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Investigation of the collisionless plasmoid instability based on gyrofluid and gyrokinetic integrated approach

In this work, the development of two-dimensional current sheets with respect to tearing-modes, in collisionless plasmas with a strong guide field, is analysed. During their nonlinear evolution, these thin current sheets can become unstable to the formation of plasmoids, which allows the magnetic reconnection process to reach high reconnection rates. We carry out a detailed study of the impact of a finite β e , which also implies finite electron Larmor radius effects, on the collisionless plasmoid instability. This study is conducted through a comparison of gyrofluid and gyrokinetic simulations. The comparison shows in general a good capability of the gyrofluid models in predicting the plasmoid instability observed with gyrokinetic simulations. We show that the effects of β e promotes the plasmoid growth. The impact of the closure applied during the derivation of the gyrofluid model is also studied through the comparison among the variations of the different contributions to the total energy.

Introduction

Magnetic reconnection is a change of topology of the magnetic field lines taking place in regions of intense localized current, referred to as current sheets. This fundamental process ultimately converts magnetic energy into bulk flow and particle heating, and is responsible for the explosive release of magnetic energy in astrophysical and laboratory plasmas. The instabilities of very elongated reconnecting current sheets leading to the formation of secondary magnetic islands, called plasmoids, have generated a lot of interest, as they are believed to achieve fast reconnection. Plasmoids have been greatly studied through the most standard reconnection model based on the Sweet-Parker (SP) theory in the resistive magnetohydrodynamics (RMHD) framework [START_REF] Biskamp | Magnetic reconnection via current sheets[END_REF]; [START_REF] Loureiro | x-point collapse and saturation in the nonlinear tearing mode reconnection[END_REF]). In [START_REF] Biskamp | Magnetic reconnection via current sheets[END_REF], it has been shown that collisional current sheets become unstable above a critical Lundquist number S " µ 0 L sp v A {η ą S c " 10 4 , where L sp is the length of the SP current sheet, η is the resistivity and v A is the Alfvèn speed. Much work has followed and allowed to identify the plasmoid regime as a function of the Lundquist number and of the characteristic scale of a dynamic of the ions (ion-sound Larmor radius ρ s or ion skin depth d i scales) at which a transition to a non-collisional regime, dominated by kinetic effects, occurs [START_REF] Ji | Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas[END_REF]; [START_REF] Daughton | Emerging Parameter Space Map of Magnetic Reconnection in Collisional and Kinetic Regimes[END_REF]; [START_REF] Loureiro | Magnetic reconnection: from the sweet-parker model to stochastic plasmoid chains[END_REF]; Uzdensky et al. : Email address for correspondence: camille.granier@oca.eu (2010a,b); [START_REF] Bhat | Plasmoid instability in the semi-collisional regime[END_REF]). This extension of the resistive reconnection regime with the inclusion of the ion dynamics enlarged the study to a broader parameter space, but also suggested that plasmoids are fundamental features of reconnecting current sheets, regardless of the value of the Lundquist number [START_REF] Ji | Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas[END_REF]; [START_REF] Daughton | Emerging Parameter Space Map of Magnetic Reconnection in Collisional and Kinetic Regimes[END_REF]).

The plasma in the magnetosphere and solar wind, which regularly undergoes reconnection, is so dilute that collisions between particles are extremely infrequent. In such plasmas, electron inertia becomes particularly relevant to drive reconnection in thin current sheets. Indeed, recent observations revealed many reconnection onsets driven by electrons, in the presence of a strong guide field, close to the dayside magnetopause and magnetosheath [START_REF] Burch | Electron-scale measurements of magnetic reconnection in space[END_REF]; [START_REF] Phan | Electron magnetic reconnection without ion coupling in earth's turbulent magnetosheath[END_REF]) with current sheets having a thickness of the order of the electron inertial length. Regarding experiments, a study by [START_REF] Olson | Experimental demonstration of the collisionless plasmoid instability below the ion kinetic scale during magnetic reconnection[END_REF] also gave direct experimental proof of plasmoid formation at the electron scale in a weakly collisional regime. In these collisionless, magnetized environments, effects of the finite electron Larmor radius (FLR) on the reconnection process can also become non-negligible, in particular when β e , defined as the ratio between equilibrium thermal electron pressure and guide field magnetic pressure, is not much smaller than unity. Although the plasma-β effect was found to have an impact on the plasmoid instability threshold in the collisional regime [START_REF] Ni | Effects of plasma β on the plasmoid instability[END_REF]) and in the semicollisional regime [START_REF] Baty | Effect of plasma-β on the onset of plasmoid instability in sweet-parker current sheets[END_REF], it has been ignored in most collisionless studies. This motivates the study of the formation of plasmoids in non-collisional current sheets, and in particular, the impact of the effects relevant at the electron scales such as the electron skin depth and the electron Larmor radius.

In [START_REF] Granier | Marginally stable current sheets in collisionless magnetic reconnection[END_REF], the purely collisionless plasmoid regime was investigated in the regime of strong guide field with β e Ñ 0. The instability was studied in a phase space defined by two kinetic scales, d e (electron inertial length) and ρ s (the ion-sound Larmor radius), compared to the current sheet length L cs . In a first regime, where the ion sound Larmor radius is much smaller than the thickness of the boundary layer, ρ s ! δ in , plasmoids were obtained for current sheets having a critical aspect ratio A p1q ‹ " pL cs {δ cs q " pL cs {d e q " 10. In a second regime, where the ion sound Larmor radius is of the order of, or larger than, the thickness of the inner region, the critical aspect ration can be below 10 and was found to scale as A p2q ‹ 9 L cs {ρ s . In the present work, we relax the assumption of small β e and carry out a detailed study of the impact of a finite β e , on the collisionless plasmoid instability, in the case of a strong guide field. We consider inertial reconnection, and finite electron FLR effects arise from the combination of electron inertia and finite β e parameters. This study is conducted through a comparison of gyrofluid and gyrokinetic simulations. Previously, the gyrokinetic method was successfully employed to examine reconnection [START_REF] Zocco | Reduced fluid-kinetic equations for lowfrequency dynamics, magnetic reconnection, and electron heating in low-beta plasmas[END_REF], [START_REF] Pueschel | Gyrokinetic simulations of magnetic reconnection[END_REF], [START_REF] Zacharias | Numerical comparison between a gyrofluid and gyrokinetic model investigating collisionless magnetic reconnection[END_REF], [START_REF] Numata | Ion and electron heating during magnetic reconnection in weakly collisional plasmas[END_REF], [START_REF] Rogers | Gyrokinetic simulations of collisionless magnetic reconnection[END_REF]). Both approaches are assuming that the plasma is immersed in a strong guide field oriented along the z direction. As a by-product of our analysis, we also obtain a way to validate, by means of gyrokinetic simulations, part of the results on collisionless plasmoid instability obtained by [START_REF] Granier | Marginally stable current sheets in collisionless magnetic reconnection[END_REF] with a gyrofluid approach in the β e Ñ 0 limit (later referred to as fluid limit). The adopted gyrofluid model is the 2-field system presented in Granier et al. (2022b) and assumes cold and immobile ions along the guide field direction. Gyrofluid models, although greatly simplified with respect to the original gyrokinetic system, are useful tools for studying collisionless reconnection, in which the microscopic scales, such as the electron skin depth and the electron Larmor radius, can be more important than resistivity. In addition, the gyrofluid framework is less costly in terms of computational resources, and physically more intuitive when compared to the kinetic or gyrokinetic framework. So far, gyrofluid modelling allowed to gain a good understanding of the role of collisionless effects (e.g. [START_REF] Sarto | Finite larmor radius effects in the nonlinear dynamics of collisionless magnetic reconnection[END_REF]; [START_REF] Comisso | Gyro-induced acceleration of magnetic reconnection[END_REF]; [START_REF] Tassi | A reduced landau-gyrofluid model for magnetic reconnection driven by electron inertia[END_REF]; [START_REF] Granier | Impact of electron temperature anisotropy on the collisionless tearing mode instability in the presence of a strong guide field[END_REF]Granier et al. ( , 2022b))).

The gyrokinetic model, adopted for the comparison, is a δf model which solves the electromagnetic gyrokinetic Vlasov-Maxwell system. The gyrokinetic equations are solved by means of the AstroGK code, presented and used in [START_REF] Numata | Astrogk: Astrophysical gyrokinetics code[END_REF]; [START_REF] Numata | Ion and electron heating during magnetic reconnection in weakly collisional plasmas[END_REF]. One of the main advantages of using the AstroGK code for a comparison with the gyrofluid results, is that, in a specific limit, the gyrokinetic system solved by AstroGK reduces to the one that was taken to derive the 2-field gyrofluid model used in this study [START_REF] Gregory | Astrophysical gyrokinetics: Basic equations and linear theory[END_REF]. This allows to study the impact of the closure applied on the moments, performed during the derivation of the gyrofluid model, on the distribution and conversion of energy during reconnection, and identify the possible limitations of the gyrofluid approach. The specific limit in which the AstroGK code has to be used, in order to reproduce the parent gyrokinetic model of the gyrofluid model, is that corresponding to a straight guide field, with no density and temperature gradients and without collisions. To be consistent with the gyrofluid approach, the ions are assumed to be cold.

The article is organized as follow. In Sec. 2 we present the gyrofluid and gyrokinetic systems, as well as the numerical set up. In Sec. 3 we present the results concerning the plasmoid instability obtained from a comparison of the two approaches. In Sec. 4 we compare the energy variations in the two frameworks and discuss the impact of the closure hypothesis on the energy conversion. Section 5 is devoted to conclusions.

