = 7.5nm. Even if there is no obvious possibility to estimate the value
of σ that fits the best with the experimental data, a value of σ that is equal or greater than
7.5 nm seems unlikely (see Fig. 11 in App. E).

4.2 Indirect evaluation of the prediction quality

When applying the neural network to an experimental SGM map to determine the disorder of
a semi-conductor heterostructure, there is no possibility to compare the prediction to the real
disorder. To get an estimate of the prediction quality in this most interesting case, we propose
an indirect method to determine the reliability of the predicted disorder.

The indirect evaluation consists in the comparison of the predictions from several SGM
scans that are obtained from the same sample under different experimental conditions. In our
case, the varying parameter is the gate voltage of the QPC, with four different values that are
available. The sample disorder, and thus the expected prediction from the SGM maps, should
remain the same if the sample stayed in the cryostat at low temperature during the whole series
of measurements. It is then possible to compute this Pearson correlation coefficient ci j between
two predictions i and j, as depicted in Fig. 5 for the example i = 0. We denote c̄i = 1/3

∑

j ̸=i ci j ,
the average correlation of the sample i with the others that can be used as an indicator for
the quality of the predictions. When dealing with simulated data, we can also compute the
correlation coefficient cie between the predicted and expected potential. Therefore, based on
simulated data, we establish a link between cie and c̄i . The detailed study presented in App. D
shows that in a given regime, one can obtain the linear relation cie = αc̄i . A linear regression

8The drop observed in Fig 4 appears at lower values when the neural network is trained without the blurring data
augmentation. This indicates that the blurring data augmentation has a significant impact on the final results [25].
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Figure 5: The four upper panels depict simulated SGM images of a sample with fixed
disorder but under different gate voltages with the indicated unperturbed conduc-
tances. The black arrows represent the passage through the neural network. The
four panels below the SGM images correspond to the potential predictions of the
neural network. The lowest image is the exact disorder potential that corresponds
to the four SGM images. For the example i = 0, the blue arrows link images among
which are computed the Pearson correlation coefficients ci j and cie.

between the coefficients cie and c̄i computed from the prediction of simulated samples with
different disorder configurations, as depicted in Fig. 10, yields α= 0.96.

For consistency, we perform the same method to determine the proportionality coefficient
α as the one used for Fig. 10, but for the test set inputs blurred as described in Sec. 4.1
with different values of the blurring parameter σ. The dependence of α on σ is shown in
the inset of Fig. 4. Considering that σ ≈ 6nm (from Fig. 11 in App. E) is the value that
seems to give the best similarity between experimental data and blurred simulated results, we
find a value of α ≈ 0.97. Using this value of α, we observe a distribution of the predicted
Pearson coefficient around the real one, that can be fitted using Eq. D.2, with the parameters:
ζ= 0.031, ω= 0.050 and θ = −1.167 . This distribution is shown in [25].

4.3 Predicted potential from experimental SGM data

Having trained the neural network using the Gaussian filtering together with data augmenta-
tion and transfer learning methods described above, optimized and tested on the set of simu-
lated data, we are finally in position to use it for the prediction of the disorder potential in the
experimental sample of Ref. [21].

The experimental SGM-response (reshaped to the same resolution as the simulated ones9)
is presented in the first line of Fig. 3. The disorder potential predictions made by the neural
network are depicted in the second line of Fig. 3, with the estimates for the precision αc̄i in
the upper left corners. The results with the highest correlation coefficient αc̄i = 0.87 are the
data associated to the conductance G = 1.7 G0.

9Due to the limitation of computational time, we have not been able to perform simulations with the same
resolution as the one of the experiments.
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Therewith, we finally estimate the correlation of the predicted potentials in the third col-
umn of Fig. 3 with the exact potential of the sample to about 87 %. We note that the variation
between the predicted potential and the real one is of the order of the variation between the
four predictions. Let us mention that the blurring data augmentation of the images described
in Sec. 4.1 contributes considerably to the high fidelity of the prediction of the neural network.
Without it, the best precision quantified by the coefficient αc̄i is around 67 % instead of the
87 % reached when using the blurring data augmentation.

Moreover, the reconstruction of the SGM-response from the predicted potentials and its
comparison with the experimental data offers a qualitative way to validate the results of the
neural network. Details are presented in App. F.

