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Uniform attachment with freezing

Étienne Bellin ♠ Arthur Blanc-Renaudie ♥ Emmanuel Kammerer ♦ Igor Kortchemski ♣

Abstract

In the classical model of random recursive trees, trees are recursively built by attaching new vertices
to old ones. What happens if vertices are allowed to freeze, in the sense that new vertices cannot be
attached to already frozen ones? We are interested in the impact of freezing on the height of such trees.

Figure 1: Simulation of a tree of size 10000 built by uniform attachment with freezing, when

the number of active (i. e. non-frozen) vertices roughly evolves as a positive fraction of the

total number of vertices. Frozen vertices are blue; active vertices are red. The animation

(played with Acrobat Reader) shows the resulting process as the number of steps increases.
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1 Introduction

Random graphs are instrumental in the study of real-world networks. Uniform recursive trees (sometimes
also called uniform attachment trees) are one of such models. They are constructed recursively by start-
ing with one single vertex, and successively attaching new vertices to a previous existing vertex, chosen
uniformly at random. This model has been introduced in [31] in the context of system generation, and has
received considerable interest since, starting with graph-theoretical properties such as the height, number
of leaves, etc. (see e.g. [35] and references therein, as well as the survey [37]). Recursive trees have been
proposed as models for the spread of epidemics [30], the family trees of preserved copies of ancient or
medieval texts [32], pyramid schemes [19], internet interface maps [23] and appear in the study of Hopf
algebras [21]. Very interesting connections have been made with other probabilistic objects such as the
Bolthausen-Sznitman coalescent [20] and elephant random walks [27]. Uniform recursive trees have also
been extended in several directions, for instance by introducing deterministic weights [26] or random
weights with a random environment [10].

In the present work, we introduce and study a modification of this model by introducing freezing, in
that existing vertices can freeze and new vertices cannot be attached to frozen vertices.
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Our motivation is twofold. First, in the context of real-world networks such mechanisms are nat-
ural: for instance, on the social network Twitter a user can choose to set their account to “private” which
prevents strangers from “following” them; also performing an infection-tracing of an SIR epidemics falls
within this framework (see Section 6). Second, it is natural to investigate from a mathematical point of
view the impact of freezing in dynamically-built random graph models. In particular, in a companion pa-
per [7], we investigate the regime where the number of active vertices roughly evolves as the total number
of vertices to the power 𝛼 , for fixed 𝛼 ∈ (0, 1], we describe a phase transition where the macroscopic
geometry of our model drastically changes according to the value of 𝛼 . Let us also mention the work [5],
which considers a growth-fragmentation-isolation process on random recursive trees in the context of
contact tracing, see also [8].

Uniform attachment with freezing. Let us first define our model. In order to incorporate freezing in
the model of uniform attachment trees and to obtain results in a rather general setup, we shall fix before-
hand the steps where an attachment takes place and the steps where freezing takes place. Specifically, our
input is a deterministic sequence x = (x𝑖)𝑖≥1 of elements of {−1, +1}. Starting from a sole active vertex, we
recursively build random trees by reading the elements of the sequence one after the other, by applying a
“freezing” step when reading −1 (which amounts to freezing an active vertex chosen uniformly at random)
and a “uniform attachment” step when reading +1 (which amounts to attaching a new vertex to an active
vertex chosen uniformly at random).

More precisely, given a sequence x = (x𝑖)𝑖≥1 ∈ {−1, +1}N, we set 𝑆0(x) B 1 and for every 𝑛 ≥ 1

𝑆𝑛 (x) B 1 +
𝑛∑︁
𝑖=1

x𝑖 then 𝜏 (x) B inf{𝑛 ≥ 1 : 𝑆𝑛 (x) = 0}. (1)

Observe that 𝜏 (x), if it is finite, is the first time when all the vertices are frozen, so that afterwards the tree
does not evolve any more. For every 0 ≤ 𝑛 ≤ 𝜏 (x), let T𝑛 (x) be the random tree recursively built in this
fashion after reading the first 𝑛 elements of x (see Algorithm 1 in Sec. 2.1 for a precise definition and Fig. 3
for an example).

Let us comment on our choice of parametrization. It would have been possible to define the model
starting with a random sequence x, but the choice of a deterministic sequence defines a more general
model, for which our results can then be applied.

Local limits. When 𝜏 (x) = ∞, the next result allows to give a meaning to T∞(x) as a local limit of finite
trees (see Sec. 3 for background on the local topology).

Theorem 1. Let (x𝑛)𝑛≥0 be a sequence of elements of {−1, 1}N. Suppose that there exists x such that 𝜏 (x) = ∞
and such that for all 𝑖 ≥ 1, x𝑛𝑖 = x𝑖 for all 𝑛 large enough. Then the following assertions are equivalent:

(1) The sequence of trees (T𝑛 (x𝑛))𝑛≥0 converges locally, in distribution.

(2) The sequence of trees (T𝑛 (x))𝑛≥0 converges locally, almost surely, towards a tree T∞(x).

(3) The sum
∑

𝑖≥1
1

𝑆𝑖 (x)1{x𝑖=−1} diverges.

In this case T∞(x) is the local limit of (T𝑛 (x𝑛))𝑛≥0.

Examples. It is interesting to note that this model encompasses the two classical models of random
recursive trees and random uniform plane trees:
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– when x𝑖 = 1 for every 𝑖 ≥ 1, then T𝑛 (x) is a random recursive tree on 𝑛 vertices built by uniform
attachment;

– when X = (X𝑖)𝑖≥1 is a sequence of non constant i.i.d. uniform random variables on {−1, +1}, then
for every 𝑛 ≥ 1, conditionally given 𝜏 (X) = 𝑛, T𝑛 (X) is a uniform plane tree when the plane order
among the vertices of T𝑛 (X) is chosen uniformly at random.

More generally we have the following result, in which we consider the case of random sequences. In this
case we will write X in upper case rather than x to emphasize the fact that the sequence is random. And,
the law of (T𝑛 (X))𝑛≥0 given the random sequence X follows the description above where X is considered
to be fixed. In other words, we first choose X randomly, then, conditionally on X, we construct T𝑛 (X)
following Algorithm 1 where we consider the sequence X to be deterministic.

Theorem2. Let 𝑝 ∈ [0, 1) and letX = (X𝑖)𝑖≥1 be a sequence of i.i.d random variables such thatP(𝑋1 = +1) = 𝑝

and P(X1 = −1) = 1 − 𝑝 . Then T∞(X) has the law of a Bienaymé tree with offspring distribution 𝜇 given by
𝜇 (𝑘) = (1 − 𝑝)𝑝𝑘 for 𝑘 ≥ 0.

Roughly speaking, this comes from the fact that the subtrees grafted on the initial vertex evolve in an
i.i.d. fashion.

Height of uniform attachment trees with freezing. Since we consider large trees, let us consider for
𝑛 ≥ 1, a sequence x𝑛 ∈ {−1, 1}N such that 𝜏 (x𝑛) > 𝑛, and let T𝑛 B T𝑛 (x𝑛). Also, to simplify notation, let
𝑆𝑛
𝑘
B 𝑆𝑘 (x𝑛) for 0 ≤ 𝑘 ≤ 𝑛.
Our next main theorem is that the height of T𝑛 is of order

h+𝑛 =

𝑛∑︁
𝑖=1

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1} .

Theorem 3. The following results hold.

(1) Let𝑈 𝑛 be an active vertex of T𝑛 chosen uniformly at random, and denote by H(𝑈 𝑛) its height. Then for
all 𝑝 ≥ 1:

H(𝑈 𝑛)
h+𝑛

L𝑝−→
𝑛→∞

1.

(2) For all 𝜀 ∈ (0, 1):
P

(
1 − 𝜀 ≤ Height(T𝑛)

h+𝑛
≤ 𝑒 + 𝜀

)
−→
𝑛→∞

1.

(3) Assume that ln(𝑛)/h+𝑛 → 0 as 𝑛 → ∞. Then for all 𝑝 ≥ 1:

Height(T𝑛)
h+𝑛

L𝑝−→
𝑛→∞

1.

The proof of Theorem 3 is based on an alternative construction of T𝑛 , based on time-reversal, through
a growth-coalescent process of rooted forests. This construction can be roughly described as follows (see
Algorithm 2 for a precise definition): start with a forest made of 𝑆𝑛𝑛 rooted one-vertex trees. Read success-
ively x𝑛𝑛, x𝑛𝑛−1, . . . , x

𝑛
1 ; when reading +1 add a new one-vertex tree to the forest; when reading −1, choose

successively two different forests uniformly at random, connect their roots by an edge, and root this new
tree at the root of the first forest. It turns out that, in the end, one gets a tree having the same distribution
as T𝑛 (see Theorem 8 for a precise statement). This is a generalization of the connection between ran-
dom recursive trees and Kingman’s coalescent which first appeared in [17] (see [16, Sec. 6], [35, Sec. 3], [1,
Sec. 2.2], [3] for applications), in the context of union-find data structures (which are data structures that
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store a collection of disjoint sets where merging sets and finding a representative member of a set), see
e.g. [25]. The main difference is that a growth feature must be added when freezing is introduced.

We are next interested in the specific regime where roughly speaking the number of active vertices
increases linearly compared to the size of the tree.

Theorem 4. Let 𝑐 ∈ (0, 1]. Let (𝐴𝑛)𝑛∈N be a sequence of positive numbers such that𝐴𝑛 = 𝑜 (log𝑛) as𝑛 → ∞.
Assume that

lim
𝜀→0

lim sup
𝑛→∞

max
𝐴𝑛≤𝑖≤𝜀𝑛

����𝑆𝑛𝑖𝑖 − 𝑐

���� = 0 and ∀𝜀∈ (0, 1), lim inf
𝑛→∞

min
𝜀𝑛≤𝑖≤𝑛

𝑆𝑛𝑖

𝑛
> 0. (2)

The following assertions hold.

(1) We have
h+𝑛
ln𝑛

−−−−→
𝑛→∞

𝑐 + 1
2𝑐

.

(2) For all 𝑛 ≥ 1, conditionally given T𝑛 , let 𝑉𝑛
1 and 𝑉𝑛

2 be independent uniform vertices of T𝑛 . Then for
every 𝑝 ≥ 1

H(𝑉𝑛
1 )

ln𝑛
L𝑝−→

𝑛→∞
𝑐 + 1
2𝑐

and
𝑑𝑛 (𝑉𝑛

1 ,𝑉
𝑛
2 )

ln𝑛
L𝑝−→

𝑛→∞
𝑐 + 1
𝑐

, (3)

where H(𝑉𝑛
1 ) is the height of 𝑉𝑛

1 in T𝑛 and 𝑑𝑛 denotes the graph distance in T𝑛 .

(3) We have
Height(T𝑛)

ln(𝑛)
P−→

𝑛→∞
1 + 𝑐
2𝑐

𝑓 (𝑐),

where 𝑓 (𝑐) is the unique solution with 𝑓 (𝑐) > 1 to 𝑓 (𝑐) (ln 𝑓 (𝑐) − 1) = (𝑐 − 1)/(𝑐 + 1).

Let us make some comments on these results. Roughly speaking, T𝑛 looks like a “tentacular bush”
in the sense that two typical vertices are always at the same distance of order 2h+𝑛 ∼ 𝑐+1

𝑐
· ln(𝑛), but the

total height is of order 𝑓 (𝑐) · h+𝑛 . A typical example where the assumptions (2) are satisfied is e.g. when
max𝐴𝑛≤𝑖≤𝑛 |𝑆𝑛𝑖 /𝑖 − 𝑐 | → 0. This is for instance the case when 𝑝 ∈ (1/2, 1), X = (X𝑖)𝑖≥1 is a sequence of
i.i.d random variables such that P(𝑋1 = +1) = 𝑝 and P(X1 = −1) = 1 − 𝑝 , setting 𝑆𝑛𝑖 = 𝑆𝑖 (X), conditionally
given 𝜏 (X) > 𝑛, Theorem 4 applies almost surely with 𝑐 = 2𝑝 − 1 thanks to the laws of large numbers. The
reason we rather use (2) is for applications to contact-tracing in the SIR model (see Sec. 6).

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

5

10

15

20

e

Figure 2: Plot of the function ( 1+𝑐2𝑐 𝑓 (𝑐) : 0 < 𝑐 ≤ 1).

Theorem 4 (3) gives a more precise result than Theorem 3 (2) under an additional assumption. It
generalizes the well known result that when T𝑛 is a random recursive tree (which is obtained by taking
x𝑛 = 1 for every 𝑛 ≥ 1), we have [16, Theorem 10]: Height(T𝑛)/ln(𝑛) → 𝑒 in probability (see also [35,
Theorem 1] for a more robust approach based on branching processes).

The proof of Theorem 4 (3) is rather delicate: themain difficulty is that the presence of freezing impedes
the direct use of branching process techniques. The alternative growth-coalescent process construction
previously mentioned lies at the heart of our proof.
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Let us mention that it is possible to check that (T𝑛/ln(𝑛))𝑛≥1 is not tight for the so-called Gromov–
Hausdorff–Prokhorov topology. However, for the topology considered in [18, 24], T𝑛/ln(𝑛) converges to
the so-called long dendron Υ𝜈 (we use the notation of [24, Example 3.12]) with 𝜈 being the Dirac mass
𝜈 = 𝛿 (𝑐+1)/2𝑐 .

Application to contact-tracing in a stochastic SIR dynamics. Our results may be applied to analyze
the geometry of the so-called “infection tree” of a stochastic SIR dynamics, in which the vertices are indi-
viduals and where edges connect two individuals if one has infected the other. To keep this introduction
at reasonable length, we refer to Section 6 for details and to Theorem 24 for a precise statement.

Plan of the paper. The rest of the paper is organized as follows: In Section 2, we present our alternative
construction, and describe a few of its properties. In Section 3, we show Theorem 1 and 2 about local limits.
In Sections 4 and 5, we prove respectively Theorems 3 and 4 about the height of our trees. We then apply
our results in Section 6 to a stochastic SIR dynamics. Finally, in Section 7 we give a few open problems.

Acknowledgments. We thank Christina Goldschmidt for stimulating discussions at early stages of this
work. We also thank the wonderful organization committee (Serte Donderwinkel, Christina Goldschmidt,
Remco van der Hofstad, and Joost Jorritsma) of the RandNET Summer School and Workshop on Random
Graphs, where this work was initiated.

2 Trees constructed by uniform attachment with freezing

We start by defining our model. We also provide for future use a table of notation below (Table 1).

Table 1: Table of the main notation and symbols introduced in Section 2 and used later.

N = {1, 2, 3, . . . } positive integers
⟦𝑖, 𝑗⟧ = {𝑖, 𝑖 + 1, . . . , 𝑗 − 1, 𝑗} all integers between 𝑖 and 𝑗

#𝐴 cardinality of a finite set 𝐴
x = (x𝑛)𝑛∈N a sequence of elements of {−1, 1}

𝑆𝑛 (x) = 1 + ∑𝑛
𝑖=1 x𝑖

𝜏 (x) = inf{𝑛 ≥ 1 : 𝑆𝑛 (x) = 0}
T𝑛 (x) tree built at time 𝑛 by Algorithm 1; 𝑆𝑛 (x) is its number of active vertices
𝑁𝑛 (x) total number of vertices in T𝑛 (x); 𝑁𝑛 (x) = (𝑆𝑛 (x) + 𝑛 + 1)/2 when 𝑛 ≤ 𝜏 (x)

F𝑛
𝑛 (x),F𝑛

𝑛−1(x), . . . ,F𝑛
0 (x) the forest of trees built by Algorithm 2

T𝑛 (x) = F𝑛
0 (x) the -output of Algorithm 2

F𝑛 (x) = {𝑖 ∈ ⟦1, 𝑛⟧ : x𝑖 = −1} the labels of frozen vertices of T𝑛 (x)
A𝑛 (x) = {𝑎1, . . . , 𝑎𝑆𝑛 (x) } the labels of active vertices of T𝑛 (x)
V𝑛 (x) = F𝑛 (x) ∪ A𝑛 (x) the labels of all vertices of T𝑛 (x)
b𝑛 (𝑢) the birth time of 𝑢 ∈ V𝑛 (x) in the construction of T𝑛 (x) by Algorithm 2
c𝑛 (𝑢, 𝑣) the coalescence time between 𝑢, 𝑣 ∈ V𝑛 (x) in the construction of T𝑛 (x) by

Algorithm 2
H𝑛
𝑖 (𝑢) the height of vertex 𝑢 in F𝑛

𝑖 (x)
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𝑆𝑛 (x)

𝑛0
1
2

3

0 1 2 3 4 5

𝑎

T0 (x)

𝑎

𝑎

1

T1 (x)
2

𝑎

1

T2 (x)

2

𝑎

𝑎

1

3

T3 (x) 2

𝑎

𝑎 𝑎

1

3 4

T4 (x)

2

𝑎

5 𝑎

1

3 4

T5 (x)

Figure 3: On the left is represented the walk (𝑆𝑛 (x))𝑛≥0 up to time 𝑛 = 5 associated with

the sequence x = +1,−1, +1, +1,−1, . . . . On the right, a possible realisation of the trees T0(x)
to T5(x) given this sequence. Frozen vertices have been colored in blue.

2.1 Uniform attachment with freezing: recursive construction

Let x = (x𝑖)𝑖≥1 ∈ {−1, +1}N. In what follows, we formally construct the random trees (T𝑛 (x))𝑛≥0. These
trees will be rooted, edge-labelled, and vertex-labelled. The label of an edge is the time it appears. And the
label of a vertex is either the time it freezes, or the label “𝑎” if it is still active at time 𝑛.

Algorithm 1.
• Start with the tree T0(x) made of a single root vertex labelled 𝑎.
• For every 𝑛 ≥ 1, if T𝑛−1(x) has no vertices labelled 𝑎, then set T𝑛 (x) = T𝑛−1(x). Otherwise let𝑉𝑛 be
a random uniform active vertex of T𝑛−1(x), chosen independently from the previous ones. Then:

– if x𝑛 = −1, build T𝑛 (x) from T𝑛−1(x) simply by replacing the label 𝑎 of 𝑉𝑛 with the label 𝑛;

– if x𝑛 = 1, build T𝑛 (x) from T𝑛−1(x) by adding an edge labelled 𝑛 between 𝑉𝑛 and a new vertex
labelled 𝑎.

For 𝑛 ≥ 0, we view T𝑛 (x) as a rooted, double-labelled tree (that is edge-labelled and vertex-labelled). If
𝑁𝑛 (x) represents the total number of vertices of T𝑛 (x), observe that by construction 𝑁𝑛 (x) = (𝑆𝑛 (x) +𝑛 +
1)/2 for 0 ≤ 𝑛 ≤ 𝜏 (x).

2.2 Uniform attachment with freezing: growth-coalescent construction

As before, let x = (x𝑛)𝑛≥1 ∈ {−1, 1}N. We introduce in this section an alternative time-reversed construc-
tion of uniform attachment trees with freezing. It may be seen as a growth coalescence process of forests,
and as previously mentioned, is a generalization of the connection between random recursive trees and
Kingman’s coalescent introduced in [17]. Most of our proofs are based on this construction.

Algorithm 2. Fix 0 ≤ 𝑛 ≤ 𝜏 (x). We construct a sequence (F𝑛
𝑛 (x),F𝑛

𝑛−1(x), . . . ,F𝑛
0 (x)) of forests of

rooted, edge-labelled, vertex-labelled, unoriented trees by induction as follows.
• Let F𝑛

𝑛 (x) be a forest made of 𝑆𝑛 (x) one-vertex trees labelled 𝑎1, . . . , 𝑎𝑆𝑛 (x) .
• For every 1 ≤ 𝑖 ≤ 𝑛, if F𝑛

𝑖 (x) has been constructed, define F𝑛
𝑖−1(x) as follows:

– if x𝑖 = −1, F𝑛
𝑖−1(x) is obtained by adding to F𝑛

𝑖 (x) a new one-vertex tree labelled 𝑖;

– if x𝑖 = 1, let (𝑇1,𝑇2) be a pair of different random trees in F𝑛
𝑖 (x) chosen uniformly at random,

independently of the previous choices; then F𝑛
𝑖−1(x) is obtained from F𝑛

𝑖 (x) by adding an edge
labelled 𝑖 between the roots 𝑟 (𝑇1) and 𝑟 (𝑇2) of respectively𝑇1 and𝑇2, and rooting the tree thus
obtained at 𝑟 (𝑇1);

• Let T𝑛 (x) be the only tree of F𝑛
0 (x).
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Figure 4: An illustration of Algorithm 2 with 𝑛 = 5 and (x5, x4, x3, x2, x1) = (−1, 1, 1,−1, 1)
(this is the same sequence as in Fig. 3). For example, since x2 = −1, F5

1 is obtained from F5
2

by adding a new tree made of a vertex labeled 2. Since x4 = 1, to build F5
3 from F5

4 we have

chosen in F5
3 two trees (𝑇1,𝑇2) with 𝑇1 being the vertex 𝑎1 and 𝑇2 being the vertex 𝑎2, and we

have added an edge labelled 4 between the roots 𝑟 (𝑇1) = 𝑎1 and 𝑟 (𝑇2) = 𝑎2 of respectively 𝑇1
and 𝑇2, and rooting the tree thus obtained at 𝑟 (𝑇1) = 𝑎1.

