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In this work, the development of two-dimensional current sheets with respect to
tearing-modes, in collisionless plasmas with a strong guide field, is analysed. During their
nonlinear evolution, these thin current sheets can become unstable to the formation of
plasmoids, which allows the magnetic reconnection process to reach high reconnection
rates. We carry out a detailed study of the impact of a finite βe, which also implies
finite electron Larmor radius effects, on the collisionless plasmoid instability. This study
is conducted through a comparison of gyrofluid and gyrokinetic simulations. The com-
parison shows in general a good capability of the gyrofluid models in predicting the
plasmoid instability observed with gyrokinetic simulations. We show that the effects of
βe promotes the plasmoid growth. The impact of the closure applied during the derivation
of the gyrofluid model is also studied through the comparison among the variations of
the different contributions to the total energy.

1. Introduction
Magnetic reconnection is a change of topology of the magnetic field lines taking place

in regions of intense localized current, referred to as current sheets. This fundamental
process ultimately converts magnetic energy into bulk flow and particle heating, and is
responsible for the explosive release of magnetic energy in astrophysical and laboratory
plasmas. The instabilities of very elongated reconnecting current sheets leading to the
formation of secondary magnetic islands, called plasmoids, have generated a lot of
interest, as they are believed to achieve fast reconnection. Plasmoids have been greatly
studied through the most standard reconnection model based on the Sweet-Parker (SP)
theory in the resistive magnetohydrodynamics (RMHD) framework (Biskamp (1986);
Loureiro et al. (2005)). In Biskamp (1986), it has been shown that collisional current
sheets become unstable above a critical Lundquist number S “ µ0LspvA{η ą Sc “ 104,
where Lsp is the length of the SP current sheet, η is the resistivity and vA is the
Alfvèn speed. Much work has followed and allowed to identify the plasmoid regime as
a function of the Lundquist number and of the characteristic scale of a dynamic of the
ions (ion-sound Larmor radius ρs or ion skin depth di scales) at which a transition to a
non-collisional regime, dominated by kinetic effects, occurs (Ji and Daughton (2011);
Daughton and Roytershteyn (2012); Loureiro and Uzdensky (2015); Uzdensky et al.
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(2010a,b); Bhat and Loureiro (2018)). This extension of the resistive reconnection regime
with the inclusion of the ion dynamics enlarged the study to a broader parameter space,
but also suggested that plasmoids are fundamental features of reconnecting current
sheets, regardless of the value of the Lundquist number (Ji and Daughton (2011);
Daughton and Roytershteyn (2012)).

The plasma in the magnetosphere and solar wind, which regularly undergoes recon-
nection, is so dilute that collisions between particles are extremely infrequent. In such
plasmas, electron inertia becomes particularly relevant to drive reconnection in thin
current sheets. Indeed, recent observations revealed many reconnection onsets driven
by electrons, in the presence of a strong guide field, close to the dayside magnetopause
and magnetosheath (Burch et al. (2016); Phan et al. (2018)) with current sheets having
a thickness of the order of the electron inertial length. Regarding experiments, a study
by Olson et al. (2016) also gave direct experimental proof of plasmoid formation at the
electron scale in a weakly collisional regime. In these collisionless, magnetized environ-
ments, effects of the finite electron Larmor radius (FLR) on the reconnection process
can also become non-negligible, in particular when βe, defined as the ratio between
equilibrium thermal electron pressure and guide field magnetic pressure, is not much
smaller than unity. Although the plasma-β effect was found to have an impact on the
plasmoid instability threshold in the collisional regime (Ni et al. (2012)) and in the semi-
collisional regime (Baty (2014)), it has been ignored in most collisionless studies. This
motivates the study of the formation of plasmoids in non-collisional current sheets, and
in particular, the impact of the effects relevant at the electron scales such as the electron
skin depth and the electron Larmor radius.

In Granier et al. (2022a), the purely collisionless plasmoid regime was investigated in
the regime of strong guide field with βe Ñ 0. The instability was studied in a phase
space defined by two kinetic scales, de (electron inertial length) and ρs (the ion-sound
Larmor radius), compared to the current sheet length Lcs. In a first regime, where the
ion sound Larmor radius is much smaller than the thickness of the boundary layer,
ρs ! δin, plasmoids were obtained for current sheets having a critical aspect ratio
A

p1q
‹ “ pLcs{δcsq „ pLcs{deq „ 10. In a second regime, where the ion sound Larmor

radius is of the order of, or larger than, the thickness of the inner region, the critical
aspect ration can be below 10 and was found to scale as A

p2q
‹ 9Lcs{ρs. In the present

work, we relax the assumption of small βe and carry out a detailed study of the impact
of a finite βe, on the collisionless plasmoid instability, in the case of a strong guide
field. We consider inertial reconnection, and finite electron FLR effects arise from the
combination of electron inertia and finite βe parameters. This study is conducted through
a comparison of gyrofluid and gyrokinetic simulations. Previously, the gyrokinetic method
was successfully employed to examine reconnection (Zocco and Schekochihin (2011),
Pueschel et al. (2011), Zacharias et al. (2014), Numata and Loureiro (2015), Rogers
et al. (2007)). Both approaches are assuming that the plasma is immersed in a strong
guide field oriented along the z direction. As a by-product of our analysis, we also obtain
a way to validate, by means of gyrokinetic simulations, part of the results on collisionless
plasmoid instability obtained by Granier et al. (2022a) with a gyrofluid approach in the
βe Ñ 0 limit (later referred to as fluid limit).

The adopted gyrofluid model is the 2-field system presented in Granier et al. (2022b)
and assumes cold and immobile ions along the guide field direction. Gyrofluid models,
although greatly simplified with respect to the original gyrokinetic system, are useful
tools for studying collisionless reconnection, in which the microscopic scales, such as
the electron skin depth and the electron Larmor radius, can be more important than
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resistivity. In addition, the gyrofluid framework is less costly in terms of computational
resources, and physically more intuitive when compared to the kinetic or gyrokinetic
framework. So far, gyrofluid modelling allowed to gain a good understanding of the role
of collisionless effects (e.g. Sarto et al. (2011); Comisso et al. (2013); Tassi et al. (2018);
Granier et al. (2021, 2022b)).

The gyrokinetic model, adopted for the comparison, is a δf model which solves the
electromagnetic gyrokinetic Vlasov-Maxwell system. The gyrokinetic equations are solved
by means of the AstroGK code, presented and used in Numata et al. (2010); Numata and
Loureiro (2015). One of the main advantages of using the AstroGK code for a comparison
with the gyrofluid results, is that, in a specific limit, the gyrokinetic system solved by
AstroGK reduces to the one that was taken to derive the 2-field gyrofluid model used in
this study (Howes et al. 2006). This allows to study the impact of the closure applied on
the moments, performed during the derivation of the gyrofluid model, on the distribution
and conversion of energy during reconnection, and identify the possible limitations of the
gyrofluid approach. The specific limit in which the AstroGK code has to be used, in order
to reproduce the parent gyrokinetic model of the gyrofluid model, is that corresponding to
a straight guide field, with no density and temperature gradients and without collisions.
To be consistent with the gyrofluid approach, the ions are assumed to be cold.

The article is organized as follow. In Sec. 2 we present the gyrofluid and gyrokinetic
systems, as well as the numerical set up. In Sec. 3 we present the results concerning
the plasmoid instability obtained from a comparison of the two approaches. In Sec. 4
we compare the energy variations in the two frameworks and discuss the impact of the
closure hypothesis on the energy conversion. Section 5 is devoted to conclusions.

2. Adopted models
2.1. Gyrofluid

The gyrofluid model used for our analysis is the one considered by Granier et al.
(2022b), which consists of the following evolution equations

BNe

Bt
` rG10eϕ ´ ρ2s2G20eB∥, Nes ´ rG10eA∥, Ues “ 0, (2.1)

BAe

Bt
` rG10eϕ ´ ρ2s2G20eB∥, Aes ` ρ2srG10eA∥, Nes “ 0, (2.2)

complemented by the relations
ˆ

G2
10e ´ 1

ρ2s
` ∇2

K

˙

ϕ ´ pG10e2G20e ´ 1qB∥ “ G10eNe, (2.3)

∇2
KA∥ “ G10eUe, (2.4)

pG10e2G20e ´ 1q
ϕ

ρ2s
´

ˆ

2

βe
` 4G2

20e

˙

B∥ “ 2G20eNe. (2.5)

Equation (2.1) corresponds to the electron gyrocenter continuity equation, whereas Eq.
(2.2) refers to the electron momentum conservation law, along the guide field direction.
The static relations (2.3), (2.4) and (2.5) descend from quasi-neutrality and from the
projections of Ampère’s law along directions parallel and perpendicular to the guide
field, respectively. As above mentionned, the guide field is directed along the z axis of
a Cartesian coordinate system x, y, z, and, in the present 2D version of the model, the
dependent variables are functions only of x and y, as well as of the time variable t. We
indicated with Ne and Ue the fluctuations of the electron gyrocenter density and parallel
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velocity, respectively, whereas ϕ and B∥ indicate the fluctuations of the electrostatic
potential and of the magnetic field along the guide field. The variable Ae is defined by
Ae “ G10eA∥ ´ d2eUe, where A∥ is the z-component of the magnetic vector potential,
de “

a

mec2{4πe2n0{L is the normalized electron skin depth and G10e is an electron
gyroaverage operator, defined later in Eq. (2.10). The operator r , s is the canonical
Poisson bracket and is defined by rf, gs “ BxfByg ´ ByfBxg, for two functions f and
g. The perpendicular Laplacian operator ∇2