5 Conclusion and outlook

In this paper we have determined the disorder potential that is seen by the electrons inside a
2DEG in a semiconductor heterostructure. We have extended the machine-learning approach
of Ref. [18] towards a prediction of the disorder from experimentally accessible SGM data,
and we have used a self-consistent PTFS [20] in a particular effort towards a realistic simu-
lation of real-life samples. To cope with the considerable increase in numerical effort related
to realistic simulations of the SGM response, we have implemented data augmentation and
transfer learning methods that allow us to train our neural networks with simulated SGM data
for a reduced number of disorder realizations.

While our method provides a prediction of the unknown disorder potential, it is difficult
to estimate the precision of that disorder without the knowledge of the exact potential land-
scape in a high-mobility modulation-doped heterostructure. We use a technique based on the
comparison between the disorder predicted by the neural network from SGM data obtained
for the same sample but at different experimental conditions to determine the quality of the
prediction. Working with simulated data, where the exact disorder is known, we show that the
similarity between the predicted potentials for different parameter values (evaluated through
the Pearson correlation coefficient) is correlated with the similarity between the predicted and
the expected disorder potential. This correlation allows us to get an estimate of the precision
of the prediction based on the comparison of predictions for different experimental conditions
that can be performed without knowing the exact disorder potential.

While the neural network trained with the raw simulated data already yields good results,
a difference in sharpness between the experimental and simulated data, that might be due to
the vibration of the tip during the measurement, led us to use a data augmentation method that
consists in applying Gaussian filters to blur more or less strongly the simulated SGM images
during the training process. From this improved training, we obtained a neural network able
to predict the disorder potential of the experimental SGM with remarkable reliability. For four
different openings of the QPC in the same sample, we obtained four similar disorder potential
predictions. Using the above-mentioned accuracy estimation method (verified within the set
of simulated data), we estimate the correlation between the predicted and the real disorder to
be about 87 %. We also verified quantitatively the relevance of the prediction by computing the
SGM from the predicted potentials, and obtained a good similarity between the branch pattern
of the reconstructed SGM responses for the predicted disorder potentials and the experimental
ones.

Using a limited amount of numerical resources, those results have been obtained within
a certain number of approximations in our simulations while trying to be as close to real-
ity as possible. The most important ones are probably the quantum transport computations
performed for only one tip depletion radius, the reduced resolution of the simulated SGM re-
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sponse and the superposition (A.1) that allowed us to not use the PTFS for each tip position
in each disorder configuration. Without these approximations, the computational time would
have been enormous. Nevertheless, with more numerical resources, a further increase of the
precision of the determination of the disorder potential in semiconductor 2DEGs will be possi-
ble by improving the simulations on the mentioned aspects. Moreover, a better precision could
be expected from data obtained in dedicated experiments, for example with a more homoge-
neous electron flow in the sample and with the variation of additional parameters like SGM
tip strength and size or magnetic field.

The approximations made in the simulations induce the risk of a systematic bias con-
tained in the training data that might then affect the predictions of the neural network that is
trained to invert the KWANT simulation and to determine an electrostatic potential computed
by PESCADO. Such a bias cannot be detected by testing the neural network on simulated data.
However, the confidence in the reliability of the predicted disorder is increased by calculating
sample properties based on the predicted potential, but for different experimental conditions,
that can then be compared to measured data as in App. F.

The detailed knowledge of the disorder potential seen by the electrons in a nanostructured
device, as it can be obtained with the method proposed in this work, can allow improving
the comparison between experiment and theory beyond the qualitative level. Quantitative
simulations including the precise disorder configuration can overcome the problematic sample-
to-sample fluctuations and make it possible to predict the behavior of individual samples.
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A Approximation on the electrostatic environment

Due to the large amount of computer time required to create a full dataset including the self-
consistent electrostatic potentials for all disorder configurations and tip positions, we use an
approximation to significantly reduce the number of potential computations. The latter ap-
proximation consists in dividing the potential in two parts. We compute the potential that
includes the disorder and the QPC gates UQPC,dis. In parallel, we compute the potentials
without disorder (i.e. for uniform dopant density) of the QPC and the tip for all tip positions
UQPC,tip(r, rtip). Still without disorder, we also compute the potential of the QPC alone UQPC.
Finally, the complete potential that includes the disorder, the QPC and the tip at a position rtip
is then approximated as

