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Abstract. This work presents a recently developed implementation of
numerical methods for vibration problems involving nonlinear mechani-
cal systems in the finite element software Cast3M. The strategy consists
in solving the modal equations of motion for generic structures through a
continuation method. Hence, the evolution of steady-state periodic solu-
tions over given parameter ranges can be assessed. Of particular interest
are stability computations, which are performed at each continuation
step and through which any potential bifurcation is detected. Examples
showing forced and free responses of beam structures are presented.

1 Introduction

The need for numerical methods capable of tackling nonlinear differential equa-
tions has motivated a great deal of research over the course of the past few
decades, leading to the creation of efficient and robust programs dealing with
problems such as the computation and continuation of (quasi-)periodic solu-
tions, stability analyses, and bifurcation tracking for generic dynamical systems.
The most widely-known example is probably the software AUTO [1], which em-
ploys orthogonal collocation techniques coupled with arc-length continuation to
compute branches of solutions with respect to the system’s parameters. With
MANLAB [2], the same types of problems are solved through the use of a
frequency-domain (harmonic balance, HMB) approach and asymptotic numer-
ical continuation. While the generic nature of these and other freely-available
codes offers great flexibility, they are seldom used for the analysis of large-scale
finite element models, as this functionality is not an intrinsic part of their current
versions. This fact suggests that a numerical toolbox which similar capabilities,
but streamlined for the analysis of structures and integrated in a finite-element
software, would be very convenient for engineering applications. The objective
of this paper is to present such a toolbox, which has been implemented in the
open-source multi-physics code Cast3M [3]. Section 2 reviews the concepts under-
lying the solution of vibration problems by the coupled continuation/harmonic
balance method. An overview of the DYNC operator, which implements these
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algorithms, is presented in Section 3, followed by example applications in Section
4.

2 Scope

The problem considered herein is to find periodic solutions of the discrete equa-
tions of motion:

Mq̈(t) + aCq̇(t) + Kq(t) = fNL(q(t), q̇(t)) + afe(t) (1)

obtained by projecting a full finite-element model onto a basis consisting of the
first n linear eigenmodes. Hence, q ∈ Rn is the vector of modal displacements,
and the physical displacements d of any given point p = (x, y, z) on the structure
are obtained by linear combination:

d(p, t) = Φ(p)q(t) (2)

with Φ(p) ∈ Rs×n a matrix containing the eigenvectors evaluated at p. M,
C and K are, respectively, the (modal) mass, damping, and stiffness matrices,
while the vectors fe, fNL contain the modal contributions of applied external
loads (which must be periodic) and nonlinear forces. The parameter a in Eq. (1)
is introduced to distinguish between the two following cases:

(a) Forced response, a = 1 :
Mq̈(t) + Cq̇(t) + Kq(t) = fNL(q(t), q̇(t)) + fe(t)

(b) Free response, a = 0 :
Mq̈(t) + Kq(t) = fNL(q(t), q̇(t))

In the latter case, the system is Hamiltonian and and admits at least n families
of periodic solutions with fundamental frequency3 ω, parametrized by the total
cycle energy E, i.e. ω = ω(E). This corresponds to the definition of Nonlinear
Normal Modes (NNM), as initially defined by Rosenberg [4]. In the former case,
ω is fixed and equal to the driving frequency. Resonances may occur if, at the
energy level E imposed by damping and forcing, ω is close to (a multiple of) the
associated frequency of the NNM solution. This situation is clearly analogous to
the linear case.

2.1 Continuation with the Harmonic Balance Method

We adopt the real HBM formalism, i.e. the modal displacement vector is assumed
to be periodic and therefore expanded as a real Fourier series truncated at the
H-th harmonic:

q(t) = (FH(ωt)⊗ In)Q (3)

FH(ωt) =
[

1, cos(ωt), sin(ωt), . . . cos(Hωt), sin(Hωt)
]

3 Throughout this paper, the term frequency will be used to mean angular frequency,
with units of rad/s.
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where ⊗ represents the Kronecker tensor product and Q ∈ Rn(2H+1) is the vector
of Fourier coefficients. Once expressions similar to Eq.(3) are introduced for every
time-dependent term, a Galerkin projection of the problem onto the frequency
domain is performed by taking the scalar product of Eq. (1) with

(
FTH(ωt)⊗ In

)
.