K is defined by ∇2
Kf “ Bxxf ` Byyf . The

variables are normalized as

t “
vA
L

t̂, x “
x̂

L
, y “

ŷ

L
, (2.6)

diNe,i “
N̂e,i

n0
, diUe,i “

Ûe,i

vA
, (2.7)

A∥ “
Â∥

LB0
, diB∥ “

B̂∥

B0
, ϕ “

c

vA

ϕ̂

LB0
, (2.8)

where the hat indicates dimensional variables, c is the speed of light, L is a character-
istic scale length, n0 is the equilibrium uniform density, B0 is the amplitude of the guide
field and vA “ B0{

?
4πmin0 is the Alfvén speed, with mi indicating the ion mass. The

normalized ion skin depth is defined by di “
a

mic2{4πe2n0{L, where e indicates the
proton charge. In Eq. (2.7) we also introduced the quantities Ni and Ui, corresponding to
the ion gyrocenter density and parallel velocity fluctuations, respectively. Such moments
do not evolve in the model (2.1)-(2.5), and the assumptions on such quantities will be
discussed later in this section, as well as in Sec. 4. We find it also useful to write explicitly
the expression for the magnetic field normalized with respect to the guide field amplitude.
In the present 2D setting, by virtue of the normalization (2.6)-(2.8), such expression is
given by

Bpx, y, tq “ z ` diB∥px, y, tqz ` ∇A∥px, y, tq ˆ z, (2.9)
where z is the unit vector along z. Independent parameters in the model are βe “

8πn0T0e{B2
0 , ρs “

a

T0emic2{pe2B2
0q{L: and de. These three parameters correspond to

the ratio between equilibrium electron pressure and magnetic guide field pressure, to the
normalized sonic Larmor radius and to the electron skin depth, respectively.

The model is formulated on a domain tpx, yq : ´Lx ď x ď Lx,´Ly ď y ď Lyu,
with Lx and Ly positive constants. Periodic boundary conditions are assumed. This
allows to express gyroaverage operators in terms of the corresponding Fourier multipliers.
In particular, we associate the electron gyroaverage operators G10e and G20e with
corresponding Fourier multipliers in the following way (Brizard 1992)

G10e “ 2G20e Ñ e´k2
K

βe
4 d2

e , (2.10)

where k2K “ k2x ` k2y is the squared perpendicular wave number and kx “ mπ{Lx,
ky “ nπ{Ly are the x and y components of the wave vector, with m and n positive
integers. As is customary with gyrofluid models, Eqs. (2.1) and (2.2) are expressed in
terms of gyrocenter variables. However, for the sake of the subsequent analysis, it can be
useful also to express their relation with particle variables. Such relation, in particular, is
affected by the quasi-static assumption, used in the derivation of the model (Tassi et al.
2020) to obtain a closure on the infinite hierarchy of moment equations obtained from
a parent gyrokinetic system. As a consequence of such quasi-static closure (which will

: According to a customary notation, in the symbols ρs, the subscript s is to indicate a sonic
quantity and not the particle species.
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be briefly recalled in Sec. 4) the normalized density fluctuations and parallel velocity
fluctuations of the electrons, indicated with ne and ue, respectively, are related to those
of the corresponding gyrocenters by

Ne “ G´1
10e

ˆ

ne `
`

G2
10e ´ 1

˘ ϕ

ρ2s
´ G2

10eB∥

˙

, (2.11)

Ue “ G´1
10eue. (2.12)

Also, in our gyrofluid model we neglect the contributions due to the density and parallel
velocity fluctuations of the ion gyrocenters, by imposing that Ni “ 0, Ui “ 0. Further-
more, ions are assumed to be cold, i.e. τ Ñ 0, where τ “ T0i{T0e is the ratio between ion
and electron equilibrium temperature.

In terms of the ion particle density and parallel velocity fluctuations, denoted as ni

and ui, respectively, such assumptions lead to the relations ni “ ∇2
Kϕ ` B∥ “ ne and

ui “ 0. From the quasi-neutrality relation (2.3), Ampère’s law (2.4)-(2.5), combined with
Eqs. (2.11)-(2.12), we can obtain the relations

ne “
2

2 ` βe
∇2

Kϕ “ ´
2

βe
B∥, (2.13)

ue “ ∇2
KA∥, (2.14)

that permit to express the electron particle (as opposed to gyrocenter) density and
parallel velocity fluctuations, in terms of electromagnetic perturbations such as ϕ, B∥
and A∥.

It is also particularly relevant to consider the limit βe Ñ 0 with de and ρs remaining
finite (which implies me{mi Ñ 0). This corresponds to suppressing the effects of parallel
magnetic perturbations and electron FLR effects. One of the purposes of our investigation
is indeed to consider possible modifications, due to kinetic effects, of the plasmoid
instability scenario described by Granier et al. (2022a) and which was conceived namely
in the regime with βe Ñ 0 and finite de and ρs. In this limit, the gyroaverage operators
can be approximated in the Fourier space in the following way:

G10efpx, yq “ 2G20efpx, yq “ fpx, yq ` Opβeq. (2.15)

Using this development in Eqs. (2.1) - (2.5) and neglecting the first order corrections, we
obtain the evolution equations (Schep et al. (1994))

Bne

Bt
` rϕ, nes ´ rA∥, ues “ 0, (2.16)

B

Bt

`

A∥ ´ d2eue

˘

`
“

ϕ,A∥ ´ d2eue

‰

´ ρ2srne, A∥s “ 0, (2.17)

where the static relations (2.3) - (2.5) are replaced by

∇2
Kϕ “ Ne “ ne, (2.18)

∇2
KA∥ “ Ue “ ue, (2.19)

B∥ “ 0. (2.20)

In this limit, particle density and parallel velocity fluctuations coincide with the corre-
sponding gyrocenter counterparts. The system (2.16)-(2.17), complemented by the static
relations (2.18)-(2.19) corresponds to the model by Cafaro et al. (1998), adopted for
describing collisionless reconnection in the presence of electron inertia and finite sonic
Larmor radius effects. Because of the absence of FLR effects, we will refer to the model
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(2.16)-(2.19) as to the fluid limit of the general gyrofluid model (2.1)-(2.5). This model
was extensively used for studying reconnection in the past, and a dispersion relation was
derived in Porcelli (1991).

We point out that it is possible to take the small FLR limit of Eq. (2.2), with parameters
satisfying (de ! 1, ρs ! 1, de{ρs ! 1, βe “ Op1qq and ∇2

K “ Op1q, to obtain an Ohm’s
law given by

B

Bt

ˆ

A∥ `

ˆ

βe

4
´ 1

˙

d2e∇2
KA∥

˙

`

„

ϕ,A∥ `

ˆ

βe

4
´ 1

˙

d2e∇2
KA∥

ȷ

` ρ2s

ˆ

βe

2 ` βe
´ 1

˙

r∇2
Kϕ,A∥s “ 0. (2.21)

This equation retains first-order corrections proportional to pβe{4qd2e and βeρ
2
s{p2 ` βeq,

that arise from both electron FLR (assuming G10e « 1`pβe{4qd2e∇2
K for de ! 1) and finite

B∥ effects, respectively. The dispersion relation of Porcelli (1991), which was obtained by
adopting boundary layer and asymptotic matching techniques for βe “ 0, can be extended
by identifying an effective electron skin depth d1

e and effective sonic Larmor radius ρ1
s,

given by d1
e{de “

a

1 ´ βe{4 and ρ1
s{ρs “

a

2{pβe ` 2q, respectively. This assumes that
one can perform the matching asymptotic expansion as in the case without electron
FLR effects, apart from the correction embedded in d1

e. This excludes, in particular, the
role played, in the dispersion relation, by a possible innermost boundary layer of size
proportional to some positive power of βe. However, as will be shown in Fig. 1, the
comparison with numerical simulations suggests that, at least for the small values of βe

considered, such approximation, appears to describe effectively the dependence on βe of
the linear growth rate.

