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Coupling Bertoin’s and Aldous-Pitman’s representations of the
additive coalescent

Igor Kortchemski♠ & Paul Thévenin♥

Abstract

We construct a coupling between two seemingly very dierent constructions of the standard additive
coalescent, which describes the evolution of masses merging pairwise at rates proportional to their
sums. The rst construction, due to Aldous & Pitman, involves the components obtained by logging the
Brownian Continuum Random Tree (CRT) by a Poissonian rain on its skeleton as time increases. The
second one, due to Bertoin, involves the excursions above its running inmum of a linear-drifted standard
Brownian excursion as its drift decreases. Our main tool is the use of an exploration algorithm of the
so-called cut-tree of the Brownian CRT, which is a tree that encodes the genealogy of the fragmentation
of the CRT.

1 Introduction

Cutting down trees. Starting with a rooted tree, a natural logging operation consists in choosing and
removing one of its edges uniformly at random, thus splitting the tree into two connected components.
Iterating and removing edges one after another, one obtains a fragmentation process of this tree. This
model was introduced by Meir & Moon [32, 31] for random Cayley and recursive trees. They focused on
the connected component containing the root, and investigated the number of cuts needed to isolate it.
Since then, this subject has brought considerable interest for a number of classical models of deterministic
and random trees, including random binary search trees [25, 26], random recursive trees [27, 21, 12, 8] and
Bienaymé–Galton–Watson trees conditioned on the total progeny [28, 1, 24, 34, 11, 13].

It is remarkable that the so-called standard additive coalescent, which describes the evolution of masses
merging pairwise at rates proportional to their sums, can be dened (after time-reversal) using a continuous
analogue of the cutting procedure on discrete trees.

The Aldous-Pitman construction. The Aldous-Pitman fragmentation, introduced in [6], describes the
evolution of the masses of the connected components of a Brownian CRT T cut according to a Poissonian
rain P of intensity d𝜆 ⊗ d𝑡 on Sk(T) × R+, where d𝑡 is the Lebesgue measure on R+ and 𝜆 is the length
measure on the skeleton Sk(T) on T (see Sec. 2.1 for precise denitions). We set, for every 𝑡 ≥ 0,

P𝑡 := {𝑐 ∈ Sk(T), ∃ 𝑠 ∈ [0, 𝑡], (𝑐, 𝑠) ∈ P}.

Then, for every 𝑡 ≥ 0, we dene 𝑋AP(𝑡) to be the sequence of 𝜇-masses of the connected components of
T\P𝑡 , sorted in nonincreasing order, where 𝜇 is the so-called mass measure on T. Then (𝑋AP(𝑡))𝑡 ≥0 is a
fragmentation process with explicit characteristics (see [6] and more generally the book [10] for a general
theory of stochastic coalescence and fragmentation processes, as well as examples and motivation). Up
to time-reversal, 𝑋AP is closely related to the well-known standard additive coalescent [22, 6]. It is also
interesting to mention that very recently 𝑋AP has naturally appeared in the study of random uniform
factorizations of large permutations into products of transpositions [23, 36].
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The Bertoin construction. Bertoin [9] gave another construction of this fragmentation process from a
drifted standard Brownian excursion the following way. Let e be a standard Brownian excursion on [0, 1].
For every 𝑡 ≥ 0, consider the function 𝑓𝑡 : [0, 1] → R dened by 𝑓𝑡 (𝑠) = e𝑠 − 𝑡𝑠 for 𝑠 ∈ [0, 1] and denote by
𝑋B(𝑡) the sequence of lengths of the excursions of 𝑓𝑡 above its running inmum, sorted in nonincreasing
order. Bertoin [9] proves that this process has the same distribution as the Aldous-Pitman fragmentation of
a Brownian CRT, i.e. that 𝑋B and 𝑋AP have the the same distribution.

It may be puzzling that these two constructions dene the same object, since the Aldous-Pitman
representation involves two independent levels of randomness (the CRT and the Poissonian rain), while the
Bertoin representation only involves a Brownian excursion. For the analog representations in the discrete
framework of nite trees, several connections have been recently discovered. We present them just after
the statement of Theorem 1.1, which is our main contribution: in the continuous framework, we unify these
two constructions and explain why they are actually intimately related.

Coupling the two constructions. Our main result consists in coupling 𝑋B and 𝑋AP.