Adopted models

Gyrofluid

The gyrofluid model used for our analysis is the one considered by Granier et al. (2022b), which consists of the following evolution equations

BN e Bt `rG 10e ϕ ´ρ2 s 2G 20e B ∥ , N e s ´rG 10e A ∥ , U e s " 0, (2.1) BA e Bt `rG 10e ϕ ´ρ2 s 2G 20e B ∥ , A e s `ρ2 s rG 10e A ∥ , N e s " 0, (2.2)
complemented by the relations

ˆG2 10e ´1 ρ 2 s `∇2 K ˙ϕ ´pG 10e 2G 20e ´1q B ∥ " G 10e N e , (2.3) ∇ 2 K A ∥ " G 10e U e , (2.4 
)

pG 10e 2G 20e ´1q ϕ ρ 2 s ´ˆ2 β e `4G 2 20e ˙B∥ " 2G 20e N e .
(2.5) Equation (2.1) corresponds to the electron gyrocenter continuity equation, whereas Eq.

(2.2) refers to the electron momentum conservation law, along the guide field direction. The static relations (2.3), (2.4) and (2.5) descend from quasi-neutrality and from the projections of Ampère's law along directions parallel and perpendicular to the guide field, respectively. As above mentionned, the guide field is directed along the z axis of a Cartesian coordinate system x, y, z, and, in the present 2D version of the model, the dependent variables are functions only of x and y, as well as of the time variable t. We indicated with N e and U e the fluctuations of the electron gyrocenter density and parallel velocity, respectively, whereas ϕ and B ∥ indicate the fluctuations of the electrostatic potential and of the magnetic field along the guide field. The variable A e is defined by A e " G 10e A ∥ ´d2 e U e , where A ∥ is the z-component of the magnetic vector potential, d e " a m e c 2 {4πe 2 n 0 {L is the normalized electron skin depth and G 10e is an electron gyroaverage operator, defined later in Eq. (2.10). The operator r , s is the canonical Poisson bracket and is defined by rf, gs " B x f B y g ´By f B x g, for two functions f and g. The perpendicular Laplacian operator

∇ 2 K is defined by ∇ 2 K f " B xx f `Byy f . The variables are normalized as t " v A L t, x " x L , y " ŷ L ,
(2.6)

d i N e,i " Ne,i n 0 , d i U e,i " Ûe,i v A , (2.7) A ∥ " Â∥ LB 0 , d i B ∥ " B∥ B 0 , ϕ " c v A φ LB 0 , (2.8)
where the hat indicates dimensional variables, c is the speed of light, L is a characteristic scale length, n 0 is the equilibrium uniform density, B 0 is the amplitude of the guide field and v A " B 0 { ? 4πm i n 0 is the Alfvén speed, with m i indicating the ion mass. The normalized ion skin depth is defined by d i " a m i c 2 {4πe 2 n 0 {L, where e indicates the proton charge. In Eq. (2.7) we also introduced the quantities N i and U i , corresponding to the ion gyrocenter density and parallel velocity fluctuations, respectively. Such moments do not evolve in the model (2.1)-(2.5), and the assumptions on such quantities will be discussed later in this section, as well as in Sec. 4. We find it also useful to write explicitly the expression for the magnetic field normalized with respect to the guide field amplitude. In the present 2D setting, by virtue of the normalization (2.6)-(2.8), such expression is given by Bpx, y, tq " z `di B ∥ px, y, tqz `∇A ∥ px, y, tq ˆz,

(2.9)

where z is the unit vector along z. Independent parameters in the model are β e " 8πn 0 T 0e {B 2 0 , ρ s " a T 0e m i c 2 {pe 2 B 2 0 q{L: and d e . These three parameters correspond to the ratio between equilibrium electron pressure and magnetic guide field pressure, to the normalized sonic Larmor radius and to the electron skin depth, respectively.

The model is formulated on a domain tpx, yq : ´Lx ď x ď L x , ´Ly ď y ď L y u, with L x and L y positive constants. Periodic boundary conditions are assumed. This allows to express gyroaverage operators in terms of the corresponding Fourier multipliers. In particular, we associate the electron gyroaverage operators G 10e and G 20e with corresponding Fourier multipliers in the following way [START_REF] Brizard | Nonlinear gyrofluid description of turbulent magnetized plasmas[END_REF])

G 10e " 2G 20e Ñ e ´k2 K βe 4 d 2 e ,
(2.10)

where k 2 K " k 2

x `k2 y is the squared perpendicular wave number and k x " mπ{L x , k y " nπ{L y are the x and y components of the wave vector, with m and n positive integers. As is customary with gyrofluid models, Eqs. (2.1) and (2.2) are expressed in terms of gyrocenter variables. However, for the sake of the subsequent analysis, it can be useful also to express their relation with particle variables. Such relation, in particular, is affected by the quasi-static assumption, used in the derivation of the model [START_REF] Tassi | A Hamiltonian gyrofluid model based on a quasi-static closure[END_REF]) to obtain a closure on the infinite hierarchy of moment equations obtained from a parent gyrokinetic system. As a consequence of such quasi-static closure (which will : According to a customary notation, in the symbols ρs, the subscript s is to indicate a sonic quantity and not the particle species.

be briefly recalled in Sec. 4) the normalized density fluctuations and parallel velocity fluctuations of the electrons, indicated with n e and u e , respectively, are related to those of the corresponding gyrocenters by

N e " G ´1 10e ˆne ``G 2 10e ´1˘ϕ ρ 2 s ´G2 10e B ∥ ˙, (2.11) U e " G ´1 10e u e .
(2.12) Also, in our gyrofluid model we neglect the contributions due to the density and parallel velocity fluctuations of the ion gyrocenters, by imposing that N i " 0, U i " 0. Furthermore, ions are assumed to be cold, i.e. τ Ñ 0, where τ " T 0i {T 0e is the ratio between ion and electron equilibrium temperature.

In terms of the ion particle density and parallel velocity fluctuations, denoted as n i and u i , respectively, such assumptions lead to the relations n i " ∇ 2 K ϕ `B∥ " n e and u i " 0. From the quasi-neutrality relation (2.3), Ampère's law (2.4)-(2.5), combined with Eqs. (2.11)-(2.12), we can obtain the relations (2.13) (2.14) that permit to express the electron particle (as opposed to gyrocenter) density and parallel velocity fluctuations, in terms of electromagnetic perturbations such as ϕ, B ∥ and A ∥ .

n e " 2 2 `βe ∇ 2 K ϕ " ´2 β e B ∥ ,
u e " ∇ 2 K A ∥ ,
It is also particularly relevant to consider the limit β e Ñ 0 with d e and ρ s remaining finite (which implies m e {m i Ñ 0). This corresponds to suppressing the effects of parallel magnetic perturbations and electron FLR effects. One of the purposes of our investigation is indeed to consider possible modifications, due to kinetic effects, of the plasmoid instability scenario described by [START_REF] Granier | Marginally stable current sheets in collisionless magnetic reconnection[END_REF] and which was conceived namely in the regime with β e Ñ 0 and finite d e and ρ s . In this limit, the gyroaverage operators can be approximated in the Fourier space in the following way:

G 10e f px, yq " 2G 20e f px, yq " f px, yq `Opβ e q.
(2.15)

Using this development in Eqs. (2.1) -(2.5) and neglecting the first order corrections, we obtain the evolution equations [START_REF] Schep | Generalized two-fluid theory of nonlinear magnetic structures[END_REF]) [START_REF] Porcelli | Collisionless m=1 tearing mode[END_REF].

Bn
We point out that it is possible to take the small FLR limit of Eq. (2.2), with parameters satisfying (d e ! 1, ρ s ! 1, d e {ρ s ! 1, β e " Op1qq and ∇ 2 K " Op1q, to obtain an Ohm's law given by

B Bt ˆA∥ `ˆβ e 4 ´1˙d 2 e ∇ 2 K A ∥ ˙`" ϕ, A ∥ `ˆβ e 4 ´1˙d 2 e ∇ 2 K A ∥ ȷ `ρ2 s ˆβe 2 `βe ´1˙r ∇ 2 K ϕ, A ∥ s " 0. (2.21)
This equation retains first-order corrections proportional to pβ e {4qd 2 e and β e ρ 2 s {p2 `βe q, that arise from both electron FLR (assuming G 10e « 1`pβ e {4qd 2 e ∇ 2 K for d e ! 1) and finite B ∥ effects, respectively. The dispersion relation of [START_REF] Porcelli | Collisionless m=1 tearing mode[END_REF], which was obtained by adopting boundary layer and asymptotic matching techniques for β e " 0, can be extended by identifying an effective electron skin depth d 1 e and effective sonic Larmor radius ρ 1 s , given by d 1

e {d e " a 1 ´βe {4 and ρ 1 s {ρ s " a 2{pβ e `2q, respectively. This assumes that one can perform the matching asymptotic expansion as in the case without electron FLR effects, apart from the correction embedded in d 1 e . This excludes, in particular, the role played, in the dispersion relation, by a possible innermost boundary layer of size proportional to some positive power of β e . However, as will be shown in Fig. 1, the comparison with numerical simulations suggests that, at least for the small values of β e considered, such approximation, appears to describe effectively the dependence on β e of the linear growth rate.