2.2. Gyrokinetic

In this section, we present the electromagnetic δf gyrokinetic model used in this
work (Howes et al. 2006; Numata et al. 2010), from which the gyrofluid model can be
derived with appropriate approximations and closure hypotheses (Tassi et al. (2020)).
The gyrokinetic model is formulated in terms of the perturbation of the gyrocenter
distribution function gs “ gspXs, v∥, vK, tq where v∥, vK are the parallel and perpendicular
velocity coordinates. The guiding center coordinates is given by

Xs “ x `
vths

ωcs
v ˆ z, (2.22)

where x is the particle position, v is the particle velocity, vths “
a

T0s{ms is the
thermal speed and ωcs “ eB0{pmscq is the cyclotron frequency. The index s labels the
particle species, with s “ e for electrons and s “ i for ions. For simplicity, we assume a
uniform background plasma, and two-dimensionality (B{Bz “ 0q. By adopting the same
normalization scheme with the gyrofluid model, the gyrokinetic system can be written
in the following way,

B

Bt

ˆ

gs `
1

ρs

Zs
?
σsτs

v∥J0sA∥

˙

“

´

«

J0sϕ ´

c

τsβe

2σs
v∥J0sA∥ `

τs
Zs

ρ2sv
2
KJ1sB∥, gs `

1

ρs

Zs
?
σsτs

v∥J0sA∥

ff

, (2.23)
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ÿ

s

Zsn̄s “ϕ
ÿ

s

Zs

ρ2sτs

ˆ

1

n0

ż

dŴF̂eqsp1 ´ J0sq

˙

` B∥
ÿ

s

Zs

ˆ

1

n0

ż

dŴF̂eqsv
2
KJ0sJ1s

˙

, (2.24)

ÿ

s

Zsūs “ ´∇2
KA∥, (2.25)

ÿ

s

p̄s “ ´ ϕ
ÿ

s

1

ρ2s

ˆ

1

n0

ż

dŴF̂eqsv
2
KJ0sJ1s

˙

´ B∥

˜

2

βe
`

ÿ

s

ż

dŴF̂eqspv2KJ0sJ1sq2

¸

(2.26)

Eq. (2.23) is the gyrokinetic equation, whereas Eqs. (2.24), (2.25) and (2.26) correspond
to the quasi-neutrality relation and to the parallel and perpendicular projection of
Ampère’s law. We have introduced the following additional normalizations

gs “
ĝs

F̂eqs

, v∥,K “
v̂∥,K

vths

, dip̄s “
ˆ̄ps

n0T0e
(2.27)

where the Maxwellian equilibrium distribution function in the dimensional form is

F̂eqspv̂∥, v̂Kq “ n0

ˆ

ms

2πT0s

˙3{2

e´
msv̂2

∥
2T0s

´
msv̂2

K
2T0s . (2.28)

The species dependent parameters are the mass ratio σs “ ms{mi, temperature ratio
τs “ T0s{T0e, and charge number ratio Zs “ qs{qi. Obviously, σi “ 1, τe “ 1, Zi “ 1.
We fix Ze “ ´1, i.e. qi “ e, throughout this work. We may occasionally denote the
non-trivial ones as σe “ σ, τi “ τ .

The velocity moments of the distribution function appear in Eqs. (2.24)-(2.26) are
defined by

din̄s “
1

n0

ż

dŴF̂eqsJ0sgs, (2.29)

diūs “

c

τsβe

2σs

1

n0

ż

dŴF̂eqsv∥J0sgs, (2.30)

dip̄s “ τs
1

n0

ż

dŴF̂eqsv
2
KJ1sgs, (2.31)

where the volume element dŴ in velocity space is defined as dŴ “ πv3ths
dv∥dv

2
K. Note

that these quantities are moments of gs, thus are different from the actually particle
density, flow, and pressure, i.e. the moments of the total distribution function δFs defined
later on.

Finally, the gyroaverage operators J0s and J1s can be expressed, analogously to Eq.
(2.10), in terms of Fourier multipliers in the following way:

J0s Ñ J0 pαsq , J1s Ñ
J1pαsq

αs
, (2.32)

where J0 and J1 are the zeroth and first order Bessel functions, respectively, and the
argument is defined by αs “ kKvKvths{pLωcsq “ kKvKpρs

?
σsτs{Zsq.
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2.3. Connection between the gyrofluid and the gyrokinetic models
We assume the distribution function can be written as

ĝspXs, v∥, vK, tq “ F̂eqs

8
ÿ

n,m“0

Hmpv∥qLn

ˆ

v2K
2

˙

fmns
pXs, tq (2.33)

where Hm and Ln indicate the Hermite and Laguerre polynomials, respectively, of order
m and n, with m and n non-negative integers. From the orthogonality properties of the
Hermite and Laguerre polynomials, the following relation holds:

fmns
“

1

n0

?
m!

ż

dŴ F̂eqsgsHm

`

v∥
˘

Ln

ˆ

v2K
2

˙

. (2.34)

The functions fmns are coefficients of the expansion and are proportional to fluctuations
of the gyrofluid moments. Indeed, for instance, f20e is proportional to gyrocenter electron
parallel temperature fluctuations and f00e is proportional to gyrocenter electron density
fluctuations.

In the present 2D case with an isotropic equilibrium temperature, the system is closed
by a closure called "quasi-static" which was derived in Tassi et al. (2020) and which
implies that, with the exception of Ne,i and Ue,i, all the other gyrofluid moments are
constrained by the relations

fmns
“ ´δm0

ˆ

G1ns
1

di

2Zs

τsβe
ϕ ` 2G2nsdiB∥

˙

(2.35)

where δm0 is a Kronecker delta and m and n are non-negative integers, with pm,nq ‰

p0, 0q and pm,nq ‰ p1, 0q, namely to exclude Ne,i and Ue,i. In Eq. (2.35), we also
introduced the gyroaverage operators which, as Fourier multipliers, are given by

G1npbsq Ñ
e´bs{2

n!

ˆ

bs
2

˙n

, n ě 0, (2.36)

G20pbsq Ñ
e´bs{2

2
, G2npbsq Ñ ´

e´bs{2

2

˜

ˆ

bs
2

˙n´1
1

pn ´ 1q!
´

ˆ

bs
2

˙n
1

n!

¸

, n ě 1,

(2.37)

with bs “ k2Kv
2
ths

{pLωcsq2 “ k2Kd
2
i pσsτsβe{p2Z2

s qq “ k2Kρ
2
spσsτs{Z2

s q. Expressed in terms
of particle variables, this closure implies that, with the exception of ne,i and ue,i, the
fluctuations of the particle moments are zero.

The (2D) quasi-static closure is valid when

ω̂

k̂y
! vths

(2.38)

for s “ e, i are satisfied, where k̂y is the y component of the wave vector and ω̂ is the
frequency obtained from the dispersion relation of the gyrokinetic equation linearized
about an equilibrium ϕp0q “ B

p0q

∥ “ 0, A
p0q

∥ “ ax, with a constant a (strictly speaking, in

order to perform the gyroaverage of the function A
p0q

∥ “ ax, the linearization is not carried
out on Eq. (2.23), which assumes periodic fields, but on its slightly more general form, in
which Bessel function operators are replaced by gyroangle averages, so that, for instance
J0sf , for a function f , is replaced by ă fpxq ąXs

“ p1{p2πqq
ş2π

0
dθfpXs´pvths

{ωcsqvˆzq,
with θ indicating the gyroangle). The condition (2.38) is better fulfilled for waves with
small phase velocity along y, which justifies the term quasi-static. With regard to the
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moments not fixed by the quasi-static closure, we have that the dynamics of Ne and Ue

is governed by the evolution equations (2.1)-(2.2), that can then be obtained from the
zeroth and first order moment, with respect to the parallel velocity coordinate v∥, of the
electron gyrokinetic equations (2.23), with s “ e.

In the context of the tearing instability, the dispersion relations of the tearing mode
usually satisfy the condition ω{ky ! vthe

. This relation indicates that electrons have time
to thermalize along the field lines while the tearing mode develops. Similar comments
have already been made in the context of the MHD model with pressure anisotropies.
Shi et al. (1987) discussed the following two equations of state: double adiabatic and
isothermal. According to Kulsrud (1983), a double adiabatic closure requires L{t " vthe ,
with t the characteristic scale of time variation and L the scale of the spatial variation.
Shi et al. (1987) indicated that L{t " vthe

cannot be satisfied by most tearing modes
with t and L taken to be the growth time and the wavelength of the mode, respectively.
On the other hand, the isothermal closure for the electrons, valid in the opposite regime
(L{t ! vthe) can be a better approximation for the study of the tearing instability.

Concerning Ni and Ui, as above stated, we assume the conditions

Ni “ 0, Ui “ 0 (2.39)

to hold. This assumption effectively decouples the ion gyrofluid dynamics from the
electron gyrofluid dynamics, leaving Eqs. (2.1)-(2.5) a closed system.

Whereas all the terms in Eqs. (2.1)-(2.5) do not assume any ordering on βe, the
assumption (2.39), as can be derived from the four-field model in Granier et al. (2022b),
is valid for βe ! 1.: So, in this respect, the adopted gyrofluid model is not derived from
the parent gyrofluid model (or from gyrokinetics) under a consistent ordering in βe. For
this reason, our analysis will be restricted to moderate values of βe (we take βe ď 0.692),
where effects of βe associated with electron FLR and parallel magnetic perturbations are
nevertheless appreciable. Checking that, in gyrokinetic simulations, the energy associated
with the perturbations Ni and Ui remains small, will be an empirical way to make sure
that the condition (2.39) is approximately fulfilled. On the other hand we expect, in the
gyrokinetic simulations, a departure from the condition (2.39) as βe increases.

We finally mention that in both gyrofluid and gyrokinetic simulations, we consider the
cold-ion case, i.e.

τ ! 1, (2.40)

where we recall that τ “ τi “ T0i{T0e.