Theorem 1.1. The following assertions hold.

(i) Let T be a Brownian CRT equipped with the Poissonian rain P. On the same probability space, there
is a function 𝐹 (T,P) , measurable with respect to (T,P), having the law of the Brownian excursion such
that almost surely, for every 𝑡 ≥ 0, the nonincreasing rearrangement of the masses of the connected
components of T\P𝑡 is the same as the nonincreasing rearrangement of the lengths of the excursions of
(𝐹 (T,P) (𝑠) − 𝑡𝑠)0≤𝑠≤1 above its running inmum.

(ii) Conversely, given a Brownian excursion e, on the same probability space there is a Brownian CRT T

equipped with a Poissonian rain P such that almost surely 𝐹 (T,P) = e.

Some comments are in order. In (i), the construction of 𝐹 (T,P) from (T,P) is explicit using the so-called
“Pac-man algorithm”, which we briey describe below. In (ii), unlike (i), additional randomness is required
in order to build (T,P) from e (see Sec. 4 for details).

Let us rst give some underlying intuition. In the discrete world of nite trees, it turns out that there is
a beautiful explicit exact relation, due to Broutin & Marckert [16], between masses of components obtained
after removing edges one after the other, and lengths of excursions above its running inmum of a certain
function. The idea is to use the so-called Prim order to explore an edge-labelled tree. Let us explain this in
more detail.

Consider a rooted tree𝑇𝑛 with 𝑛 vertices, whose edges are labelled from 1 to 𝑛 − 1. Its vertices 𝑢1, . . . , 𝑢𝑛
listed in Prim order are dened as follows: 𝑢1 is the root of the tree and, for every 𝑖 ∈ È1, 𝑛 − 1É, 𝑢𝑖+1 is the
vertex, among all children of vertices of a vertex of {𝑢 𝑗 , 𝑗 ≤ 𝑖}, whose edge to its parent has minimum label.

Figure 1: Left: an edge-labelled plane tree. Middle: the forest obtained by labelling the vertices in Prim
order and removing the 6 edges with largest labels. Right: the Prim path of the forest explored using the
Prim order.

Let 𝑇𝑛 be a Cayley tree with 𝑛 vertices (that is, a tree with 𝑛 vertices labeled from 1 to 𝑛, rooted at 1),
whose edges are labelled from 1 to 𝑛 − 1 uniformly at random independently of 𝑇𝑛 . Let (𝑢𝑖)1≤𝑖≤𝑛 be the
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vertices of 𝑇𝑛 sorted according to the Prim order. For every 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑘 ≤ 𝑛 − 1, let 𝑋𝑖 (𝑘) be
the number of children of 𝑢𝑖 in the forest 𝐹𝑛 (𝑘) obtained by deleting all edges with labels belonging to
È𝑛 − 𝑘, 𝑛 − 1É. Finally, set 𝑆𝑥 (𝑘) :=

∑ b𝑥𝑛c
𝑖=1 (𝑋𝑖 (𝑘) − 1) for every 0 ≤ 𝑥 ≤ 1 (which is called the Prim path of

the forest explored in Prim order). Then Broutin & Marckert [16] establish that:
– the lengths of excursions of (𝑆𝑥 (𝑘))0≤𝑥≤1 above its running inmum are equal to the sizes of the

connected components of 𝐹𝑛 (𝑘) (see Fig. 1).
– the following convergence holds in D (R+,D ( [0, 1],R)):( (𝑆𝑥 (b𝑡𝑛c))𝑥 ∈[0,1]√

𝑛

)
𝑡 ≥0

(𝑑)
→
𝑛→∞

(
(e𝑥 − 𝑡𝑥)𝑥 ∈[0,1]

)
𝑡 ≥0 ,

where, for 𝐼 ⊂ R ∪ {±∞} an interval and 𝐸 a metric space, D(𝐼 , 𝐸) denotes the space of càdlàg
functions from 𝐼 to 𝐸 endowed with the 𝐽1 Skorokhod topology (we refer to Annex 𝐴2 in [29] for
further denitions and details).

Using the fact that the Aldous-Pitman fragmentation is the continuum analog of this discrete logging
procedure, this gives another proof of the fact that 𝑋B and 𝑋AP have the same distribution. This also
indicates that if one couples 𝑋B and 𝑋AP, then the Brownian excursion appearing in the denition of 𝑋B

should represent, in a certain sense, the encoding of the exploration of a Brownian CRT equipped with a
Poissonian rain using an associated Prim order.