Figure 5: Simulation of Algorithm 2: the animation (played with Acrobat Reader) shows the

resulting process as the number of steps increases. When a new vertex appears, its color is

chosen at random. When two trees merge, the resulting tree keeps the color of the largest of

the two trees.

We shall soon see in Sec. 2.4 the equivalence between Algorithm 1 and Algorithm 2, but before that,
we introduce some important notation and consequences which will be useful in the analysis of the height
of trees built by uniform attachment with freezing.

Important convention Throughout this article, when the context is clear, we will sometimes drop the
parameter x to lighten notation: in particular, we shall write 𝜏 , 𝑆𝑛 , T𝑛 , F𝑛

𝑖 instead of 𝜏 (x), 𝑆𝑛 (x), T𝑛 (x),
F𝑛
𝑖 (x), etc.

2.3 Laws of the birth and coalescence times

Let x = (x𝑛)𝑛≥1 ∈ {−1, 1}N. First, define

F𝑛 (x) = {𝑖 ∈ ⟦1, 𝑛⟧ : x𝑖 = −1}, A𝑛 (x) = {𝑎1, . . . , 𝑎𝑆𝑛 (x) }, V𝑛 (x) = F𝑛 (x) ∪ A𝑛 (x) . (4)

It is crucial to observe that while T𝑛 is a random tree, the labels of its vertices are deterministic quantities
that only depend on x: A𝑛 are the labels of the active vertices of T𝑛 and F𝑛 are the labels of the frozen
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vertices of T𝑛 . In particular, the elements of V𝑛 will be called vertices of T𝑛 .
Next, for every 𝑢 ∈ V𝑛 , let b𝑛 (𝑢) be the largest 𝑖 ∈ {0, 1, . . . , 𝑛} such that 𝑢 belongs to the forest F𝑛

𝑖 .
Explicitly, if 𝑢 ∈ A𝑛 is an active vertex then b𝑛 (𝑣) = 𝑛, and if 𝑢 ∈ F𝑛 (note that 𝑢 is then an integer) then
b𝑛 (𝑢) = 𝑢 − 1 (see Fig. 4 for an example). We say that b𝑛 (𝑢) is the birth time of 𝑢, since it encodes the first
time when vertex 𝑢 appears in Algorithm 2. For 0 ≤ 𝑖 ≤ b𝑛 (𝑢), let H𝑛

𝑖 (𝑢) be the height of vertex 𝑢 in F𝑛
𝑖

(that is, the graph distance between 𝑢 and the root of F𝑛
𝑖 ).

Finally, for 𝑢, 𝑣 ∈ V𝑛 , let c𝑛 (𝑢, 𝑣) be the largest 𝑖 ∈ {0, 1, . . . , 𝑛} such that 𝑢 and 𝑣 belong to the same
tree in the forest F𝑛

𝑖 obtained when building T𝑛 in Algorithm 2. We say that c𝑛 (𝑢, 𝑣) is the coalescence time
between 𝑢 and 𝑣 , since it encodes the first time 𝑢 and 𝑣 belong to the same tree in Algorithm 2 (observe
that while b𝑛 (𝑢) is deterministic, c𝑛 (𝑢, 𝑣) is random).

We now state several simple consequences, which will be useful to study the geometry of T𝑛 .

Lemma 5. Fix 1 ≤ 𝑛 ≤ 𝜏 and 𝑢 ∈ V𝑛 . For every 1 ≤ 𝑖 ≤ b𝑛 (𝑣):

P
(
H𝑛
𝑖−1(𝑣) − H𝑛

𝑖 (𝑣) = 1|F𝑛
𝑛 , . . . ,F

𝑛
𝑖

)
=

1
𝑆𝑖
1{x𝑖=1} .

This is clear from the definition of Algorithm 2. In particular, if (𝑌𝑖)1≤𝑖≤𝑛 are independent Bernoulli
random variables of respective parameters (1/𝑆𝑖)1≤𝑖≤𝑛 , we have for every 𝑢 ∈ V𝑛

H𝑛
0 (𝑢)

(𝑑 )
=

b𝑛 (𝑢 )∑︁
𝑖=1

𝑌𝑖1{x𝑖=1} . (5)

The next result identifies the law of the birth time of a vertex of T𝑛 chosen uniformly at random.

Lemma 6. Fix 1 ≤ 𝑛 ≤ 𝜏 . Let 𝑉 be an element of V𝑛 chosen uniformly at random. For every 1 ≤ 𝑚 ≤ 𝑛,

P(b𝑛 (𝑉 ) < 𝑚) = 𝑚 + 1 − 𝑆𝑚

𝑛 + 1 + 𝑆𝑛
.

Proof. Observe that b𝑛 (𝑢) = 𝑛 if 𝑢 ∈ A𝑛 and b𝑛 (𝑢) = 𝑢 − 1 if 𝑢 ∈ F𝑛 . Also, conditionally given the fact
that 𝑉 ∈ F𝑛 , b𝑛 (𝑉 ) is uniform on F𝑛 . Since #A𝑛 = 𝑆𝑛 and #F𝑛 =

∑𝑛
𝑖=1 1{x𝑖=−1} , it follows by definition of

F𝑛 that

P(b𝑛 (𝑉 ) < 𝑚) =
∑𝑚

𝑖=1 1{x𝑖=−1}
𝑆𝑛 +

∑𝑛
𝑖=1 1{x𝑖=−1}

=
𝑚 + 1 − 𝑆𝑚

𝑛 + 1 + 𝑆𝑛
,

where for the last equality we have used the fact that
∑𝑘

𝑖=1 1{x𝑖=−1} = (𝑘−𝑆𝑘 +1)/2 for every 1 ≤ 𝑘 ≤ 𝑛. □

The last useful result identifies the law of the coalescence times between two vertices.

Lemma 7. Fix 1 ≤ 𝑛 ≤ 𝜏 and consider 𝑢, 𝑣 ∈ V𝑛 . Then for every 0 ≤ 𝑐 < b𝑛 (𝑢) ∧ b𝑛 (𝑣) with x𝑐+1 = 1:

P(c𝑛 (𝑢, 𝑣) = 𝑐) = 1(
𝑆𝑐+1
2

) b𝑛 (𝑢 )∧b𝑛 (𝑣)∏
𝑖=𝑐+2
s.t. x𝑖=1

(
1 − 1(

𝑆𝑖
2
) ) .

Proof. When running Algorithm 2, the factors in the product correspond to the probability that the two
vertices born at times b𝑛 (𝑢) and b𝑛 (𝑣) do not coalesce until time 𝑐 and the factor 1/

(
𝑆𝑐+1
2

)
corresponds to

the probability that the two vertices coalesce at time 𝑐 . □
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Table 2: Table of the main notation and symbols introduced in Section 2.4.

T̂𝑛 (x) the tree obtained from T𝑛 (x) by relabelling all its active vertices by “𝑎”

T𝑘,𝑛 (𝐴), 𝑛 ≥ 1
0 ≤ 𝑘 ≤ 𝑛, 𝐴 ⊂ N
#𝐴 = 2𝑛 − 𝑘 − 1

set of rooted trees with 𝑛 vertices, such that all the 𝑛 − 1 edges
and 𝑛 − 𝑘 of the vertices are labelled in a one-to-one manner
with the integers of 𝐴, while the other 𝑘 vertices are labelled
with the letter “𝑎”

T+
𝑘,𝑛

(𝐴)

set of all trees in T𝑘,𝑛 (𝐴) such that edge-labels increase along
paths directed from the root, and all vertices labelled with an
integer (i.e. not “𝑎”) have a label which is larger than the labels
of their adjacent edges

T+
𝑘,𝑛

T+
𝑘,𝑛

(𝐴) with 𝐴 = ⟦1, 2𝑛 − 𝑘 − 1⟧

2.4 Equivalence between the two constructions

Observe that the active vertices of T𝑛 are all labelled 𝑎while the active vertices of T𝑛 are labelled 𝑎1, . . . , 𝑎𝑆𝑛 .
It turns out that T𝑛 is equal in law to T𝑛 when its active vertices are all relabelled 𝑎. More precisely, let T̂𝑛

be the tree obtained from T𝑛 by relabeling its 𝑆𝑛 active vertices by 𝑎 (see the right-most part of Fig. 4 for
an illustration).

Theorem 8. The two trees T𝑛 and T̂𝑛 have the same distribution.

To prove this result, we first identify the law of T𝑛 . We first look at the range of T𝑛 . For𝑛 ∈ N, 0 ≤ 𝑘 ≤ 𝑛

and𝐴 ⊂ Nwith #𝐴 = 2𝑛−𝑘 −1, let T𝑘,𝑛 (𝐴) be the set of rooted trees with 𝑛 vertices, such that all the 𝑛−1
edges and 𝑛−𝑘 of the vertices are labelled in a one-to-one manner with the integers of𝐴, while the other 𝑘
vertices are labelled with the letter 𝑎. We then define T+

𝑘,𝑛
(𝐴) to be the set of all trees in T𝑘,𝑛 (𝐴) such that

edge-labels increase along paths directed from the root, and all vertices labelled with an integer (i.e. not
𝑎) have a label which is larger than the labels of their adjacent edges. We set T+

𝑘,𝑛
= T+

𝑘,𝑛
(⟦1, 2𝑛 − 𝑘 − 1⟧).

Note that T𝑛 is an element of T+
𝑆𝑛,𝑁𝑛

for 0 ≤ 𝑛 ≤ 𝜏 (see the left-most tree in Fig. 7 for an example) where
𝑁𝑛 = (𝑆𝑛 + 𝑛 + 1)/2 is the total number of vertices in T𝑛 . In particular, T+

𝑘,𝑛
is the set of all possible trees

with 𝑘 active vertices and 𝑛 − 𝑘 frozen vertices which can be obtained by Algorithm 1.

Lemma 9. Fix 0 ≤ 𝑛 ≤ 𝜏 and 𝑇𝑛 ∈ T+
𝑆𝑛,𝑁𝑛

. Then

P(T𝑛 = 𝑇𝑛) =
∏

1≤𝑖≤𝑛

1
𝑆𝑖−1

.

Proof. For two trees 𝑇,𝑇 ′ with 𝑇 ∈ T+
𝑘,𝑛

, we write 𝑇 { 𝑇 ′ if either 𝑇 ′ ∈ T+
𝑘+1,𝑛 and 𝑇 ′ is obtained by

replacing in𝑇 the label of a vertex labeled 𝑎 by 2𝑛 − 𝑘 , or 𝑇 ′ ∈ T+
𝑘,𝑛+1 and𝑇

′ is obtained from𝑇 by adding
an edge labelled by 2𝑛 − 𝑘 between a new vertex labeled 𝑎 and an existing 𝑎-labeled vertex.

Since𝑇𝑛 ∈ T+
𝑆𝑛,𝑁𝑛

, observe that there is a unique sequence (𝑇0, . . . ,𝑇𝑛−1) such that𝑇𝑖 ∈ T+
𝑆𝑖 ,𝑁𝑖

for every
0 ≤ 𝑖 ≤ 𝑛 − 1 and such that 𝑇𝑖 { 𝑇𝑖+1 for every 0 ≤ 𝑖 ≤ 𝑛 − 1. In particular,

P(T𝑛 = 𝑇𝑛) = P((T0, T1 . . . , T𝑛) = (𝑇0,𝑇1, . . . ,𝑇𝑛)) =
𝑛∏
𝑖=1
P(T𝑖 = 𝑇𝑖 |T𝑖−1 = 𝑇𝑖−1) .

Then observe that P(T𝑖 = 𝑇𝑖 |T𝑖−1 = 𝑇𝑖−1) = 1
𝑆𝑖−1

. Indeed, 𝑇𝑖−1 has 𝑆𝑖−1 active vertices. Thus, if x𝑖 = 1, then
the probability of attaching a new vertex to a given active vertex is 1/𝑆𝑖−1; if x𝑖 = −1, then the probability
of freezing a given active vertex is 1/𝑆𝑖−1. □
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Proof of Theorem 8. First of all, recall that by Lemma 9, for every 𝑇𝑛 ∈ T+
𝑆𝑛,𝑁𝑛

we have

P(T𝑛 = 𝑇𝑛) =
∏

1≤𝑖≤𝑛

1
𝑆𝑖−1

.

Now let T̃+
𝑘,𝑛

be the set of all trees obtained from T+
𝑘,𝑛

by labelling 𝑎1, . . . , 𝑎𝑘 their 𝑘 active vertices. It is
enough to show that for every 𝑇𝑛 ∈ T̃+

𝑘,𝑛
we have

P
(
T𝑛 = 𝑇𝑛

)
=

1
𝑆𝑛!

∏
1≤𝑖≤𝑛

1
𝑆𝑖−1

. (6)

Indeed, since there are 𝑆𝑛! ways to relabel by 𝑎1, . . . , 𝑎𝑘 the 𝑆𝑛 active vertices of any given tree 𝑇𝑛 ∈ T+
𝑘,𝑛

,
this will imply that P(T𝑛 = 𝑇𝑛) = P(T̂𝑛 = 𝑇𝑛).

To establish (6) we need to introduce some notation. Let F̃𝑛
𝑘
be the set of all forests of rooted, edge-

labelled and vertex-labelled trees, such that:
– 𝑆𝑛 vertices are labelled 𝑎1, . . . , 𝑎𝑆𝑛 ;
– all the other vertices are labelled in a one-to-one fashion by ⟦𝑘 + 1, 𝑛⟧ ∩ {1 ≤ 𝑖 ≤ 𝑛 : x𝑖 = −1};
– the edges are labelled in a one-to-one fashion by ⟦𝑘 + 1, 𝑛⟧ ∩ {1 ≤ 𝑖 ≤ 𝑛 : x𝑖 = 1}.

In addition, the labelling satisfies the following condition: edge-labels increase along paths directed from
the roots, and all vertices labelled with an integer (i.e. not 𝑎) have a label which is larger than the labels of
their adjacent edges. Notice that forests in F̃𝑛

𝑘
are made of 𝑆𝑘 trees.

Observe that the random forest F𝑛
𝑖 satisfies F𝑛

𝑖 ∈ F̃𝑛
𝑖 for every 0 ≤ 𝑖 ≤ 𝑛. If 𝐹𝑖 ∈ F̃𝑛

𝑖 and 𝐹𝑖−1 ∈ F̃𝑛
𝑖−1,

we write 𝐹𝑖 { 𝐹𝑖−1 if 𝐹𝑖−1 is obtained from 𝐹𝑖 by either adding a new tree made of a sole vertex labeled 𝑖 ,
or choosing two different trees 𝑇1,𝑇2 in 𝐹𝑖 and adding an edge labeled 𝑖 between the roots 𝑟 (𝑇1) and 𝑟 (𝑇2)
of respectively 𝑇1 and 𝑇2, and rooting the tree thus obtained at 𝑟 (𝑇1).

Now, let 𝐹𝑛0 be the forest made of the tree𝑇𝑛 . Observe that there is a unique sequence (𝐹𝑛𝑛 , . . . , 𝐹𝑛1 ) such
that 𝐹𝑛𝑖 ∈ F̃𝑛

𝑖 for every 0 ≤ 𝑖 ≤ 𝑛 − 1 and such that 𝐹𝑛𝑖 { 𝐹𝑛𝑖−1 for every 1 ≤ 𝑖 ≤ 𝑛. Notice that 𝐹𝑛𝑖 is made
of 𝑆𝑖 trees. In particular,

P
(
T𝑛 = 𝑇𝑛

)
= P

(
(F𝑛

𝑛 ,F
𝑛
𝑛−1, . . . ,F

𝑛
0 ) = (𝐹𝑛𝑛 , 𝐹𝑛𝑛−1, . . . , 𝐹𝑛0 )

)
=

𝑛∏
𝑖=1
P
(
F𝑛
𝑖−1 = 𝐹𝑛𝑖−1 |F𝑛

𝑖 = 𝐹𝑛𝑖
)
.

Then observe that if x𝑖 = −1 we have P
(
F𝑛
𝑖−1 = 𝐹𝑛𝑖−1 |F𝑛

𝑖 = 𝐹𝑛𝑖
)
= 1 since to build F𝑛

𝑖−1 from F𝑛
𝑖 with probab-

ility one we add a new one-vertex tree labelled 𝑖 to F𝑛
𝑖−1, and since x𝑖 = −1, the forest 𝐹𝑛𝑖−1 is also obtained

from 𝐹𝑛𝑖 by adding a new one-vertex tree labelled 𝑖 . If x𝑖 = 1we have the equality P
(
F𝑛
𝑖−1 = F𝑛

𝑖−1 |F𝑛
𝑖 = F𝑛

𝑖

)
=

1
𝑆𝑖 (𝑆𝑖−1) ; indeed, there are 𝑆𝑖 (𝑆𝑖 − 1) ways of choosing a pair (𝑇1,𝑇2) of different trees in 𝐹𝑛𝑖 , and one of
them gives 𝐹𝑛𝑖−1 when adding an edge labeled 𝑖 between the roots 𝑟 (𝑇1) and 𝑟 (𝑇2) of respectively𝑇1 and𝑇2,
and rooting the tree thus obtained at 𝑟 (𝑇1).

As a consequence,
P
(
T𝑛 = 𝑇𝑛

)
=

∏
1≤𝑖≤𝑛
x𝑖=1

1
𝑆𝑖 (𝑆𝑖 − 1) =

1
𝑆𝑛!

∏
1≤𝑖≤𝑛

1
𝑆𝑖−1

,

where the last equality is readily checked by induction. This establishes (6) and completes the proof. □

2.5 A connection with increasing binary trees

It turns out that T𝑘,𝑛 (𝐴) is in bijection with increasing plane binary trees. Such a bijection is well-known
in the case 𝑘 = 0 (see e.g. [25] and [16, Sec. 6]). To make this connection explicit, we need some further
notation. For 𝑛 ≥ 1, 0 ≤ 𝑘 ≤ 𝑛 and 𝐴 ⊂ N with cardinality #𝐴 = 2𝑛 − 𝑘 − 1 we define B𝑘,𝑛 (𝐴) to be the
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Table 3: Table of the main notation and symbols introduced in Section 2.5.

B𝑘,𝑛 (𝐴)

set of rooted binary plane trees with 2𝑛 − 1 vertices, such that
𝑘 of the leaves are labelled with the letter 𝑎 and the 2𝑛 − 𝑘 − 1
other vertices are labelled in a one-to-one manner with the
integers of 𝐴

B+
𝑘,𝑛

(𝐴) set of trees in B𝑘,𝑛 (𝐴) such that the vertices have increasing labels paths
directed from the root.