Ufull(r, rtip) = UQPC,dis(r)− UQPC(r) + UQPC,tip(r, rtip) . (A.1)
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Figure 6: Illustration of the potential construction of Eq. (A.1). The two left panels
are the potential parts obtained for the disordered sample with the QPC gate and
for the clean sample with the QPC gate and the SGM tip, respectively. The resulting
approximation Ufull(r, rtip) is shown in the third panel for a tip position rtip close to
the left QPC gate. The right panel depicts the exact potential computed for the same
dopant distribution, in presence of all the elements (tip and QPC gates) at the same
time.

In this way, we have to use the PTFS once for each sample, plus once for each tip position
instead of using the PTFS for each tip position in every single sample. Since 69 PTFS in parallel
take about 2600 seconds to compute, the approximation allows us to perform the dataset in 29
hours for all the tip positions and 28 hours for all the disorder configurations of the dataset.
This results in a total processing time of 57 hours while the exact computation would have
taken about 9 years.10 The example given in Fig. 6 allows us to compare the results of the
exact method and the approximation we make. We can observe minor differences. However,
we note that for this example the tip is close to the QPC and thus corresponds to one of the
worst cases for the approximation [25].

All the previously described potentials are computed using the PTFS PESCADO, using a
discretization of space with lattice parameters parallel to the 2DEG a∥, corresponding to the
x − y plane and perpendicular to the 2DEG a⊥, which corresponds to the z direction, with
values

a∥ = 6 nm, a⊥ =







3z2 + 2 , z < 0 ,
5 , 0< z < h+ hQPC ,
20 , z > h+ hQPC ,

(A.2)

where h+hQPC corresponds to the thickness h of the layers above the 2DEG plus the thickness
of the gates hQPC. Those values allow us to obtain results that are as accurate as possible while
limiting numerical resources to a reasonable amount. We note that such a discretization does
not allow us to reproduce the exact dimension of the layers described in Sec. 2.1 (The capping
layer has been set to 5 nm instead of 7nm which induces a small difference of 2 nm between

10The computations are performed using the cluster of X. Waintal’s group, composed of 23 nodes, each with 48
cores and 128 GB of RAM. Only 6 to 7 cores have been used in each node because 7 jobs use all the 128 GB of
RAM. Calculation times have been estimated using the PESCADO version dating from 18/07/2023.
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the model and the real sample.). The parallel component of the lattice parameter has also been
chosen by taking into account the convergence on the tight-binding conductance computation
with KWANT.

The last tuning of the model to fit as well as possible to reality is the application of an offset
voltage to the QPC gate to compensate the screening of the negative charges at the surface of
the heterostructure. A uniform charge density is reached for Voff = 0.162 V.

B Transfer learning data

Since the amount of time required for the creation of the training data is a considerable issue
in our study, we pre-train the neural network with data similar to the ones described in Sec. 3,
but significantly faster to produce. In this appendix, we present the model used to produce the
large pre-training dataset. The data production consists of two parts: the electrostatic model
and the quantum transport model.

B.1 PLDOS as input of the pre-training data set

The quantum transport computation is performed along the same lines as the one for the SGM
response (lattice parameter, energy, position of the electrodes), but instead of computing the
SGM response, we compute the partial local density of states (PLDOS) that arise from the
source (i.e. the QPC) [26,27]

ρ(r) = 2π
Nqpc
∑

a=1

|ψqpc,ε,a(r)|2 , (B.1)

where ψqpc,ε,a is the scattering wave function at energy ε = EF that enters the 2DEG from
channel a of the QPC. Hence, this quantum transport information does not necessitate any tip
to probe the 2DEG, and the full PLDOS image can be obtained in a single run of KWANT [13]
instead of performing as many calculations as tip positions, which makes the PLDOS about
3000 times faster to compute than the SGM. A pre-training with PLDOS data makes sense
because for the same disorder configuration, this signal has a similar branching pattern as the
SGM response as depicted for an example in Fig. 7. Indeed, under some drastic condition
the two signals can even be identical. However, those conditions (zero temperature, weak
disorder, delta-shaped tip potential [19]) are not realistic and in practice one cannot apply
directly a neural network trained with PLDOS on SGM images.