Also, still in the discrete world of nite trees, Marckert & Wang [30] couple a uniform Cayley tree with
𝑛 vertices with edges labelled from 1 to 𝑛 − 1 uniformly at random with a uniform Cayley tree equipped
with an independent uniform decreasing edge-labelling (i.e. labels decrease along paths directed from the
root towards the leaves) in such a way that edge removals give the same sizes of connected components. A
connection with discrete cut-trees is also given (see [30, Sec. 3]). Indeed, it turns out that this second tree is
closely related to the cut-tree of the rst one, which allows Marckert & Wang to give a nice simple proof of
the well-known fact that the number of cuts needed to isolate a uniform vertex in a uniform Cayley tree,
scaled by

√
𝑛, converges in distribution to a Rayleigh random variable (see also [30] for other connections

between the standard additive coalescent with other combinatorial and probabilistic models such as size
biased percolation and parking schemes in a tree).

However, how to make such statements precise in the realm of continuous trees remains unclear. For
this reason, we use a dierent route to dene a coupling between 𝑋B and 𝑋AP. The main tool in the proof of
Theorem 1.1 is the use of the so-called cut-tree C, dened by Bertoin and Miermont in [13], which roughly
speaking encodes the genealogy of the fragmentation of a Brownian CRT by a Poissonian rain. Indeed, one
of our contributions is to use the cut-tree to dene the “Bertoin” excursion 𝐹 (T,P) from the Aldous-Pitman
fragmentation by using an algorithm which we call the “Pac-Man” algorithm, roughly described as follows
(see Sec. 3.1 for a precise denition). With every value ℎ ∈ [0, 1], using a local exploration procedure, we
associate a target point of C. Then the value 𝐹 (T,P) (ℎ) is dened using the genealogy of this exploration.
Conversely, given the “Bertoin” excursion, we will also see that coupling 𝑋B and 𝑋AP is closely related to
the question of reconstruction of the original CRT from its cut-tree (see Sec. 4 for more details).

Quite interestingly it seems that, while there is no simple analog of the coupling between drifted
excursions and sizes of connected components using Prim’s order in the continuous framework, there is
no simple analog of the coupling between drifted excursions and sizes of connected components using
the cut-tree in the discrete framework. Indeed, in Marckert & Wang’s coupling, given the Cayley tree, the
decreasing edge labeling is random, while in the continuous framework, given the cut-tree, its labelling is
deterministic; see Remark 3.2. In particular, new ideas and techniques are required to analyze the continuous
framework.

Finally, let us mention that the question of reconstructing the Brownian CRT from the “Bertoin”
excursion appears in an independent work by Nicolas Broutin and Jean-François Marckert [15] in the
dierent context of the study of scaling limits of minimal spanning trees on complete graphs.

Perspectives. There has been some recent developments in studying analogs of the Aldous-Pitman
fragmentation for dierent classes of trees and their associated cut-trees, see [20, 17, 33, 14, 2]. In particular,
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it has been shown that by an appropriate tuning (fragmentation alongs the skeleton and/or at nodes), the
law of the cut-tree is equal to the law of the original tree.

We expect that our coupling can be extended to more general classes of trees, with fragmentation on
the skeleton only, such as stable trees (the study of this fragmentation is mentioned in [2, Section 5, (6)]).
Indeed, for stable trees, it is known [33] that the analog of Aldous-Pitman fragmentation can be obtained
using the normalized excursion of a stable process. One of the main issues is that in this cases the associated
cut-tree is not compact anymore; hence, our main argument, which consists in comparing distances in this
cut-tree, does not apply directly. Furthermore, new results (see [37]) suggest strong connections between
the so-called ICRT (Inhomogeneous Continuum Random Trees) and stable trees. Thus similar techniques
could work in both cases, and it is plausible that analog couplings exist. We plan to investigate this in
future work.

Acknowledgments. I.K. thanks Jean Bertoin for asking him if there is a connection between the two
seemingly dierent constructions 𝑋B and 𝑋AP, and we thank Jean-François Marckert for mentioning the
use of cut-trees in [30].