B+
𝑘,𝑛

B+
𝑘,𝑛

(𝐴) with 𝐴 = ⟦1, 2𝑛 − 𝑘 − 1⟧

set of rooted binary (i.e. every vertex has either zero or two children) plane (i.e. there is an order among
the children of internal vertices) trees with 2𝑛 − 1 vertices, such that 𝑘 of the leaves are labelled with the
letter 𝑎 and the 2𝑛 − 𝑘 − 1 other vertices are labelled in a one-to-one manner with the integers of 𝐴. We
also define B+

𝑘,𝑛
(𝐴) to be the set of trees in B𝑘,𝑛 (𝐴) such that the vertices have increasing labels paths

directed from the root. We setB+
𝑘,𝑛

= B+
𝑘,𝑛

(⟦1, 2𝑛 − 𝑘 − 1⟧) (see the right of Figure 7).
We are now ready to define a function Φ from

⋃
T𝑘,𝑛 (𝐴) to

⋃
B𝑘,𝑛 (𝐴) where the unions are over all

possible triplets (𝑘, 𝑛,𝐴). The definition is done by induction. If 𝜏 is the trivial tree with one vertex then
we simply set Φ(𝜏) = 𝜏 . If 𝜏 has at least 2 vertices, then let 𝑢 be the child of the root 𝜌 such that the edge
between 𝜌 and 𝑢 has the smallest label, denoted by ℓ , among all the edges adjacent to 𝜌 . Denote by 𝜏1

the sub-tree rooted in 𝑢 composed of all the descendants of 𝑢 and 𝜏2 the sub-tree rooted in 𝜌 composed
of all the vertices that are not in 𝜏1. Then Φ(𝜏) is the binary tree starting with a root, labelled ℓ , with two
children: the first child on the left gives birth to Φ(𝜏1) and the second one on the right gives birth to Φ(𝜏2)
(see Figure 6 and 7).

𝜏

𝜏1

𝜏2

𝜌

𝑢

ℓ

Φ(𝜏)

Φ(𝜏1) Φ(𝜏2)

ℓ

Figure 6: Illustration of the construction of the bijection Φ by induction.

Proposition 10. The function Φ defined above is a bijection between T+
𝑘,𝑛

and B+
𝑘,𝑛

.

Proof. It suffices to construct explicitly the inverse bijection Ψ of Φ. We proceed by induction. For a tree 𝜏
with a single vertex let Ψ(𝜏) = 𝜏 . If 𝜏 is a binary tree with at least 2 children and a root labelled ℓ , let 𝜏1 be
the tree on the left and let 𝜏2 be the tree on the right of the root. Then Ψ(𝜏) is obtained by attaching the
root of Ψ(𝜏1) to the root of Ψ(𝜏2) with an edge labelled ℓ . And the root of Ψ(𝜏2) becomes the root of Ψ(𝜏).
It is a simple matter to check that Ψ is indeed the inverse bijection of Φ. □

As a consequence, we can identify the cardinality of T+
0,𝑛 , which is the set of all possible trees with 0

active vertices and 𝑛 frozen vertices which can be obtained by Algorithm 1.

12



𝑎

8 𝑎

4 𝑎 7 𝑎

11

1 3

2 6 5 10

9

1

2 3

4 6 5 𝑎

9 8 7 10

11 𝑎 𝑎 𝑎

Figure 7: An example of a tree 𝜏 ∈ T+
4,8 on the left and its image by the bijection Φ(𝜏) ∈ B+

4,15
on the right.

Corollary 11. The cardinality of T+
0,𝑛 is given by

#T+
0,𝑛 =

4𝑛 (4𝑛 − 1) |𝐵2𝑛 |
2𝑛

= tan(2𝑛−1) (0)

where 𝐵𝑛 is the 𝑛-th Bernoulli number and tan(𝑛) stands for the 𝑛-th derivative of the tangent function. This
sequence of numbers is given by OEIS A000182.

3 Local limits

Let T be the set of all rooted, vertex-labelled, edge-labelled, and locally finite (meaning that every vertex
has finite degree) trees. For every 𝜏 ∈ T, ℎ ∈ N let ⟦𝜏⟧ℎ be the finite rooted vertex-labelled edge-labelled
tree obtained from 𝜏 by keeping only the vertices at distance at most ℎ from the root vertex together with
the edges between them, and their labels. It is standard to construct a metric dloc on T such that the space
(T, dloc) is Polish (i.e. separable and complete) and 𝜏𝑛 → 𝜏 for dloc if and only if for every ℎ ≥ 1, we have
⟦𝜏𝑛⟧ℎ = ⟦𝜏⟧ℎ for 𝑛 large enough. Similar metrics can be defined for other families of trees (plane and
unlabelled, plane and vertex-labelled and edge-labelled) and will be also denoted by dloc.

3.1 Proof of Theorem 1

We begin by showing that conditions 2 and 3 are equivalent. Since the sequence of trees (T𝑛 (x))𝑛≥0 is
increasing, it converges almost surely for dloc, if and only if, almost surely, the degree of each vertex
converges (to a finite value). First, we show that every vertex degree converges a.s. if and only if every
vertex freezes a.s. at some finite time. The converse implication is obvious (once a vertex is frozen its
degree does not change), so we only need to prove the direct implication. Set P = {𝑛 ≥ 1 : x𝑛 = +1} and
M = {𝑛 ≥ 1 : x𝑛 = −1}. Observe that ∑︁

𝑛∈P

1
𝑆𝑛 (x)

= +∞. (7)

Indeed, since the walk (𝑆𝑛 (x))𝑛≥0 never touches 0 it is easy to see that 𝑛−1#(P ∩ {1, . . . , 𝑛}) does not
converge to 0 (since it is at least equal to 1/2). Thus ∑

𝑛∈P 1/𝑆𝑛 (x) ≥ ∑
𝑛∈P 1/(𝑛 + 1) diverges. Now fix

𝑛0 ∈ P and denote by 𝑣 the vertex that appears at time𝑛0. Let𝐴 be the event “𝑣 never freezes”. We show that
P(𝐴) > 0 implies that with positive probability the degree of 𝑣 does not converge. To this end, for 𝑛 ∈ P,
𝑛 ≥ 𝑛0, let 𝐸𝑛 denote the event “the degree of 𝑣 increases by one at time𝑛”. Then, since the event 𝐸𝑛 involves
times in Pwhile the event𝐴 involves times inM, conditionally given𝐴 the events (𝐸𝑛)𝑛≥1 are independent
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and P(𝐸𝑛 |𝐴) = 1/𝑆𝑛 (x). Thus, by (7) and Borel-Cantelli, P(the degree of 𝑣 diverges as 𝑛 → ∞|𝐴) = 1. Thus
with positive probability the degree of 𝑣 does not converge.

Now, to show that (2) and (3) are equivalent, it remains to show that, almost surely, the fact that all
the vertices freeze at some point is equivalent to the divergence of the sum

∑
𝑛∈M 1/𝑆𝑛 (x). Fix a vertex 𝑣

appearing at time 𝑛0 ≥ 0. The probability that it never freezes is
∏

𝑛∈M,𝑛>𝑛0 (1− 1/𝑆𝑛 (x)) which converges
towards 0 if and only if

∑
𝑛∈M 1/𝑆𝑛 (x) = +∞.

Finally we prove that 1 is equivalent to 2 and 3. Let 𝑡 be a finite tree with no vertex labelled 𝑎 (so they
are all frozen). If 𝑚 is the biggest label of 𝑡 then for all ℎ and 𝑛 the event “⟦T𝑛 (x)⟧ℎ = 𝑡” depends only
on the first𝑚 steps of x. Therefore for all 𝑛 large enough P(⟦T𝑛 (x)⟧ℎ = 𝑡) = P(⟦T𝑛 (x𝑛)⟧ℎ = 𝑡). If T𝑛 (x)
converges locally to T∞(x), then, by 3, all the vertices of T∞(x) are frozen so we deduce that T𝑛 (x𝑛) also
converges locally to T∞(x). Now we suppose that T𝑛 (x) does not converge locally. Then there exists 𝑖
such that x𝑖 = +1 and the vertex 𝑣𝑖 , added at time 𝑖 , in T𝑛 (x) has a degree converging towards +∞ with
positive probability. In other words

P(deg(𝑣𝑖 , T𝑛 (x)) → +∞) = lim
𝑚→∞

P

(⋃
𝑛≥𝑖

{deg(𝑣𝑖 , T𝑛 (x)) ≥ 𝑚}
)
> 0.

Let 𝜑 be an increasing function such that for all 𝑘 ≤ 𝑛, x𝜑 (𝑛)
𝑘

= x𝑘 . There is an obvious coupling such that
T𝑛 (x) = T𝑛 (x𝜑 (𝑛) ) for all 𝑛. Therefore, for all𝑚,⋃

𝑛≥𝑖
{deg(𝑣𝑖 , T𝑛 (x)) ≥ 𝑚} =

⋃
𝑛≥𝑖

{deg(𝑣𝑖 , T𝑛 (x𝜑 (𝑛) )) ≥ 𝑚},

and

lim
𝑚→∞

P

(⋃
𝑛≥𝑖

{deg(𝑣𝑖 , T𝜑 (𝑛) (x𝜑 (𝑛) )) ≥ 𝑚}
)
≥ lim

𝑚→∞
P

(⋃
𝑛≥𝑖

{deg(𝑣𝑖 , T𝑛 (x𝜑 (𝑛) )) ≥ 𝑚}
)
> 0.

We deduce that the degree of 𝑣𝑖 in T𝜑 (𝑛) (x𝜑 (𝑛) ) tends to ∞ with positive probability so T𝑛 (x𝑛) can’t con-
verge locally. □

3.2 A connection with Geometric Bienaymé trees: Proof of Theorem 2

To set up the proof of Theorem 2, we need to introduce the formalism of plane trees. Let U be the set of
labels defined by

U =

∞⋃
𝑛=0

(N)𝑛,

where, by convention, (N)0 = {∅}. In other words, an element of U is a (possibly empty) sequence
𝑢 = 𝑢1 · · ·𝑢 𝑗 of positive integers. When 𝑢 = 𝑢1 · · ·𝑢 𝑗 and 𝑣 = 𝑣1 · · · 𝑣𝑘 are elements of U, we let 𝑢𝑣 =

𝑢1 · · ·𝑢 𝑗𝑣1 · · · 𝑣𝑘 be the concatenation of𝑢 and 𝑣 . In particular, 𝑢∅ = ∅𝑢 = 𝑢. Finally, a plane tree is a subset
of U satisfying the following three conditions:

(i) ∅ ∈ 𝜏 ,

(ii) if 𝑣 ∈ 𝜏 and 𝑣 = 𝑢 𝑗 for a certain 𝑗 ∈ N, then 𝑢 ∈ 𝜏 ,

(iii) for every 𝑢 ∈ 𝜏 , there exists an integer 𝑘𝑢 (𝜏) ≥ 0 such that for every 𝑗 ∈ N, 𝑢 𝑗 ∈ 𝜏 if and only if
1 ≤ 𝑗 ≤ 𝑘𝑢 (𝜏).

If 𝜏 is a plane tree and 𝑢 ∈ 𝜏 let 𝜃𝑢𝜏 = {𝑣 ∈ U : 𝑢𝑣 ∈ 𝜏} be the subtree of descendants of 𝑢. We finally let T
be the set of all plane trees (observe that such trees may be infinite, but are always locally finite).
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Given a probability distribution 𝜇 on Z+, the law P𝜇 of a Bienaymé tree with offspring distribution 𝜇

(sometimes known as a Galton–Watson tree, but we prefer to use the terminology suggested in [2]) is a
probability measure on T that can be characterized by the following two properties (see e.g. [34] for more
general statements):

(i) P𝜇 (𝑘∅ = 𝑗) = 𝜇 ( 𝑗) for 𝑗 ∈ Z+,

(ii) for every 𝑗 ≥ 1 with 𝜇 ( 𝑗) > 0, the shifted trees 𝜃1𝜏, . . . , 𝜃 𝑗𝜏 are independent under the conditional
probability P𝜇 (d𝜏 |𝑘∅ = 𝑗) and their conditional distribution is P𝜇 .

The following simple result gives a characterization of Bienaymé trees with geometric offspring dis-
tribution in terms of an invariance property involving subtrees (since we have not managed to find a
reference in the literature we include the short proof for completeness).

Lemma 12. Let 𝑝 ∈ [0, 1). Let T be a random plane tree such that P(𝑘∅(T) = 0) = 1 − 𝑝 and under
the conditional probability P(·|𝑘∅(T) > 0) the two trees 𝜃1T and T\𝜃1T are independent with conditional
distribution equal to the law of T. Then T is a Bienaymé tree with offspring distribution 𝜇 given by 𝜇 (𝑘) =

(1 − 𝑝)𝑝𝑘 for 𝑘 ≥ 0.

Proof. First, for 𝑗 ≥ 1 we have P(𝑘∅(T) ≥ 𝑗) = P(𝑘∅(T) > 0)P(𝑘∅(T\𝜃1T) ≥ 𝑗 − 1|𝑘∅(T) > 0), which
implies P(𝑘∅(T) ≥ 𝑗) = 𝑝P(𝑘∅(T) ≥ 𝑗 − 1). Thus P(𝑘∅(T) = 𝑘) = (1 − 𝑝)𝑝𝑘 for 𝑘 ≥ 0.

Second, we argue by induction. Take 𝑛 ≥ 1 and assume that the shifted trees 𝜃1T, . . . , 𝜃𝑛T are inde-
pendent under the conditional probability P( · |𝑘∅(T) = 𝑛) with conditional distribution equal to the law
of T. Then for 𝑓1, . . . , 𝑓𝑛+1 ≥ 0 measurable

E[𝑓1(𝜃1T) · · · 𝑓𝑛+1(𝜃𝑛+1T) |𝑘∅(T) = 𝑛 + 1] = E[𝑓1(𝜃1T)𝑔𝑛 (T\𝜃1T) |𝑘∅(T) > 0]

with 𝑔𝑛 (𝜏) = 1𝑘∅ (𝜏 )=𝑛 𝑓2(𝜃1𝜏) · · · 𝑓𝑛+1(𝜃𝑛𝜏)P(𝑘∅(T) > 0)/P(𝑘∅(T) = 𝑛 + 1). Thus, by assumption, we have
E[𝑓1(𝜃1T) · · · 𝑓𝑛+1(𝜃𝑛+1T) |𝑘∅(T) = 𝑛 + 1] = E[𝑓1(T)]E[𝑔𝑛 (T)]. But

E[𝑔𝑛 (T)] =
P(𝑘∅(T) = 𝑛)P(𝑘∅(T) > 0)

P(𝑘∅(T) = 𝑛 + 1) E[𝑓2(𝜃1T) · · · 𝑓𝑛+1(𝜃𝑛T) |𝑘∅(T) = 𝑛],

which is equal to E[𝑓2(𝜃1T) · · · 𝑓𝑛+1(𝜃𝑛T) |𝑘∅(T) = 𝑛] thanks to the first step. The desired result follows
from the induction hypothesis. □

For every tree 𝜏 ∈ T+
𝑘,𝑛

(𝐴), we define 𝜏 to be the unique element of T+
𝑘,𝑛

obtained by shifting the labels
of 𝜏 ; specifically if 𝑓 : {1, . . . , 2𝑛 − 𝑘 − 1} → 𝐴 denotes the unique increasing bijection, an edge/vertex is
labeled 𝑓 (𝑖) in 𝜏 if and only if its corresponding edge/vertex is labeled 𝑖 in 𝜏 (see Figure 8).

We are now ready to establish Theorem 2.

Proof of Theorem 2. First, we claim that almost surely the sequence (T𝑛 (X))𝑛≥0 converges locally towards
a tree denoted by T∞. If 𝑝 ≤ 1/2, (𝑆𝑛)𝑛≥0 touches 0 almost surely at some point, so the sequence of trees
(T𝑛 (X))𝑛≥0 is almost surely stationary. If 𝑝 > 1/2, conditionally on the fact that (𝑆𝑛)𝑛≥0 never touches 0,
this walk satisfies the condition ofTheorem 1, so (T𝑛 (X))𝑛≥0 has a local limit. We conclude that, for every
value of 𝑝 ∈ [0, 1), almost surely the sequence (T𝑛 (X))𝑛≥0 converges locally towards a tree T∞.

We shall first consider T∞ conditioned on having at least 2 vertices (which amounts to condition on
the event {X1 = +1}). Conditionally given {X1 = +1}, T𝑛 (X) is composed of two trees: the tree T1

𝑛 (X)
representing all the descendants of the first child of the root of T𝑛 (X), and the tree T2

𝑛 (X) representing all
the other vertices, including the root of T𝑛 (X) (see Figure 8).
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The main idea is then to check that if one of the trees T1
𝑛 (X) or T2

𝑛 (X) has at least one active vertex,
then it will eventually almost surely evolve. This will show that the two trees T̃1

𝑛 (X) or T̃2
𝑛 (X) evolve

independently with the same transition probabilities, which in turn will entail that conditionally given
{X1 = 1}, (T̃1

𝑛 (X))𝑛≥1 and (T̃2
𝑛 (X))𝑛≥1 converge locally, jointly, towards two independent trees distributed

like T∞.
Let us now make these considerations more formal. Notice that (T𝑛 (X))𝑛≥0 is a Markov chain in the

state space 𝐸 B
⋃

𝑛≥1
⋃

0≤𝑘≤𝑛 T
+
𝑛,𝑘

starting at the trivial tree, denoted by 𝑡◦, composed of a single active
vertex. Denote by 𝛼 its transition matrix. The absorbing states are exactly the trees with no active vertices.
For 𝑛 ≥ 2, let 𝐼𝑛 be the random variable which is equal to 1 when 𝑆𝑘 = 0 for some 𝑘 ≤ 𝑛 − 1 or when the
𝑛-th action (corresponding to the step X𝑛) occurs in the tree T1

𝑛−1(X) and 2 if it occurs in the tree T2
𝑛−1(X).

More precisely, saying that X𝑛 = −1 and 𝑆𝑘 > 0 for all 𝑘 ≤ 𝑛 − 1, is equivalent to saying that an active
vertex of T𝑛−1(X), chosen uniformly at random, will freeze. If this vertex is chosen in T1

𝑛−1(X), then 𝐼𝑛 = 1,
otherwise, it is chosen in T2

𝑛−1(X) and 𝐼𝑛 = 2. By convention we also set 𝐼1 = 1. Denote by 𝑎(𝑡) the number
of active vertices of a tree 𝑡 ∈ 𝐸.

The previous discussion shows that, conditionally given the event {X1 = 1},
(
T̃1
𝑛 (X), T̃2

𝑛 (X), 𝐼𝑛
)
𝑛≥1

is

a Markov chain in the state space 𝐸2 × {1, 2}, starting at (𝑡◦, 𝑡◦, 1), with transitions given by

(𝑥,𝑦, 𝑖) → (𝑥 ′, 𝑦, 1) with probability 𝑘 (𝑥,𝑦)𝛼 (𝑥, 𝑥 ′)
(𝑥,𝑦, 𝑖) → (𝑥,𝑦′, 2) with probability (1 − 𝑘 (𝑥,𝑦))𝛼 (𝑦,𝑦′).

for every 𝑥, 𝑥 ′, 𝑦,𝑦′ ∈ 𝐸 and 𝑖 ∈ {1, 2} where

𝑘 (𝑥,𝑦) B 𝑎(𝑥)
𝑎(𝑥) + 𝑎(𝑦) if 𝑎(𝑥) + 𝑎(𝑦) > 0 and 𝑘 (𝑥,𝑦) B 1 otherwise.

Let 𝑥 ∈ 𝐸 be a non-absorbing state (i.e. 𝑎(𝑥) > 0). Let 𝑦 ∈ 𝐸 and 𝑛 ≥ 1. We show that conditionally
given {T̃1

𝑛 (X) = 𝑥 and T̃2
𝑛 (X) = 𝑦} the probability that 𝐼𝑘 = 1 for some 𝑘 > 𝑛 is 1. The forthcoming Lemma

13 then entails that conditionally given {X1 = 1}, the trees (T̃1
𝑛 (X))𝑛≥1 and (T̃2

𝑛 (X))𝑛≥1 converge locally,
jointly, towards two independent trees distributed like T∞.

Now, to show that conditionally given {T̃1
𝑛 (X) = 𝑥 and T̃2

𝑛 (X) = 𝑦} the probability that 𝐼𝑘 = 1 for some
𝑘 > 𝑛 is 1, observe that since 𝑎(𝑥) > 0, we have 𝑆𝑘 > 0 for every 1 ≤ 𝑘 ≤ 𝑛. If 𝑆𝑘 = 0 for some 𝑘 > 𝑛, this
implies that both T1

𝑘
(X) and T2

𝑘
(X) have no active vertices left. So in particular, there must be an integer

𝑛 < ℓ ≤ 𝑘 such that 𝐼ℓ = 1. Conditionally given (𝑆𝑘 )𝑘≥𝑛 , if 𝑆𝑘 > 0 for all 𝑘 > 𝑛, then the probability that
𝐼𝑘 = 2 for all 𝑘 > 𝑛 is ∏

𝑘≥𝑛

𝑆𝑘 − 𝑎(𝑥)
𝑆𝑘

≤
∏
𝑘≥𝑛

(
1 − 1

𝑆𝑘

)
≤

∏
𝑘≥𝑛

(
1 − 1

𝑘 + 1

)
= 0.