2.4. Numerical set-up

We assume an equilibrium in which the electromagnetic quantities are given by

ϕp0q “ 0, A
p0q

∥ “ Aeq
∥0{ cosh2 pxq , B

p0q

∥ “ 0, (2.41)

with Aeq
∥0 “ 1.299, in order to have maxxpBeq

y pxqq “ 1. This equilibrium corresponds
to a current sheet centered at x “ 0, of dimensionless length 2Ly “ 2L̂y{L, and
of dimensionless width corresponding to unity. Due to periodicity assumption in the

: With this regard it could be useful to mention here a misprint in Eq. (2.2) in Granier et al.
(2022b), where Ui should have been multiplied by the factor 2ρ2sK

{βeK .
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simulations;, the dimensionless equilibrium A
p0q

∥ is replaced by

A
p0q

∥ “

n“30
ÿ

n“´30

Aeq
∥0ane

in2πx, (2.42)

where an are the Fourier coefficients of the function 1{ cosh2 pxq.
Note that, in order to satisfy Eqs. (2.3)-(2.5) at equilibrium, the corresponding equi-

librium density and parallel electron velocity fluctuations of the electron gyrocenters are
fixed as

N p0q
e “ 0, ∇2

KA
p0q

∥ “ G10eU
p0q
e . (2.43)

Also in the gyrokinetic simulations, in accordance with Eq. (2.43), the equilibrium current
density is assumed to be entirely due to the parallel electron velocity (we recall that, as
discussed in Sec. 2.3, the gyrokinetic admits, unlike the gyrofluid model, also a finite
parallel ion flow). For both the gyrofluid and gyrokinetic simulations, the perturbation
of the equilibrium magnetic flux function A

p0q

∥ is of the form A
p1q

∥ 9 cospkyyq and is initially
excited by the mode m “ 1. The stability condition is given by the tearing parameter
(Furth et al. 1963), which for our equilibrium is given by

∆1 “ 2

`

5 ´ k2y
˘ `

k2y ` 3
˘

k2ypk2y ` 4q1{2
. (2.44)

The equilibrium (2.41) is tearing unstable when ∆1pkyq ą 0, which corresponds to wave
numbers ky “ πm{Ly ă

?
5. In this article, we refer to ∆1 as that associated with the

initially excited mode m “ 1. However, depending on the ratio between the width and
the length of the initial current sheet, several wavenumbers ky with a positive tearing
parameter can result from non-linear interactions of the mode m “ 1. After the saturation
of the tearing modes, eventually, the X-point collapse and a secondary thinning current
sheet forms. The secondary current sheet becomes thinner until reaching a minimum
width, and is subject to an inflow that compresses it. Therefore, the instability threshold
of this secondary current sheet is not indicated by ∆1 which is specific to the initial static
current sheet. In this secondary current sheet, small perturbations can grow and cause
the emergence of other islands, when they enter their nonlinear phase. This dynamics
is due to the superposition of several unstable modes with different wavenumbers and
growth rates, among which the fastest mode is obviously the dominant one.

The fluid numerical solver SCOPE3D (Solver Collisionless Plasma Equations in 3D)
(Granier et al. (2022a)) is pseudo-spectral and the advancement in time is done through a
third order Adams Bashforth scheme. The numerical solver SCOPE3D has been adapted
to solve the gyrofluid equations. The gyrokinetic model is solved by AstroGK (Numata
et al. 2010). Although AstroGK employs some sophisticated techniques for the treatment
of linear terms, it uses essentially the same pseudo-spectral and temporal schemes.

3. Results on the plasmoid onset
An extensive numerical simulation campaign, reported in the tables 1 and 2, was

carried out to study the physical conditions under which plasmoids appear.
Each simulation is identified by a code of the form pF {GF {GK r, where p and r are

; In the AstroGK code, a shape function Shpxq is multiplied to A
p0q

∥ to enforce
periodicity (Numata et al. 2010). This minor difference in the simulation set-up between two
models practically introduces no difference in the following results.
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No. ρs ∆1 βe me{mi γL γmax Plasmoid

1GF1 0.3 14.3 0.2491 0.01 0.214 0.285 One small
1GF2 0.3 14.3 0.06228 0.0025 0.225 0.322 No
1F 0.3 14.3 0 0 0.230 0.337 No

2GF1 0.3 29.09 0.2491 0.01 0.211 0.342 One plasmoid
2GF2 0.3 29.09 0.1246 0.005 0.218 0.367 One plasmoid
2GF3 0.3 29.09 0.06228 0.0025 0.231 0.378 One plasmoid
2GF4 0.3 29.09 0.0124 0.0005 0.241 0.385 Several plasmoids
2F 0.3 29.09 0 0 0.242 0.386 Several plasmoids

3GF1 0.5 14.3 0.692 0.01 0.286 0.334 Several plasmoids
3GF2 0.5 14.3 0.3460 0.005 0.310 0.383 Several plasmoids
3F 0.5 14.3 0 0 0.338 0.448 Several plasmoids
4F 0.06 14.3 0 0 0.081 0.188 No

Table 1. Gyrofluid and fluid simulations.

No. ρs ∆1 βe me{mi γL γmax Plasmoid

1GK1 0.3 14.3 0.2491 0.01 0.2245 0.308 One small
1GK2 0.3 14.3 0.06228 0.0025 0.2438 0.342 No
2GK1 0.3 29.09 0.2491 0.01 0.2165 0.352 One large
2GK2 0.3 29.09 0.1246 0.005 0.2267 0.389 One large
2GK3 0.3 29.09 0.06228 0.0025 0.2329 0.401 One large
3GK1 0.5 14.3 0.692 0.01 0.3040 0.362 One
3GK2 0.5 14.3 0.3460 0.005 0.3286 0.410 One
3GK3 0.5 14.3 0.1730 0.0025 0.3472 0.453 One
4GK1 0.06 14.3 0.009965 0.01 0.08617 0.207 No
4GK2 0.06 14.3 0.002491 0.0025 0.08779 0.209 No

Table 2. Gyrokinetic simulations.

integers and F , GF and GK indicate whether the simulation is carried out in the
fluid limit, with the gyrofluid model or with gyrokinetic model, respectively. For all
the simulations, the value of the electron skin depth is fixed to de “ 0.085. Simulations
with the same number p are characterized by the same values of de, ρs and ∆1. For a
fixed p, different values of the index r, on the other hand, indicate different values of βe

(and, consequently, of me{mi), with βe decreasing as r increases. Not all the simulations
of Table 1 have a corresponding simulation in Table 2 and viceversa, although this is the
case for most of the simulations. In particular, we point out that, because gyrokinetic
simulations always have a finite value of βe, strictly speaking there is no gyrokinetic
counterpart for the fluid simulations, which formally correspond to the βe Ñ 0 limit.

For all the gyrokinetic simulations, the temperature ratio is set to τ “ 10´3, where the
ion Larmor radius is

?
τρs. As mentioned before, the gyrofluid model assumes τ Ñ 0.

Therefore, in both the gyrofluid and gyrokinetic approach, the ion Larmor radius effects
are neglected.

For p “ 1, 3, 4, the initial current sheet extends along ´π ă y ă π, which gives
∆1

m“1 “ 14.3 for the initially excited mode, and ∆1
m“2 “ 1.23 for the generated mode

m “ 2. For p “ 2, we enlarge the box along y to ´1.4π ă y ă 1.4π, which gives
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∆1
m“1 “ 29.09, and the modes m “ 2 and m “ 3 are generated with ∆1

m“2 “ 5.94 and
∆1

m“3 “ 0.46.
As a first general comment, we observe, by comparing gyrofluid and gyrokinetic

simulations with the same indices p and r, that, in terms just of appearance or absence
of plasmoids, gyrofluid simulations agree with the gyrokinetic ones. Therefore, in this
respect, we can conclude that the quasi-static closure for the electrons and the suppression
of ion gyrocenter fluctuations, do not affect critically the stability of the nonlinear current
sheet. However, as will be discussed in the next Sections, differences appear in terms of the
number and size of plasmoids. In particular, when more than one plasmoid is observed,
this is indicated in table 1 and 2, generically, as ’several plasmoids’. The number of
plasmoids in the same simulation can indeed vary in time, as plasmoids can form at
different times and pairs of plasmoids can merge into a single one.