Overview of the paper. Section 2 is devoted to the denition of our main tool, the cut-tree associated
to the fragmentation of the Brownian CRT; we also prove there some preliminary structural results on this
object. In Section 3, we prove the rst part of our main result, Theorem 1.1, with the help of our so-called
Pac-Man algorithm. Finally, we prove Theorem 1.1 (ii) in Section 4, essentially making use of results from
[2].
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2 The cut-tree of the Brownian CRT

An important object in our study is the cut-tree of a Brownian CRT, which roughly speaking encodes the
genealogy of its fragmentation by a Poissonian rain. We recall here its construction and main properties,
and refer to [13, 2] for details and proofs.

2.1 Denitions

Let us rst introduce some denitions and notation for trees.
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Real trees. We say that a complete metric space (𝑇,𝑑) is a real tree if, for every 𝑢, 𝑣 ∈ 𝑇 :

• there exists a unique isometry 𝑓𝑢,𝑣 : [0, 𝑑 (𝑢, 𝑣)] → 𝑇 such that 𝑓𝑢,𝑣 (0) = 𝑢 and 𝑓𝑢,𝑣 (𝑑 (𝑢, 𝑣)) = 𝑣 .

• for any continuous injective map 𝑓 : [0, 1] → 𝑇 such that 𝑓 (0) = 𝑢 and 𝑓 (1) = 𝑣 , we have
𝑓 ( [0, 1]) = 𝑓𝑢,𝑣 ( [0, 𝑑 (𝑢, 𝑣)]) =: È𝑢, 𝑣É.

A rooted real tree is a real tree with a distinguished vertex, called the root.

Tree structure. Let T be a real tree. We say that a point 𝑥 ∈ T is a leaf if T\{𝑥} is connected, and a
branchpoint if T\{𝑥} has at least three connected components.

We let Sk(T) be the skeleton of T, that is, the set of all points of T that are not leaves nor branchpoints,
and denote by ∅ the root of T. We also denote by B(T) the set of branchpoints of the tree T.

We denote by T𝑥 the tree which is the set of all (weak) descendents of 𝑥 in T, rooted at 𝑥 . If the tree T
is binary (that is, for all 𝑥 ∈ T, T\{𝑥} has at most three connected components, and T\{∅} has at most
two), when 𝑥 is an ancestor of 𝑦, we denote by T

𝑦
𝑥 the subtree above 𝑥 containing 𝑦, rooted at 𝑥 and by T̄

𝑦
𝑥

the subtree above 𝑥 not containing 𝑦, rooted at 𝑥 (which is unique if it exists).
Furthermore, for any two vertices 𝑥,𝑦 ∈ T, we write 𝑥 � 𝑦 when 𝑥 is an ancestor of 𝑦, and 𝑥 ≺ 𝑦 when

𝑥 � 𝑦 and 𝑥 ≠ 𝑦. In particular ∅ � 𝑥 for every 𝑥 ∈ T, .
Finally, for 𝑥,𝑦 ∈ T, we denote by 𝑥 ∧ 𝑦 their closest common ancestor, that is, the unique 𝑧 ∈ T

satisfying È∅, 𝑥É ∩ È∅, 𝑦É = È∅, 𝑧É.

Brownian excursion and Brownian tree. The Brownian CRT, introduced by Aldous [4, 3, 5], is a
random real tree constructed from a Brownian excursion e : [0, 1] → R+ the following way. The function
e induces an equivalence relation ∼e on [0, 1]: dene a pseudo-distance 𝑑 on [0, 1] by setting 𝑑 (𝑢, 𝑣) =
e𝑢 + e𝑣 − 2min[𝑢,𝑣 ] e, and say that, for all 0 ≤ 𝑢, 𝑣 ≤ 1, 𝑢 ∼e 𝑣 if and only if 𝑑 (𝑢, 𝑣) = 0. Dene now
T B [0, 1]/∼e, endowed with the distance which is the projection of 𝑑 on the quotient space (which we
also denote by 𝑑 by convenience). It is standard that (T, 𝑑) is a real tree, called the Brownian CRT.

Length and mass measures. For any real tree (𝑇,𝑑), observe that the distance 𝑑 on 𝑇 induces a length
measure 𝜆 on Sk(𝑇 ), dened as the only 𝜎-nite measure such that 𝜆(È𝑢, 𝑣É) = 𝑑 (𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑇 . In
the case of the Brownian CRT (T, 𝑑), we can furthermore endow it with a mass measure 𝜇, which is the
pushforward of the Lebesgue measure on [0, 1] by the quotient map [0, 1] → [0, 1]/∼e. Roughly speaking,
𝜇 accounts for the proportion of leaves in a given component of T.