This leads to the following set of n(2H + 1) nonlinear algebraic equations to be
solved for the Fourier coefficients Q and (potentially) the frequency ω:

R(Q, ω) =
[
ω2(∇2 ⊗M) + aω(∇⊗C) + IL ⊗K

]
Q−FNL(Q, ω)− aFe(ω) = 0

(4)
where uppercase terms contain the Fourier coefficients of the time-domain vari-
ables appearing in Eq. (1). Solving Eq. (4) is equivalent to finding an approximate
periodic solution of the (free or forced) equations of motion which is correct up
to the H-th harmonic. To this end, a typical root-finding algorithm is used, such
as the Newton-Raphson method. Two cases may arise, depending on the type
of problem:

(a) Forced response: the residue R is a function of Q only and the problem
YF(Q) = R(Q) = 0 is well-posed.

(b) Free response: the frequency is an additional unknown. Since the system
is autonomous, solutions with a given total energy are invariant with re-
spect to translations in time. In other words, an infinite family of solu-
tions exist, parametrised by phase, and so a particular solution must be
selected through the inclusion of a phase equation. Without loss of gener-
ality, we here choose: q̇1(0) = 0 =⇒ g(Q) = 0. In addition, since so-
lutions exist for any E = QTQ, the equation h(Q) = E(Q) − E0 is ap-
pended to fix the norm of Q. In this way we may choose E0 to be small,
so that an initialisation from a linear mode is close to the nonlinear solu-
tion. This greatly facilitates convergence but over-constraints the problem,
so: Fb = b(∇ ⊗ In)Q is added to R. By treating the relaxation parameter
b as an additional unknown, a closed system is obtained, i.e.: the problem
YNNM(Q, ω, b) = [R(Q, ω, b), g(Q), h(Q)] = 0 is well-posed. Please note
that, as Fb is dissipative and there is no forcing, the only allowable value is
b = 0, thus it is actually the free response which is been computed.

Since no analytical expression is available for the Fourier coefficients of generic
nonlinear functions, the Alternating Frequency-Time (AFT) approach proposed
by Cameron and Griffin [5] is used instead. Briefly stated, this consists in eval-
uating the forces in the time domain by first applying an inverse Fourier trans-
form on Q, and then projecting them back on the frequency domain by a direct
transform. Hence, the iterative solution of Eq. (4) can be summarized by dia-
gram shown in Fig. 1. It should be noted that the Jacobian matrix J of YF or
YNNM, which contains derivatives with respect to Q and ω, can be obtained in
the same way, by means of a finite-difference scheme or by direct computation
if a closed-form definition of the corresponding derivative in time is known.
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Fig. 1. AFT algorithm.

Starting from a converged solution (Q0,ω0) to the equations of motion, whole
branches in the (Q, γ)-space are calculated step-by-step through the use of
pseudo arc-length continuation (see for example [6]), where γ is usually equal
to ω in both cases, although a different parameter -e.g., forcing amplitude- can
be used for the forced case. Assuming γ = ω for simplicity, the algorithm oper-
ates in the following way:

1. Lower and upper continuation bounds are specified: ω ∈ [ωmin, ωmax] for the
forced response, or E ∈ [Emin, Emax] for NNMs.

2. From the initial solution, a step of size ∆s is taken along the direction
t1 =

[
∆QT , ∆ω

]
, tangent to the implicit curve C(Q0, ω0) = 0. This implies

that an arc-length equation of the form: ||∆Q||2 + (∆ω)2 = (∆s)2 has to
be included in the system. For the forced response, the equation is simply
appended and the frequency is freed. For the free response, it is the total
energy which is now free to vary, so the arc-length equation replaces h(Q)
and the artificial parameter b is kept.