Therefore we can apply the forthcoming Lemma 13 and deduce that, conditionally given {X1 = 1}, the
trees (T̃1

𝑛 (X))𝑛≥1 and (T̃2
𝑛 (X))𝑛≥1 converge locally, jointly, towards two independent trees distributed like

T∞.
To conclude, for a labelled locally finite tree 𝜏 denote by 𝜏 to be the plane tree obtained from 𝜏 by

first ordering the vertices in such a way that the labels of edges connecting vertices to their children are
increasing from left to right, and second erasing all the labels (for example the vertices of the tree on the
left of Fig. 7 are ordered in such a way). By continuity of the operation 𝜏 ↦→ 𝜏 on the set of labelled locally
finite trees with respect to the local topology, we conclude that conditionally on the fact that T∞ is not a
single vertex, the two trees T

1
∞ and T

2
∞ are independent copies of T∞. Since T∞ has only one vertex with

probability 1 − 𝑝 (this happens if and only if X1 = −1), the desired result follows from Lemma 12. □
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Figure 8: Illustration of the proof of Theorem 2

Lemma 13. Let (𝑋𝑛)𝑛≥0 and (𝑌𝑛)𝑛≥0 be two Markov chains on the countable state space 𝐸 with the same
transition matrix 𝛼 . Denote by 𝐴:= {𝑥 ∈ 𝐸 : 𝛼 (𝑥, 𝑥) = 1} their set of absorbing states. Let 𝑘 : 𝐸 × 𝐹 → [0, 1].
We define a Markov chain (𝑈𝑛,𝑉𝑛, 𝐼𝑛)𝑛≥0 on the state space 𝐸2 × {1, 2} with transition matrix given by, for all
𝑥, 𝑥 ′, 𝑦,𝑦′ ∈ 𝐸 and 𝑖 ∈ {1, 2}:

(𝑥,𝑦, 𝑖) → (𝑥 ′, 𝑦, 1) with probability 𝑘 (𝑥,𝑦)𝛼 (𝑥, 𝑥 ′)
(𝑥,𝑦, 𝑖) → (𝑥,𝑦′, 2) with probability (1 − 𝑘 (𝑥,𝑦))𝛼 (𝑦,𝑦′) .

Suppose that, for all (𝑥,𝑦, 𝑖) ∈ (𝐸 \ 𝐴) × 𝐸 × {1, 2}, P(𝑥,𝑦,𝑖 ) (∃𝑛 ≥ 1, 𝐼𝑛 = 1) = 1. Similarly, suppose that for
all (𝑥,𝑦, 𝑖) ∈ 𝐸 × (𝐸 \ 𝐴) × {1, 2}, P(𝑥,𝑦,𝑖 ) (∃𝑛 ≥ 1, 𝐼𝑛 = 2) = 1. Let 𝑛0 = 𝑚0 = 0. For all 𝑘 ≥ 1, if the set
{𝑛 : 𝑛 > 𝑛𝑘−1 and 𝐼𝑛 = 1} is non-empty, we define𝑛𝑘 as its minimum, otherwise we set𝑛𝑘 = 𝑛𝑘−1. Similarly, if
the set {𝑚 :𝑚 > 𝑚𝑘−1 and 𝐼𝑚 = 2} is non-empty, we define𝑚𝑘 as its minimum, otherwise we set𝑚𝑘 =𝑚𝑘−1.
Then, for every (𝑥,𝑦) ∈ 𝐸2,

(
(𝑈𝑛𝑘 )𝑘≥0, (𝑉𝑚𝑘

)𝑘≥0
)
under P(𝑥,𝑦,1) has the same law as ((𝑋𝑘 )𝑘≥0, (𝑌𝑘 )𝑘≥0) under

P𝑥 ⊗ P𝑦 .

Proof of Lemma 13. We show that
(
(𝑈𝑛𝑘 )0≤𝑘≤𝑟 , (𝑉𝑚𝑘

)0≤𝑘≤𝑠
)
under P(𝑥,𝑦,1) has the same law as

((𝑋𝑘 )0≤𝑘≤𝑟 , (𝑌𝑘 )0≤𝑘≤𝑠) under P𝑥 ⊗ P𝑦 by double induction on (𝑟, 𝑠). If 𝑟 = 𝑠 = 0, the result is obvi-
ous. Suppose it is true for some pair (𝑟, 𝑠). We show it for (𝑟, 𝑠 + 1) (the case (𝑟 + 1, 𝑠) is similar). Let
x = (𝑥1, . . . , 𝑥𝑟 ) ∈ 𝐸𝑟 , y = (𝑦1, . . . , 𝑦𝑠) ∈ 𝐸𝑠 and 𝑦𝑠+1 ∈ 𝐸. Write U B (𝑈𝑛𝑘 )1≤𝑘≤𝑟 , V B (𝑉𝑚𝑘

)1≤𝑘≤𝑠 ,
X B (𝑋𝑘 )1≤𝑘≤𝑠 , Y B (𝑌𝑘 )1≤𝑘≤𝑠 and P B P(𝑥,𝑦,1) . Suppose that 𝑦𝑠 ∉ 𝐴, then𝑚𝑠+1 > 𝑚𝑠 and

P
(
U = x,V = y,𝑉𝑚𝑠+1 = 𝑦𝑠+1

)
= P(U = x,V = y)P(𝑥𝑟 ,𝑦𝑠 ,1) (∃𝑛 ≥ 1, 𝐼1 = · · · = 𝐼𝑛−1 = 1, 𝐼𝑛 = 2, 𝑉𝑛 = 𝑦𝑠+1).

By induction hypothesis, P(U = x,V = y) = P𝑥 (X = x)P𝑦 (Y = y). Moreover

P(𝑥𝑟 ,𝑦𝑠 ,1) (∃𝑛 ≥ 1, 𝐼1 = · · · = 𝐼𝑛−1 = 1, 𝐼𝑛 = 2, 𝑉𝑛 = 𝑦𝑠+1) = P(𝑥𝑟 ,𝑦𝑠 ,1) (∃𝑛 ≥ 1, 𝐼𝑛 = 2)𝛼 (𝑦𝑠 , 𝑦𝑠+1)
= 𝛼 (𝑦𝑠 , 𝑦𝑠+1) .

This shows the formula for (𝑟, 𝑠 + 1) in the case 𝑦𝑠 ∉ 𝐴. Now, if 𝑦𝑠 ∈ 𝐴 then

P
(
U = x,V = y,𝑉𝑚𝑠+1 = 𝑦𝑠+1

)
= P(U = x,V = y)P(𝑥𝑟 ,𝑦𝑠 ,1) (∀𝑚 ≥ 1, 𝐼𝑚 = 1)1𝑦𝑠=𝑦𝑠+1

+ P(U = x,V = y)P(𝑥𝑟 ,𝑦𝑠 ,1) (∃𝑚 ≥ 1, 𝐼𝑚 = 2)𝛼 (𝑦𝑠 , 𝑦𝑠+1)
= P𝑥 (X = x)P𝑦 (Y = y, 𝑌𝑠+1 = 𝑦𝑠+1) .

This completes the proof. □
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4 The height of uniform attachment trees with freezing

We shall now study the geometry of uniform attachment trees with freezing. It will be convenient to work
with T𝑛 (x) as built using Algorithm 2. Recall Theorem 8: the only difference between T𝑛 (x) and T𝑛 (x)
is that all the active vertices of T𝑛 (x) are labeled 𝑎1, . . . , 𝑎𝑆𝑛 (x) , while all the active vertices of T𝑛 (x) are
labelled 𝑎. In particular the graph structure of both trees is the same in law, so it is equivalent to establish
our main results with T𝑛 (x) replaced with T𝑛 (x).

Also recall from (4) the definition of V𝑛 (x), which is a deterministic set representing the labels of the
vertices of T𝑛 (x), and that by a slight abuse of notation we view elements of V𝑛 (x) as vertices of T𝑛 (x).

An important ingredient is Bennett’s concentration inequality. Since it will be used multiple times, we
state it here, taylored for our purpose:

Proposition 14 (Bennett’s inequality). Let (𝑌𝑖)1≤𝑖≤𝑛 be independent Bernoulli random variables of respective
parameters (𝑝𝑖)1≤𝑖≤𝑛 . Set𝑚𝑛 =

∑𝑛
𝑖=1 𝑝𝑖 and assume that𝑚𝑛 > 0. Then for every 𝑡 > 0:

P

(
𝑛∑︁
𝑖=1

𝑌𝑖 > 𝑚𝑛 + 𝑡

)
≤ exp

(
−𝑚𝑛𝑔

(
𝑡

𝑚𝑛

))
and P

(
𝑛∑︁
𝑖=1

𝑌𝑖 < 𝑚𝑛 − 𝑡

)
≤ exp

(
−𝑚𝑛𝑔

(
𝑡

𝑚𝑛

))
,

where 𝑔(𝑢) = (1 + 𝑢) ln(1 + 𝑢) − 𝑢 for 𝑢 > 0.

4.1 Uniform bounds on the height

We keep the notation introduced before (see in particular Table 1). In particular, x = (x𝑛)𝑛≥1 is a fixed
sequence of elements of {−1, 1}, 𝑆0(x) B 1 and for every 𝑛 ≥ 1

𝑆𝑛 (x) B 1 +
𝑛∑︁
𝑖=1

x𝑖 ; 𝜏 (x) B inf{𝑛 ≥ 1 : 𝑆𝑛 (x) = 0}. (8)

To lighten notation we will drop the x in parenthesis (e.g. we will write 𝑆𝑛 instead of 𝑆𝑛 (x), 𝜏 instead of
𝜏 (x), T𝑛 instead of T𝑛 (x), V𝑛 (x) instead of V𝑛 , etc.) but we keep in mind that all the quantities depend on
the sequence x. We first start with an estimate concerning the height of T𝑛 (recall its construction using
Algorithm 2 in Section 2.2).

Proposition 15. Fix 𝑛 ≥ 1 and assume that 𝜏 > 𝑛. Let Height(T𝑛) denote the height of T𝑛 . Then, for every
𝑡 > 0,

P
(
Height(T𝑛) − ℎ+𝑛 > 𝑡

)
≤ exp

(
−ℎ+𝑛 𝑔

(
𝑡

ℎ+𝑛

)
+ ln(𝑛)

)
and

P
(
Height(T𝑛) − ℎ+𝑛 < −𝑡

)
≤ exp

(
−ℎ+𝑛 𝑔

(
𝑡

ℎ+𝑛

))
where 𝑔(𝑢) = (1 + 𝑢) ln(1 + 𝑢) − 𝑢 for 𝑢 > 0.

Proof. Fix 𝑢 ∈ V𝑛 . From (5) if (𝑌𝑖)1≤𝑖≤𝑛 are independent Bernoulli random variables of respective para-
meters (1/𝑆𝑖)1≤𝑖≤𝑛 , we have

H𝑛
0 (𝑢)

(𝑑 )
=

b𝑛 (𝑢 )∑︁
𝑖=1

𝑌𝑖1{x𝑖=1} .

Thus, by a union bound over all vertices of T𝑛 we get

P
(
Height(T𝑛) > ℎ+𝑛 + 𝑡

)
≤ 𝑛P

(
𝑛∑︁
𝑖=1

(
𝑌𝑖 −

1
𝑆𝑖

)
1{x𝑖=1} > 𝑡

)
.
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In addition, when 𝑢 ∈ V𝑛 is an active vertex (so that b𝑛 (𝑢) = 𝑛), using the fact that H𝑛
0 (𝑢) ≤ Height(T𝑛),

we get

P
(
Height(T𝑛) < ℎ+𝑛 − 𝑡

)
≤ P

(
𝑛∑︁
𝑖=1

(
𝑌𝑖 −

1
𝑆𝑖

)
1{x𝑖=1} < −𝑡

)
.

The desired result then follows from Bennett’s inequality. □

4.2 A simple lower bound for h+𝑛

In view of Theorem 3, which tells us that h+𝑛 is the order of magnitude of Height(T𝑛), it is useful to have
estimates on h+𝑛 . We give here a simple lower bound on h+𝑛 .

Lemma 16. Let 𝑛 ≥ 1. If 𝜏 > 𝑛 then h+𝑛 ≥ ln(𝑛/4).

Proof. Set 𝑝𝑛 B #{1 ≤ 𝑖 ≤ 𝑛 : x𝑖 = +1} and𝑚𝑛 B #{1 ≤ 𝑖 ≤ 𝑛 : x𝑖 = −1}. If there exists 1 ≤ 𝑖 ≤ 𝑛 − 1 such
that x𝑖 = −1 and x𝑖+1 = +1, set x′ = (x1, . . . , x𝑖−1, +1,−1, x𝑖+2, x𝑖+3, . . .). Then it is a simple matter to check
that h+𝑛 (x) ≥ h+𝑛 (x′). By iteration, it readily follows that h+𝑛 (x) ≥ h+𝑛 ((+1, . . . , +1,−1, . . . ,−1, x𝑛+1, x𝑛+2, . . .))
where +1 appears 𝑝𝑛 times and −1 appears 𝑚𝑛 times. Since 𝜏 (x) > 𝑛 entails 𝑝𝑛 ≥ 𝑛/2, it follows that
h+𝑛 (x) ≥

∑𝑝𝑛
𝑖=1 1/(𝑖 + 1) ≥ ln((𝑝𝑛 + 1)/2) ≥ ln(𝑛/4). □

4.3 Limit theorems for the height

We are now in position to establish Theorem 3.

Proof of Theorem 3. We start with (1). Recall that for an active vertex 𝑢 ∈ A𝑛 we always have b𝑛 (𝑢) = 𝑛.
Therefore, by (5)

H(𝑈 𝑛) (𝑑 )
=

𝑛∑︁
𝑖=1

𝑌𝑛
𝑖 1{x𝑖=1} .

Using Bennett’s inequality (Proposition 14), for all 𝜀 > 0

P

(����H(𝑈 𝑛)
h+𝑛

− 1
���� > 𝜀

)
≤ 2 exp

(
−h+𝑛 𝑔(𝜀)

)
.

This upper bound goes to 0 as 𝑛 tends to infinity since h+𝑛 goes to infinity by Lemma 16. We deduce that the
sequence

(
H(𝑈 𝑛)/h+𝑛 − 1

)
𝑛
converges to 0 in probability. To conclude it suffices to show that it is bounded

in L𝑝 for all 𝑝 ≥ 1. Let 𝑝 ≥ 1, we have

E

[����H(𝑈 𝑛)
h+𝑛

− 1
����𝑝 ] = 𝑝

∫ ∞

0
P

(����H(𝑈 𝑛)
h+𝑛

− 1
���� ≥ 𝑢

)
𝑢𝑝−1 d𝑢.

Using Bennett’s inequality again and by splitting the integral in half at𝑢 = 7, the above quantity is bounded
by

7𝑝 + 2𝑝
∫ ∞

7
exp

(
−h+𝑛 𝑔(𝑢)

)
𝑢𝑝−1 d𝑢.

Notice that for 𝑢 ≥ 7 ≥ 𝑒2 − 1, we have 𝑔(𝑢) ≥ 𝑢 thus∫ ∞

7
exp

(
−h+𝑛 𝑔(𝑢)

)
𝑢𝑝−1𝑑𝑢 ≤

∫ ∞

7
exp

(
−h+𝑛 𝑢

)
𝑢𝑝−1 d𝑢 =

1
(h+𝑛)𝑝

∫ ∞

7h+𝑛
exp(−𝑢)𝑢𝑝−1 d𝑢.

By an iterated integration by parts, the last quantity is O
(
exp(−7h+𝑛)/h+𝑛

)
. Therefore the boundedness in

L𝑝 follows.
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We now establish (2) and (3). Fix 𝐶 > 1. By Proposition 15, for all 𝑛 ≥ 1:

P

(
Height(T𝑛)

h+𝑛
> 𝐶

)
≤ exp

(
−h+𝑛 𝑔(𝐶 − 1) + ln(𝑛)

)
.

This upper bound goes to 0 when ln(𝑛) = 𝑜 (h+𝑛) since 𝑔(𝐶 − 1) > 0. It also goes to 0 when 𝐶 = 𝑒 + 𝜀 since
𝑔(𝑒 − 1 + 𝜀) > 1 and by Lemma 16, h+𝑛 ≥ ln(𝑛/4). Similarly,

P

(
Height(T𝑛)

h+𝑛
< 1 − 𝜀

)
≤ exp

(
−h+𝑛 (x)𝑔(𝜀)

)
−→
𝑛→∞

0.

This completes the proof of (2). It also shows that the convergence

Height(T𝑛)
h+𝑛

P−→
𝑛→∞

1

holds in probability when ln(𝑛) = 𝑜 (h+𝑛). To fully show (3) we just need to prove that the sequence(
Height(T𝑛)/h+𝑛 − 1

)
𝑛
is bounded in L𝑝 for all 𝑝 ≥ 1 when ln(𝑛) = 𝑜 (h+𝑛). It is done using the same method

as in the proof of (1) (the extra 𝑛 in the upper bound won’t change the fact that it is indeed bounded in
L𝑝 ). □

5 Regime with a linear amount of active vertices

We shall now investigate the regime where the number of active vertices grows roughly linearly in the
size of the trees: the main goal of this section is to establish Theorem 4. Here we assume that (2) is in
force, namely there exist 𝑐 ∈ (0, 1] and a sequence (𝐴𝑛)𝑛∈N of positive numbers such that𝐴𝑛 = 𝑜 (log𝑛) as
𝑛 → ∞ and it is assumed that

lim
𝜀→0

lim sup
𝑛→∞

max
𝐴𝑛⩽𝑖⩽𝜀𝑛

����𝑆𝑛𝑖𝑖 − 𝑐

���� = 0 and ∀𝜀 > 0, lim inf
𝑛→∞

min
𝜀𝑛⩽𝑖⩽𝑛

𝑆𝑛𝑖

𝑛
> 0.

5.1 An asymptotic equivalent for h+𝑛

Here we show the convergence of Theorem 4 (1), namely:

h+𝑛
ln𝑛

−−−−→
𝑛→∞

𝑐 + 1
2𝑐

. (9)

To simplify notation, for all 𝑛 ∈ N and for all 𝜀 > 0, set

𝜂𝑛 (𝜀) B max
𝐴𝑛⩽𝑖⩽𝜀𝑛

����𝑆𝑛𝑖𝑖 − 𝑐

����.
By (2), we know that lim sup𝜂𝑛 (𝜀) → 0 when 𝜀 → 0.

Lemma 17. Suppose that the assumptions (2) hold with 𝐴𝑛 → ∞ when 𝑛 → ∞. Then, for all 𝐶 > 1

lim
𝜀→0

lim sup
𝑛→∞

max
𝐴𝑛⩽𝑎<𝑏⩽𝜀𝑛

𝑎𝐶<𝑏

����� 1
ln(𝑏/𝑎)

𝑏∑︁
𝑖=𝑎+1

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1} −

1 + 𝑐
2𝑐

����� = 0. (10)

Proof of Lemma 17. We prove (10) with a double bound. First, let us start with the upper bound. Let 𝜀 ∈
(0, 1) and 𝛽 > 1. For all 𝐴𝑛 ≤ 𝑎 < 𝑏 ≤ 𝜀𝑛:

𝑏∑︁
𝑖=𝑎+1

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1} =

𝑚∑︁
𝑘=1+ℓ

∑︁
𝛽𝑘−1<𝑖⩽𝛽𝑘

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1} +

∑︁
𝑎<𝑖⩽𝛽ℓ

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1} +

∑︁
𝛽𝑚<𝑖⩽𝑏

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1}
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where ℓ B ⌈ln𝑎/ln 𝛽⌉,𝑚 B ⌊ln𝑏/ln 𝛽⌋ and where, in all the sums over 𝑖 , it is implicit that 𝑖 is an integer.
Let 𝑃𝑛 B {1 ≤ 𝑖 ≤ 𝑛 : x𝑖 = 1} and𝑀𝑛 B {1 ≤ 𝑖 ≤ 𝑛 : x𝑖 = −1}. Note that for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, we have

#(𝑃𝑛 ∩ [𝑖 + 1, 𝑗]) − #(𝑀𝑛 ∩ [𝑖 + 1, 𝑗]) = 𝑆𝑛𝑗 − 𝑆𝑛𝑖 , #(𝑃𝑛 ∩ [𝑖 + 1, 𝑗]) + #(𝑀𝑛 ∩ [𝑖 + 1, 𝑗]) = 𝑗 − 𝑖 .