Gyrokinetic

In this section, we present the electromagnetic δf gyrokinetic model used in this work [START_REF] Gregory | Astrophysical gyrokinetics: Basic equations and linear theory[END_REF][START_REF] Numata | Astrogk: Astrophysical gyrokinetics code[END_REF], from which the gyrofluid model can be derived with appropriate approximations and closure hypotheses [START_REF] Tassi | A Hamiltonian gyrofluid model based on a quasi-static closure[END_REF]). The gyrokinetic model is formulated in terms of the perturbation of the gyrocenter distribution function g s " g s pX s , v ∥ , v K , tq where v ∥ , v K are the parallel and perpendicular velocity coordinates. The guiding center coordinates is given by

X s " x `vths ω cs v ˆz, (2.22)
where x is the particle position, v is the particle velocity, v ths " a T 0s {m s is the thermal speed and ω cs " eB 0 {pm s cq is the cyclotron frequency. The index s labels the particle species, with s " e for electrons and s " i for ions. For simplicity, we assume a uniform background plasma, and two-dimensionality (B{Bz " 0q. By adopting the same normalization scheme with the gyrofluid model, the gyrokinetic system can be written in the following way,

B Bt ˆgs `1 ρ s Z s ? σ s τ s v ∥ J 0s A ∥ ˙" ´«J 0s ϕ ´c τ s β e 2σ s v ∥ J 0s A ∥ `τs Z s ρ 2 s v 2 K J 1s B ∥ , g s `1 ρ s Z s ? σ s τ s v ∥ J 0s A ∥ ff , (2.23) ÿ s Z s ns "ϕ ÿ s Z s ρ 2 s τ s ˆ1 n 0 ż d Ŵ Feq s p1 ´J0s q Ḃ∥ ÿ s Z s ˆ1 n 0 ż d Ŵ Feq s v 2 K J 0s J 1s ˙, (2.24) ÿ s Z s ūs " ´∇2 K A ∥ , (2.25) ÿ s ps " ´ϕ ÿ s 1 ρ 2 s ˆ1 n 0 ż d Ŵ Feq s v 2 K J 0s J 1s Ḃ∥ ˜2 β e `ÿ s ż d Ŵ Feq s pv 2 K J 0s J 1s q 2 ¸(2.26)
Eq. (2.23) is the gyrokinetic equation, whereas Eqs. (2.24), (2.25) and (2.26) correspond to the quasi-neutrality relation and to the parallel and perpendicular projection of Ampère's law. We have introduced the following additional normalizations

g s " ĝs Feq s , v ∥,K " v∥,K v ths , d i ps " ps n 0 T 0e (2.27)
where the Maxwellian equilibrium distribution function in the dimensional form is

Feq s pv ∥ , vK q " n 0 ˆms 2πT 0s ˙3{2 e ´ms v2 ∥ 2T 0s ´ms v2 K 2T 0s .
(2.28)

The species dependent parameters are the mass ratio σ s " m s {m i , temperature ratio τ s " T 0s {T 0e , and charge number ratio Z s " q s {q i . Obviously, σ i " 1, τ e " 1, Z i " 1.

We fix Z e " ´1, i.e. q i " e, throughout this work. We may occasionally denote the non-trivial ones as σ e " σ, τ i " τ . The velocity moments of the distribution function appear in Eqs. (2.24)-(2.26) are defined by

d i ns " 1 n 0 ż d Ŵ Feq s J 0s g s , (2.29) 
d i ūs " c τ s β e 2σ s 1 n 0 ż d Ŵ Feq s v ∥ J 0s g s ,
(2.30) (2.31) where the volume element d Ŵ in velocity space is defined as d Ŵ " πv 3 ths dv ∥ dv 2 K . Note that these quantities are moments of g s , thus are different from the actually particle density, flow, and pressure, i.e. the moments of the total distribution function δF s defined later on.

d i ps " τ s 1 n 0 ż d Ŵ Feq s v 2 K J 1s g s ,
Finally, the gyroaverage operators J 0s and J 1s can be expressed, analogously to Eq. (2.10), in terms of Fourier multipliers in the following way:

J 0s Ñ J 0 pα s q , J 1s Ñ J 1 pα s q α s , (2.32)
where J 0 and J 1 are the zeroth and first order Bessel functions, respectively, and the argument is defined by

α s " k K v K v ths {pLω cs q " k K v K pρ s ? σ s τ s {Z s q.
2.3. Connection between the gyrofluid and the gyrokinetic models We assume the distribution function can be written as

ĝs pX s , v ∥ , v K , tq " Feq s 8 ÿ n,m"0 H m pv ∥ qL n ˆv2 K 2 ˙fmns pX s , tq (2.33)
where H m and L n indicate the Hermite and Laguerre polynomials, respectively, of order m and n, with m and n non-negative integers. From the orthogonality properties of the Hermite and Laguerre polynomials, the following relation holds:

f mns " 1 n 0 ? m! ż d Ŵ Feq s g s H m `v∥ ˘Ln ˆv2 K 2 ˙.
(2.34)

The functions f mns are coefficients of the expansion and are proportional to fluctuations of the gyrofluid moments. Indeed, for instance, f 20e is proportional to gyrocenter electron parallel temperature fluctuations and f 00e is proportional to gyrocenter electron density fluctuations.

In the present 2D case with an isotropic equilibrium temperature, the system is closed by a closure called "quasi-static" which was derived in [START_REF] Tassi | A Hamiltonian gyrofluid model based on a quasi-static closure[END_REF] and which implies that, with the exception of N e,i and U e,i , all the other gyrofluid moments are constrained by the relations

f mns " ´δm0 ˆG1ns 1 d i 2Z s τ s β e ϕ `2G 2ns d i B ∥ ˙(2.35)
where δ m0 is a Kronecker delta and m and n are non-negative integers, with pm, nq ‰ p0, 0q and pm, nq ‰ p1, 0q, namely to exclude N e,i and U e,i . In Eq. (2.35), we also introduced the gyroaverage operators which, as Fourier multipliers, are given by

G 1n pb s q Ñ e ´bs{2 n! ˆbs 2 ˙n , n ě 0, (2.36) G 20 pb s q Ñ e ´bs{2 2 , G 2n pb s q Ñ ´e´bs{2 2 ˜ˆb s 2 ˙n´1 1 pn ´1q! ´ˆb s 2 ˙n 1 n! ¸, n ě 1, (2.37) with b s " k 2 K v 2 ths {pLω cs q 2 " k 2 K d 2 i pσ s τ s β e {p2Z 2 s qq " k 2 K ρ 2 s pσ s τ s {Z 2 s q.
Expressed in terms of particle variables, this closure implies that, with the exception of n e,i and u e,i , the fluctuations of the particle moments are zero.

The (2D) quasi-static closure is valid when

ω ky ! v ths (2.38)
for s " e, i are satisfied, where ky is the y component of the wave vector and ω is the frequency obtained from the dispersion relation of the gyrokinetic equation linearized about an equilibrium ϕ p0q " B p0q ∥ " 0, A p0q ∥ " ax, with a constant a (strictly speaking, in order to perform the gyroaverage of the function A p0q ∥ " ax, the linearization is not carried out on Eq. (2.23), which assumes periodic fields, but on its slightly more general form, in which Bessel function operators are replaced by gyroangle averages, so that, for instance J 0s f , for a function f , is replaced by ă f pxq ą Xs " p1{p2πqq ş 2π 0 dθf pX s ´pv ths {ω cs qvˆzq, with θ indicating the gyroangle). The condition (2.38) is better fulfilled for waves with small phase velocity along y, which justifies the term quasi-static. With regard to the moments not fixed by the quasi-static closure, we have that the dynamics of N e and U e is governed by the evolution equations (2.1)-(2.2), that can then be obtained from the zeroth and first order moment, with respect to the parallel velocity coordinate v ∥ , of the electron gyrokinetic equations (2.23), with s " e.

In the context of the tearing instability, the dispersion relations of the tearing mode usually satisfy the condition ω{k y ! v the . This relation indicates that electrons have time to thermalize along the field lines while the tearing mode develops. Similar comments have already been made in the context of the MHD model with pressure anisotropies. [START_REF] Shi | A study of tearing instability in the presence of a pressure anisotropy[END_REF] discussed the following two equations of state: double adiabatic and isothermal. According to [START_REF] Russell | Mhd description of plasma[END_REF], a double adiabatic closure requires L{t " v the , with t the characteristic scale of time variation and L the scale of the spatial variation. [START_REF] Shi | A study of tearing instability in the presence of a pressure anisotropy[END_REF] indicated that L{t " v the cannot be satisfied by most tearing modes with t and L taken to be the growth time and the wavelength of the mode, respectively. On the other hand, the isothermal closure for the electrons, valid in the opposite regime (L{t ! v the ) can be a better approximation for the study of the tearing instability.

Concerning N i and U i , as above stated, we assume the conditions

N i " 0, U i " 0 (2.39)
to hold. This assumption effectively decouples the ion gyrofluid dynamics from the electron gyrofluid dynamics, leaving Eqs. (2.1)-(2.5) a closed system. Whereas all the terms in Eqs. (2.1)-(2.5) do not assume any ordering on β e , the assumption (2.39), as can be derived from the four-field model in Granier et al. (2022b), is valid for β e ! 1.: So, in this respect, the adopted gyrofluid model is not derived from the parent gyrofluid model (or from gyrokinetics) under a consistent ordering in β e . For this reason, our analysis will be restricted to moderate values of β e (we take β e ď 0.692), where effects of β e associated with electron FLR and parallel magnetic perturbations are nevertheless appreciable. Checking that, in gyrokinetic simulations, the energy associated with the perturbations N i and U i remains small, will be an empirical way to make sure that the condition (2.39) is approximately fulfilled. On the other hand we expect, in the gyrokinetic simulations, a departure from the condition (2.39) as β e increases.