3.1. Growth rates
Before discussing in detail the plasmoid instability, we briefly comment about the

linear growth rate of the m “ 1 tearing mode excited by the perturbation of the initial
equilibria (2.41). In the tables, we reported the value of the linear and maximum growth
rate of the tearing instability, evaluated measuring the following quantity at the X-point

γ “
d

dt
log

ˇ

ˇ

ˇ
A

p1q

∥

´π

2
, 0, t

¯
ˇ

ˇ

ˇ
. (3.1)

The linear growth rate obtained by the two approaches are in a very good agreement.
For a fixed p, increasing βe and me{mi stabilizes the tearing mode. This aligns with

the results of Numata et al. (2011), in which similar stabilization effects are observed
when increasing βe and the mass ratio.
Figure 1 shows the solution of the dispersion relation derived from the fluid model by
Porcelli (1991) given by

π

2

˜

Beq1

y p0qγ

2ky

¸2

“ ´ρs
π

∆1
` ρ2sde

2ky

γBeq1

y p0q
. (3.2)

As shown on fig. 1, for de “ 0.085 and ρs “ 0.3, this dispersion relation agrees with
the linear growth rate of 1F and 2F . With the Ohm’s law (2.21) that retains first-order
FLR corrections as well as corrections due to parallel magnetic perturbations, we can
extend the dispersion relation (3.2) by replacing de and ρs with the effective parameters
d1
e “

a

1 ´ βe{4de and ρ1
s “

a

2{p2 ` βeqρs, respectively. The solution of this small FLR
dispersion relation, for βe “ 0.12 and βe “ 0.24, are shown on fig. 1 and allow a good
prediction of the linear growth rate of the gyrofluid simulations for ρs “ 0.3. In particular,
this permits to isolate the stabilizing effect of βe on the growth rate, when only βe is
varied. Such stabilizing effect becomes easier to identify in the small ∆1 limit, in which
Eq. (3.2) (with de and ρs replaced by the corresponding primed effective parameters)
yields γ 9 d1

eρ
1
s∆

1 „ deρsp1 ´ p3{8qβeq∆1 for βe Ñ 0.
By comparing the growth rate results, for a fixed mass ratios, of simulations p “

1, 3, 4, we note that increasing βe and ρs, as ρs „
a

βe{2, destabilizes the tearing mode.
Increasing these parameters can be seen as fixing the background density, the ion mass
and the guide field amplitude, while increasing the electron temperature. It was shown
numerically in Numata and Loureiro (2015); Granier et al. (2022b) that, in this latter
situation, the linear tearing growth rate is first ruled by the destabilizing effect of the
sonic Larmor radius. However, in cases where the electron temperature is high enough
for the effects of ρe to take over those of ρs, the linear growth rate is damped. Here, we
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Figure 1. Evolution of linear growth rate as a function of ky for de “ 0.085, ρs “ 0.3. For
βe “ 0, the solution corresponds to that of Porcelli (1991), while the cases βe “ 0.12 and
βe “ 0.24 represent an extension of this solution accounting for small electronic FLR effects and
parallel magnetic perturbations.
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Figure 2. Maximum growth rates of the collisionless tearing mode as a function of βe, for the

cases p “ 2 and p “ 3.

find ourselves in the first case, for which the effects of the sonic Larmor radius are visibly
dominant.

In the nonlinear phase, a slight discrepancy in the maximum growth rate can be noted
for the largest βe values. Figure 2 shows the value of γmax for the set of simulations p “ 2
and p “ 3. The gyrofluid and gyrokinetic simulations yield the same dependence of γmax

on the parameters, with the gyrofluid simulations slightly underestimating the maximum
growth rate measured in the nonlinear phase. This discrepancy suggests that, for large
values of βe and during the nonlinear phase, the efficiency of the gyrofluid model to
reproduce the gyrokinetic results becomes limited. As commented in Sec. 2.3, one reason
for this might be the absence of ion gyrocenter density and parallel velocity fluctuations,
which occurs in the gyrofluid model, even for large βe, due to the imposed condition
(2.39).

3.2. Remarks on the numerical resolution
It is important to anticipate the role of the resolution in this study. In the forming

nonlinear current sheet, tearing modes grow and can become unstable at different times.
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nx ˆ ny # plasmoids Comments on the order of appearance

200 ˆ 120 1 1 at the center
2002 3 2 symmetrically with respect to the center then 1 at the center

200 ˆ 400 3 2 symmetrically with respect to the center then 1 at the center
23042 7 6 symmetrically with respect to the center then 1 at the center

3400 ˆ 4800 7 6 symmetrically with respect to the center then 1 at the center

Table 3. number of visible plasmoids for simulation 2F for different grids.

The current sheet can therefore be broken by multiple dominant modes, and the number
of plasmoids is highly sensitive to the resolution used. Given that the fluid simulations
2F and 3F were those which allowed the formation of several plasmoids, we carried
out resolution tests with the gyrofluid code on these two simulations to determine the
necessary number of points along y, that does not prevent the growth of large mode
numbers.

Table 3 reports the number of visible plasmoids for simulation 2F as a function of the
number of points and indicates their order of appearance. The convergence is reached
for a resolution of 23042.

For 3F , which is close to marginal stability, a spatial discretization smaller than
2Ly{ny „ 0.0078 was needed. Unfortunately, it is not foreseeable to perform gyrokinetic
simulations with such a high resolution. Therefore, a grid of 256ˆ128 points has been used
for all the gyrokinetic runs. We compared these gyrokinetic simulations to fluid{gyrofluid
simulations performed with a nearly identical resolution. However, since the fluid code is
much less demanding in computation time, we also performed the fluid simulations with
grids up to 23042 points.

3.3. Effect of βe on the plasmoid onset
In this Section we present how the βe parameter changes modifies the critical aspect

ratio for the plasmoid formation. We measure the current sheet aspect ratio using the
current density j∥. The length is defined such that the current distribution from the
X-point to Lcs{2 equals a specific value α

1

N

N
ÿ

i“1

`

j∥|X ´ j∥p0, i∆y, tq
˘2

“ αj∥|X , (3.3)

where ∆y is the mesh length along y and N indicates the number of points from y “ 0 to
y “ Lcs{2. The constant α is taken to 1{3 as it gives good measurement of the length of
the region with a strong current. Formula (3.3) allows to apply a single consistent method
for all the simulations, while taking into account the reduction of the current intensity
along the layer. The width of the current sheet corresponds to the distance between
the two points along x where the value of j∥ takes the same value as at the point p0, Lcs{2q.

We focus first on the comparison of the series of simulations for p “ 1, starting with
the higher βe case, for which βe “ 0.2491. The contour plots of the parallel electron
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Figure 3. Top: Contour of the parallel electron velocity ue (proportional to the parallel current
density and normalized by d̂i{L and by the Alfvén velocity vA) for simulation 1GF1. Bottom:
Contour of the parallel current density j∥ (normalized by en0vA) of simulation 1GK1. The
difference in normalization conventions leads to a factor ´di “ ´0.85 between the two quantities.
Isolines of the magnetic potential are superimposed on all the contours.

velocity ue (proportional to the parallel current density), for the gyrofluid simulation
1GF1 and of the current density, j∥, for the gyrokinetic simulations 1GK1, are shown on
Fig. 3. Isolines of the magnetic potential, showing the topology of the magnetic field,
are overplotted. Both approaches indicate the formation of an island at the X-point. For
the fluid simulation, the aspect ratio is Acsf “ 4.90. In the gyrokinetic case, we measure
Acsk “ 4.03. We observe a persistent difference between the value of the gyrofluid and
gyrokinetic aspect ratios, which is explained by the difference in resolution. However,
their evolution according to the parameters are in agreement.
For the lowest βe cases, for which βe “ 0.06228, the contour plots of the simulations
1GF2 and 1GK2, are shown on Fig. 4. The two simulations lead to the formation of a
stable current sheet having an aspect ratio decreasing in time. The maximum aspect ratio
is reached when the growth rate measure by (3.3) has reached its maximum value and
the process enters the saturation phase. From the gyrofluid simulation we measured a
maximum aspect ratio Acsf “ 5.11. In the gyrokinetic case, the aspect ratio is Acsk “ 4.14.
The measured aspect ratio are very close to those obtained for βe “ 0.2491, and yet, no
island develop at the X-point.

Exciting only the mode m “ 1 results in the development of secondary modes due to
nonlinear interactions. The growth of these modes can be observed by comparing their
amplitude evolution over time. As is typical for tearing instability, we observe that these
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Figure 4. Top: Contour of the electron velocity ue (proportional to the parallel current density)
for simulation 1GF2. Bottom: Contour of the parallel current density j∥ of simulation 1GK2. The
difference in normalization conventions leads to a factor ´di “ ´1.7 between the two quantities.
Isolines of the magnetic potential are superimposed on all the contours.

modes grow faster than the mode m “ 1, but their amplitudes remain smaller in our
simulations. Additionally, we find that increasing βe (while increasing the mass ratio)
slows down the growth of these generated modes in all simulations. In simulation set
p “ 1, there is the mode m “ 2, which according to theory has a positive ∆1. However,
in the case with βe “ 0.2491, for which mode 2 grows more slowly, a plasmoid forms at
the X-point. It is worth pointing at the reference Del Sarto and Deriaz (2017) in which
they observed that after the saturation of m “ 1, the linear growth of m “ 2 persists
and dominates until the formation of a second island, despite the absence of a secondary
evolving current sheet. However, here, by examining the evolution of the amplitude of
the Fourier modes for which ∆1 ą 0, as well as the time derivative of their amplitude
evolution, we see that the appearance of plasmoids occurs after the saturation of all the
subdominant primary modes that fulfill the instability criterion for the initial magnetic
equilibrium.