Moreover, when 𝐴𝑛 ≤ 𝑖 < 𝑗 ≤ 𝜀𝑛, we have ( 𝑗 − 𝑖)𝑐 − 2 𝑗𝜂𝑛 (𝜀) ≤ 𝑆𝑛𝑗 − 𝑆𝑛𝑖 ≤ ( 𝑗 − 𝑖)𝑐 + 2 𝑗𝜂𝑛 (𝜀). As a result,

𝑐 + 1
2

( 𝑗 − 𝑖) − 𝑗𝜂𝑛 (𝜀) ≤ #(𝑃𝑛 ∩ [𝑖 + 1, 𝑗]) =
𝑆𝑛𝑗 − 𝑆𝑛𝑖 + 𝑗 − 𝑖

2
≤ 𝑐 + 1

2
( 𝑗 − 𝑖) + 𝑗𝜂𝑛 (𝜀). (11)

Therefore, for all integer 1 + ℓ ≤ 𝑘 ≤ 𝑚∑︁
𝛽𝑘−1<𝑖⩽𝛽𝑘

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1} ≤

∑︁
𝛽𝑘−1<𝑖≤𝛽𝑘

1
𝑖 (𝑐 − 𝜂𝑛 (𝜀))

1{x𝑛
𝑖
=1} ≤ #{𝛽𝑘−1 < 𝑖 ≤ 𝛽𝑘 : x𝑛𝑖 = 1} 1

𝛽𝑘−1(𝑐 − 𝜂𝑛 (𝜀))

≤
(
𝑐 + 1
2

(𝛽𝑘 − 𝛽𝑘−1+1) + 𝛽𝑘𝜂𝑛 (𝜀)
)

1
𝛽𝑘−1(𝑐 − 𝜂𝑛 (𝜀))

=

(
𝑐 + 1
2

(𝛽 − 1 + 1/𝐴𝑛) + 𝛽𝜂𝑛 (𝜀)
)

1
(𝑐 − 𝜂𝑛 (𝜀))

≕ 𝑈𝑛 (𝜀)

where the third inequality comes from (11) and where we used that 𝛽𝑘−1 ≥ 𝛽ℓ ≥ 𝑎 ≥ 𝐴𝑛 . Thus

𝑏∑︁
𝑖=𝑎+1

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1} ≤ (𝑚 − ℓ)𝑈𝑛 (𝜀) +

𝛽ℓ − 𝛽ℓ−1

𝛽ℓ−1(𝑐 − 𝜂𝑛 (𝜀))
+ 𝛽𝑚+1 − 𝛽𝑚

𝛽𝑚 (𝑐 − 𝜂𝑛 (𝜀))
≤ ln(𝑏/𝑎)

ln 𝛽
𝑈𝑛 (𝜀) +

2(𝛽 − 1)
𝑐 − 𝜂𝑛 (𝜀))

.

For the lower bound, the same ideas apply. Indeed, for every integer 1 + ℓ ≤ 𝑘 ≤ 𝑚 we have∑︁
𝛽𝑘−1<𝑖⩽𝛽𝑘

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1} ≥ #{𝛽𝑘−1 < 𝑖 ≤ 𝛽𝑘 : x𝑛𝑖 = 1} 1

𝛽𝑘 (𝑐 + 𝜂𝑛 (𝜀))

≥
(
𝑐 + 1
2

(
𝛽𝑘 − 𝛽𝑘−1 − 2

)
− 𝛽𝑘𝜂𝑛 (𝜀)

)
1

𝛽𝑘 (𝑐 + 𝜂𝑛 (𝜀))

≥
(
𝑐 + 1
2

(
1 − 1

𝛽
− 2
𝛽𝐴𝑛

)
− 𝜂𝑛 (𝜀)

)
1

(𝑐 + 𝜂𝑛 (𝜀))
≕ 𝐿𝑛 (𝜀)

where the second inequality comes from (11) and the third one comes from 𝛽𝑘 ≥ 𝛽ℓ+1 ≥ 𝛽𝑎 ≥ 𝛽𝐴𝑛 . Thus

𝑏∑︁
𝑖=𝑎+1

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1} ≥ (𝑚 − ℓ)𝐿𝑛 (𝜀) ≥

ln(𝑏/𝑎)
ln 𝛽

𝐿𝑛 (𝜀) − 2𝐿𝑛 (𝜀) ≥
ln(𝑏/𝑎)
ln 𝛽

𝐿𝑛 (𝜀) −
𝑐 + 1
𝑐

(
1 − 1

𝛽
− 2
𝛽𝐴𝑛

)
.

We end up with the following inequalities

𝐿𝑛 (𝜀)
ln 𝛽

− 𝑐 + 1
𝑐 ln𝐶

(
1 − 1

𝛽
− 2
𝛽𝐴𝑛

)
≤ 1

ln(𝑏/𝑎)

𝑏∑︁
𝑖=𝑎+1

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1} ≤

𝑈𝑛 (𝜀)
ln 𝛽

+ 2(𝛽 − 1)
(𝑐 − 𝜂𝑛 (𝜀)) ln𝐶

.

Notice that lim sup𝑈𝑛 (𝜀) → (𝛽 − 1) (𝑐 + 1)/(2𝑐) and lim inf 𝐿𝑛 (𝜀) → (1 − 1/𝛽) (𝑐 + 1)/(2𝑐) when 𝜀 → 0.
Therefore

lim sup
𝜀→0

lim sup
𝑛→∞

max
𝐴𝑛⩽𝑎<𝑏⩽𝜀𝑛

𝑎𝐶<𝑏

����� 1
ln(𝑏/𝑎)

𝑏∑︁
𝑖=𝑎+1

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1} −

1 + 𝑐
2𝑐

����� ≤ 1 + 𝑐
2𝑐

����𝛽 − 1
ln 𝛽

− 1
���� + 𝑐 + 1

𝑐 ln𝐶

(
1 − 1

𝛽

)
+ 2(𝛽 − 1)

𝑐 ln𝐶
.

Making 𝛽 tend to 1 gives the result. □

Proof of Theorem 4 (1). Let (𝐴′
𝑛)𝑛∈N be a sequence of positive integers such that𝐴𝑛 ≤ 𝐴′

𝑛 ,𝐴′
𝑛 = 𝑜 (ln𝑛) and

𝐴′
𝑛 → ∞ as 𝑛 → ∞. Applying Lemma 17 we see that

lim
𝜀→0

lim sup
𝑛→∞

������ 1
ln𝑛

∑︁
𝐴′
𝑛<𝑖⩽𝜀𝑛

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1} −

1 + 𝑐
2𝑐

������ = 0
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Since 𝑆𝑛𝑖 ≥ 1 for all 1 ≤ 𝑖 ≤ 𝑛 and 𝐴′
𝑛 = 𝑜 (ln𝑛), we have

𝐴′
𝑛∑︁

𝑖=1

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1} = 𝑜 (ln𝑛) .

Finally, for all 0 < 𝜀 < 1, by the second assumption of (2):∑︁
𝜀𝑛⩽𝑖⩽𝑛

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1} = O(1) .

Combining everything gives the desired convergence (9). □

5.2 Distances between uniform vertices

Here we prove Theorem 4 (2). We keep the notation introduced in Section 2.3: for a vertex 𝑣 ∈ V𝑛 , let
b𝑛 (𝑣) be the largest 𝑖 ∈ {0, 1, . . . , 𝑛} such that 𝑣 belongs to the forest F𝑛

𝑖 obtained when building T𝑛 using
Algorithm 2. We first focus on H(𝑉𝑛

1 ) and introduce some notation. Set

𝑍𝑛 B

b𝑛 (𝑉𝑛
1 )∑︁

𝑖=1
𝑌𝑛
𝑖 1{x𝑛𝑖 =1} and 𝑀𝑛 B

b𝑛 (𝑉𝑛
1 )∑︁

𝑖=1

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1}

where (𝑌𝑛
𝑖 )1≤𝑖≤𝑛 are independent Bernoulli random variables of respective parameters (1/𝑆𝑛𝑖 )1≤𝑖≤𝑛 (inde-

pendent from b𝑛 (𝑉𝑛
1 )). Observe that𝑀𝑛 = E

[
𝑍𝑛 |b𝑛 (𝑉𝑛

1 )
]
. By (5), we have

H(𝑉𝑛
1 )

(𝑑 )
= 𝑍𝑛 . (12)

Fix 𝑝 ≥ 1. First we establish that 𝑀𝑛/h+𝑛 converges to 1 in L𝑝 . Actually, since 0 ≤ 𝑀𝑛 ≤ h+𝑛 almost surely
it is enough to show the convergence in probability.

Let 𝜀 > 0 small enough so that 𝜂𝑛 (𝜀) ≤ 𝑐/2 for all 𝑛 large enough. Let 𝛾𝜀 > 0 such that for all 𝑛 large
enough we have

𝛾𝜀 ≤ min
𝜀𝑛≤𝑖≤𝑛

𝑆𝑛𝑖

𝑛
.

Such a 𝛾𝜀 exists thanks to (2). Besides, since 𝐴𝑛 = 𝑜 (ln𝑛) = 𝑜 (𝑛), by Lemma 6 we have 𝑏𝑛 (𝑉𝑛
1 ) ≥ 𝐴𝑛 with

high probability. Using this, as well as the fact that h+𝑛 ≥ ln(𝑛/4) (see Lemma 16), we obtain, with high
probability as 𝑛 → ∞,

0 ≤ 1 − 𝑀𝑛

h+𝑛
=

1
h+𝑛

𝑛∑︁
𝑖=b𝑛 (𝑉𝑛

1 )

1
𝑆𝑛
𝑖

1{x𝑛
𝑖
=1} ≤

1
h+𝑛

𝑛∑︁
𝑖=b𝑛 (𝑉𝑛

1 )

(
1

𝑖 (𝑐 − 𝜂𝑛 (𝜀))
+ 1
𝛾𝜀𝑛

)
1{x𝑛

𝑖
=1}

≤ 1
ln(𝑛/4)

2
𝑐
ln

(
𝑛

b𝑛 (𝑉𝑛
1 )

)
+ 1
𝛾𝜀h+𝑛

.

Now, fix 0 < 𝛿 < 1 and take𝑚𝑛 = 𝑛1−𝛿2𝛿 . Then by Lemma 6

P

(
ln

(
𝑛

𝑏𝑛 (𝑉𝑛
1 )

)
> 𝛿 ln

(𝑛
2

))
=
𝑚𝑛 + 1 − 𝑆𝑛𝑚𝑛

𝑛 + 1 + 𝑆𝑛𝑛
−−−−→
𝑛→∞

0.

We conclude that 𝑀𝑛/h+𝑛 converges towards 1 in probability (and therefore in L𝑝 for all 𝑝 ≥ 1). Now we
show that 𝑍𝑛/𝑀𝑛 converges to 1 in L𝑝 following the same spirit as in the proof of Theorem 3. We have

E

[ ���� 𝑍𝑛

𝑀𝑛

− 1
����𝑝 ���� b𝑛 (𝑉𝑛

1 )
]
= 𝑝

∫ ∞

0
P

( ���� 𝑍𝑛

𝑀𝑛

− 1
���� ≥ 𝑢

���� b𝑛 (𝑉𝑛
1 )

)
𝑢𝑝−1𝑑𝑢.
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By Bennett’s inequality (Proposition 14)

P

( ���� 𝑍𝑛

𝑀𝑛

− 1
���� ≥ 𝑢

���� b𝑛 (𝑉𝑛
1 )

)
≤ 2 exp(−𝑀𝑛𝑔(𝑢))

where 𝑔(𝑢) = (𝑢 + 1) ln(𝑢 + 1) − 𝑢. Since𝑀𝑛 is of order ln𝑛 it is a simple matter to check that

E

���� 𝑍𝑛

𝑀𝑛

− 1
����𝑝 ≤ 2𝑝E

[∫ ∞

0
exp(−𝑀𝑛𝑔(𝑢))𝑢𝑝−1𝑑𝑢

]
−−−−→
𝑛→∞

0.

Since𝑀𝑛 ≤ h+𝑛 we deduce that

E

����𝑍𝑛 −𝑀𝑛

h+𝑛

����𝑝 ≤ E
���� 𝑍𝑛

𝑀𝑛

− 1
����𝑝 −−−−→

𝑛→∞
0.

So (𝑍𝑛 −𝑀𝑛)/h+𝑛 converges to 0 in L𝑝 . Since𝑀𝑛/h+𝑛 converges to 1 in L𝑝 , 𝑍𝑛/h+𝑛 goes to 1 as well. Finally,
using Theorem 4 (1), we conclude that 𝑍𝑛/ln𝑛 converges to (𝑐 + 1)/(2𝑐) in L𝑝 . This proves the first
convergence of Theorem 4 (2).

So as to deduce the asymptotic behaviour of the distance between two uniform points, we next show
that two uniform random vertices coalesce near the root.

Lemma 18. Assume that the assumptions of (2) are in force. For all 𝑛 ≥ 1, let 𝑉𝑛
1 ,𝑉

𝑛
2 be two independent

uniform vertices of V𝑛 . Then
c𝑛 (𝑉𝑛

1 ,𝑉
𝑛
2 )

𝑛

P−→
𝑛→∞

0.

Proof. Let 0 < 𝜀 < 1. Let 𝑖, 𝑗 ≤ 𝑛 − 1 distinct with x𝑛𝑖+1 = x𝑛𝑗+1 = −1 and 𝑘 ≤ 𝑖 ∧ 𝑗 with x𝑛
𝑘+1 = 1. Denote by

𝐵 the event “b𝑛 (𝑉𝑛
1 ) = 𝑖 and b𝑛 (𝑉𝑛

2 ) = 𝑗” and by𝐶 the event “c𝑛 (𝑉𝑛
1 ,𝑉

𝑛
2 ) = 𝑘”. By Lemma 7, it is clear that

P(𝐶 | 𝐵) = P
(
𝐶 and c𝑛 (𝑉𝑛

1 ,𝑉
𝑛
2 ) ≤ 𝑘 | 𝐵

)
≤ P

(
𝐶 | c𝑛 (𝑉𝑛

1 ,𝑉
𝑛
2 ) ≤ 𝑘, 𝐵

)
=

(
𝑆𝑛
𝑘+1
2

)−1
.

Therefore

P
(
c𝑛 (𝑉𝑛

1 ,𝑉
𝑛
2 ) ≥ 𝜀𝑛 | 𝐵

)
≤

𝑖∧𝑗∑︁
𝑘=⌈𝜀𝑛⌉

(
𝑆𝑛
𝑘+1
2

)−1
1{x𝑛

𝑘+1=1} ≤
𝑛−1∑︁

𝑘=⌈𝜀𝑛⌉

(
𝑆𝑛
𝑘+1
2

)−1
1{x𝑛

𝑘+1=1} .

And

P
(
c𝑛 (𝑉𝑛

1 ,𝑉
𝑛
2 ) ≥ 𝜀𝑛

)
≤

𝑛−1∑︁
𝑘=⌈𝜀𝑛⌉

(
𝑆𝑛
𝑘+1
2

)−1
1{x𝑛

𝑘+1=1} .

Besides, by the second hypothesis of (2), we know that

𝑛−1∑︁
𝑘=⌈𝜀𝑛⌉

(
𝑆𝑛
𝑘+1
2

)−1
1{x𝑛

𝑘+1=1} = O

(
1
𝑛

)
as 𝑛 → ∞,

hence the desired result. □

The second convergence of the point (2) of Theorem 4 is then an immediate consequence of the first
convergence of the same point using a dominated convergence and Lemma 18.
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5.3 Limit theorem for the height

Here we show Theorem 4 (3). The proof of the upper bound is readily obtained by a union bound, while
the lower bound is much more delicate.

Proof of the upper bound in Theorem 4 (3). Fix 𝜂 > 0. First observe that by definition of 𝑓 (𝑐) we have

𝑔(𝑓 (𝑐) − 1) = 𝑓 (𝑐) ln 𝑓 (𝑐) − 𝑓 (𝑐) + 1 = 1 + 𝑐 − 1
1 + 𝑐 =

2𝑐
1 + 𝑐 ,

so that 𝑔(𝑓 (𝑐) − 1 + 𝜂) > 2𝑐/(1 + 𝑐). By Theorem 4 (1) we have h+𝑛 ∼ (1 + 𝑐)/(2𝑐)ln(𝑛) as 𝑛 → ∞. As a
consequence, there exists 𝛿 ∈ (0, 1) such that ℎ+𝑛 𝑔(𝑓 (𝑐) − 1 + 𝜂) ≥ (1 + 𝛿) ln(𝑛) for 𝑛 sufficiently large.
Hence, by Proposition 15, for 𝑛 sufficiently large,

P
(
Height(T𝑛) > h+𝑛 (𝑓 (𝑐) + 𝜂)

)
≤ exp

(
−h+𝑛 𝑔(𝑓 (𝑐) − 1 + 𝜂) + ln𝑛

)
≤ exp(−𝛿 ln(𝑛)) −→

𝑛→∞
0.

This completes the proof of the upper bound. □

It therefore remains to show the lower bound onHeight(T𝑛), which is the delicate part of the proof. Let
us explain themain idea of our approach. Since the upper-bound has been obtained by using a union-bound
over all vertices, one would hope to obtain the lower-bound from the fact that the height of the vertices
are "almost independent". However, their heights are highly correlated. To overcome this issue, we use the
so-called chaining technique and estimate by induction on 𝑘 the height of the subtrees Height(T𝑘 (x𝑛)).
More precisely, for every increasing sequence of integers (chain) 0 = 𝑅0 < 𝑅1 < · · · < 𝑅𝑚 = 𝑛, we have

Height(T𝑛) =
∑︁

0≤𝑖<𝑚
Height(T𝑅𝑖+1 (x𝑛)) − Height(T𝑅𝑖 (x𝑛)) .

We shall choose an appropriate chain of integers (𝑅𝑖)0≤𝑖≤𝑚 and then bound the differences appearing in
the last display. To this end, the main idea is that if 𝑅𝑖+1/𝑅𝑖 is close to some large constant 𝐶 > 0, then
T𝑅𝑖+1 (x𝑛) can be approximated by a forest of independent trees attached on T𝑅𝑖 (x𝑛). We then show by
induction on 𝑖 that many vertices have a large height in this forest, and among them many are attached
on vertices of T𝑅𝑖 (x𝑛) with large height.

𝑆𝑛
𝑖

𝑖0
1
2
3
4
5
6

0 1 2 3 4 5 6 7 8 9 10 11 12 13

𝑎

𝑎
𝑎

4 𝑎 7

1 3

2 6 5

T𝑛7

𝑎

8
𝑎

4 𝑎 7
𝑎

11 𝑎
𝑎

1 3

2 6 5 10

9 12
13

T𝑛13

★

★
★

★

𝑎

11 𝑎
𝑎

10

9 12
13

F𝑛
7,13

Figure 9: Illustration of the construction of F𝑛
𝑘,𝑘 ′ with 𝑘 = 7 and 𝑘 ′ = 13. From left to right:

the sequence x𝑛 , a realization of T𝑛
𝑘
, a realization of T𝑛

𝑘 ′ and the forest F𝑛
𝑘,𝑘 ′ composed of four

trees all rooted at their unique vertex labelled ★.