2.2 The cut-tree of the Brownian CRT

We rst need some notation. Let T be a Brownian CRT, 𝜇 its mass measure and let P be a Poissonian rain of
intensity d𝜆 ⊗ d𝑡 , where 𝜆 denotes the length measure on Sk(T) and d𝑡 is the Lebesgue measure on R+. For
every 𝑡 ≥ 0, we set

P𝑡 := {𝑐 ∈ Sk(T), ∃ 𝑠 ∈ [0, 𝑡], (𝑐, 𝑠) ∈ P}.

The elements of P∞ B ∪𝑡 ≥0P𝑡 are called cutpoints. For every 𝑡 ≥ 0 and 𝑥 ∈ T, we denote by T𝑡 (𝑥) the
connected component of T\P𝑡 containing 𝑥 and 𝜇𝑡 (𝑥) = 𝜇 (T𝑡 (𝑥)) its 𝜇-mass. If 𝑥 ∈ P𝑡 , we set T𝑡 (𝑥) = ∅
and 𝜇𝑡 (𝑥) = 0.

Let 𝑈0 = ∅ be the root of T, and let (𝑈𝑖)𝑖≥1 be a sequence of i.i.d. leaves of T sampled according to the
mass measure 𝜇. For every 𝑖, 𝑗 ∈ Z+, we let 𝑡𝑖, 𝑗 B inf{𝑡 ≥ 0, T𝑡 (𝑈𝑖) ≠ T𝑡 (𝑈 𝑗 )} be the rst time a cutpoint
appears on È𝑈𝑖 ,𝑈 𝑗É. Then by [13, 2] there exists almost surely a unique real tree𝐶◦ := (𝐶◦, 𝑑◦, 𝜌) containing
the set {𝜌} ∪ Z+ such that 𝐶◦ =

⋃
𝑖∈Z+È𝜌, 𝑖É and for every 𝑖, 𝑗 ∈ Z+,

𝑑◦(𝜌, 𝑖) =
∫ ∞

0
𝜇𝑠 (𝑈𝑖) d𝑠 and 𝑑◦(𝑖, 𝑗) =

∫ ∞

𝑡𝑖,𝑗

(
𝜇𝑠 (𝑈𝑖) + 𝜇𝑠 (𝑈 𝑗 )

)
d𝑠 .
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We denote by C B (C, 𝑑C, 𝜌) the completion of this real tree. The sequence (𝑖)𝑖≥1 is dense in C, and in
particular every branchpoint of C can be written (non uniquely) as 𝑖 ∧ 𝑗 with 𝑖, 𝑗 ≥ 1. We also endow the
set of leaves of C with the measure 𝜈 dened as:

𝜈 = lim
𝑛→∞

1
𝑛

𝑛∑︁
𝑖=1

𝛿𝑖 . (1)

The main result of [13] is the following:

Theorem 2.1 (Bertoin & Miermont [13]). The cut-tree of the Brownian CRT has the law of a Brownian CRT:

C
(𝑑)
= T.

The cut-tree C encodes the genealogical structure, as time increases, of the cuts of the subtrees which
contain the points (𝑈𝑖)𝑖≥0, in such a way that branchpoints of C are in correspondence with P∞. Let us
make this more explicit.

Informally speaking, for every 𝑖, 𝑗 ∈ Z+, the branchpoint 𝑖 ∧ 𝑗 of C encodes the (a.s. unique) cutpoint
appearing on È𝑈𝑖 ,𝑈 𝑗É at time 𝑡𝑖, 𝑗 . The subtree of C above 𝑖 ∧ 𝑗 containing 𝑖 (resp. 𝑗 ) is then the cut-tree of
the subtree of T\P𝑡𝑖,𝑗 containing𝑈𝑖 (resp.𝑈 𝑗 ).