B.2 Fast-to-compute potential

Again for computational issues, we approximate the full potential

U
′

full = U
′

dis + U
′

QPC , (B.2)

as the sum of the potentials of the disorder U
′

dis and the QPC gates U
′

QPC. Since the potential-
PLDOS relation is essential for the pre-training, and the relation to a realistic potential less
relevant in this first step, we do not use the PTFS self-consistently for each tip position and
disorder realization that takes a considerable amount of time (1 hour) compared to our super-
position method (about 15 seconds).

The disorder potential is implemented following the approach of Ref. [4]where the sum of
the electrostatic potentials of the ionized dopants is treated through a Fourier transform such
that the sum is performed over a few hundred terms of the Fourier series instead of summing
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Figure 7: Example of PLDOS data (left) and the SGM response (right) computed for
the same sample (i.e. the same disorder potential).

over the 104 dopants. When considering a doping layer located at a distance s of the 2DEG,
the potential writes

U
′

dis(r) = −E∗Rya∗B
2∆qx∆qy

π

∑

j∈R+∗

e−q js

q+ qTF
r j cos
�

q jr+φ j

�

, (B.3)

where E∗Ry and a∗B represent the effective Rydberg energy and Bohr radius, respectively. ∆qy
and∆qx correspond to the step-width of the reciprocal space labeled by the vector q of magni-
tude q. This model also takes into account the Thomas-Fermi screening through the term qTF.
The random position of the dopants is taken into account through the terms r j =

Ç

α2
j + β

2
j

and φ j = arctan
�

α j + iβ j

�

, where α j and β j are random numbers that follow a normal distri-
bution centered in 0 and of variance σ2 = M/2. M is the number of dopants in the doping
layer.

In order to represent the electrostatic potential created by the QPC gates (orange parts
in Fig. 1), we use the model of Ref. [28], that defines the potential of a finite gate rectangle
defined by x1 < x < x2 and y1 < y < y2 as

Urect(x1, x2, y1, y2)
A

= g (x − x1, y − y1) + g (x − x1, y2 − y)

+ g (x2 − x , y − y1) + g (x2 − x , y2 − y) , (B.4)

where A is the potential value under the gate far from the edges and the function g(u, v) is
defined as

g(u, v) =
1

2π
arctan
�uv

sR

�

, with R=
p

u2 + v2 + s2 . (B.5)

The QPC gate potential is composed of two rectangular gates with edges at x left
1 , x left

2 , y left
1 , y left

2

and x right
1 , x right

2 , y right
1 , y right

2 , such that

U ′QPC = Urect(x
left
1 , x left

2 , y left
1 , y left

2 ) + Urect(x
right
1 , x right

2 , y right
1 , y right

2 ) . (B.6)
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Figure 8: Sketch of the neural network architecture. All the layers are connected
only to the previous layer. The dimension of the layers is indicated below them,
where the two first numbers are the dimension of the image and the last one in bold
corresponds to the number of feature maps.

C Neural network details

The neural network is first pre-trained with the data of App. B, which is composed of PLDOS-
potential pairs. Computing the PLDOS (whole image) takes about the same time as computing
the conductance for one position of the tip. Therefore, we created a first dataset of 50.000
samples to train a neural network to determine the potential from the PLDOS. The neural
network being already trained to perform a task close to the wanted one, the main change in
the final learning step is a shift of the input of the neural network from PLDOS to SGM.

Since the data are 2D arrays (for the input and the output), we use a neural network with
a convolutional encoder-decoder structure. Such an architecture has the particularity to com-
press the information, keeping only the main features of the input image which are then used
to perform the prediction. The convolutional architecture is broadly and successfully used for
image analysis. The selected architecture is based on the ones commonly used to perform
image translation. In order to fine-tune our model (i.e. architecture plus other parameters),
we evaluated several dozens of models with the k-fold cross-validation method [29] over our
2450 samples. In our case, we chose k = 8 which is a compromise between good statistics
and using a reasonable amount of computational resources. For models close to the one de-
picted in Fig. 8, we found that the batch size (the number of examples on which the neural
network performs one training iteration) is one of the most important parameters. Testing
many different values, we obtained the best results for rather small batch sizes.