To make this intuition rigorous we first need to define some objects. For 𝑛 ∈ N and 0 ≤ 𝑘 ≤ 𝑛, recall
the definition of T𝑛

𝑘
B T𝑘 (x𝑛) from Algorithm 1. We denote by A𝑛

𝑘
the set of all vertices in T𝑛𝑛 that were

active at time 𝑘 when running Algorithm 1 (these are vertices of T𝑛
𝑘
that are either labelled with 𝑎 and have

an adjacent edge labelled by 𝑗 ≤ 𝑘 , or labelled with 𝑖 > 𝑘 and have an adjacent edge labelled by 𝑗 ≤ 𝑘).
For 0 ≤ 𝑘 ≤ 𝑘 ′ ≤ 𝑛, let F𝑛

𝑘,𝑘 ′ be the forest obtained as follows:
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(i) Consider T𝑛
𝑘 ′ and relabel by ★ all the vertices of T𝑛

𝑘 ′ belonging to A𝑛
𝑘
(see Fig. 9 for an example);

(ii) then remove all the edges of T𝑛
𝑘 ′ that belongs to T𝑛

𝑘
(i.e. all the edges with labels in ⟦1, 𝑘⟧);

(iii) finally remove all the vertices with labels in ⟦1, 𝑘⟧.

Note that all the trees in F𝑛
𝑘,𝑘 ′ have exactly one vertex labelled ★. We will thus consider the vertices

labelled★ as the roots of the trees in F𝑛
𝑘,𝑘 ′ . Observe that one cannot deterministically reconstruct T𝑛

𝑘 ′ from
{F𝑛

𝑘,𝑘 ′, T
𝑛
𝑘
}, but in distribution it is possible: if one merges uniformly at random every active vertex of T𝑛

𝑘 ′

with one vertex labelled ★ from F𝑛
𝑘,𝑘 ′ , then one obtains a tree having the same distribution as T𝑛

𝑘 ′ (see
Fig. 9). Furthermore, it will be crucial to keep in mind that that T𝑛

𝑘
and F𝑛

𝑘,𝑘 ′ are independent. Indeed F𝑛
𝑘,𝑘 ′

may be constructed following Algorithm 1, independently of the steps 1 ≤ 𝑖 ≤ 𝑘 .
For every 0 ≤ 𝑘 ≤ 𝑘 ′ ≤ 𝑛, for every vertex 𝑣 ∈ F𝑛

𝑘,𝑛
we write 𝐻𝑛

𝑘,𝑘 ′ (𝑣) for the height of 𝑣 in the forest
F𝑛
𝑘,𝑛

minus its height in F𝑛
𝑘 ′,𝑛 (where, by convention, the height of 𝑣 in F𝑛

𝑘 ′,𝑛 is 0 if 𝑣 is not in this forest).
In words, if 𝑣 belongs to a certain tree 𝜏 of F𝑛

𝑘 ′,𝑛 , the quantity 𝐻
𝑛
𝑘,𝑘 ′ (𝑣) represents the height in F𝑛

𝑘,𝑘 ′ of the
vertex associated with the root 𝜏 .

For 𝜂 > 0, for every integers 𝑛, 𝑘,𝐶 ∈ N such that 𝐶𝑘 ≤ 𝑛/𝐶 , set

𝑁𝑛
𝑘
(𝐶, 𝜂) = #

{
𝑣 ∈ A𝑛

𝐶𝑘+1 : 𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑣) >
1 + 𝑐
2𝑐

ln(𝐶) (𝑓 (𝑐) − 𝜂)
}
.

The set of vertices involved in the definition of 𝑁𝑛
𝑘
will play an important role in our approach. Roughly

speaking, they correspond to vertices active at time𝐶𝑘+1 which are “quite far” from a vertex active at time
𝐶𝑘 . The first main input in the proof of the lower bound of the height is the following result, which shows
that 𝐶 > 0 can be chosen such that if 𝑅𝑖+1/𝑅𝑖 is close to 𝐶 > 0, then there are many active vertices with a
“large” height in the forest F𝑛

𝑅𝑖 ,𝑅𝑖+1
. Its proof is deferred to Section 5.4.

Lemma 19. For every 𝜂 ∈ (0, 1), there exists an integer 𝐶 > 1, there exist 𝜆 > 0 and 𝜀 ∈ (0, 1) such that for
every 𝑛 large enough, for every 𝑘 ∈ N, with 𝐴𝑛 ≤ 𝐶𝑘 ≤ 𝜀𝑛/𝐶 , we have

P
(
𝑁𝑛
𝑘
(𝐶,𝜂) > 4𝐶𝑘

)
≥ 1 − 𝜆

𝐶𝑘

For every 𝑛, 𝑘 ∈ N, with 𝐶𝑘 ≤ 𝑛/𝐶 , let 𝑀𝑛
𝑘
be the maximal number of active vertices of a tree in the

forest F𝑛

𝐶𝑘 ,𝐶𝑘+1 . The second main input in the proof of the lower bound of the height is the following result,
which shows that the this quantity cannot be too large. Its proof is deferred to Section 5.4.

Lemma 20. For every 𝑛 large enough, for every 𝑘 ∈ N, with 𝐴𝑛 ≤ 𝐶𝑘 ≤ 𝑛/𝐶 ,

P
(
𝑀𝑛

𝑘
> 𝑘3

)
≤ 1

𝑘2
.

Let us now explain how the lower bound for the height follows from Lemmas 19 and 20.

Proof of the lower-bound for Theorem 4 (3). Fix 𝜂 ∈ (0, 1) and take 𝐶 > 1, 𝜆 > 0, 𝜀 ∈ (0, 1) such that the
conclusion of Lemma 19 holds and write 𝑁𝑛

𝑘
instead of 𝑁𝑛

𝑘
(𝐶,𝜂) to simplify notation. For all integers

𝑛, 𝑘 ∈ N such that 𝐴𝑛 ≤ 𝐶𝑘 ≤ 𝑛/𝐶 , set

𝑁
𝑛

𝑘 = #
{
𝑣 ∈ A𝑛

𝐶𝑘 , ∀ℓ ∈ ⟦1, 𝑘 − 1⟧ s.t. 𝐴𝑛 ≤ 𝐶ℓ , 𝐻𝑛
𝐶ℓ ,𝐶ℓ+1 (𝑣) >

1 + 𝑐
2𝑐

ln(𝐶) (𝑓 (𝑐) − 𝜂)
}
. (13)

We shall show that with probability tending to 1 as 𝑛 → ∞, if 𝑘 is the largest integer such that𝐶𝑘 ≤ 𝜀𝑛/𝐶 ,
then 𝑁

𝑛

𝑘 ≥ 1. Indeed, the fact that 𝑁
𝑛

𝑘 ≥ 1 implies that there exists a vertex 𝑣𝑘 ∈ 𝐴𝑛

𝐶𝑘
and vertices 𝑣𝑖 ∈ 𝐴𝑛

𝐶𝑖
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for every 𝑖 ∈ ⟦1, 𝑘 − 1⟧ such that 𝐴𝑛 ≤ 𝐶𝑖 , 𝑣𝑖 is an ancestor of 𝑣𝑖+1 and 𝑑𝑛 (𝑣𝑖 , 𝑣𝑖+1) > 1+𝑐
2𝑐 ln(𝐶) (𝑓 (𝑐) − 𝜂).

Thus the height of 𝑣𝑘 in T𝑛 is at least(⌊
ln(𝑛)
ln(𝐶) +

ln(𝜀/𝐶)
ln(𝐶)

⌋
−

⌈
ln(𝐴𝑛)
ln(𝐶)

⌉)
· 1 + 𝑐

2𝑐
ln(𝐶) · (𝑓 (𝑐) − 𝜂) ∼

𝑛→∞
ln(𝑛) 1 + 𝑐

2𝑐
(𝑓 (𝑐) − 𝜂).

Since 𝜂 ∈ (0, 1) was chosen arbitrary, this will imply the desired result.
The main step of the proof is to establish that for every 𝑘 ∈ N with 𝐴𝑛 ≤ 𝐶𝑘 ≤ 𝜀𝑛/𝐶 we have

P
(
𝑁

𝑛

𝑘+1 < 2𝑘+1
���𝑁𝑛

𝑘 ≥ 2𝑘
)
= O

(
1
𝑘2

)
, (14)

where here, and in the rest of the proof, theO is uniform in𝐴𝑛 ≤ 𝐶𝑘 ≤ 𝜀𝑛/𝐶 . This means that there exists a
constant Δ > 0 such that the term O(1/𝑘2) can be bounded from above by Δ/𝑘2 for every𝐴𝑛 ≤ 𝐶𝑘 ≤ 𝜀𝑛/𝐶
and 𝑛 large enough. Indeed, we will then have

P
(
∃𝑘 with 𝐴𝑛 ≤ 𝐶𝑘 ≤ 𝜀𝑛/𝐶 and 𝑁

𝑛

𝑘 < 2𝑘
)
≤ P

(
𝑁𝑛
𝑘𝑛

< 2𝑘𝑛
)
+ O

( ∞∑︁
𝑘=𝑘𝑛

1
𝑘2

)
with 𝑘𝑛 = ⌈ln(𝐴𝑛)/ln(𝐶)⌉. By Lemma 19 the first term of the sum tends to 0. This implies that with
probability tending to 1 as 𝑛 → ∞, for every integer 𝑘 such that 𝐴𝑛 ≤ 𝐶𝑘 ≤ 𝜀𝑛/𝐶 , we have 𝑁

𝑛

𝑘 ≥ 2𝑘 .
A fortiori, with probability tending to 1 as 𝑛 → ∞, 𝑘 is the largest integer such that 𝐶𝑘 ≤ 𝜀𝑛/𝐶 , when
𝑁

𝑛

𝑘 ≥ 1, which will complete the proof.
It thus remains to establish (14). Note that the random variable 𝑁

𝑛

𝑘 is T𝑛
𝐶𝑘

measurable, and so is inde-
pendent of the random variables 𝑁𝑛

𝑘
and𝑀𝑛

𝑘
which are F𝑛

𝐶𝑘 ,𝐶𝑘+1 measurable. As a consequence, we get for
every 𝑘 ∈ N with 𝐴𝑛 ≤ 𝐶𝑘 ≤ 𝜀𝑛/𝐶:

P
(
𝑁

𝑛

𝑘+1 < 2𝑘+1
���𝑁𝑛

𝑘 ≥ 2𝑘
)

≤ P
(
𝑁𝑛
𝑘
< 4𝐶𝑘

)
+ P

(
𝑀𝑛

𝑘
> 𝑘3

)
+ P

(
𝑁

𝑛

𝑘+1 < 2𝑘+1, 𝑁𝑛
𝑘
≥ 4𝐶𝑘 , 𝑀𝑛

𝑘
≤ 𝑘3

���𝑁𝑛

𝑘 ≥ 2𝑘
)

≤ O

(
1
𝐶𝑘

)
+ O

(
1
𝑘2

)
+ P

(
𝑁

𝑛

𝑘+1 < 2𝑘+1, 𝑁𝑛
𝑘
≥ 4𝐶𝑘 , 𝑀𝑛

𝑘
≤ 𝑘3 |𝑁𝑛

𝑘 ≥ 2𝑘
)
, (15)

where we have used Lemmas 19 and 20.
To bound the third term, we shall estimate 𝑁

𝑛

𝑘 by induction on 𝑘 by using a second moment technique.
To this end, we recall that one may reconstruct a tree with the same distribution as T𝑛

𝐶𝑘+1 , by merging
uniformly at random each active vertex from T𝑛

𝐶𝑘
with one vertex labelled ★ from F𝑛

𝐶𝑘 ,𝐶𝑘+1 . With this in
mind, it follows that

E
[
𝑁

𝑛

𝑘+1

���T𝑛
𝐶𝑘 ,F

𝑛

𝐶𝑘 ,𝐶𝑘+1

]
=
𝑁

𝑛

𝑘𝑁
𝑛
𝑘

𝑆𝑛
𝐶𝑘

, (16)

where we recall that 𝑆𝑛
𝐶𝑘

= 𝑆𝐶𝑘 (x𝑛) represents the number of active vertices of T𝑛
𝐶𝑘
.

Next, denote by A𝑛

𝐶𝑘 ,𝐶𝑘+1 the set of all active vertices of the forest F𝑛

𝐶𝑘 ,𝐶𝑘+1 . For 𝑣 ∈ A𝑛

𝐶𝑘 ,𝐶𝑘+1 , let 𝐸𝑛𝑘 (𝑣)
be the event defined by

𝐸𝑛
𝑘
(𝑣) =

{
∀ℓ ∈ ⟦1, 𝑘 − 1⟧ s.t. 𝐴𝑛 ≤ 𝐶ℓ , 𝐻𝑛

𝐶ℓ ,𝐶ℓ+1 (𝑣) >
1 + 𝑐
2𝑐

ln(𝐶) (𝑓 (𝑐) − 𝜂)
}
.

Note that for all 𝑣, 𝑣 ′ ∈ A𝑛

𝐶𝑘 ,𝐶𝑘+1 , conditionally on T𝑛
𝐶𝑘

and F𝑛

𝐶𝑘 ,𝐶𝑘+1 , the events 𝐸𝑛
𝑘+1(𝑣) and 𝐸𝑛

𝑘+1(𝑣
′) are

negatively correlated unless 𝑣, 𝑣 ′ are in the same tree in F𝑛

𝐶𝑘 ,𝐶𝑘+1 . Indeed, on the one hand, if the trees of
F𝑛

𝐶𝑘 ,𝐶𝑘+1 containing 𝑣 and 𝑣 ′ are different, then when we attach the tree containing 𝑣 to an active vertex
𝑤 ∈ A𝑛

𝐶𝑘
such that the event 𝐸𝑛

𝑘
(𝑤) happens then the tree containing 𝑣 ′ will have less chance to be

attached to a vertex 𝑤 ′ in A𝑛

𝐶𝑘
such that the event 𝐸𝑛

𝑘
(𝑤 ′) occurs, and vice versa. On the other hand,

if 𝑣 and 𝑣 ′ are in the same tree and if we have the inequalities 𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑣) > 1+𝑐
2𝑐 ln(𝐶) (𝑓 (𝑐) − 𝜂) and
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𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑣 ′) > 1+𝑐
2𝑐 ln(𝐶) (𝑓 (𝑐) −𝜂), if we denote by𝑤 the (random) active vertex of T𝑛

𝐶𝑘
on which this tree

is attached, then the events 𝐸𝑛
𝑘+1(𝑣) and 𝐸𝑛

𝑘+1(𝑣
′) occur if and only if the event 𝐸𝑛

𝑘
(𝑤) occurs. As a result,

writing P̃ and Ẽ for the conditional probability and expectation conditionally given T𝑛
𝐶𝑘

and F𝑛

𝐶𝑘 ,𝐶𝑘+1 , we
get

Ṽar
[
𝑁

𝑛

𝑘+1

]
= Ṽar


∑︁

𝑣∈A𝑛

𝐶𝑘 ,𝐶𝑘+1

1𝐸𝑛
𝑘+1 (𝑣)

 =
∑︁

𝑣,𝑣′∈A𝑛

𝐶𝑘 ,𝐶𝑘+1

C̃ov(1𝐸𝑛
𝑘+1 (𝑣) ,1𝐸

𝑛
𝑘+1 (𝑣′ ) ) .

≤ 𝑀𝑛
𝑘

∑︁
𝑣∈A𝑛

𝐶𝑘 ,𝐶𝑘+1

P̃
(
𝐸𝑛
𝑘+1(𝑣)

)
= 𝑀𝑛

𝑘
·
𝑁

𝑛

𝑘𝑁
𝑛
𝑘

𝑆𝑛
𝐶𝑘

. (17)

Then, by (16) under the event
{
𝑁

𝑛

𝑘 ≥ 2𝑘 , 𝑁𝑛
𝑘
≥ 4𝐶𝑘 , 𝑀𝑛

𝑘
≤ 𝑘3

}
(which ismeasurablewith respect toT𝑛

𝐶𝑘
,F𝑛

𝐶𝑘 ,𝐶𝑘+1 )
we have:

Ẽ
[
𝑁

𝑛

𝑘+1

]
≥

𝑁
𝑛

𝑘𝑁
𝑛
𝑘

𝑆𝑛
𝐶𝑘

≥ 2𝑘+2,

and by (17) we have

P̃
(
𝑁

𝑛

𝑘+1 < 2𝑘+1
)
≤ P̃

(
𝑁

𝑛

𝑘+1 <
1
2
Ẽ
[
𝑁

𝑛

𝑘+1

] )
≤ 4

Ṽar
[
𝑁

𝑛

𝑘+1

]
Ẽ
[
𝑁

𝑛

𝑘+1

]2 ≤ 4
𝑀𝑛

𝑘
𝑁

𝑛

𝑘𝑁
𝑛
𝑘
/𝑆𝑛

𝐶𝑘(
𝑁

𝑛

𝑘𝑁
𝑛
𝑘
/𝑆𝑛

𝐶𝑘

)2 ≤
4𝑀𝑛

𝑘
𝑆𝑛
𝐶𝑘

𝑁𝑛
𝑘
𝑁𝑛
𝑘

≤ 4𝑘3𝐶𝑘

2𝑘𝐶𝑘
= O

(
1
𝑘2

)
.

As a consequence,

P
(
𝑁

𝑛

𝑘+1 < 2𝑘+1, 𝑁𝑛
𝑘
≥ 4𝐶𝑘 , 𝑀𝑛

𝑘
≤ 𝑘3

���𝑁𝑛

𝑘 ≥ 2𝑘
)
= E

[
P̃
(
𝑁

𝑛

𝑘+1 < 2𝑘+1
)
1𝑁𝑛

𝑘
≥4𝐶𝑘 ,𝑀𝑛

𝑘
≤𝑘3

���𝑁𝑛

𝑘 ≥ 2𝑘
]
= O

(
1
𝑘2

)
,

and (14) follows from (15). This completes the proof. □

5.4 Proof of Lemmas 19 and 20

We keep the notation introduced in Section 5.3. The following estimate is the first step for the proof of
Lemma 19.

Lemma 21. For every 𝜂 ∈ (0, 1), there exists an integer 𝐶 > 1 and 𝜀 ∈ (0, 1) such that for every 𝑛 large
enough for every 𝑘 ∈ N, with 𝐴𝑛 ≤ 𝐶𝑘 ≤ 𝜀𝑛/𝐶 , we have

E
[
𝑁𝑛
𝑘
(𝐶, 𝜂)

]
≥ 5𝐶𝑘 .

Proof of Lemma 21. Recall that 𝑔(𝑥) = (1 + 𝑥) ln(1 + 𝑥) − 𝑥 . Set 𝛿 = 1− 1+𝑐
2𝑐 ·𝑔(𝑓 (𝑐) − 1−𝜂), which belongs

to (0, 1) since 𝑔(𝑓 (𝑐) − 1 − 𝜂) < (2𝑐)/(1 + 𝑐), and then choose an integer 𝐶 > 1 large enough such that

1
ln(𝐶)4 exp(−(1 − 𝛿) ln(𝐶)) ≥ 6

𝑐𝐶
and ln(𝐶) ≥ 1 + 𝑐

2𝑐
(𝑓 (𝑐) − 𝜂). (18)

It remains to check that this value of 𝐶 satisfies the desired conclusion. By Lemma 5 for every 𝑣 ∈ A𝑛

𝐶𝑘+1 ,

𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑣)
(𝑑 )
=

∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

𝑌𝑛
𝑖 ,

where (𝑌𝑛
𝑖 )1≤𝑖≤𝑛 are independent Bernoulli random variables of respective parameters (1/𝑆𝑛𝑖 1x𝑛𝑖 =1)1≤𝑖≤𝑛 .