The measures 𝜇 on T and 𝜈 on C are related in the following way (see [2, Proposition 7]):

𝜇 (T𝑡𝑖,𝑗 (𝑈𝑖)) = 𝜈 (C𝑖𝑖∧𝑗 ), 𝜇 (T𝑡𝑖,𝑗 (𝑈 𝑗 )) = 𝜈 (C
𝑗

𝑖∧𝑗 ). (2)

In particular, using the fact that C is binary, since T𝑡𝑖,𝑗−(𝑈𝑖) = T𝑡𝑖,𝑗−(𝑈 𝑗 ) = T𝑡𝑖,𝑗 (𝑈𝑖) ∪ T𝑡𝑖,𝑗 (𝑈 𝑗 ), we have
𝜇 (T𝑡𝑖,𝑗−(𝑈𝑖)) = 𝜈 (C𝑖∧𝑗 ).

Also, for every branchpoint 𝑥 of C, each of the two subtrees grafted on 𝑥 comes with a distinguished
leaf. Indeed, consider 𝑥 ≺ 𝑦 two points of C with 𝑥 a branchpoint. Recall that C𝑦𝑥 denotes the subtree above
𝑥 containing 𝑦, rooted at 𝑥 and C̄

𝑦
𝑥 the subtree above 𝑥 not containing 𝑦, rooted at 𝑥 . We may nd 𝑖, 𝑗 ≥ 1

such that 𝑥 = 𝑖 ∧ 𝑗 , 𝑖 ∈ C
𝑦
𝑥 and 𝑗 ∈ C̄

𝑦
𝑥 . Let 𝑐 ∈ È𝑈𝑖 ,𝑈 𝑗É be the cutpoint appearing at time 𝑡𝑖, 𝑗 . Consider a

sequence (𝑈𝑖𝑛 )𝑛≥1 of elements of T𝑡𝑖,𝑗 (𝑈𝑖) converging to 𝑐 and a sequence (𝑈 𝑗𝑛 )𝑛≥1 of elements of T𝑡𝑖,𝑗 (𝑈 𝑗 )
converging to 𝑐 . Then by [2, Section 3.3] the sequence (𝑖𝑛)𝑛≥1 converges in C

𝑦
𝑥 to a leaf denoted by ℓ𝑦𝑥

(which does not depend on the sequence (𝑈𝑖𝑛 )𝑛≥1), and the sequence ( 𝑗𝑛)𝑛≥1 converges in C̄
𝑦
𝑥 to a leaf

denoted by ℓ̄𝑦𝑥 (which does not depend on the sequence (𝑈 𝑗𝑛 )𝑛≥1). To see that the limiting points have to be
leaves, simply observe that 𝑡𝑖𝑛∧𝑖𝑛+1 →

𝑛→∞
+∞, so that

𝜈

(
C
𝑖𝑛
𝑖𝑛∧𝑖𝑛+1

)
= 𝜇𝑡𝑖𝑛∧𝑖𝑛+1

(
𝑈𝑖𝑛

)
→
𝑛→∞

0.

Finally, setting for every 𝑥 ∈ C:
𝜏𝑥 =

∫
È𝜌,𝑥É

1
𝜈 (C𝑧)

𝜆(d𝑧), (3)

we have 𝑡𝑖, 𝑗 = 𝜏𝑖∧𝑗 (see e. g. the end of the proof of Theorem 16 in [2]). In other words, the times at which
cutpoints appear can be recovered from the cut-tree. Observe that 𝜏 is increasing along any branch of C.

We end this section with a result which tells how to nd the connected components of T\P𝑡 using the
cut-tree.

Lemma 2.2. Fix 𝑡 > 0. The connected components of T\P𝑡 are in bijection with the subtrees of C of the form
C
𝑦
𝑥 , with 𝑥 ∈ C satisfying 𝜏𝑥 = 𝑡 and 𝑥 ≺ 𝑦. Furthermore, this bijection conserves the masses.

Proof. Let𝐶 be a connected component of T\P𝑡 , and let 𝑥𝐶 ∈ C be the most recent common ancestor of the
leaves L𝐶 B {𝑖 ∈ Z+ : 𝑈𝑖 ∈ 𝐶}. Notice that 𝑥𝐶 is not necessarily a branchpoint (indeed 𝑥𝐶 belongs to the
skeleton when the component 𝐶 is the same at times 𝑡 and 𝑡−).