The retained model from the cross-validation is the one depicted in Fig. 8. For the training
on the SGM dataset, the size of the batch is 4, and we used the “binary cross-entropy” as
loss function. Concerning the transfer learning, the only trainable layers were the two first
convolutional layers. This model is tested on 200 samples that have not been used during
cross validation. In order to quantify the accuracy of our model, we compute the Pearson
correlation coefficient c. The distribution of correlations between the expected potential and
the real one is depicted in the right panel of Fig. 9, where we can observe an asymmetric
distribution with a mean correlation c̄ = 0.90. We can also observe from the inset of Fig. 9
that the accuracy of our model is independent of the conductance of the sample.

The left panel of Fig. 9 depicts the average correlation factor between the expected and
predicted potential on the test set as a function of the number of training samples. Focusing
only on the blue dots that correspond to a neural network trained with transfer learning and
data augmentation with SGM as input, we can observe a small improvement of the prediction
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Figure 9: Left panel: evolution of the average correlation factor (over 30 trainings
with a different splitting between train and test set) with the training set size. Blue
(red) dots represent the cases where the neural network is fed with SGM as input us-
ing transfer learning and with (without) data augmentation. The black solid line cor-
responds to a logarithmic fit with the coefficient -0.305. The green dots correspond
to the case where the PLDOS is used as input. In the three cases, the architecture of
the neural networks is the same. Right panel: distribution of the correlation predic-
tion on the test set for Ntrain = 2450 and for the case where the SGM is used as input
with data augmentation. The inset represents the Pearson correlation coefficient as
a function of the conductance (without tip) for all the 200 samples of the test set.

quality with the training set size. Even if we consider a large training set of SGM data with
10.000 samples (requiring an enormous amount of computer time) we cannot expect to reach
a much better accuracy than with the current training set composed of about 2500 samples due
to the logarithmic evolution of the precision.11 It is therefore not useful to waste numerical
resources to create a huge dataset. However, we can still perform data augmentation that will
not lead to a huge improvement of the performance (especially when the dataset is already
important), but which is a costless operation. Indeed, the data augmentation (that doubles the
dataset) has the same effect as training the neural network with twice the size of the dataset.

The other interesting results concern the difference when the network takes the PLDOS
or the SGM as input. Indeed, from Fig. 9, we can state that unveiling the disorder potential
from the PLDOS is easier than from the SGM whereas transfer learning has been used only for
networks that take the SGM as input. While it has been shown that a neural network can have
excellent results (more than 99 % of correlation in average) [18], it is not possible to reach
the same accuracy with the SGM. This phenomenon could be related to the loss of locality of
the signal with the SGM that is performed with a tip that has a large depletion radius.

D Details on the indirect quantitative evaluation of the prediction
quality

The indirect evaluation of the neural network performance is crucial for concluding on the
reliability of the predicted disorder. The proposed method is based on the relation between
the coefficients cie and c̄i defined in Sec. 4.2. Using 20 different disorder configurations and
for each of them 4 different SGM maps that correspond to the 4 experimental conductance

11We consider the logarithmic evolution of the precision in a range that goes to reachable dataset size and not
infinity.
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Figure 10: Left panel: the correlation of the predicted potential with the exact one
for 20 different simulated samples and four different gate voltages, plotted versus
the average correlation with the prediction for the three other gate voltages (see
Fig. 5 for an example). The red line represents a linear fit cie = αc̄i to the data
with α = 0.96. Right panel: cumulative density function of the deviation between
the real correlation coefficient cie and the one obtained by averaging ci j . The black
crosses represent the distribution obtained from the first 20 samples of the test set.
The red curve represents the cumulative skew normal function γ of Eq. (D.2) with
x = αc̄i = cie and parameters ζ = −0.049, ω = 0.064, and θ = 6.996 that fits the
data. The inset represents the corresponding skew normal function. The dashed blue
line represents the point of the fit where αc̄i = cie.

values, we obtain the 80 (cie, c̄i) points12 presented in the left panel of Fig. 10. From the latter
figure, it is possible to estimate the quantity cie from c̄i by fitting the data (red solid line). The
linear fit indicates that

cie = αc̄i , (D.1)

where α = 0.96, meaning that our verification method has a tendency to overestimate the
actual Pearson coefficient. This phenomenon can be due to the absence of branches in a given
area of the scanning zone, no matter the gate voltage of the QPC. Indeed, in the absence
of SGM signal in a given region, one expects that the precision of the disorder prediction
decreases in that zone [18]. Therefore, the prediction can be the same when passing SGM
data for different gate voltages through the neural network, but it is also different from the
real disorder. We note that with the simulated data, we have an average value c̄ie = 0.89. The
skewed distribution of the predicted correlation around the real one (see Fig. 10) is very well
fitted by the skew normal distribution