Lemma 17 yields

lim
𝜀→0

lim sup
𝑛→∞

max
𝐴𝑛≤𝐶𝑘≤𝜀𝑛

������ ∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

1
𝑆𝑛
𝑖

1x𝑛
𝑖
=1 −

1 + 𝑐
2𝑐

ln(𝐶)

������ −→
𝑛→∞

0.
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Hence, by [6, Theorem 1], we have

lim
𝜀→0

lim sup
𝑛→∞

max
𝐴𝑛≤𝐶𝑘≤𝜀𝑛

𝑑TV

(
𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑣),Poi
(
1 + 𝑐
2𝑐

ln(𝐶)
))

= 0,

where Poi(𝜆) denotes a Poisson random variable with parameter 𝜆 and 𝑑TV stands for the total variation
distance. As a consequence, setting

𝑃 (𝐶) B P
(
Poi

(
1 + 𝑐
2𝑐

ln(𝐶)
)
>

1 + 𝑐
2𝑐

ln(𝐶) (𝑓 (𝑐) − 𝜂)
)
,

we have
lim
𝜀→0

lim sup
𝑛→∞

max
𝐴𝑛≤𝐶𝑘≤𝜀𝑛

����P(𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑣) >
1 + 𝑐
2𝑐

ln(𝐶) (𝑓 (𝑐) − 𝜂)
)
− 𝑃 (𝐶)

���� = 0. (19)

Then, for 𝜆 > 2 and 𝑡 > 1, using the bound ⌈𝑢⌉! ≤ 𝑢3(𝑢/𝑒)𝑢 for 𝑢 ≥ 2, observe that

P(Poi(𝜆) > 𝜆𝑡) ≥ 𝑒−𝜆
𝜆⌈𝜆𝑡 ⌉

⌈𝜆𝑡⌉! ≥ 𝑒−𝜆𝜆𝜆𝑡
( 𝑒
𝜆𝑡

)𝜆𝑡 1
(𝜆𝑡)3 = 𝑒−𝜆𝑔 (𝑡−1)

1
(𝜆𝑡)3 ,

Taking into account our choice of 𝐶 (see (18)), it follows that

𝑃 (𝐶) ≥ 1
ln(𝐶)4 exp

(
−1 + 𝑐

2𝑐
ln(𝐶)𝑔(𝑓 (𝑐) − 1 − 𝜂)

)
≥ 6

𝑐𝐶
. (20)

Then observe that by linearity we have

E
[
𝑁𝑛
𝑘

]
= #A𝑛

𝐶𝑘+1P

(
𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑣) >
1 + 𝑐
2𝑐

ln(𝐶) (𝑓 (𝑐) − 𝜂)
)
.

But |#A𝑛

𝐶𝑘+1/(𝑐𝐶𝑘+1) − 1| = |𝑆𝑛
𝐶𝑘+1/(𝑐𝐶𝑘+1) − 1| ≤ 𝜂𝑛 (𝜀)/𝑐 for 𝐶𝑘+1 ≤ 𝜀𝑛, where we recall that

𝜂𝑛 (𝜀) = max
𝐴𝑛⩽𝑖⩽𝜀𝑛

����𝑆𝑛𝑖𝑖 − 𝑐

����.
The desired result follows by using (19) and (20). □

Observe that by (2) we may choose 𝜀 such that 𝜖 ∈ (0, 𝜀0] with 𝜀0 such that

lim sup
𝑛→∞

max
𝐴𝑛≤𝑖≤𝜀0𝑛

����𝑆𝑛𝑖𝑖 − 𝑐

���� < 𝑐

2
and lim inf

𝑛→∞
min

𝜀0𝑛≤𝑖≤𝑛

𝑆𝑛𝑖

𝑛
> 0,

which implies the existence of a constant 𝑐0 > 0 such that:

for every 𝑛 sufficiently large, for every 1 ≤ 𝑖 ≤ 𝑛, 𝑐0𝑖 ≤ 𝑆𝑛𝑖 ≤ 𝑖 + 1, (21)

where the upper bound comes from the fact that x𝑛𝑖 ≤ 1.
We are now ready to prove Lemma 19.

Proof of Lemma 19. Fix 𝜂 ∈ (0, 1). Consider 𝐶 > 1 given by Lemma 21. Take 𝜀 ∈ (0, 1) small enough such
that the conclusion of Lemma 21 holds. The main idea of the proof is to show that for some fixed 𝜆 > 0 we
have uniformly for every 𝑘 ∈ N with 𝐴𝑛 ≤ 𝐶𝑘 ≤ 𝜀𝑛/𝐶

Var(𝑁𝑛
𝑘
(𝐶, 𝜂)) ≤ 𝜆𝐶𝑘 . (22)

Indeed, it will then directly follow from Lemma 21 and Bienaymé-Chebyshev’s inequality that

P
(
𝑁𝑛
𝑘
(𝐶,𝜂) < 4𝐶𝑘

)
≤ P

(��𝑁𝑛
𝑘
(𝐶,𝜂) − E[𝑁𝑛

𝑘
(𝐶,𝜂)]

�� > 𝐶𝑘
)
≤ Var(𝑁𝑛

𝑘
(𝐶,𝜂))/𝐶2𝑘 ≤ 𝜆/𝐶𝑘 .
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We shall show that
E
[
(𝑁𝑛

𝑘
(𝐶,𝜂))2

]
≤

(
E
[
𝑁𝑛
𝑘
(𝐶, 𝜂)

] )2 + O(𝐶𝑘 ) . (23)

This indeed implies (22). Observe that by definition of 𝑁𝑛
𝑘
(𝐶, 𝜂), setting 𝑡 = 1+𝑐

2𝑐 ln(𝐶) (𝑓 (𝑐) − 𝜂), we have

𝑁𝑛
𝑘
(𝐶, 𝜂) =

∑︁
𝑣∈A𝑛

𝐶𝑘+1

1𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑣)>𝑡 .

Note from Algorithm 2, that for every 𝑣,𝑤 ∈ A𝑛

𝐶𝑘+1 with 𝑣 ≠ 𝑤

(
𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑣) , 𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑤)
) (𝑑 )

=
©­«

∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

𝑌𝑛
𝑖 ,

∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

𝑍𝑛
𝑖

ª®¬
where (𝑍𝑛

𝑖 )1≤𝑖≤𝑛 are independent Bernoulli random variables of respective parameters (1/𝑆𝑛𝑖 1x𝑛𝑖 =1)1≤𝑖≤𝑛 .
The problem is that (𝑍𝑛

𝑖 )1≤𝑖≤𝑛 and (𝑌𝑛
𝑖 )1≤𝑖≤𝑛 are not independent. The idea is to say that, conditionally

on the fact that 𝑣 and 𝑤 do not coalesce (i.e they do not belong to the same tree) before time 𝐶𝑘+1, then,
when the height of 𝑣 goes up by 1 in the coalescence process, the height of 𝑤 doesn’t change and vice
versa. Therefore their heights are negatively correlated. One can see that for all 𝑣,𝑤 ∈ A𝑛

𝐶𝑘+1 ,

P
(
𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑣) > 𝑡 and 𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑤) > 𝑡

)
≤ P

(
𝐶𝑘 ≤ c𝑛 (𝑣,𝑤) ≤ 𝐶𝑘+1

)
+ P

(
c𝑛 (𝑣,𝑤) < 𝐶𝑘 and 𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑣) > 𝑡 and 𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑤) > 𝑡

)
. (24)

The first probability of (24) is bounded from above as follows:

P
(
𝐶𝑘 ≤ c𝑛 (𝑣,𝑤) ≤ 𝐶𝑘+1

)
≤ 1−

∏
𝐶𝑘≤𝑖≤𝐶𝑘+1

(
1 − 1x𝑛

𝑖
=1

1(𝑆𝑛
𝑖

2
) ) ≤ 1−exp©­«

∑︁
𝐶𝑘≤𝑖≤𝐶𝑘+1

ln

(
1 − 1(𝑆𝑛

𝑖

2
) )ª®¬ = O

(
1
𝐶𝑘

)
, (25)

where the last equality comes from (2) and where the O(1/𝐶𝑘 ) is uniform in 𝑣,𝑤 and in 𝑛 ≥ 𝐶𝑘+1.
We then focus on the event involved in the second probability of (24). One can write

𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑣) =
∑︁

𝐶𝑘<𝑖≤𝐶𝑘+1

𝑌𝑛
𝑖 ,

where (𝑌𝑛
𝑖 )1≤𝑖≤𝑛 are independent Bernoulli random variables of respective parameters (1/𝑆𝑛𝑖 1𝑥𝑛𝑖 =1)1≤𝑖≤𝑛 .

Moreover, we note that if we know that 𝑌𝑛
𝑖 = 1 and that c𝑛 (𝑣,𝑤) ≤ 𝑖 − 1, then it implies that there is no

coalescence with the tree containing𝑤 . More precisely, one can write

𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑤) =
∑︁

𝐶𝑘<𝑖≤𝐶𝑘+1

𝑍𝑛
𝑖 .

with
𝑍𝑛
𝑖 = 𝑌𝑛

𝑖 1c𝑛 (𝑣,𝑤 )≥𝑖 + 𝜉𝑛𝑖 1c𝑛 (𝑣,𝑤 )<𝑖 and 𝑌𝑛
𝑖
=0,

where the 𝜉𝑛𝑖 ’s are independent Bernoulli r.v. of parameter (1/(𝑆𝑛𝑖 − 1))1x𝑛
𝑖
=1 respectively and are taken
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independently from the 𝑌𝑛
𝑖 ’s. As a result, the second probability in (24) is bounded from above by

P
©­«c𝑛 (𝑣,𝑤) < 𝐶𝑘 ,

∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

𝑌𝑛
𝑖 > 𝑡 and

∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

𝑍𝑛
𝑖 > 𝑡

ª®¬
= P

©­«c𝑛 (𝑣,𝑤) < 𝐶𝑘 ,
∑︁

𝐶𝑘<𝑖≤𝐶𝑘+1

𝑌𝑛
𝑖 > 𝑡 and

∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

𝜉𝑛𝑖 1𝑌𝑛
𝑖
=0 > 𝑡

ª®¬
≤ P©­«

∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

𝑌𝑛
𝑖 > 𝑡 and

∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

𝜉𝑛𝑖 > 𝑡
ª®¬

= P
©­«

∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

𝑌𝑛
𝑖 > 𝑡

ª®¬ P©­«
∑︁

𝐶𝑘<𝑖≤𝐶𝑘+1

𝜉𝑛𝑖 > 𝑡
ª®¬ ≤ P©­«

∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

𝜉𝑛𝑖 > 𝑡
ª®¬
2

. (26)

Now, thanks to the fact that 1/𝑆𝑛𝑖 ≤ 1/(𝑆𝑛𝑖 − 1), one can define some random variables 𝑌𝑛
𝑖 ’s for 𝑖 ≥ 1 such

that for all 𝑖 ≥ 1, we have 𝑌𝑛
𝑖 ≤ 𝜉𝑛𝑖 and (𝑌𝑛

𝑖 )𝑖≥1 is a family of independent Bernoulli random variables of
parameter (1/𝑆𝑛𝑖 )1x𝑛𝑖 =1, having thus the same law as (𝑌𝑛

𝑖 )𝑖≥1. It follows that

P
©­«

∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

𝜉𝑛𝑖 > 𝑡
ª®¬−P©­«

∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

𝑌𝑛
𝑖 > 𝑡

ª®¬ = P
©­«

∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

𝜉𝑛𝑖 > 𝑡 ≥
∑︁

𝐶𝑘<𝑖≤𝐶𝑘+1

𝑌𝑛
𝑖

ª®¬ ≤ P©­«
∑︁

𝐶𝑘<𝑖≤𝐶𝑘+1

(𝜉𝑛𝑖 − 𝑌𝑛
𝑖 ) > 0ª®¬

Thus

P
©­«

∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

𝜉𝑛𝑖 > 𝑡
ª®¬−P©­«

∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

𝑌𝑛
𝑖 > 𝑡

ª®¬ ≤ E


∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

(𝜉𝑛𝑖 − 𝑌𝑛
𝑖 )

 =
∑︁

𝐶𝑘<𝑖≤𝐶𝑘+1

1
𝑆𝑛
𝑖
(𝑆𝑛

𝑖
− 1)1x

𝑛
𝑖
=1 = O

(
1
𝐶𝑘

)
,

where the O(1/𝐶𝑘 ) is uniform in 𝑛 ≥ 𝐶𝑘+1. By combining this estimate with (24) and (26), we conclude
that

P
(
𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑣) > 𝑡 and 𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑤) > 𝑡

)
≤ P

(
𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑣) > 𝑡

)2
+ O

(
1
𝐶𝑘

)
Therefore

E
[
(𝑁𝑛

𝑘
(𝐶,𝜂))2

]
=

∑︁
𝑣∈A𝑛

𝐶𝑘+1

P
(
𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑣) > 𝑡

)
+

∑︁
𝑢≠𝑣∈A𝑛

𝐶𝑘+1

P
(
𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑣) > 𝑡 and 𝐻𝑛

𝐶𝑘 ,𝐶𝑘+1 (𝑤) > 𝑡

)
=

©­«#A𝑛

𝐶𝑘+1P
©­«

∑︁
𝐶𝑘<𝑖≤𝐶𝑘+1

𝜉𝑛𝑖 > 𝑡
ª®¬ª®¬

2

+ O

(
1
𝐶𝑘

)
. (27)

where we have used the inequalities 𝑁𝑛
𝑘
(𝐶, 𝜂) ≤ #A𝑛

𝐶𝑘+1 ≤ 𝐶𝑘+1 + 1. This implies (22) and completes the
proof. □

To establish Lemma 20 and bound 𝑀𝑛
𝑘
we use the following estimate on Pólya urns, which may be

shown by following verbatim the proof of Lemma A.1 from [9].

Lemma 22. Fix an integer 𝑧0 > 0 and set 𝑈0 = 1. Let (𝑧𝑛)𝑛≥1 ∈ {−1, 1}N, set 𝑍𝑛 =
∑𝑛

𝑖=0 𝑧𝑖 . Assume that
𝑍𝑛 > 0 for every 𝑛 ≥ 1 and

∑∞
𝑛=0 1/𝑍 2

𝑛 < ∞. Let (𝑈𝑛)𝑛≥1 be a sequence of random non-negative integers such
that for every 𝑛 ≥ 0,

P(𝑈𝑛+1 = 𝑈𝑛 + 𝑧𝑛+1 |𝑈𝑛) =
𝑈𝑛

𝑍𝑛

; P(𝑈𝑛+1 = 𝑈𝑛 |𝑈𝑛) =
𝑍𝑛 −𝑈𝑛

𝑍𝑛

.

Almost surely for every 𝑡 ≥ 0

P

(
sup
𝑖≥1

����𝑈𝑖

𝑍𝑖

− 1
𝑧0

���� > 𝑡
1
𝑧0

)
≤ 2 exp

(
− (𝑡2/4) (1/𝑧0)∑

𝑛≥1 1/𝑍 2
𝑛 + 𝑡 max

(∑
𝑛≥1 1/𝑍 2

𝑛,max𝑛≥1 1/𝑍𝑛

) ) .
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Proof of Lemma 20. We apply Lemma 22 with 𝑡 = 𝑘2, 𝑧0 = 𝑆𝑛
𝐶𝑘
, 𝑧𝑖 = 𝑥𝑛

𝐶𝑘+𝑖 for 1 ≤ 𝑖 ≤ 𝐶𝑘+1 − 𝐶𝑘 and
𝑧𝑖 = 1 for all 𝑖 > 𝐶𝑘+1 − 𝐶𝑘 , and 𝑈𝑖 being the number of active vertices in a given tree of F𝑛

𝐶𝑘 ,𝐶𝑘+𝑖 .
Thus, writing 𝑋𝑘 for the number of active vertices of a given tree of the forest F𝑛

𝐶𝑘 ,𝐶𝑘+1 , writing 𝛿𝑛
𝑘
B∑

𝐶𝑘<𝑛≤𝐶𝑘+1 1/(𝑆𝑛𝑖 )2 +
∑

𝑗≥1 1/(𝑆𝑛𝐶𝑘+1 + 𝑗)2, and 𝜀𝑛
𝑘
B max𝐶𝑘<𝑖≤𝐶𝑘+1 1/𝑆𝑛𝑖 ,

P
(
𝑋𝑘/𝑆𝑛𝐶𝑘+1 > (1 + 𝑘2)/𝑆𝑛

𝐶𝑘

)
≤ 2 exp

(
−

(𝑘4/4)/𝑆𝑛
𝐶𝑘

𝛿𝑛
𝑘
+ 𝑘2max(𝛿𝑛

𝑘
, 𝜀𝑛

𝑘
)

)
.

And by (21), as 𝑘, 𝑛 → ∞ with 𝐴𝑛 ≤ 𝐶𝑘 ≤ 𝑛/𝐶 , we have 𝑆𝑛
𝐶𝑘

≤ 𝐶𝑘 + 1, 1/𝑆𝑛
𝐶𝑘

= O(1/𝐶𝑘 ), 𝜀𝑛
𝑘
= O(1/𝐶𝑘 ) and

𝛿𝑛
𝑘
= O(1/𝐶𝑘 ), thus for every 𝑘 large enough,

P
(
𝑋𝑘 > 𝑘3

)
≤ 2𝑒−𝑘

2/O(1) .

Then, since there are at most 𝑆𝑛
𝐶𝑘

= O(𝐶𝑘 ) trees in F𝑛

𝐶𝑘 ,𝐶𝑘+1 , for 𝑛 large enough, for every 𝑘 ∈ N, with
𝐴𝑛 ≤ 𝐶𝑘 ≤ 𝑛/𝐶 ,

P
(
𝑀𝑛

𝑘
> 𝑘3

)
≤ 𝑆𝑛

𝐶𝑘2𝑒−𝑘
2/O(1) ≤ 1/𝑘2. □

6 Application: contact-tracing in a stochastic SIR dynamics

Our results can be applied to study the so-called “infection tree” of a stochastic SIR dynamics, which
is a classical model for the evolution of epidemics (for background on stochastic epidemic models, see
[4, 12]). We assume that initially there is 1 infectious individual (that has just become infected) and 𝑛

susceptible individuals. The infectious periods of different infectives are i.i.d distributed according to an
exponential random variable of parameter 1. During her infectious period an infective makes contacts
with a given individual at the time points of a time homogeneous Poisson process with intensity 𝜆𝑛 . If
a contacted individual is still susceptible, then she becomes infectious and is immediately able to infect
other individuals. An individual is considered “removed” once her infectious period has terminated, and
is then immune to new infections, playing no further part in the epidemic spread. The epidemic ceases
as soon as there are no more infectious individuals present in the population. All Poisson processes are
assumed to be independent of each other; they are also independent of the infectious periods.

We call a “step” an event where either a susceptible individuals becomes infective, or where an infec-
tious period terminates. Denote by 𝜏𝑛 the number of steps made when the epidemic ceases. For 0 ≤ 𝑘 ≤ 𝜏𝑛 ,
let T𝑛

𝑘
be the infection tree after 𝑘 steps, in which the vertices are individuals and where edges correspond

between two individuals if one has infected the other. We are interested in the evolution of the associated
“infection tree” (T𝑛

𝑘
)0≤𝑘≤𝜏𝑛 , as well as in the shape of the full infection tree T𝑛𝜏𝑛 when the epidemic ceases.

Let (𝐻𝑛
𝑘
, 𝐼𝑛
𝑘
)𝑘≥0 be a Markov chain with initial state (𝐻𝑛

0 , 𝐼
𝑛
0 ) = (𝑛, 1) and transition probabilities given

by

(𝐻𝑛
𝑘+1, 𝐼

𝑛
𝑘+1) =


(𝐻𝑛

𝑘
− 1, 𝐼𝑛

𝑘
+ 1) with probability 𝜆𝑛𝐻

𝑛
𝑘

1+𝜆𝑛𝐻𝑛
𝑘

(𝐻𝑛
𝑘
, 𝐼𝑛
𝑘
− 1) with probability 1

1+𝜆𝑛𝐻𝑛
𝑘

with {(𝑘, 0) : 0 ≤ 𝑘 ≤ 𝑛} as absorbing states. Observe that evolution of the number of susceptible
individuals and the number of infectious individuals in the infection tree evolves according to this Markov
chain. Then define the random sequence X𝑛 = (X𝑛

𝑖 )1≤𝑖≤𝜏 ′𝑛 of ±1 as follows: let 𝜏 ′𝑛 be the absorption time
of the Markov chain, and for 1 ≤ 𝑖 ≤ 𝜏 ′𝑛 set X𝑛

𝑖 = 𝐼𝑛𝑖 − 𝐼𝑛𝑖−1.
Then by construction, it is clear that:

(T𝑛
𝑘
)0≤𝑘≤𝜏𝑛

(𝑑 )
= (T𝑘 (X𝑛))0≤𝑘≤𝜏 ′𝑛 .
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To simplify notation, let T𝑛 = T𝑛𝜏𝑛 be the full infection tree when the epidemic ceases. We also identify
the random variables in the above equality in distribution.

Theorem 23. The following assertions hold.

(1) Assume that 𝜆𝑛 ∼ 𝜆/𝑛 for some 𝜆 > 0. Then T𝑛 converges in distribution locally towards a Bienaymé
tree with offspring distribution G(1/(1 + 𝜆)).

(2) Assume that 𝜆𝑛 ≫ 1/𝑛. Then T𝑛 is not tight for the topology of the local convergence.