For 1GF1, we measured Lcs{ρs „ 2 and Lcs{ρe „ 12, and the plasmoid formation
indicates that the critical aspect ratio is A‹ ă Lcs{δcs „ 4. In contrast, for 1GF2, we
have Lcs{ρs „ 3 and Lcs{ρe „ 64, and the critical aspect ratio has not been reached,
A‹ ą Lcs{δcs „ 4, indicating that no plasmoids are formed. In this first set of tests,
we are operating at the boundary between stability and instability. By increasing βe,
electron FLR effects become especially significant in the inner region, providing an
additional mechanism to break the frozen-in condition. These combined effects are crucial
in reducing the critical aspect ratio of the secondary current sheet. In addition to the
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Figure 5. Contour of the parallel current density j∥ for simulations 2GK3, 2GK2 and 2GK1.
Isolines of the magnetic potential are superimposed on all the contours.

electron FLR effects, a notable difference between the regimes of negligible βe and finite
βe is the behavior of the perpendicular velocity flow. In the fluid case, the perpendicular
velocity is determined by uK “ ẑˆ∇ϕ, whereas in the gyrofluid case, a nonlinear grad-B
drift due to the non-uniformity of the parallel magnetic field also affects the perpendicular
velocity, which is given by uK “ ẑˆ∇pG10eϕ´ρ2s2G20eB∥q. When examining the velocity
vector field in the x direction near the reconnection points, we observe that it is not
uniform in time, we see intermittent acceleration and deceleration, resulting in a non-
uniform flow. This non-uniformity of the inflows and outflows becomes more pronounced
as the grad B drift becomes significant.

In the series of simulations for p “ 2, the idea is to consider the same parameters
as those for p “ 1 but with a longer forming current sheet. Since highly unstable
primary reconnecting modes favour the formation of extended secondary current sheets
we consider a larger domain size along the y direction, with Ly “ 1.4π, that corresponds
to ∆1 “ 29.9. The other parameters are kept the same. In this case, the current sheet has
an aspect ratio above the critical value, indicating that plasmoid formation occurs also for
βe “ 0. Figure 5 shows the plasmoids obtained at the end of the simulations 2GK1 - 2GK3.
The magnetic potential contour is shown as the plasmoid reaches its maximum size, which
occurs in the saturation phase of the tearing instability. Figure 6 shows the evolution in
time of the aspect ratio of the secondary current sheet. It can be seen that increasing βe

results in larger sized plasmoids, although, from the aspect ratio measurement, increasing
βe reduces the aspect ratio obtained just before the plasmoid onset.

In comparison, Fig. 7 shows the aspect ratio obtained for the simulations 4GK1 and
4GK2. For this set of simulations, the effects of βe are negligible and the parameters ρs
and ∆1 are smaller than those of simulations 2GK1 - 2GK3. Nevertheless, despite a very
different set of parameters, the two set of simulations lead to the formation of current
sheets whose aspect ratio is almost identical. Yet, unlike cases 2, cases 4 remain stable.

Figure 8 shows the evolution of the instability in detail for the runs 2F , 2GF4, 2GF3,
and 2GF1 with the highest resolution. In the secondary current sheet, we observe that
some modes may reach a high amplitude from an early stage and continue growing,
while others may remain stable for a long time until they become unstable at a later
stage and experience explosive growth. In the case βe “ 0, it was observed in Granier
et al. (2022a) that for ρs " de, the first plasmoids that break up the current sheet are
symmetrically located above and below the X-point of the mode m “ 1. These plasmoids
are then ejected from the current sheet, carried by the outflow, and merge with the
island of the m “ 1 tearing mode. A recent result obtained in a 2D collisionless fluid
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model (Grasso and Borgogno (2022)) has indeed shown that ρs significantly enlarge the
spectrum of the linear unstable reconnecting modes that develop in presence of a sheared
flow and magnetic field. Given the shape of the initial perturbation of the equilibrium,
these plasmoids cannot coincide with the O-points of low tearing modes. For example,
some of the O-points of modes 3, 4, 5, and 6 would grow at 1.4π{3, 2ˆ1.4π{4, 1.4π{5, and
2 ˆ 1.4π{6, respectively. Instead, the position of the appearing O and X-points of these
new reconnection events indicates that the wavelength which has reached its nonlinear
phase is associated with a large mode.
When βe is increased, we observe fewer plasmoids, as shown in Fig. 8. The emergence of
these structures from the current starts when the associated mode reaches a sufficiently
large amplitude. After they emerge, their growth becomes extremely rapid, taking only a
few Alfvèn timescales to form. While increasing βe may suggest a decrease in the critical
aspect ratio, our observations reveal that it actually results in a slower growth rate of
the modes propagating in the current sheet. Therefore, this parameter is also responsible
for the slower development of these plasmoids, resulting in only one island reaching an
explosive growth before the others. This island is located at the center of the secondary
current sheet and is therefor not affect by the upstream and downstream outflow, and
ejects any other growing magnetic islands towards the m “ 1 mode islands.
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3.4. Validation of the plasmoid regime for ρs " de

A theory and numerical study developed by Granier et al. (2022a) stated that, for
a current sheet close to marginal stability, the regime ρs " de promotes the plasmoid
formation. In this reference, the simulations were carried out with the fluid model (2.16)
- (2.17) which assumes a negligible mass ratio and a negligible βe. In this subsection,
we present a gyrokinetic validation of these results. In addition to observing a possible
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role played by the closure, we also compare the fluid results with those including a finite
mass ratio of me{mi “ 0.005, and consequently a small βe. Moreover, as already recalled,
the evolution of ion quantities such as Ni and Ui, prevented by the gyrofluid model, but
present in the gyrokinetic simulations, might in principle also play a role.
Therefore, in this subsection we focus on the low βe regime and compare the simulation
set for p “ 3, for which ρs " de, with the simulation set for p “ 4, for which ρs ! de.
These two sets of simulation lead to the formation of a secondary current layer close
to the instability threshold. In the gyrofluid and fluid model, ρs is related to electron
parallel compressibility effects and can be shown to be due to a non-isotropic component
of the electron pressure tensor. When ρs becomes non-negligible, ion-sound Larmor effects
become important, and the diamagnetic drift zˆ∇2

Kρ
2
sNe affects the perpendicular flow.

This alters the structure of the current sheet and transforms it into a cross-shaped pattern
aligned with the magnetic island separatrices, as described in Cafaro et al. (1998). This
effect is known to enhance the linear growth rate of the tearing mode significantly.
Figure 9 shows the evolution of the instability for the simulations 3GK3 (lowest βe

gyrokinetic case of this series) and 3F . For the two approaches, the current sheet becomes
plasmoid unstable. Also in this case the resolution plays an important role. With a
resolution of 17282, three plasmoids were visible in the simulations 3F . However, the
same fluid simulation performed with a resolution 500 ˆ 360 shows only one plasmoid.
Since a resolution higher than that was not foreseeable with the gyrokinetic code, we
used a grid of 256ˆ 128 points that allowed to observe one single plasmoid at the center.
In the regime ρs " de, the current aligns with the magnetic field lines, thus forming a
cross shaped current sheet. This behavior is retrieved by the gyrokinetic simulation.

Figure 10 shows the evolution of the secondary current sheet for the cases 4GK3 (lowest
βe gyrokinetic case of this series) and 4F . The current sheet formed in the two frameworks
does not follow the separatrices but remains mainly aligned along x “ 0. For 4F , where ion
sound Larmor radius effects are negligible, the secondary current sheet has the dimensions
A‹ ą Acs „ 9. This is consistent with the numerical results of Granier et al. (2022a),
which indicate that in this regime, an aspect ratio threshold of Ap1q

‹ „ 10 is required for
plasmoid growth. On the other hand, for 3F where ρs ą δin, the threshold A

p2q
‹ decreases

proportionally to Lcs{ρs, and plasmoids form.
This comparison makes it possible to show that, if Lcs{de is sufficiently large, the

current sheet becomes unstable regardless of the value of ρs. However, the impact of a
large sonic Larmor radius is significant, when the system is marginally stable, to switch
from a stable secondary current sheet to an unstable one. This is consistent with the fact
that ion sound Larmor radius effects allows for faster than exponential growth in the
nonlinear phase (Aydemir (1992)).