3. In the likely case that the new point (Q1,ω1) = (Q0+∆Q,ω0+∆ω) does not
satisfy dynamical equilibrium, Newton-Raphson corrections are performed
in a direction perpendicular to t1 until convergence.

4. Step-size ∆s is automatically adapted for the next step as a function of the
number of iterations required for convergence in the present step.

5. The process is repeated while the condition stated in the first step is verified.

2.2 Stability & bifurcations

Whereas time-integration methods can only find stable solutions of Eq. (1), un-
stable ones are also within the scope of the HBM. A local stability evaluation is
performed at each continuation step by considering a small perturbation η(t) ap-
plied to a converged cycle. This leads to a linear, autonomous, periodic-coefficient
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differential equation of second order for the perturbation, which admits 2n solu-
tions of the form: ηj(t) = eλjt

[
(FH(ωt)⊗ In)φj

]
according to Floquet theory,

with φj ∈ Rn(2H+1). The Floquet exponents λj , j = 1, ..., 2n determine the sys-
tem’s stability: if <(λj) < 0 ∀j, the perturbation decays with time and the
underlying cycle is stable. Following [7], the Floquet exponents can be directly
computed in the frequency domain within the real HBM framework through
Hill’s method, which consists in solving the quadratic eigenvalue problem:[

RQ + λjD1 + λ2jD2

]
φj = 0 (5)

RQ = ∂R
∂Q ; D1 = 2ω(∇⊗M) + a(I2H+1 ⊗C); D2 = I2H+1 ⊗M

Eq. (5) holds for both forced and free systems, although the latter includes a
singular value of multiplicity 2 owing from its Hamiltonian nature, which must
therefore be shifted away from zero in order to have a meaningful stability anal-
ysis, as explained in [8].
Codimension-1 bifurcations are detected whenever a stability change occurs be-
tween two consecutive steps. In that case, the way in which the imaginary axis
is crossed characterises the type of bifurcation; letting ρ equal =(λj) for j such
that <(λj) = 0:

1. ρ = 0 =⇒ Limit Point (generally) or Branch Point (for symmetric systems).
2. ρ = ±κ, 0 < |κ| < ω/2 =⇒ Neimark-Sacker (torus) bifurcation.
3. ρ = ±ω/2 =⇒ period doubling.

A precise localisation of bifurcation points is achieved through Newton-Raphson
iterations applied on particular extended systems, which include constraints
characterising each type along with dynamical equilibrium. More details can
be found in references [9] and [10].

3 The DYNC operator

The methods described above have been implemented in the form of an opera-
tor, called DYNC (for DYNamic Continuation), in the most recent version of
Cast3M. In this way, not only can systems of arbitrarily complicated geome-
tries be studied, but one also benefits from the wide library of non-linear forces
(linkages) which is already present in the software.

3.1 Linkages

Nonlinear forces may be defined in terms of either modal or physical displace-
ments and velocities. The former, which we will refer to as base-A linkages
in Cast3M jargon, are straightforwardly computed by AFT. The latter, base-
B linkages, require two additional steps. Firstly, the physical displacements
at the Nc contact points must be computed through Eq. (2), thus yielding

di = d(pi, t),∀i = 1, ..., Nc, so that the forces in physical space, f̂NL(di, ḋi), can
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be evaluated. Secondly, these forces must be projected to modal basis. Looping
over all linkages, the total force vector is given by:

fNL(q, q̇) =

Nc∑
i=1

ΦT (pi)
[
f̂NL(di, ḋi)

]
+ fANL(q, q̇)

= fBNL(q, q̇) + fANL(q, q̇)

(6)

where the second terms groups all base-A linkages. As the contact points are
specified beforehand in most situations, the matrices Φ(pi) are computed and
stocked during the pre-processing stage.