Proof. Let us first assume 𝜆𝑛 ∼ 𝜆/𝑛 as 𝑛 → ∞ for some 𝜆 > 0. To prove the local convergence in
distribution of T𝑛 towards a Bienaymé tree, it is enough by Theorem 1 and Theorem 2 to prove that (𝐼𝑛

𝑘
)𝑘≥0

converges in distribution for the product topology towards the randomwalk (𝑆𝑘 )𝑘≥0 such that 𝑆𝑘+1−𝑆𝑘 = 1
with probability 𝜆/(1 + 𝜆) and 𝑆𝑘+1 − 𝑆𝑘 = −1 with probability 1/(1 + 𝜆). Indeed, the local convergence of
T𝑛 (X𝑛) implies the local convergence of T𝑛 . So as to achieve this, one can first see that since 𝐻𝑛

𝑘
≤ 𝑛 for

all 𝑘 ≥ 0, we have
𝜆𝑛𝐻

𝑛
𝑘

1 + 𝜆𝑛𝐻
𝑛
𝑘

≤ 𝑛𝜆𝑛

1 + 𝑛𝜆𝑛
−→
𝑛→∞

𝜆

1 + 𝜆
.

But we also have

inf
𝑘≤

√
𝑛

𝜆𝑛𝐻
𝑛
𝑘

1 + 𝜆𝑛𝐻
𝑛
𝑘

≥ 𝜆𝑛 (𝑛 −
√
𝑛)

1 + 𝑛𝜆𝑛
−→
𝑛→∞

𝜆

1 + 𝜆
.

For all 𝑘0 ≥ 0, one can thus build a coupling between (𝐼𝑛
𝑘
)0≤𝑘≤𝑘0 and (𝑆𝑘 )0≤𝑘≤𝑘0 such that the two walks

coincide w.h.p. until time 𝑘0 as 𝑛 → ∞. This concludes the proof of the local limit result.
For (2), the absence of local limit for T𝑛 stems from Theorem 1 and from the fact that (𝐼𝑛

𝑘
)𝑘≥0 converges

in distribution with respect to the product topology towards (𝑘 + 1)𝑘≥0 since for all fixed 𝑘 ≥ 0, the
transition probability 𝜆𝑛𝐻𝑛

𝑘
/(1 + 𝜆𝑛𝐻

𝑛
𝑘
) converges to 1 as 𝑛 → ∞. □

Theorem 24. The following assertions hold.

(1) Assume that 𝜆𝑛 ∼ 𝜆/𝑛 for some 𝜆 > 1. Let 𝐴 be the event of survival of a Bienaymé process with
offspring distribution G(1/(1 + 𝜆)).

(a) The convergence (
𝐼𝑛⌊𝑛𝑡 ⌋
𝑛

)
𝑡≥0

(𝑑 )
−→
𝑛→∞

(max(2 − 2𝑔(𝑡) − 𝑡, 0)1𝐴)𝑡≥0, (28)

holds in distribution for the topology of uniform convergence on compact sets, where 𝑔 is the
solution of the ordinary differential equation 𝑔′(𝑡) = −𝜆𝑔(𝑡)/(1 + 𝜆𝑔(𝑡)) with 𝑔(0) = 1.

(b) For all 𝑛 ≥ 1, conditionally given T𝑛 , let 𝑉𝑛
1 and 𝑉𝑛

2 be independent uniform vertices of T𝑛 . Then

H(𝑉𝑛
1 )

ln𝑛
(𝑑 )
−→
𝑛→∞

𝜆

𝜆 − 1
1𝐴 and

𝑑𝑛 (𝑉𝑛
1 ,𝑉

𝑛
2 )

ln𝑛
(𝑑 )
−→
𝑛→∞

2𝜆
𝜆 − 1

1𝐴, (29)

where H(𝑉𝑛
1 ) is the height of 𝑉𝑛

1 in T𝑛 and 𝑑𝑛 denotes the graph distance in T𝑛 .

(2) Assume that 𝜆𝑛 ≫ 1/𝑛.

(a) The convergence (
𝐼𝑛⌊𝑛𝑡 ⌋
𝑛

)
0≤𝑡≤2

P−→
𝑛→∞

(min(𝑡, 2 − 𝑡))0≤𝑡≤2, (30)

holds in probability for the topology of uniform convergence.
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Figure 10: Left: simulation of (𝐻𝑛, 𝐼𝑛) for 𝜆𝑛 = 2/𝑛 and 𝑛 = 10000 (𝐻𝑛 in blue and 𝐼𝑛 in red).

Centre: the corresponding fluid limit. Right: simulation of (𝐻𝑛, 𝐼𝑛) for 𝜆𝑛 = 2 and𝑛 = 100000.

(b) We have

H(𝑉𝑛
1 )

ln𝑛
L𝑝−→

𝑛→∞
1,

𝑑𝑛 (𝑉𝑛
1 ,𝑉

𝑛
2 )

ln𝑛
L𝑝−→

𝑛→∞
2 and

Height(T𝑛)
ln(𝑛)

P−→
𝑛→∞

𝑒. (31)

We observe that the solution 𝑔 of the differential equation can be expressed using the Lambert 𝑊
function.

Remark 25. It would be very interesting to obtain a limit theorem forHeight(T𝑛) in the setting of Theorem
24 (1) (b). This requires more work, because the behavior of the number of infected/active vertices near
the extinction time 𝜏 ′𝑛 should give a non-negligible contribution to the height.

Proof of Theorem 24. For (1) (a), we assume 𝜆 > 1 and we determine the fluid limit of the chain (𝐻𝑛, 𝐼𝑛). Let
(𝐻𝑛, 𝐼̃𝑛) be a Markov chain which has the same initial conditions as (𝐻𝑛, 𝐼𝑛) and the same transition prob-
abilities but which is not stopped when 𝐼̃𝑛 reaches zero. We check that (28) holds using the classical theory
of fluid limits of Markov chains (see e.g. [28] or [15]), and more precisely a combination of Grönwall’s
inequality with Doob’s maximal inequality.

We claim that it is enough to show that(
𝐻𝑛

⌊𝑛𝑡 ⌋
𝑛

)
𝑡≥0

P−→
𝑛→∞

(𝑔(𝑡))𝑡≥0, (32)

uniformly on compacts. Indeed, it is easy to see that 𝐼̃𝑛
𝑘

= 2(𝑛 − 𝐻𝑛
𝑘
) − 𝑘 + 1 so that (32) entails the

convergence (
𝐼̃𝑛⌊𝑛𝑡 ⌋
𝑛

)
𝑡≥0

P−→
𝑛→∞

(2 − 2𝑔(𝑡) − 𝑡)𝑡≥0, (33)

uniformly on compacts. Let us check that this implies (28). Since 𝑡 ↦→ 2 − 2𝑔(𝑡) − 𝑡 is concave, starts
from zero at time zero, stays positive and then goes below zero, it is thus enough to identify the limit of
the probability that the chain 𝐼̃𝑛 reaches zero before time 𝜀𝑛 as 𝑛 → ∞ and 𝜀 → 0 as the probability of
extinction of a G(1/(1+ 𝜆))-Bienaymé process. To this end, for all 𝜀 > 0, for 𝑛 large enough, for all 𝑘 ≤ 𝜀𝑛,
since 𝑛 ≥ 𝐻𝑛

𝑘
≥ (1 − 𝜀)𝑛 we have

𝜆

1 + 𝜆
− 𝜀 ≤ (1 − 𝜀) 𝑛𝜆𝑛

1 + 𝑛𝜆𝑛
≤

𝜆𝑛𝐻
𝑛
𝑘

1 + 𝜆𝑛𝐻
𝑛
𝑘

≤ 𝑛𝜆𝑛

1 + 𝑛𝜆𝑛
≤ 𝜆

1 + 𝜆
+ 𝜀.

Thus, one can couple (𝐼𝑛, 𝐻𝑛) until time 𝜀𝑛 with two simple random walks (𝑌 𝜀

𝑘 )𝑘≥0 and (𝑌 𝜀
𝑘
)𝑘≥0 starting

from one such that
P(𝑌 𝜀

1 = 1) = 𝜆

1 + 𝜆
+ 𝜀 and P(𝑌 𝜀

1 = 1) = 𝜆

1 + 𝜆
− 𝜀
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so that for all 𝑛 large enough, for all 𝑘 ≤ 𝜀𝑛,

𝑌 𝜀
𝑘
≤ 𝐼̃𝑛

𝑘
≤ 𝑌

𝜀

𝑘 . (34)

Since the probabilities that the random walks 𝑌 𝜀 and 𝑌
𝜀
starting from 1 reach the negative integers con-

verge both as 𝜀 → 0 to the probability of extinction of a G(1/(1+𝜆))-Bienaymé process, we get the desired
result.

It remains to check (32). This is a rather direct application of Lemma 6.5 in [14] (which remains clearly
true if we add a superscript𝑛 to all the objects). More precisely, let 𝑡 > 0, for all 𝑘 ≥ 0 let𝑋𝑛

𝑘
= 𝐻𝑛

𝑘
−𝑛𝑔(𝑘/𝑛)

and let (F𝑛
𝑘
)𝑘≥0 be the natural filtration associated with𝑋𝑛 . This lemma states that if there exists a constant

𝐶 > 0 such that for all 𝑛 ≥ 1, for all 0 ≤ 𝑘 ≤ 𝑛𝑡 ,��E(𝑋𝑛
𝑘+1 − 𝑋𝑛

𝑘

��F𝑛
𝑘

) �� ≤ 𝐶

𝑛
(1 + sup

0≤ 𝑗≤𝑛𝑡
|𝑋𝑛

𝑗 |) a.s. and E
( (
𝑋𝑛
𝑘+1 − 𝑋𝑛

𝑘

)2) ≤ 𝐶, (35)

then sup0≤𝑘≤𝑛𝑡 |𝑋𝑛
𝑘
|/𝑛 → 0 in probability as 𝑛 → ∞, hence (32).

To show (35), we first compute

E
(
𝑋𝑛
𝑘+1 − 𝑋𝑛

𝑘

��F𝑛
𝑘

)
= −

𝜆𝐻𝑛
𝑘
/𝑛

1 + 𝜆𝐻𝑛
𝑘
/𝑛

− 𝑛

(
𝑔

(
𝑘 + 1
𝑛

)
− 𝑔

(
𝑘

𝑛

))
.

Thus, using Taylor at order 2 and using the definition of 𝑔 one gets that�����E
(
𝑋𝑛
𝑘+1 − 𝑋𝑛

𝑘
+

𝜆𝐻𝑛
𝑘
/𝑛

1 + 𝜆𝐻𝑛
𝑘
/𝑛

− 𝜆𝑔(𝑘/𝑛)
1 + 𝜆𝑔(𝑘/𝑛)

�����F𝑛
𝑘

)����� ≤ 𝐶

𝑛
,

for some constant 𝐶 > 0. Moreover, the function 𝑥 ↦→ 𝑥/(1 + 𝑥) is 1-Lipschitz on [0,∞). Thus, the first
inequality of (35) is satisfied. The second one is clearly satisfied since 𝐻𝑛

𝑘+1 − 𝐻𝑛
𝑘
∈ {0,−1} and since 𝑔 is

differentiable, hence (32).
We now turn to (1) (b). We essentially apply Theorem 4 with 𝑐 = (𝜆 − 1)/(𝜆 + 1) and 𝐴𝑛 = log log𝑛.

However, the rub is that the fluid limit reaches zero so that we can not apply it directly. To overcome this
issue, let 𝑡0 > 0 be the unique positive time at which 2 − 2𝑔(𝑡0) − 𝑡0 = 0. We shall check that we are in
position to apply Theorem 4 to the subtree T⌊ (𝑡0−𝜀 )𝑛⌋ (X𝑛). This will indeed enable us to conclude since if
𝑉𝑛
1 and 𝑉𝑛

2 are two independent uniform random vertices of T𝑛 , then by Lemma 6,

P(b𝜏 ′𝑛 (𝑉
𝑛
1 ) ≤ (𝑡0 − 𝜀)𝑛) = P(b𝜏 ′𝑛 (𝑉

𝑛
2 ) ≤ (𝑡0 − 𝜀)𝑛) ≥ 1 − 𝜀 + 𝑜 (1) as 𝑛 → ∞.

To check that Theorem 4 applies to the subtree T⌊ (1−𝜀 )𝜏 ′𝑛 ⌋ (X𝑛) with 𝑐 = (𝜆 − 1)/(𝜆 + 1) and 𝐴𝑛 = log log𝑛,
it remains to show that for all 𝜀 > 0, there exists 𝛿 > 0 such that on the event “𝐼𝑛

𝑘
> 0 for all 𝑘 ≤ 𝜀𝑛”,

max
log log𝑛≤𝑘≤𝛿𝑛

���� 𝐼𝑛𝑘𝑘 − 𝜆 − 1
𝜆 + 1

���� ≤ 𝜀 + 𝑜 (1)

in probability as 𝑛 → ∞. In turn, it is enough to prove that for every 𝜀 > 0 we have

max
log log𝑛≤𝑘≤𝜀𝑛

����� 𝐼̃𝑛𝑘𝑘 − 𝜆 − 1
𝜆 + 1

����� ≤ 𝜀 + 𝑜 (1)

in probability as 𝑛 → ∞. This follows by combining the coupling (34) with the law of large numbers.
We now turn to (2) (a) and assume 𝜆𝑛 ≫ 1/𝑛. Let us first establish that if 𝛿 > 0, then(

𝐼𝑛⌊𝑛𝑡 ⌋
𝑛

)
0≤𝑡≤1

P−→
𝑛→∞

(𝑡)0≤𝑡≤1 and sup
log log𝑛≤𝑘≤(1−𝛿 )𝑛

���� 𝐼𝑛𝑘𝑘 − 1
���� P−→

𝑛→∞
0, (36)
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where the first convergence holds for the topology of the uniform convergence. Let 𝛿 > 0. Note that for
all 𝑘 ≤ (1 − 𝛿)𝑛 we have 𝐻𝑛

𝑘
≥ 𝛿𝑛. As a result, for all 𝜀 > 0, for 𝑛 large enough, for all 𝑘 ≤ (1 − 𝛿)𝑛.

1 − 𝜀 ≤
𝜆𝑛𝐻

𝑛
𝑘

1 + 𝜆𝑛𝐻
𝑛
𝑘

≤ 1.

One can thus obtain (36) by coupling 𝐼𝑛
𝑘
with a simple random walk (whose step is +1 with probability

1 − 𝜀).
We now explain why (36) implies (30). By (36), 𝐻𝑛

𝑛 = 𝑜 (𝑛) with high probability, so that after time 𝑛
there are 𝑜 (𝑛) remaining steps of +1 for 𝐼𝑛 and all the other steps are −1. Hence, for the topology of the
uniform convergence, (

𝐼𝑛⌊𝑛𝑡 ⌋
𝑛

)
1≤𝑡≤2

P−→
𝑛→∞

(2 − 𝑡)1≤𝑡≤2,

and this concludes the proof of (30).
We finally turn to (2) (b). As in the proof of (1) (a), the first two convergences of (31) are proved by

applying Theorem 4 to the tree T⌊ (2−𝜀 )𝑛⌋ (X𝑛) for some 𝜀 > 0 small enough. The last convergence of (2)
(b) is more delicate. The idea is to apply Theorem 4 to the tree T𝑛 (X𝑛) and then to show that the vertices
added between times 𝑛 and 𝜏 ′𝑛 , in a first approximation, do not affect the height.

More precisely, by Theorem 4 the height of T𝑛 (X𝑛) divided by ln𝑛 converges in probability towards 𝑒 .
To understand how the height of T𝑛 behaves compared to T𝑛 (X𝑛) we need to estimate the quantity

h𝑛 B
𝜏 ′𝑛−1∑︁
𝑖=𝑛

1
𝐼𝑛
𝑖

1{X𝑛
𝑖
=1} .

Indeed, as we have already seen multiple times, roughly speaking this quantity represents “the height”
added between times 𝑛 and 𝜏 ′𝑛 . Define X̂𝑛

𝑖 = −X𝑛
𝜏 ′𝑛−𝑖

and 𝑆𝑛𝑖 = 𝐼𝑛
𝜏 ′𝑛−𝑖

= X̂𝑛
1 + · · · + X̂𝑛

𝑖 for all 0 ≤ 𝑖 ≤ 𝜏 ′𝑛 . Then

h𝑛 =

𝜏 ′𝑛−𝑛∑︁
𝑖=1

1
𝑆𝑛
𝑖

1{X̂𝑛
𝑖
=−1} .

In a similar way that we have proved that (𝐼𝑛𝑖 )0⩽𝑖⩽𝑛 satisfies the assumptions (2) with high probability, one
shows that (𝑆𝑛𝑖 )0⩽𝑖⩽𝜏 ′𝑛−𝑛 also satisfies those assumptions with high probability. Therefore, one could easily
adapt the convergence of Theorem 4 (1) to show that that h𝑛 divided by ln𝑛 converges to 0 in probability
(indeed, if in Theorem 4 we look at h−𝑛 instead of h+𝑛 , where h−𝑛 consists of the sum over the −1 steps instead
of the +1 steps, then, we have that h−𝑛 divided by ln𝑛 converges to (1 − 𝑐)/(2𝑐)). It remains to show how
it implies that Height(T𝑛) = Height(T𝑛 (X𝑛)) + 𝑜 (ln𝑛). To do so we will use, once again, the coalescence
construction and Bennett’s inequality. By Algorithm 2, conditionally on 𝜏 ′𝑛 and (𝐼𝑛𝑖 )0⩽𝑖⩽𝜏 ′𝑛 , the height of
any new vertex added between time 𝑛 and 𝜏 ′𝑛 is stochastically dominated by Height(T𝑛 (X𝑛)) + ∑𝜏 ′𝑛−1

𝑖=𝑛
𝑌𝑖

where (𝑌𝑛
𝑖 )𝑛⩽𝑖⩽𝜏 ′𝑛−1 are i.i.d Bernoulli random variables of respective parameters (1/𝐼𝑛𝑖 1{X𝑛

𝑖
=1})𝑛⩽𝑖⩽𝜏 ′𝑛−1.

Using Bennett’s inequality and a union bound we obtain that, for all 𝜀 > 0

P(Height(T𝑛) − Height(T𝑛 (X𝑛)) ≥ h𝑛 + 𝜀 ln𝑛) ≤ 𝑛 exp
(
−h𝑛𝑔

(
𝜀 ln𝑛
h𝑛

))
where 𝑔(𝑢) = (𝑢 + 1) ln(𝑢 + 1) − 𝑢 ∼ 𝑢 ln𝑢 as 𝑢 → +∞. Since h𝑛 = 𝑜 (ln𝑛) it is a simple matter to check
that the above upper bound goes to 0 when 𝑛 goes to∞ and thus Height(T𝑛) is of order 𝑒 ln𝑛. □
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7 Perspectives and extensions

We mention here some perspectives for future research in the direction of studying the impact of freezing
in random graph models.

(1) What is the number of ends of T∞?
(2) It would be interesting to study the evolution of the sizes of the trees in the forests obtained by

Algorithm 2 (in the particular case where x𝑛 = 1 for every 𝑛 ≥ 1 this corresponds to Kingman’s
coalescent), as well as the evolution of degree vertices (in the particular case where x𝑛 = 1 for every
𝑛 ≥ 1 there are nice connections with Pólya urns).

(3) Is the height of T𝑛 stochastically maximized when x𝑘 = 1 for every 1 ≤ 𝑘 ≤ 𝑛.
(4) A natural question is to obtain a limit theorem for the height of the epidemic tree T𝑛 in the setting

of Theorem 24 (1) (b) (see Remark 25).
(5) It would be very interesting to extend our results to other attachment mechanisms, such as prefer-

ential attachment, where new vertices attach to existing vertices proportional to their degree.
(6) Similarly one maywonder what happens when the frozen vertices are not chosen uniformly, notably

when vertices with high degrees are more or less likely to freeze.
(7) An important question arising in the context of growing real-world networks or in the context of

infection tracing is how to find the root, or patient zero [36]. This is a very active area of research,
sometimes called network archeology [33]. Such questions have been for instance considered for
uniform attachment and preferential attachment trees [22, 13, 29], as well as Bienaymé trees [11].
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