We finally mention that in both gyrofluid and gyrokinetic simulations, we consider the cold-ion case, i.e.

τ ! 1, (2.40)
where we recall that τ " τ i " T 0i {T 0e .

Numerical set-up

We assume an equilibrium in which the electromagnetic quantities are given by

ϕ p0q " 0, A p0q ∥ " A eq ∥0 { cosh 2 pxq , B p0q ∥ " 0, (2.41)
with A eq ∥0 " 1.299, in order to have max x pB eq y pxqq " 1. This equilibrium corresponds to a current sheet centered at x " 0, of dimensionless length 2L y " 2 Ly {L, and of dimensionless width corresponding to unity. Due to periodicity assumption in the : With this regard it could be useful to mention here a misprint in Eq. (2.2) in Granier et al. (2022b), where Ui should have been multiplied by the factor 2ρ 2 s K {βe K .

simulations;, the dimensionless equilibrium A p0q ∥ is replaced by

A p0q ∥ " n"30 ÿ n"´30
A eq ∥0 a n e in2πx , (2.42)

where a n are the Fourier coefficients of the function 1{ cosh 2 pxq. Note that, in order to satisfy Eqs. (2.3)-(2.5) at equilibrium, the corresponding equilibrium density and parallel electron velocity fluctuations of the electron gyrocenters are fixed as

N p0q e " 0, ∇ 2 K A p0q ∥ " G 10e U p0q e .
(2.43) Also in the gyrokinetic simulations, in accordance with Eq. (2.43), the equilibrium current density is assumed to be entirely due to the parallel electron velocity (we recall that, as discussed in Sec. 2.3, the gyrokinetic admits, unlike the gyrofluid model, also a finite parallel ion flow). For both the gyrofluid and gyrokinetic simulations, the perturbation of the equilibrium magnetic flux function A p0q ∥ is of the form A p1q ∥ 9 cospk y yq and is initially excited by the mode m " 1. The stability condition is given by the tearing parameter [START_REF] Furth | Finite resistivity instabilities of a sheet pinch[END_REF], which for our equilibrium is given by

∆ 1 " 2 `5 ´k2 y ˘`k 2 y `3k 2 y pk 2 y `4q 1{2 .
(2.44)

The equilibrium (2.41) is tearing unstable when ∆ 1 pk y q ą 0, which corresponds to wave numbers k y " πm{L y ă ? 5. In this article, we refer to ∆ 1 as that associated with the initially excited mode m " 1. However, depending on the ratio between the width and the length of the initial current sheet, several wavenumbers k y with a positive tearing parameter can result from non-linear interactions of the mode m " 1. After the saturation of the tearing modes, eventually, the X-point collapse and a secondary thinning current sheet forms. The secondary current sheet becomes thinner until reaching a minimum width, and is subject to an inflow that compresses it. Therefore, the instability threshold of this secondary current sheet is not indicated by ∆ 1 which is specific to the initial static current sheet. In this secondary current sheet, small perturbations can grow and cause the emergence of other islands, when they enter their nonlinear phase. This dynamics is due to the superposition of several unstable modes with different wavenumbers and growth rates, among which the fastest mode is obviously the dominant one.

The fluid numerical solver SCOPE3D (Solver Collisionless Plasma Equations in 3D) [START_REF] Granier | Marginally stable current sheets in collisionless magnetic reconnection[END_REF]) is pseudo-spectral and the advancement in time is done through a third order Adams Bashforth scheme. The numerical solver SCOPE3D has been adapted to solve the gyrofluid equations. The gyrokinetic model is solved by AstroGK [START_REF] Numata | Astrogk: Astrophysical gyrokinetics code[END_REF]. Although AstroGK employs some sophisticated techniques for the treatment of linear terms, it uses essentially the same pseudo-spectral and temporal schemes.

Results on the plasmoid onset

An extensive numerical simulation campaign, reported in the tables 1 and 2, was carried out to study the physical conditions under which plasmoids appear.

Each simulation is identified by a code of the form p F {GF {GK r , where p and r are ; In the AstroGK code, a shape function S h pxq is multiplied to A p0q ∥ to enforce periodicity [START_REF] Numata | Astrogk: Astrophysical gyrokinetics code[END_REF]. This minor difference in the simulation set-up between two models practically introduces no difference in the following results. 2 and viceversa, although this is the case for most of the simulations. In particular, we point out that, because gyrokinetic simulations always have a finite value of β e , strictly speaking there is no gyrokinetic counterpart for the fluid simulations, which formally correspond to the β e Ñ 0 limit. For all the gyrokinetic simulations, the temperature ratio is set to τ " 10 ´3, where the ion Larmor radius is ? τ ρ s . As mentioned before, the gyrofluid model assumes τ Ñ 0.

Therefore, in both the gyrofluid and gyrokinetic approach, the ion Larmor radius effects are neglected. For p " 1, 3, 4, the initial current sheet extends along ´π ă y ă π, which gives ∆ 1 m"1 " 14.3 for the initially excited mode, and ∆ 1 m"2 " 1.23 for the generated mode m " 2. For p " 2, we enlarge the box along y to ´1.4π ă y ă 1.4π, which gives ∆ 1 m"1 " 29.09, and the modes m " 2 and m " 3 are generated with ∆ 1 m"2 " 5.94 and ∆ 1 m"3 " 0.46. As a first general comment, we observe, by comparing gyrofluid and gyrokinetic simulations with the same indices p and r, that, in terms just of appearance or absence of plasmoids, gyrofluid simulations agree with the gyrokinetic ones. Therefore, in this respect, we can conclude that the quasi-static closure for the electrons and the suppression of ion gyrocenter fluctuations, do not affect critically the stability of the nonlinear current sheet. However, as will be discussed in the next Sections, differences appear in terms of the number and size of plasmoids. In particular, when more than one plasmoid is observed, this is indicated in table 1 and 2, generically, as 'several plasmoids'. The number of plasmoids in the same simulation can indeed vary in time, as plasmoids can form at different times and pairs of plasmoids can merge into a single one.

Growth rates

Before discussing in detail the plasmoid instability, we briefly comment about the linear growth rate of the m " 1 tearing mode excited by the perturbation of the initial equilibria (2.41). In the tables, we reported the value of the linear and maximum growth rate of the tearing instability, evaluated measuring the following quantity at the X-point

γ " d dt log ˇˇA p1q ∥ ´π 2 , 0, t ¯ˇˇ. (3.1)
The linear growth rate obtained by the two approaches are in a very good agreement. For a fixed p, increasing β e and m e {m i stabilizes the tearing mode. This aligns with the results of [START_REF] Numata | Gyrokinetic simulations of the tearing instability[END_REF], in which similar stabilization effects are observed when increasing β e and the mass ratio. Figure 1 shows the solution of the dispersion relation derived from the fluid model by [START_REF] Porcelli | Collisionless m=1 tearing mode[END_REF] a 2{p2 `βe qρ s , respectively. The solution of this small FLR dispersion relation, for β e " 0.12 and β e " 0.24, are shown on fig. 1 and allow a good prediction of the linear growth rate of the gyrofluid simulations for ρ s " 0.3. In particular, this permits to isolate the stabilizing effect of β e on the growth rate, when only β e is varied. Such stabilizing effect becomes easier to identify in the small ∆ 1 limit, in which Eq. (3.2) (with d e and ρ s replaced by the corresponding primed effective parameters) yields γ 9 d 1 e ρ 1 s ∆ 1 " d e ρ s p1 ´p3{8qβ e q∆ 1 for β e Ñ 0. By comparing the growth rate results, for a fixed mass ratios, of simulations p " 1, 3, 4, we note that increasing β e and ρ s , as ρ s " a β e {2, destabilizes the tearing mode. Increasing these parameters can be seen as fixing the background density, the ion mass and the guide field amplitude, while increasing the electron temperature. It was shown numerically in [START_REF] Numata | Ion and electron heating during magnetic reconnection in weakly collisional plasmas[END_REF]; Granier et al. (2022b) that, in this latter situation, the linear tearing growth rate is first ruled by the destabilizing effect of the sonic Larmor radius. However, in cases where the electron temperature is high enough for the effects of ρ e to take over those of ρ s , the linear growth rate is damped. Here, we Evolution of linear growth rate as a function of ky for de " 0.085, ρs " 0.3. For βe " 0, the solution corresponds to that of [START_REF] Porcelli | Collisionless m=1 tearing mode[END_REF], while the cases βe " 0.12 and βe " 0.24 represent an extension of this solution accounting for small electronic FLR effects and parallel magnetic perturbations. find ourselves in the first case, for which the effects of the sonic Larmor radius are visibly dominant.

In the nonlinear phase, a slight discrepancy in the maximum growth rate can be noted for the largest β e values. Figure 2 shows the value of γ max for the set of simulations p " 2 and p " 3. The gyrofluid and gyrokinetic simulations yield the same dependence of γ max on the parameters, with the gyrofluid simulations slightly underestimating the maximum growth rate measured in the nonlinear phase. This discrepancy suggests that, for large values of β e and during the nonlinear phase, the efficiency of the gyrofluid model to reproduce the gyrokinetic results becomes limited. As commented in Sec. 2.3, one reason for this might be the absence of ion gyrocenter density and parallel velocity fluctuations, which occurs in the gyrofluid model, even for large β e , due to the imposed condition (2.39).