4. Energy partition - Similarities and differences between gyrokinetics
and gyrofluid

4.1. Energy components
As we consider here a plasma with no collisions, the gyrokinetic system solved by

AstroGK conserves the total energy (Hamiltonian) (Howes et al. 2006; Schekochihin et al.
2009), normalized by B2

0{p4πq

W pδFe, δFiq “
1

2

ż

dxdy

˜

τsβe

2

ÿ

s

1

n0

ż

dŴF̂eqsδF2
s ` |∇KA∥|2 ` d2i |B∥|2

¸

(4.1)
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where δFs “ gs `p1{diqp2Zs{pτsβeqqpJ 2
0s ´1qϕ`div

2
KJ1sJ0sB∥ is the perturbation of the

particle distribution function for the species s. The first term is the perturbed entropy of
the species s, while the second term and third terms are the energy of the perpendicular
and parallel perturbed magnetic field. We can extract the first two moments from the
perturbed particle distribution function as

δFs “ dins `

c

2σs

τsβe
div∥us ` h1

s, (4.2)

where the perturbed density and parallel velocity of the particle of species s are denoted as
ns and us, respectively, and h1

s contains all higher moments of the perturbed distribution
function. By definition,

ż

dŴF̂eqsh
1
s “ 0,

ż

dŴF̂eqsv∥h
1
s “ 0. (4.3)

We can therefore decompose the expression (4.1) in the following way

W pδFe, δFiq “
1

2

ż

dxdy

˜

ÿ

s

ˆ

τsρ
2
sn

2
s ` σsd

2
iu

2
s `

τsβe

2

1

n0

ż

dŴF̂eqsh
1
s
2
˙

`|∇KA∥|2 ` d2i |B2
∥ |

¯

. (4.4)
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The first term is the energy generated by the electron density variance, the second
term is the kinetic energy of the parallel electron flow, and the third term is the free
electron energy.
With regard to the collisionless gyrofluid model, the system of equations (2.1) - (2.5)
possesses a conserved Hamiltonian given by

Hgf pNe, Aeq “
1

2

ż

dxdy
`

ρ2sN
2
e ` d2eU

2
e ` |∇KA∥|2 ´ NepG10eϕ ´ ρ2s2G20eB∥q

˘

. (4.5)

We remark that, as will be shown in the Appendix, the form of the Hamiltonian (4.5),
obtained from the quasi-static closure, is the same that one obtains by imposing what
we refer to as an isothermal gyrofluid closure (the relations between ϕ,A∥, B∥ and Ne, Ue

will, however, be different in the two cases).
Using the relation (2.13) and (2.14) we can also write the Hamiltonian in terms of

particle variables as follows:

Hppne, Aeq “
1

2

ż

dxdy
´

ρ2sneG
´2
10ene ` d2e

`

G´1
10eue

˘2
` |∇KA∥|2 ` d2i |B∥|2

`ne

`

1 ´ 2G´2
10e

˘

ϕ ` ϕ
`

G´2
10e ´ 1

˘ ϕ

ρ2s

˙

. (4.6)

When we consider the limit βe, me{mi Ñ 0 the Hamiltonian of the gyrofluid equations
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is reduced to

Hppne, Aeq “
1

2

ż

dxdy
`

ρ2sn
2
e ` d2eu

2
e ` |∇KA∥|2 ` |∇Kϕ|2

˘

, (4.7)

which is namely the Hamiltonian of the fluid Eqs. (2.16) - (2.17). In Eq. (4.7), the contri-
bution from left to right are the energy generated by the electron density fluctuation, the
parallel electron kinetic energy, the perpendicular magnetic energy and the perpendicular
plasma kinetic energy which is essentially the E ˆ B flow energy.

4.2. Negligible βe: fluid vs gyrokinetic
On Fig. 11 we present the comparison between the energy variation of the fluid case 1F

and that of the low βe gyrokinetic case 1GK3 (βe “ 0.062). The variations are defined as
p1{2q

ş

drpξpx, y, tq´ξpx, y, 0qq{Ep0q where the function ξ can be replaced by the different
contributions to Ŵ and H (where Ŵ is also considered in the 2D limit) and Ep0q is the
initial total energy. On the gyrokinetic plots, the four main energy channels are shown
as solid lines. The solid purple line is the total ion energy variation. We also show the
evolution of the variations relative to the density variance (dashed dotted), the parallel
kinetic energy (densely dashed) and the perpendicular kinetic energy (loosely dashed),
that are components of the total particle energy. The same channels are shown for the
electrons in green.

The amount of magnetic energy that is converted is identical between fluid and
gyrokinetics and appears to be transferred mainly to the electrons. On the other hand,
it is not identically distributed in the gyrokinetic and fluid frameworks. For the fluid
simulations, the magnetic energy has no choice but to be converted into electron density
fluctuations or electron parallel acceleration, whereas in the gyrokinetic case, there is
little energy sent to these channels. This suggests that, in the gyrokinetic framework, the
energy of the electrons increases due the fluctuations of the higher order moments of the
distribution function due to phase mixing (Loureiro et al. (2013); Numata and Loureiro
(2015)), such as for instance, the perpendicular and parallel electron temperature. It is
likely that the magnetic energy is actually converted into thermal electron energy. Such
possibility is prevented in the fluid case because, as a consequence of the closure, for
βe Ñ 0, no temperature fluctuations are allowed.

The striking difference between the two approaches is that the parallel electron kinetic
energy increases in the fluid case, whereas it is quasi-constant or decreasing in the
gyrokinetic one (Fig. 11). In order to investigate the origin of this difference, we performed
an initial condition check and decomposed the parallel electron kinetic energy. The
decomposition leads to three energy components, namely the equilibrium part (u2

eq),
the perturbation part (ũ2

e) and the cross term (2ũeueq). The change of each component
is shown on the bottom panel of Fig. 11. The equilibrium contribution clearly does
not change in time. The quadratic perturbation part is always positive but globally
the variation of parallel electron kinetic energy can decrease because of the cross term
becoming negative, which is the case for the gyrokinetic simulation. For the fluid case, the
perturbation term increases considerably, leading to a positive variation of the parallel
kinetic energy, since the electrons are highly accelerated for conservation of the total
energy.

With regard to the ions, the closure assumptions imply an even rougher approximation
of the ion dynamics, in the fluid case, with respect to gyrokinetics. In the gyrokinetic case,
for low βe, we can see on Fig. 11 that the main component of the total ion energy consists
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of the perpendicular kinetic energy, which is included in the hs
1 part in Eq. (4.4):, given

by
1

2

ż

dxdyd2iu
2
K,i. (4.8)

where the perpendicular ion velocity uK,i is calculated directly from its definition as a
moment in the following way:

diuK,i “

c

τiβe

2σi

1

n0

ż

dŴFeqivKδFi (4.9)

Notice that the perpendicular flow holds the identity from the definition

diuK,i “ p´∇ϕ ´ ρ2s∇ ¨ pKK,iq ˆ z (4.10)

where the perpendicular pressure tensor is given by

dipKK,i “ τi
1

n0

ż

dŴFeqivKvKδFi (4.11)

The perpendicular flow is given by the sum of E ˆ B drift and diamagnetic drift of
perturbed pressure.

In spite of the closure, the evolution of the energy component (4.8) is very similar to

: Since the vK moments are generally not orthogonal, we cannot clearly separate each of
them.
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Figure 12. Time evolution of the energy variations for the cases 3GF and 3GK .

that of the E ˆ B flow energy of the gyrofluid case. For a very small βe, no parallel ion
kinetic energy and parallel magnetic energy seems to be generated.

4.3. Finite βe: gyrofluid vs gyrokinetic

When βe is very small, the FLR corrections become negligible and the particle and
gyrocenter variables coincide. On the other hand, for non-negligible βe, the electron
Larmor radius becomes finite and the relations (2.11) and (2.12) allow us to relate the
density and parallel velocity of the particles to those of the gyrocenters. On Fig. 12 we
compare the gyrofluid energy variations with the gyrokinetic ones for 0 ă βe ă 1. For
this purpose, we use the simulation set for p “ 3.

In the plot referring to the gyrofluid energy, we show the variation of both the particles
and gyrocenters energy. For instance, the curve referring to "Kin∥e" corresponds to the
variation of p1{2q

ş

dxdyd2eu
2
e, which is comparable to the second term of the gyrokinetic

energy (4.4). The one referring to "Gyrocenter Kin∥e" corresponds to the variation of
p1{2q

ş

dxdyd2eU
2
e . By increasing βe, the difference between the variation of the energy

of the gyrocenters and that of the particles increases. With finite βe, we now note a
loss of parallel kinetic energy of the electrons for the gyrofluid case, which is in better
agreement with the gyrokinetic approach. Increasing βe, will also generate more parallel
magnetic energy, which is well reproduced by the gyrofluid model. On the other hand,
the gyrokinetic cases indicate that a significant part of the magnetic energy is now
converted into parallel ion kinetic energy. As already mentioned, a limitation of the
reduced gyrofluid model is that the ion parallel velocity has been "artificially" removed by
imposing Ui “ ui “ 0. The limitations of this assumption become evident, in particular,
from Fig. 12 which shows that, in the gyrokinetic case, for sufficiently large βe, the ion
fluid is actually accelerated along the z axis. On the other hand, it seems that despite this
missing element, the gyrofluid model is suitable for studying the formation of plasmoid
for 0 ă βe ă 1.
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5. Conclusion
In this work, we have numerically investigated the plasmoid formation employing both

gyrofluid and gyrokinetic simulations, assuming a finite, but small βe. We can conclude
that the formation of plasmoids in a current sheet depends on various parameters,
including the relative scales of the electron and ion-sound Larmor radii and the current
sheet length. When electron FLR and ion-sound Larmor radius effects are taken into
account, the critical aspect ratio A‹

cs for plasmoid formation is reduced, which promotes
plasmoid growth. These results contribute to shed light on collisionless reconnection
mediated by the plasmoid instability, and in particular on the role of the effects present
at the electron scale.

This work showed the ability of the reduced gyrofluid model to achieve relevant new
insights into current-sheet stability and magnetic reconnection. In particular, predictions
on marginal stability on current sheets, obtained by Granier et al. (2022a) in the fluid
limit, were confirmed by gyrokinetic simulations. It also indicates that the fluid and
gyrofluid models make it possible to obtain accurate results in short computational times.