γ(x;ζ,ω,θ ) =
1

ω
p

2π
e−

(x−ζ)2

2ω2

�

1+ erf
�

θ
x − ζ
ω
p

2

��

, (D.2)

where erf(x) is the error function. From Fig. 10, we observe that for 84 % of the samples,
the deviation from the predicted correlation is below 5 %. The inset of Fig. 10 depicts the
associated probability density function.

The presented method establishes an estimation of the correlation coefficient between the
predicted potential and the exact one cie that is obtained from the correlations between differ-
ent predicted potentials c̄i . The latter quantities are available for the experimental SGM data,

12Those points are the results of neural network predictions for different splittings between the training and test
set, which leads to slightly different results. A correlation between the two quantities cie and c̄i is obtained within
different neural networks (study performed over 40 different neural networks and the 20 disorder configurations)
[25]. Hence, for the rest of the study, we retain the results from the neural network that gives the highest c̄i

coefficient over all the 40 neural networks.
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where the exact potential is unknown. The application to experimental data allows us to get
the reliability of the predicted potentials that is presented in Sec. 4.
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Figure 11: The top line shows experimental SGM data for four different QPC con-
ductance values. Below are examples of images obtained after the application of
Gaussian filters with different width on the reconstructed SGM response.

E Gaussian filter examples

Examples of simulated SGM maps computed from a predicted potential of the real sample are
depicted in Fig. 11, where each line (except the first one) corresponds to a different width
of the Gaussian filter. We observe that blurring with a width σ ≈ 6nm seems to be the most
realistic choice.
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Figure 12: The top line represents the four experimental SGM maps obtained at
the indicated QPC conductance values. The four lower lines represent the SGM re-
sponses reconstructed from the potentials predicted from the SGM measured at the
conductance G indicated in the left part of the figure. A Gaussian filter of σ = 6 nm
is applied on all the simulated SGM maps. Each column corresponds to a different
value of unperturbed conductance and has a different color code indicated on the
top of the column.

F Qualitative validation based on reconstructed SGM responses

It is also possible to compute the SGM signal from the predicted potential and to compare it
to the original experimental data. To avoid to be skewed by the model used to compute the
quantum transport properties, one can compute the SGM in a different experimental condition
(e.g. adding a magnetic field or changing the gate voltage) and compare it to the experimental
data corresponding to this new experimental condition.

However, no obvious correlation is observed between the similarity of the potentials (the
predicted one and the expected one) and the similarity of the SGM images (the SGM com-
puted from the predicted potential and from the expected potential), both evaluated through
the Pearson correlation coefficient (2). The hypotheses to explain these results are: (i) The
lack of information on the disorder between the QPC and the scanning zone (for the SGM
reconstruction, we consider no potential fluctuation due to the disorder there) that can lead
to a large difference between the original SGM signal and the reconstructed one, even if the
predicted potential is correct. And (ii), the Pearson coefficient compares two images pixel per
pixel, meaning that a small shift of a branch or a phase difference of the interference fringes
can lead to a significant decrease in the correlation coefficient. Thus, the value of the coeffi-
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cient is mainly dependent on much less relevant features like the cross-talk.13 This evaluation
method can not give any quantitative information but can be considered qualitatively.

From each of the predicted potentials, we computed the SGM for the four different values
of G.14 The results are depicted below the associated experimental SGM-response in Fig. 12.
Even if the lack of information on the disorder outside of the scanning zone can lead to devia-
tions in the reconstruction, we do not observe a significant impact of the disorder that deviates
the electron flow.

We note that despite the difference of the predicted potentials, all the reconstructed SGM
maps corresponding to the same conductance value are very similar. Thus, we can suggest that
the variation between the predicted potentials has no important impact on the branch pattern
(except for the upper right part of the potential from G = 1.3 G0 where a difference between
the reproduced SGM at G = 2.0 G0 and the real one appears).
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