Remarks on the numerical resolution

It is important to anticipate the role of the resolution in this study. In the forming nonlinear current sheet, tearing modes grow and can become unstable at different times. 3 2 symmetrically with respect to the center then 1 at the center 200 ˆ400

3 2 symmetrically with respect to the center then 1 at the center 2304 2 7 6 symmetrically with respect to the center then 1 at the center 3400 ˆ4800 7 6 symmetrically with respect to the center then 1 at the center Table 3. number of visible plasmoids for simulation 2F for different grids.

The current sheet can therefore be broken by multiple dominant modes, and the number of plasmoids is highly sensitive to the resolution used. Given that the fluid simulations 2 F and 3 F were those which allowed the formation of several plasmoids, we carried out resolution tests with the gyrofluid code on these two simulations to determine the necessary number of points along y, that does not prevent the growth of large mode numbers.

Table 3 reports the number of visible plasmoids for simulation 2 F as a function of the number of points and indicates their order of appearance. The convergence is reached for a resolution of 2304 2 . For 3 F , which is close to marginal stability, a spatial discretization smaller than 2L y {n y " 0.0078 was needed. Unfortunately, it is not foreseeable to perform gyrokinetic simulations with such a high resolution. Therefore, a grid of 256ˆ128 points has been used for all the gyrokinetic runs. We compared these gyrokinetic simulations to fluid{gyrofluid simulations performed with a nearly identical resolution. However, since the fluid code is much less demanding in computation time, we also performed the fluid simulations with grids up to 2304 2 points.

Effect of β e on the plasmoid onset

In this Section we present how the β e parameter changes modifies the critical aspect ratio for the plasmoid formation. We measure the current sheet aspect ratio using the current density j ∥ . The length is defined such that the current distribution from the X-point to L cs {2 equals a specific value α

1 N N ÿ i"1 `j∥ | X ´j∥ p0, i∆y, tq ˘2 " αj ∥ | X , (3.3)
where ∆y is the mesh length along y and N indicates the number of points from y " 0 to y " L cs {2. The constant α is taken to 1{3 as it gives good measurement of the length of the region with a strong current. Formula (3.3) allows to apply a single consistent method for all the simulations, while taking into account the reduction of the current intensity along the layer. The width of the current sheet corresponds to the distance between the two points along x where the value of j ∥ takes the same value as at the point p0, L cs {2q.

We focus first on the comparison of the series of simulations for p " 1, starting with the higher β e case, for which β e " 0.2491. The contour plots of the parallel electron velocity u e (proportional to the parallel current density), for the gyrofluid simulation 1 GF 1 and of the current density, j ∥ , for the gyrokinetic simulations 1 GK1 , are shown on Fig. 3. Isolines of the magnetic potential, showing the topology of the magnetic field, are overplotted. Both approaches indicate the formation of an island at the X-point. For the fluid simulation, the aspect ratio is A cs f " 4.90. In the gyrokinetic case, we measure A cs k " 4.03. We observe a persistent difference between the value of the gyrofluid and gyrokinetic aspect ratios, which is explained by the difference in resolution. However, their evolution according to the parameters are in agreement.

For the lowest β e cases, for which β e " 0.06228, the contour plots of the simulations 1 GF 2 and 1 GK2 , are shown on Fig. 4. The two simulations lead to the formation of a stable current sheet having an aspect ratio decreasing in time. The maximum aspect ratio is reached when the growth rate measure by (3.3) has reached its maximum value and the process enters the saturation phase. From the gyrofluid simulation we measured a maximum aspect ratio A cs f " 5.11. In the gyrokinetic case, the aspect ratio is A cs k " 4.14.

The measured aspect ratio are very close to those obtained for β e " 0.2491, and yet, no island develop at the X-point. Exciting only the mode m " 1 results in the development of secondary modes due to nonlinear interactions. The growth of these modes can be observed by comparing their amplitude evolution over time. As is typical for tearing instability, we observe that these modes grow faster than the mode m " 1, but their amplitudes remain smaller in our simulations. Additionally, we find that increasing β e (while increasing the mass ratio) slows down the growth of these generated modes in all simulations. In simulation set p " 1, there is the mode m " 2, which according to theory has a positive ∆ 1 . However, in the case with β e " 0.2491, for which mode 2 grows more slowly, a plasmoid forms at the X-point. It is worth pointing at the reference Del Sarto and Deriaz (2017) in which they observed that after the saturation of m " 1, the linear growth of m " 2 persists and dominates until the formation of a second island, despite the absence of a secondary evolving current sheet. However, here, by examining the evolution of the amplitude of the Fourier modes for which ∆ 1 ą 0, as well as the time derivative of their amplitude evolution, we see that the appearance of plasmoids occurs after the saturation of all the subdominant primary modes that fulfill the instability criterion for the initial magnetic equilibrium.

For 1 GF 1 , we measured L cs {ρ s " 2 and L cs {ρ e " 12, and the plasmoid formation indicates that the critical aspect ratio is A ‹ ă L cs {δ cs " 4. In contrast, for 1 GF 2 , we have L cs {ρ s " 3 and L cs {ρ e " 64, and the critical aspect ratio has not been reached, A ‹ ą L cs {δ cs " 4, indicating that no plasmoids are formed. In this first set of tests, we are operating at the boundary between stability and instability. By increasing β e , electron FLR effects become especially significant in the inner region, providing an additional mechanism to break the frozen-in condition. These combined effects are crucial in reducing the critical aspect ratio of the secondary current sheet. In addition to the electron FLR effects, a notable difference between the regimes of negligible β e and finite β e is the behavior of the perpendicular velocity flow. In the fluid case, the perpendicular velocity is determined by u K " ẑ ˆ∇ϕ, whereas in the gyrofluid case, a nonlinear grad-B drift due to the non-uniformity of the parallel magnetic field also affects the perpendicular velocity, which is given by u K " ẑ ˆ∇pG 10e ϕ´ρ 2 s 2G 20e B ∥ q. When examining the velocity vector field in the x direction near the reconnection points, we observe that it is not uniform in time, we see intermittent acceleration and deceleration, resulting in a nonuniform flow. This non-uniformity of the inflows and outflows becomes more pronounced as the grad B drift becomes significant.

In the series of simulations for p " 2, the idea is to consider the same parameters as those for p " 1 but with a longer forming current sheet. Since highly unstable primary reconnecting modes favour the formation of extended secondary current sheets we consider a larger domain size along the y direction, with L y " 1.4π, that corresponds to ∆ 1 " 29.9. The other parameters are kept the same. In this case, the current sheet has an aspect ratio above the critical value, indicating that plasmoid formation occurs also for β e " 0. Figure 5 shows the plasmoids obtained at the end of the simulations 2 GK1 -2 GK3 . The magnetic potential contour is shown as the plasmoid reaches its maximum size, which occurs in the saturation phase of the tearing instability. Figure 6 shows the evolution in time of the aspect ratio of the secondary current sheet. It can be seen that increasing β e results in larger sized plasmoids, although, from the aspect ratio measurement, increasing β e reduces the aspect ratio obtained just before the plasmoid onset.

In comparison, Fig. 7 shows the aspect ratio obtained for the simulations 4 GK1 and 4 GK2 . For this set of simulations, the effects of β e are negligible and the parameters ρ s and ∆ 1 are smaller than those of simulations 2 GK1 -2 GK3 . Nevertheless, despite a very different set of parameters, the two set of simulations lead to the formation of current sheets whose aspect ratio is almost identical. Yet, unlike cases 2, cases 4 remain stable.

Figure 8 shows the evolution of the instability in detail for the runs 2 F , 2 GF 4 , 2 GF 3 , and 2 GF 1 with the highest resolution. In the secondary current sheet, we observe that some modes may reach a high amplitude from an early stage and continue growing, while others may remain stable for a long time until they become unstable at a later stage and experience explosive growth. In the case β e " 0, it was observed in [START_REF] Granier | Marginally stable current sheets in collisionless magnetic reconnection[END_REF] that for ρ s " d e , the first plasmoids that break up the current sheet are symmetrically located above and below the X-point of the mode m " 1. These plasmoids are then ejected from the current sheet, carried by the outflow, and merge with the island of the m " 1 tearing mode. A recent result obtained in a 2D collisionless fluid model [START_REF] Grasso | Fluid models for collisionless magnetic reconnection[END_REF]) has indeed shown that ρ s significantly enlarge the spectrum of the linear unstable reconnecting modes that develop in presence of a sheared flow and magnetic field. Given the shape of the initial perturbation of the equilibrium, these plasmoids cannot coincide with the O-points of low tearing modes. For example, some of the O-points of modes 3, 4, 5, and 6 would grow at 1.4π{3, 2ˆ1.4π{4, 1.4π{5, and 2 ˆ1.4π{6, respectively. Instead, the position of the appearing O and X-points of these new reconnection events indicates that the wavelength which has reached its nonlinear phase is associated with a large mode.