First let us show that 𝜏𝑥𝐶 = 𝑡 . Since C is a CRT, almost surely there exists a sequence of branchpoints of
the form 𝑖𝑛 ∧ 𝑗𝑛 converging to 𝑥 with 𝑖𝑛, 𝑗𝑛 ∈ L𝐶 . For all 𝑛, since 𝑈𝑖𝑛 and 𝑈 𝑗𝑛 are in the same connected
component of T\P𝑡 it follows that 𝜏𝑖𝑛∧𝑗𝑛 ≥ 𝑡 for every 𝑛 ≥ 1. Since 𝑧 ↦→ 𝜏𝑧 is continuous, we obtain that
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𝜏𝑥𝐶 ≥ 𝑡 . Now assume by contradiction that 𝜏𝑥𝐶 > 𝑡 . Then, again by continuity of 𝑧 ↦→ 𝜏𝑧 and since C is a
CRT, there exists a branchpoint 𝑏 such that 𝑏 ≺ 𝑥𝐶 and 𝜏𝑏 > 𝑡 . Now take two leaves 𝑗 ∈ C

𝑥𝐶

𝑏 and 𝑖 ∈ L𝐶 . We
have 𝑖 ∧ 𝑗 = 𝑏 and thus 𝑡𝑖, 𝑗 = 𝜏𝑏 > 𝑡 , so that 𝑗 ∈ L𝐶 . This contradicts the denition of 𝑥𝐶 . Hence, 𝜏𝑥𝐶 = 𝑡 .

Now take 𝑖 ∈ L𝐶 and set
Φ(𝐶) = C𝑖𝑥𝐶 .

Let us check that Φ is well dened by showing that for 𝑖, 𝑗 ∈ L𝐶 we have C𝑖𝑥𝐶 = C
𝑗
𝑥𝐶 . To this end, observe

that by denition 𝑥𝐶 � 𝑖 ∧ 𝑗 , and argue by contradiction assuming that 𝑖 ∧ 𝑗 = 𝑥𝐶 . Then 𝑡𝑖, 𝑗 = 𝜏𝑥𝐶 = 𝑡 , so
that 𝑈𝑖 and 𝑈 𝑗 do not belong to the same connected component of T\P𝑡 . Hence, 𝑖 and 𝑗 cannot be both in
L𝐶 , which leads to a contradiction.

Finally, let us establish that Φ is bijective. To this end, we exhibit the reverse bijection. Consider a
subtree of C of the form C

𝑦
𝑥 , with 𝑥 ∈ C satisfying 𝜏𝑥 = 𝑡 and 𝑥 ≺ 𝑦. Consider 𝑖 ∈ Z+ such that 𝑖 ∈ C

𝑦
𝑥 and

denote by 𝐶 the connected component of T\P𝑡 containing𝑈𝑖 . We set

Ψ(C𝑦𝑥 ) = 𝐶.

The map Ψ is well dened since, if 𝑖, 𝑗 ∈ C
𝑦
𝑥 then 𝑡𝑖, 𝑗 > 𝜏𝑥 = 𝑡 so that the connected component of T\P𝑡

containing𝑈𝑖 also contains𝑈 𝑗 .
Now, if 𝐶 is a connected component of T\P𝑡 , then Ψ ◦ Φ(𝐶) = 𝐶 . Indeed, let 𝑖 ∈ Z+ be such that𝑈𝑖 ∈ 𝐶 .

By denition of Φ, 𝑖 ∈ Φ(𝐶). In turn by denition of Ψ, Ψ ◦ Φ(𝐶) is the connected component of T\P𝑡
containing𝑈𝑖 , which is precisely 𝐶 .

Conversely, consider a subtree of C of the form C
𝑦
𝑥 , with 𝑥 ∈ C satisfying 𝜏𝑥 = 𝑡 and 𝑥 ≺ 𝑦. We check

that Φ ◦ Ψ(C𝑦𝑥 ) = C
𝑦
𝑥 . Let 𝑖 ∈ Z+ be such that 𝑖 ∈ C

𝑦
𝑥 . Then 𝐶 = Ψ(C𝑦𝑥 ) is the connected component of T\P𝑡

containing𝑈𝑖 . It follows that Φ(𝐶) = C𝑖𝑥𝐶 . In particular, 𝑥, 𝑥𝐶 ∈ È𝜌, 𝑖É and 𝜏𝑥 = 𝜏𝑥𝐶 = 𝑡 . Since 𝜏 is increasing
on È∅, 𝑖É, it follows that 𝑥 = 𝑥𝐶 , and thus C𝑦𝑥 = C𝑖𝑥𝐶 . This completes the proof.