The comparison between the gyrofluid and the gyrokinetic models reveals key similar-
ities and differences between the two frameworks, which gives insight into the important
underlying physical effects. Indeed, the adopted gyrokinetic model is a δf model from
which the gyrofluid model can be derived with appropriate approximations and closure
hypotheses. This allowed to directly identify possible limitations of the closures applied
to the gyrofluid moments, that distinguish the gyrofluid model from its gyrokinetic
parent model. We therefore presented the impact of the closure on the distribution and
conversion of energy during reconnection. The closure, which does not allow for parallel
temperature fluctuations, implies that gyrocenter moment fluctuations energies in which
the magnetic energy can be converted to, must be those of the electron density and
parallel velocity. This is not in agreement with the gyrokinetic simulations, but does not
seem to interfere with the formation of plasmoids. In particular, for relatively small but
finite βe, the hypothesis of absent parallel ion motion made in the gyrofluid framework
is valid and does not affect the plasmoid instability. The gyrokinetic perpendicular ion
velocity is well represented by the fluid E ˆ B velocity. On the other hand, gyrokinetic
simulations show a large fraction of magnetic energy transferred to fluctuations of higher
order moments.
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Appendix 1. Comparison between the gyrofluid isothermal and the
quasi-static closure

In this Appendix we first show how the gyrofluid Hamiltonian (4.5) can be obtained
from the gyrokinetic Hamiltonian (4.1) by applying the quasi-static closures and the
assumptions described in Sec. 2.3. Subsequently, we compare with the gyrofluid Hamil-
tonian obtained by applying what we refer to as gyrofluid isothermal closure.

The conserved energy (4.1) of the δf gyrokinetic model used for the comparison in this
paper can be expressed in terms of the gyrocenter perturbed distribution function

gs “ δFs `
1

di

2Zs

τsβe

˜

ϕ ´

C

ϕ ´ di

c

τsβe

2σs
vK ¨ AK

G

Xs

¸

, (5.1)

where x yXs
denotes the gyroaverage at constant guiding center Xs and AK is the

magnetic vector potential associated with parallel magnetic perturbations, so that ∇ ˆ

AK “ B∥z. In this way we obtain

W pδFe, δFiq “ Hgypge, giq “
1

2

ż

dxdy
ÿ

s

1

n0

ż

dŴF̂eqs

ˆ

τsβe

2
g2s

`
Zs

di
gs

˜

J0sϕ `

c

τsβe

2σs
v∥J0sA∥ `

τs
Zs

ρ2sv
2
KJ1sB∥

¸¸

(5.2)

Note that, in Eq. (5.2), we already took the spatial 2D limit, in order to directly obtain
the gyrofuid Hamiltonian.

The gyrocenter perturbed distribution function can be developed as a series of its
gyrocenter moments using Hermite and Laguerre polynomials. Here, we will retain only
the first two moments of the hierarchy for the two species, and apply two different
closures, namely the quasi-static closure (Tassi et al. (2020)), and a gyrofluid isothermal
closure, where the perpendicular and parallel gyrocenter temperature fluctuations TKs “

T∥s “ 0, are set equal to zero (as all the other higher order gyrofluid moments). Such kind
of closure is applied, for instance, by Scott (2010), although in this Reference, gyrocenter
temperature, as well as heat flux fluctuations, are retained and all the other higher order
moments are set equal to zero.

For the quasi static closure, the expansion of the gyrocenter perturbed distribution
functions for the two species are given by

ge “ diNe `

c

2σe

βe
div∥Ue ´

8
ÿ

n“1

Ln

ˆ

v2K
2

˙ ˆ

G1ne
1

di

2Ze

βe
ϕ ` 2G2nediB∥

˙

, (5.3)

gi “ ´

8
ÿ

n“1

Ln

ˆ

v2K
2

˙ ˆ

G1ni
1

di

2

τiβe
ϕ ` 2G2nidiB∥

˙

(5.4)

The difference between electron and ion treatments in Eqs. (5.3) and (5.4), is clearly
due to the assumption (2.39). We mention that, by retaining, in Eq. (5.4), also ion
gyrocenter density and parallel velocity fluctuations, and applying the same procedure
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described in the following, one can derive the energy of the 4-field Hamiltonian gyrofluid
model described by Granier et al. (2022b).

In the case of the gyrofluid isothermal closure the truncated expansion simply gives

ge “ diNe `

c

2σe

βe
div∥Ue, (5.5)

gi “ 0. (5.6)

To simplify the infinite sums in (5.3) and (5.4), we can make use of the following
relations (Szegö 1975)

J0pαsq “ e´bs{2
8
ÿ

n“0

Ln

`

v2K{2
˘

n!

ˆ

bs
2

˙n

, (5.7)

2
J1pαsq

αs
“ e´bs{2

8
ÿ

n“0

L
p1q
n

`

v2K{2
˘

pn ` 1q!

ˆ

bs
2

˙n

, (5.8)

where L
p1q
n are associated Laguerre polynomials and of the expression of the operators

(2.36)-(2.37). We therefore obtain the following equality, that can be injected in (5.3)
and (5.4),

8
ÿ

n“1

Ln

ˆ

v2K
2

˙ ˆ

G1ns
1

di

2Zs

τsβe
ϕ ` 2G2nsdiB∥

˙

“ pJ0pαsq ´ G10sq
1

di

2Zs

τsβe
ϕ

`

ˆ

v2K
J1pαsq

αs
´ 2G20s

˙

diB∥. (5.9)

We can now reduce the gyrokinetic Hamiltonian (5.2) to gyrofluid ones by injecting
the two sets of truncated perturbed gyrocenter distribution functions. In the quasi-static
case, thanks to the relation (5.9), all the contributions involving G1ns

and G2ns
, with

n ě 1, cancel. It turns out that the two resulting gyrofluid Hamiltonians can be written
in an identical form, which corresponds to the following

HpNe, Aeq “
1

2

ż

dxdy
`

ρ2sN
2
e ´ AeLUe

pAeq ´ NepG10eLϕpNeq

´ρ2s2G20eLBpNeqq
˘

, (5.10)

where we recall that Ae “ G10eA∥ ´ d2eUe and the linear operators LUe
, Lϕ and LB

are given by

B∥ “ LBpNeq, ϕ “ LϕpNeq, (5.11)
Ue “ LUepAeq. (5.12)

through the quasi-neutrality relation and the two components of Ampère’s law. The
expression (5.10) coincides, up to integration by parts, to the Hamiltonian (4.5).

Evidently, the quasi-static quasineutrality equation and Ampère’s law will differ from
the isothermal ones. Therefore, the total conserved energy are actually evolving differently
and the operators LB , Lϕ, LUe are closure-dependent operators.

For instance, the explicit form of the quasi-neutrality relation, in the quasi-static case,
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writes

´G10eNe ` ∇2
Kϕ ` pG2

10e ´ 1q
ϕ

ρ2s
` p1 ´ G10e2G20eqB∥ “ 0, (5.13)

while in the case of the gyrofluid isothermal closure, we have

´G10eNe ` ∇2
Kϕ ` pΓ0e ´ 1q

ϕ

ρ2s
` p1 ´ Γ0e ´ Γ1eqB∥ “ 0, (5.14)

and where the Γ0,1e operators are defined in Fourier space in the following way

Γ0e Ñ I0

ˆ

k2K
βe

2
d2e

˙

e´k2
K

βe
2 d2

e , Γ1e Ñ I1

ˆ

k2K
βe

2
d2e

˙

e´k2
K

βe
2 d2

e , (5.15)

where In are the modified Bessel functions of order n.

A first comment is that the two closures, and consequently the two sets of static
equations are in fact identical if we assume

G1ne “ G2ne “ 0, for n ě 1, (5.16)

which gives the approximations

Γ0epbeq1{2 “ G10e, pΓ0epbeq ´ Γ1epbeqq1{2 “ 2G10eG20e. (5.17)

On the other hand, the relations (5.17) can be interpreted in a different way, i.e. consid-
ering the exact expressions (5.15) for Γ0e and Γ1e, and assuming that the expressions for
G10e and G20e can be adapted to match the quasi-neutrality relations following from the
two closures. In this way, from the first relation in Eq. (5.17), one retrieves, for the case
s “ e, the approximate expression for the operators G10s introduced by Dorland and
Hammett (1993). The advantages of this approach have been more recently discussed
also by Mandell et al. (2018). The above approach is indeed reminiscent of the approach
used by Dorland and Hammett (1993) in order to find an expression for G10s yielding a
better agreement of liner gyrofluid theory with the linear gyrokinetic theory. A similar
approach, accounting also for G20s in a finite-β gyrofluid model, was followed by Despain
(2011).

A second point is that, in the limit of negligible ion and electron Larmor radius, when
considering τi Ñ 0 and βe Ñ 0, the two sets of static relations become identical and we
obtain the same fluid Hamiltonian

For instance, both (5.14) and (5.13) will reduce to the quasi-neutrality relation

Ne “ ∇2
Kϕ, (5.18)

which is going to give rise to the E ˆ B flow energy in the fluid Hamiltonian.
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