When β e is increased, we observe fewer plasmoids, as shown in Fig. 8. The emergence of these structures from the current starts when the associated mode reaches a sufficiently large amplitude. After they emerge, their growth becomes extremely rapid, taking only a few Alfvèn timescales to form. While increasing β e may suggest a decrease in the critical aspect ratio, our observations reveal that it actually results in a slower growth rate of the modes propagating in the current sheet. Therefore, this parameter is also responsible for the slower development of these plasmoids, resulting in only one island reaching an explosive growth before the others. This island is located at the center of the secondary current sheet and is therefor not affect by the upstream and downstream outflow, and ejects any other growing magnetic islands towards the m " 1 mode islands.
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Validation of the plasmoid regime for ρ s " d e

A theory and numerical study developed by [START_REF] Granier | Marginally stable current sheets in collisionless magnetic reconnection[END_REF] stated that, for a current sheet close to marginal stability, the regime ρ s " d e promotes the plasmoid formation. In this reference, the simulations were carried out with the fluid model (2.16) -(2.17) which assumes a negligible mass ratio and a negligible β e . In this subsection, we present a gyrokinetic validation of these results. In addition to observing a possible role played by the closure, we also compare the fluid results with those including a finite mass ratio of m e {m i " 0.005, and consequently a small β e . Moreover, as already recalled, the evolution of ion quantities such as N i and U i , prevented by the gyrofluid model, but present in the gyrokinetic simulations, might in principle also play a role. Therefore, in this subsection we focus on the low β e regime and compare the simulation set for p " 3, for which ρ s " d e , with the simulation set for p " 4, for which ρ s ! d e . These two sets of simulation lead to the formation of a secondary current layer close to the instability threshold. In the gyrofluid and fluid model, ρ s is related to electron parallel compressibility effects and can be shown to be due to a non-isotropic component of the electron pressure tensor. When ρ s becomes non-negligible, ion-sound Larmor effects become important, and the diamagnetic drift z ˆ∇2 K ρ 2 s N e affects the perpendicular flow. This alters the structure of the current sheet and transforms it into a cross-shaped pattern aligned with the magnetic island separatrices, as described in [START_REF] Cafaro | Invariants and geometric structures in nonlinear hamiltonian magnetic reconnection[END_REF]. This effect is known to enhance the linear growth rate of the tearing mode significantly. Figure 9 shows the evolution of the instability for the simulations 3 GK3 (lowest β e gyrokinetic case of this series) and 3 F . For the two approaches, the current sheet becomes plasmoid unstable. Also in this case the resolution plays an important role. With a resolution of 1728 2 , three plasmoids were visible in the simulations 3 F . However, the same fluid simulation performed with a resolution 500 ˆ360 shows only one plasmoid. Since a resolution higher than that was not foreseeable with the gyrokinetic code, we used a grid of 256 ˆ128 points that allowed to observe one single plasmoid at the center. In the regime ρ s " d e , the current aligns with the magnetic field lines, thus forming a cross shaped current sheet. This behavior is retrieved by the gyrokinetic simulation.

Figure 10 shows the evolution of the secondary current sheet for the cases 4 GK3 (lowest β e gyrokinetic case of this series) and 4 F . The current sheet formed in the two frameworks does not follow the separatrices but remains mainly aligned along x " 0. For 4 F , where ion sound Larmor radius effects are negligible, the secondary current sheet has the dimensions A ‹ ą A cs " 9. This is consistent with the numerical results of [START_REF] Granier | Marginally stable current sheets in collisionless magnetic reconnection[END_REF], which indicate that in this regime, an aspect ratio threshold of A p1q ‹ " 10 is required for plasmoid growth. On the other hand, for 3 F where ρ s ą δ in , the threshold A p2q ‹ decreases proportionally to L cs {ρ s , and plasmoids form.

This comparison makes it possible to show that, if L cs {d e is sufficiently large, the current sheet becomes unstable regardless of the value of ρ s . However, the impact of a large sonic Larmor radius is significant, when the system is marginally stable, to switch from a stable secondary current sheet to an unstable one. This is consistent with the fact that ion sound Larmor radius effects allows for faster than exponential growth in the nonlinear phase [START_REF] Aydemir | Nonlinear studies of m=1 modes in high-temperature plasmas[END_REF]).

Energy partition -Similarities and differences between gyrokinetics and gyrofluid

Energy components

As we consider here a plasma with no collisions, the gyrokinetic system solved by AstroGK conserves the total energy (Hamiltonian) [START_REF] Gregory | Astrophysical gyrokinetics: Basic equations and linear theory[END_REF][START_REF] Schekochihin | Astrophysical Gyrokinetics: Kinetic and Fluid Turbulent Cascades in Magnetized Weakly Collisional Plasmas[END_REF], normalized by B 2 0 {p4πq

W pδF e , δF i q " 1 2 where δF s " g s `p1{diqp2Z s {pτ s β e qqpJ 2 0s ´1qϕ `di v 2 K J 1s J 0s B ∥ is the perturbation of the particle distribution function for the species s. The first term is the perturbed entropy of the species s, while the second term and third terms are the energy of the perpendicular and parallel perturbed magnetic field. We can extract the first two moments from the perturbed particle distribution function as

ż dxdy ˜τs β e 2 ÿ s 1 n 0 ż d Ŵ Feq s δF 2 s `|∇ K A ∥ | 2 `d2 i |B ∥ | 2 ¸(4.1)
δF s " d i n s `c 2σ s τ s β e d i v ∥ u s `h1 s , (4.2) 
where the perturbed density and parallel velocity of the particle of species s are denoted as n s and u s , respectively, and h 1 s contains all higher moments of the perturbed distribution function. By definition,

ż d Ŵ Feq s h 1 s " 0, ż d Ŵ Feq s v ∥ h 1 s " 0. (4.3)
We can therefore decompose the expression (4.1) in the following way W pδF e , δF i q " 1 2 The first term is the energy generated by the electron density variance, the second term is the kinetic energy of the parallel electron flow, and the third term is the free electron energy. With regard to the collisionless gyrofluid model, the system of equations (2.1) -(2.5) possesses a conserved Hamiltonian given by H gf pN e , A e q " 1 2

ż dxdy ˜ÿ s ˆτs ρ 2 s n 2 s `σs d 2 i u 2 s `τs β e 2 1 n 0 ż d Ŵ Feq s h 1 s 2 |∇ K A ∥ | 2 `d2 i |B 2 ∥ | ¯. ( 4 
ż dxdy `ρ2 s N 2 e `d2 e U 2 e `|∇ K A ∥ | 2 ´Ne pG 10e ϕ ´ρ2 s 2G 20e B ∥ q ˘. (4.5)
We remark that, as will be shown in the Appendix, the form of the Hamiltonian (4.5), obtained from the quasi-static closure, is the same that one obtains by imposing what we refer to as an isothermal gyrofluid closure (the relations between ϕ, A ∥ , B ∥ and N e , U e will, however, be different in the two cases).

Using the relation (2.13) and (2.14) we can also write the Hamiltonian in terms of particle variables as follows:

H p pn e , A e q " 1 2

ż dxdy ´ρ2 s n e G ´2 10e n e `d2 e `G´1 10e u e ˘2 `|∇ K A ∥ | 2 `d2 i |B ∥ | 2 `ne `1 ´2G ´2 10e ˘ϕ `ϕ `G´2 10e ´1˘ϕ ρ 2 s ˙.
(4.6)

When we consider the limit β e , m e {m i Ñ 0 the Hamiltonian of the gyrofluid equations is reduced to

H p pn e , A e q " 1 2 ż dxdy `ρ2 s n 2 e `d2 e u 2 e `|∇ K A ∥ | 2 `|∇ K ϕ| 2 ˘, (4.7)
which is namely the Hamiltonian of the fluid Eqs. (2.16) -(2.17). In Eq. (4.7), the contribution from left to right are the energy generated by the electron density fluctuation, the parallel electron kinetic energy, the perpendicular magnetic energy and the perpendicular plasma kinetic energy which is essentially the E ˆB flow energy.

Negligible β e : fluid vs gyrokinetic

On Fig. 11 we present the comparison between the energy variation of the fluid case 1 F and that of the low β e gyrokinetic case 1 GK3 (β e " 0.062). The variations are defined as p1{2q ş drpξpx, y, tq´ξpx, y, 0qq{Ep0q where the function ξ can be replaced by the different contributions to Ŵ and H (where Ŵ is also considered in the 2D limit) and Ep0q is the initial total energy. On the gyrokinetic plots, the four main energy channels are shown as solid lines. The solid purple line is the total ion energy variation. We also show the evolution of the variations relative to the density variance (dashed dotted), the parallel kinetic energy (densely dashed) and the perpendicular kinetic energy (loosely dashed), that are components of the total particle energy. The same channels are shown for the electrons in green.

The amount of magnetic energy that is converted is identical between fluid and gyrokinetics and appears to be transferred mainly to the electrons. On the other hand, it is not identically distributed in the gyrokinetic and fluid frameworks. For the fluid simulations, the magnetic energy has no choice but to be converted into electron density fluctuations or electron parallel acceleration, whereas in the gyrokinetic case, there is little energy sent to these channels. This suggests that, in the gyrokinetic framework, the energy of the electrons increases due the fluctuations of the higher order moments of the distribution function due to phase mixing [START_REF] Loureiro | Fast collisionless reconnection and electron heating in strongly magnetized plasmas[END_REF]; [START_REF] Numata | Ion and electron heating during magnetic reconnection in weakly collisional plasmas[END_REF]), such as for instance, the perpendicular and parallel electron temperature. It is likely that the magnetic energy is actually converted into thermal electron energy. Such possibility is prevented in the fluid case because, as a consequence of the closure, for β e Ñ 0, no temperature fluctuations are allowed.