3.2 Problem setup

In Cast3M, a structural dynamics problem is defined by writing a text file with
.dgibi extension, containing a series of statements in the OOP-language GIB-
IANE4. This leads to the definition of several Table objects, which operators
can read and exploit. In our case, the call to DYNC has the syntax:

TAB1 = DYNC TMOD TCHR TLIA TAMOR TINI TNUM NHBM NFFT;

where NHBM and NFFT are two integers indicating, respectively, the desired
number of harmonics and FFT samples, while the remaining inputs are the
following Table objects:

1. TMOD: modal basis.
2. TCHR: external loadings (if forced response).
3. TLIA: linkages.
4. TAMOR: damping (if forced response).
5. TINI: approximation to the first solution (optional).
6. TNUM: setting for the numerical continuation, including: problem type,

max./min. step-size, among others.

Remarks: The modal basis table TMOD is simply computed by a call to the
Cast3M operator VIBR. A detailed description of all currently-supported link-
ages is included in the Manual Pages page of the website, under the tag DYNE5.
The output table TAB1 consists of two sub-tables: the first one stocks the Fourier
coefficients, frequencies, Floquet exponents, and stabilities at each continua-
tion step, while the second one stocks the bifurcations found along the response
curves.

4 Detailed explanations, tutorials and examples can be found on the Cast3M website.
While most commands in the GIBIANE language use French words, documentation
is available both in French and English.

5 DYNE is the explicit time-integration operator in Cast3M, which uses the same
library of nonlinear forces.
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4 Examples

This section briefly presents example calculations performed with DYNC. The
.dgibi files corresponding to the test cases herein are available under the Examples
page of the Cast3M website, and described succinctly in Fig. 2 and Tab. 1. A
summary of the main parameters is as follows:

1. Duffing oscillator: NHBM = 5, NFFT = 28, n = 1, point mass, base-A
linkage.

2. Jeffcot rotor: NHBM = 7, NFFT = 28, n = 2, point mass, base-B linkage.

3. Cantilever beam: NHBM =15, NFFT = 210, system modelled with 50 beam
elements, base-B linkage. The case n = 3 is shown for NNM computation.

Note: The inherently non-smooth impact forces involved in the last exam-
ples have been replaced by a smooth approximation in order to enhance the
performance of pseudo arc-length continuation, following the method proposed
in [11]. This is not strictly necessary if contact stiffness is moderate (which is
not the case of the dync03.dgibi test case). The option to smooth contact forces
is supported by the current version of the program.
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Fig. 2. Schematic representations of the three example systems: a) Duffing oscillator,
b) Jeffcott rotor, c) cantilever beam.
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*.dgibi System Cast3M Linkage Force

dync01 Duffing oscillator COUPLAGE DEPLACEMENT Geometric nonlinearity

dync02 Jeffcott rotor POINT CERCLE FROTTEMENT Frictional (annular) contact

dync03 Cantilever beam POINT PLAN Bilateral elastic impacts
Table 1. Test cases.

Duffing : courbe de reponse + bifurcations
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Fig. 3. Duffing oscillator: frequency response (black) and backbone curve (blue). Notice
the limit points (diamonds).
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Jeffcott : courbe de reponse + bifurcations

Fig. 4. Jeffcott rotor: frequency response; notice the Neimark-Sacker (triangle) and
limit point (diamond) bifurcations.

5 Conclusions

The objective of the present contribution was to introduce the novel Cast3M
operator DYNC. While other excellent resources exist for the bifurcation anal-
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Fig. 5. Frequency-energy plot of cantilever beam with bilateral elastic stops. Left to
right: first NNM (internal resonances labelled by markers), second NNM, third NNM.

ysis of general nonlinear systems, DYNC is tailored for the study of mechanical
engineering problems and is thus a convenient tool when geometrically-complex
structures with strong nonlinearities are considered. The current version of the
algorithm support continuation of frequency responses as well as Nonlinear Nor-
mal Modes, and will be freely available as a part of the forthcoming 2021 edition
of Cast3M. Further developments, under implementation at the time of writing
and scheduled to be released within Cast3M 2021, are bifurcation tracking and
continuation of self-excited systems.
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