The striking difference between the two approaches is that the parallel electron kinetic energy increases in the fluid case, whereas it is quasi-constant or decreasing in the gyrokinetic one (Fig. 11). In order to investigate the origin of this difference, we performed an initial condition check and decomposed the parallel electron kinetic energy. The decomposition leads to three energy components, namely the equilibrium part (u 2 eq ), the perturbation part (ũ 2 e ) and the cross term (2ũ e u eq ). The change of each component is shown on the bottom panel of Fig. 11. The equilibrium contribution clearly does not change in time. The quadratic perturbation part is always positive but globally the variation of parallel electron kinetic energy can decrease because of the cross term becoming negative, which is the case for the gyrokinetic simulation. For the fluid case, the perturbation term increases considerably, leading to a positive variation of the parallel kinetic energy, since the electrons are highly accelerated for conservation of the total energy.

With regard to the ions, the closure assumptions imply an even rougher approximation of the ion dynamics, in the fluid case, with respect to gyrokinetics. In the gyrokinetic case, for low β e , we can see on Fig. 11 that the main component of the total ion energy consists of the perpendicular kinetic energy, which is included in the h s 1 part in Eq. (4.4):, given by 1 2

ż dxdyd 2 i u 2 K,i . (4.8)
where the perpendicular ion velocity u K,i is calculated directly from its definition as a moment in the following way:

d i u K,i " c τ i β e 2σ i 1 n 0 ż d ŴF eqi v K δF i (4.9)
Notice that the perpendicular flow holds the identity from the definition

d i u K,i " p´∇ϕ ´ρ2 s ∇ ¨pKK,i q ˆz (4.10)
where the perpendicular pressure tensor is given by

d i p KK,i " τ i 1 n 0 ż d ŴF eqi v K v K δF i (4.11)
The perpendicular flow is given by the sum of E ˆB drift and diamagnetic drift of perturbed pressure.

In spite of the closure, the evolution of the energy component (4.8) is very similar to : Since the vK moments are generally not orthogonal, we cannot clearly separate each of them. that of the E ˆB flow energy of the gyrofluid case. For a very small β e , no parallel ion kinetic energy and parallel magnetic energy seems to be generated.

Finite β e : gyrofluid vs gyrokinetic

When β e is very small, the FLR corrections become negligible and the particle and gyrocenter variables coincide. On the other hand, for non-negligible β e , the electron Larmor radius becomes finite and the relations (2.11) and (2.12) allow us to relate the density and parallel velocity of the particles to those of the gyrocenters. On Fig. 12 we compare the gyrofluid energy variations with the gyrokinetic ones for 0 ă β e ă 1. For this purpose, we use the simulation set for p " 3.

In the plot referring to the gyrofluid energy, we show the variation of both the particles and gyrocenters energy. For instance, the curve referring to "Kin ∥e " corresponds to the variation of p1{2q ş dxdyd 2 e u 2 e , which is comparable to the second term of the gyrokinetic energy (4.4). The one referring to "Gyrocenter Kin ∥e " corresponds to the variation of p1{2q ş dxdyd 2 e U 2 e . By increasing β e , the difference between the variation of the energy of the gyrocenters and that of the particles increases. With finite β e , we now note a loss of parallel kinetic energy of the electrons for the gyrofluid case, which is in better agreement with the gyrokinetic approach. Increasing β e , will also generate more parallel magnetic energy, which is well reproduced by the gyrofluid model. On the other hand, the gyrokinetic cases indicate that a significant part of the magnetic energy is now converted into parallel ion kinetic energy. As already mentioned, a limitation of the reduced gyrofluid model is that the ion parallel velocity has been "artificially" removed by imposing U i " u i " 0. The limitations of this assumption become evident, in particular, from Fig. 12 which shows that, in the gyrokinetic case, for sufficiently large β e , the ion fluid is actually accelerated along the z axis. On the other hand, it seems that despite this missing element, the gyrofluid model is suitable for studying the formation of plasmoid for 0 ă β e ă 1.

Conclusion

In this work, we have numerically investigated the plasmoid formation employing both gyrofluid and gyrokinetic simulations, assuming a finite, but small β e . We can conclude that the formation of plasmoids in a current sheet depends on various parameters, including the relative scales of the electron and ion-sound Larmor radii and the current sheet length. When electron FLR and ion-sound Larmor radius effects are taken into account, the critical aspect ratio A ‹ cs for plasmoid formation is reduced, which promotes plasmoid growth. These results contribute to shed light on collisionless reconnection mediated by the plasmoid instability, and in particular on the role of the effects present at the electron scale.

This work showed the ability of the reduced gyrofluid model to achieve relevant new insights into current-sheet stability and magnetic reconnection. In particular, predictions on marginal stability on current sheets, obtained by [START_REF] Granier | Marginally stable current sheets in collisionless magnetic reconnection[END_REF] in the fluid limit, were confirmed by gyrokinetic simulations. It also indicates that the fluid and gyrofluid models make it possible to obtain accurate results in short computational times.

The comparison between the gyrofluid and the gyrokinetic models reveals key similarities and differences between the two frameworks, which gives insight into the important underlying physical effects. Indeed, the adopted gyrokinetic model is a δf model from which the gyrofluid model can be derived with appropriate approximations and closure hypotheses. This allowed to directly identify possible limitations of the closures applied to the gyrofluid moments, that distinguish the gyrofluid model from its gyrokinetic parent model. We therefore presented the impact of the closure on the distribution and conversion of energy during reconnection. The closure, which does not allow for parallel temperature fluctuations, implies that gyrocenter moment fluctuations energies in which the magnetic energy can be converted to, must be those of the electron density and parallel velocity. This is not in agreement with the gyrokinetic simulations, but does not seem to interfere with the formation of plasmoids. In particular, for relatively small but finite β e , the hypothesis of absent parallel ion motion made in the gyrofluid framework is valid and does not affect the plasmoid instability. The gyrokinetic perpendicular ion velocity is well represented by the fluid E ˆB velocity. On the other hand, gyrokinetic simulations show a large fraction of magnetic energy transferred to fluctuations of higher order moments.
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In this Appendix we first show how the gyrofluid Hamiltonian (4.5) can be obtained from the gyrokinetic Hamiltonian (4.1) by applying the quasi-static closures and the assumptions described in Sec. 2.3. Subsequently, we compare with the gyrofluid Hamiltonian obtained by applying what we refer to as gyrofluid isothermal closure.

The conserved energy (4.1) of the δf gyrokinetic model used for the comparison in this paper can be expressed in terms of the gyrocenter perturbed distribution function where x y Xs denotes the gyroaverage at constant guiding center X s and A K is the magnetic vector potential associated with parallel magnetic perturbations, so that ∇ ÂK " B ∥ z. In this way we obtain W pδF e , δF i q " H gy pg e , g i q "

1 2 Note that, in Eq. (5.2), we already took the spatial 2D limit, in order to directly obtain the gyrofuid Hamiltonian.

ż
The gyrocenter perturbed distribution function can be developed as a series of its gyrocenter moments using Hermite and Laguerre polynomials. Here, we will retain only the first two moments of the hierarchy for the two species, and apply two different closures, namely the quasi-static closure [START_REF] Tassi | A Hamiltonian gyrofluid model based on a quasi-static closure[END_REF]), and a gyrofluid isothermal closure, where the perpendicular and parallel gyrocenter temperature fluctuations T Ks " T ∥s " 0, are set equal to zero (as all the other higher order gyrofluid moments). Such kind of closure is applied, for instance, by [START_REF] Scott | Derivation via free energy conservation constraints of gyrofluid equations with finite-gyroradius electromagnetic nonlinearities[END_REF], although in this Reference, gyrocenter temperature, as well as heat flux fluctuations, are retained and all the other higher order moments are set equal to zero.

For the quasi static closure, the expansion of the gyrocenter perturbed distribution functions for the two species are given by 

g i " ´8 ÿ n"1 L n ˆv2 K 2 ˙ˆG 1ni 1 d i 2 τ i β e ϕ `2G 2ni d i B ∥ ˙(5.4)
The difference between electron and ion treatments in Eqs. (5.3) and (5.4), is clearly due to the assumption (2.39). We mention that, by retaining, in Eq. (5.4), also ion gyrocenter density and parallel velocity fluctuations, and applying the same procedure described in the following, one can derive the energy of the 4-field Hamiltonian gyrofluid model described by Granier et al. (2022b).

In the case of the gyrofluid isothermal closure the truncated expansion simply gives g e " d i N e `c 2σ e β e d i v ∥ U e , (5.5) g i " 0.

(5.6)

To simplify the infinite sums in (5.3) and (5.4), we can make use of the following relations [START_REF] Szegö | Orthogonal Polynomials[END_REF] We can now reduce the gyrokinetic Hamiltonian (5.2) to gyrofluid ones by injecting the two sets of truncated perturbed gyrocenter distribution functions. In the quasi-static case, thanks to the relation (5.9), all the contributions involving G 1ns and G 2ns , with n ě 1, cancel. It turns out that the two resulting gyrofluid Hamiltonians can be written in an identical form, which corresponds to the following HpN e , A e q " 1 2 ż dxdy `ρ2 s N 2 e ´Ae L Ue pA e q ´Ne pG 10e L ϕ pN e q ´ρ2 s 2G 20e L B pN e qq ˘, (5.10)

where we recall that A e " G 10e A ∥ ´d2 e U e and the linear operators L Ue , L ϕ and L B are given by B ∥ " L B pN e q, ϕ " L ϕ pN e q, (5.11) U e " L Ue pA e q.

(5.12) through the quasi-neutrality relation and the two components of Ampère's law. The expression (5.10) coincides, up to integration by parts, to the Hamiltonian (4.5). Evidently, the quasi-static quasineutrality equation and Ampère's law will differ from the isothermal ones. Therefore, the total conserved energy are actually evolving differently and the operators L B , L ϕ , L Ue are closure-dependent operators.

For instance, the explicit form of the quasi-neutrality relation, in the quasi-static case, A first comment is that the two closures, and consequently the two sets of static equations are in fact identical if we assume G 1ne " G 2ne " 0, for n ě 1, (5.16) which gives the approximations Γ 0e pb e q 1{2 " G 10e , pΓ 0e pb e q ´Γ1e pb e qq 1{2 " 2G 10e G 20e .

(5.17)

On the other hand, the relations (5.17) can be interpreted in a different way, i.e. considering the exact expressions (5.15) for Γ 0e and Γ 1e , and assuming that the expressions for G 10e and G 20e can be adapted to match the quasi-neutrality relations following from the two closures. In this way, from the first relation in Eq. (5.17), one retrieves, for the case s " e, the approximate expression for the operators G 10s introduced by [START_REF] Dorland | Gyrofluid turbulence models with kinetic effects[END_REF]. The advantages of this approach have been more recently discussed also by [START_REF] Mandell | Laguerre-Hermite pseudo-spectral velocity formulation of gyrokinetics[END_REF]. The above approach is indeed reminiscent of the approach used by [START_REF] Dorland | Gyrofluid turbulence models with kinetic effects[END_REF] in order to find an expression for G 10s yielding a better agreement of liner gyrofluid theory with the linear gyrokinetic theory. A similar approach, accounting also for G 20s in a finite-β gyrofluid model, was followed by [START_REF] Despain | Gyrofluid modeling of turbulent[END_REF].

A second point is that, in the limit of negligible ion and electron Larmor radius, when considering τ i Ñ 0 and β e Ñ 0, the two sets of static relations become identical and we obtain the same fluid Hamiltonian For instance, both (5.14) and (5.13) will reduce to the quasi-neutrality relation (5.18) which is going to give rise to the E ˆB flow energy in the fluid Hamiltonian.

N e " ∇ 2 K ϕ,

  Figure1. Evolution of linear growth rate as a function of ky for de " 0.085, ρs " 0.3. For βe " 0, the solution corresponds to that of[START_REF] Porcelli | Collisionless m=1 tearing mode[END_REF], while the cases βe " 0.12 and βe " 0.24 represent an extension of this solution accounting for small electronic FLR effects and parallel magnetic perturbations.

Figure 2 .

 2 Figure 2. Maximum growth rates of the collisionless tearing mode as a function of βe, for the cases p " 2 and p " 3.

Figure 3 .

 3 Figure 3. Top: Contour of the parallel electron velocity ue (proportional to the parallel current density and normalized by di{L and by the Alfvén velocity vA) for simulation 1GF 1. Bottom: Contour of the parallel current density j ∥ (normalized by en0vA) of simulation 1GK1. The difference in normalization conventions leads to a factor ´di " ´0.85 between the two quantities. Isolines of the magnetic potential are superimposed on all the contours.

Figure 4 .

 4 Figure 4. Top: Contour of the electron velocity ue (proportional to the parallel current density) for simulation 1GF 2. Bottom: Contour of the parallel current density j ∥ of simulation 1GK2. The difference in normalization conventions leads to a factor ´di " ´1.7 between the two quantities. Isolines of the magnetic potential are superimposed on all the contours.

Figure 5 .

 5 Figure 5. Contour of the parallel current density j ∥ for simulations 2GK3, 2GK2 and 2GK1.Isolines of the magnetic potential are superimposed on all the contours.

Figure 6 .Figure 7 .

 67 Figure 6. Aspect ratio of the forming current sheet as a function of time for simulations 2GK3, 2GK2

Figure 8 .

 8 Figure 8. Contour of ue with isolines of A ∥ . From top to bottom panels: : 2F (2304 2 ), 2GF 4, 2GF 3, 2GF 1 (2304 ˆ2400).

Figure 9 .

 9 Figure9. Top: contour of the parallel current density ue " Ue for simulation 3F (1728 2 ). Bottom: Contour of the parallel current density j ∥ of simulation 3GK3. The difference in normalization conventions leads to a factor ´di " ´1.7 between the two quantities. Isolines of the magnetic potential are superimposed on all the color maps.

Figure 10 .

 10 Figure10. Top: Contour of the parallel current density ue " Ue for simulation 4F (1728 2 ). Bottom: Contour of the parallel current density j ∥ of simulation 4GK2. The difference in normalization conventions leads to a factor ´di " ´1.7 between the two quantities. Isolines of the magnetic potential are superimposed on all the color maps.

  Figure 11. Top: Time evolution of the energy variations for the cases 1F (left) resolution and 1GK3 (right). Bottom: Change of the parallel kinetic energy for the same simulations. No plasmoid in this case.

Figure 12 .

 12 Figure 12. Time evolution of the energy variations for the cases 3GF and 3GK .

  Γ 0,1e operators are defined in Fourier space in the following way Γ 0e Ñ I 0 are the modified Bessel functions of order n.

Table 1 .

 1 Gyrofluid and fluid simulations.

	No. ρs	∆ 1	βe	me{mi γL γmax	Plasmoid
	1GF 1 0.3 14.3 0.2491	0.01 0.214 0.285	One small
	1GF 2 0.3 14.3 0.06228 0.0025 0.225 0.322	No
	1F	0.3 14.3	0	0	0.230 0.337	No
	2GF 1 0.3 29.09 0.2491	0.01 0.211 0.342	One plasmoid
	2GF 2 0.3 29.09 0.1246 0.005 0.218 0.367	One plasmoid
	2GF 3 0.3 29.09 0.06228 0.0025 0.231 0.378	One plasmoid
	2GF 4 0.3 29.09 0.0124 0.0005 0.241 0.385 Several plasmoids
	2F	0.3 29.09	0	0	0.242 0.386 Several plasmoids
	3GF 1 0.5 14.3 0.692	0.01 0.286 0.334 Several plasmoids
	3GF 2 0.5 14.3 0.3460 0.005 0.310 0.383 Several plasmoids
	3F	0.5 14.3	0	0	0.338 0.448 Several plasmoids
	4F 0.06 14.3	0	0	0.081 0.188	No
	No. ρs	∆ 1	βe	me{mi	γL	γmax Plasmoid
	1GK1 0.3 14.3 0.2491	0.01	0.2245 0.308 One small
	1GK2 0.3 14.3 0.06228 0.0025 0.2438 0.342	No
	2GK1 0.3 29.09 0.2491	0.01	0.2165 0.352 One large
	2GK2 0.3 29.09 0.1246	0.005 0.2267 0.389 One large
	2GK3 0.3 29.09 0.06228 0.0025 0.2329 0.401 One large
	3GK1 0.5 14.3	0.692	0.01	0.3040 0.362	One
	3GK2 0.5 14.3 0.3460	0.005 0.3286 0.410	One
	3GK3 0.5 14.3 0.1730 0.0025 0.3472 0.453	One
	4GK1 0.06 14.3 0.009965 0.01 0.08617 0.207	No
	4GK2 0.06 14.3 0.002491 0.0025 0.08779 0.209	No

Table 2 .

 2 Gyrokinetic simulations.integers and F , GF and GK indicate whether the simulation is carried out in the fluid limit, with the gyrofluid model or with gyrokinetic model, respectively. For all the simulations, the value of the electron skin depth is fixed to d e " 0.085. Simulations with the same number p are characterized by the same values of d e , ρ s and ∆ 1 . For a fixed p, different values of the index r, on the other hand, indicate different values of β e (and, consequently, of m e {m i ), with β e decreasing as r increases. Not all the simulations of Table1have a corresponding simulation in Table

  As shown on fig.1, for d e " 0.085 and ρ s " 0.3, this dispersion relation agrees with the linear growth rate of 1 F and 2 F . With the Ohm's law (2.21) that retains first-order FLR corrections as well as corrections due to parallel magnetic perturbations, we can extend the dispersion relation (3.2) by replacing d e and ρ s with the effective parameters

		given by						
		π 2	˜Beq 1 y p0qγ 2k y	¸2 " ´ρs	π ∆ 1	`ρ2 s d e	2k y y p0q γB eq 1	.	(3.2)
	d 1 e "	a 1 ´βe {4d e and ρ 1 s "					

)

  J 0 pα s q " e ´bs{2 are associated Laguerre polynomials and of the expression of the operators (2.36)-(2.37). We therefore obtain the following equality, that can be injected in (5.3) and (5.4),

								8 ÿ n"0	L n	`v2 K {2 n! ˆbs 2	˙n ,	(5.7)
		2	J 1 pα s q α s	" e ´bs{2	8 ÿ n"0	L p1q n `v2 K {2 `1q!	pn ˆbs 2 ˙n ,	(5.8)
	where L p1q n 8 ÿ n"1 L n ˆv2 K 2	˙ˆG 1ns	1 d i	2Z s τ s β e	ϕ `2G 2ns d i B ∥ ˙" pJ 0 pα s q ´G10s q	1 d i	2Z s τ s β e	ϕ
									`ˆv 2 K	J 1 pα s q α s	´2G 20s ˙di B ∥ . (5.9)
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