The fact that this bijection conserves the masses is a consequence of the fact that Φ(𝐶) = ∪𝑖:𝑈𝑖 ∈𝐶È𝑥𝐶 , 𝑖É
for every connected component 𝐶 of T\P𝑡 and that 𝜈 = lim𝑛→∞

∑𝑛
𝑖=1 𝛿𝑖/𝑛 and 𝜇 = lim𝑛→∞

∑𝑛
𝑖=1 𝛿𝑈𝑖

/𝑛. �

Recall that our main result, Theorem 1.1, consists in coupling both processes 𝑋AP and 𝑋B. First in Sec. 3
we start from the Aldous-Pitman fragmentation on a CRT and we construct an excursion-type function,
which we show to be continuous and to be equal in law to a Brownian excursion, thus proving Theorem 1.1
(i). Then in Sec. 4 we explain how to recover the Brownian CRT with its Poissonian rain from the “Bertoin
excursion”, proving Theorem 1.1 (ii).

3 Dening the “Bertoin” excursion from the Aldous-Pitman fragmenta-
tion

Here we start from the cut-tree C of T and construct a function 𝐹 having the law of a Brownian excursion, in
such a way that, for all 𝑡 ≥ 0, the nonincreasing rearrangement of the masses of the connected components
of T\P𝑡 are the same as the nonincreasing rearrangement of the lengths of the excursions of (𝐹 (𝑠) −𝑡𝑠)0≤𝑠≤1
above its running inmum.

The algorithm used to construct the function 𝐹 , which we call the Pac-Man algorithm and which we
dene in Sec. 3.1, consists in exploring the cut-tree C from its root 𝜌 , associating with each element ℎ ∈ [0, 1]
a target point in C in a surjective way, and a value 𝐹 (ℎ). We then investigate the properties of this function
𝐹 , showing that it is continuous (Sec. 3.2) it has the law of a Brownian excursion (Sec. 3.4).

3.1 Dening an excursion-type function from the Aldous-Pitman representation

We keep the notation of Section 2.2. Here we shall construct an excursion-type function 𝐹 from a Brownian
CRT T equipped with a Poissonian rain P which will turn out to meet the requirements of Theorem 1.1 (i).
To this end, we shall use the Brownian cut-tree C associated with T as dened in Section 2.

With every value ℎ ∈ [0, 1] we shall associate one point of C using a recursive procedure. It can be
informally presented as follows. Imagine Pac-Man starting at the root of C and wanting to eat exactly an
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amount ℎ of mass. It has a target leaf ℓ , and starts going towards this target. As soon as it encounters a
point 𝑥 such that the subtree Cℓ𝑥 containing the target leaf has mass at most ℎ, Pac-Man eats this subtree;
if this mass was strictly less than ℎ, then it turns out that this point was necessarily a branchpoint, and
Pac-Man continues his journey in the remaining subtree equiped with a new target. Pac-Man stops when it
has eaten an amount ℎ of mass.

Given a tree𝑇 = (𝑇, 𝑟, 𝜈) with root 𝑟 and mass measure 𝜈 , a distinguished leaf ℓ and a value 0 ≤ ℎ ≤ 𝜈 (𝑇 ),
we set

𝐵 (𝑇, ℓ, ℎ) = inf
{
𝑥 ∈ È𝑟, ℓÉ : 𝜈 (𝑇 ℓ𝑥 ) ≤ ℎ

}
.

Observe that 𝐵(𝑇, ℓ, 0) = ℓ , 𝐵(𝑇, ℓ, 𝜈 (𝑇 )) = 𝑟 and that for 0 < ℎ < 𝜈 (𝑇 ), if 𝐵(𝑇, ℓ, ℎ) is a point of the skeleton
of 𝑇 , then necessarily 𝜈 (𝑇 ℓ

𝐵 (𝑇,ℓ,ℎ) ) = ℎ.

Pac-Man algorithm. Given ℎ ∈ [0, 1], we dene a sequence (𝐵𝑖 , 𝐿𝑖 , 𝐻𝑖)0≤𝑖<𝑁+1 with 𝑁 ∈ Z+ ∪ {+∞} as
follows (we drop the dependence in ℎ to simplify notation). First, set 𝐵0 = 𝜌 , 𝐿0 = 0, 𝐻0 = ℎ. Then, by
induction, if (𝐵𝑖 , 𝐿𝑖 , 𝐻𝑖)0≤𝑖≤𝑘 have been constructed, we set:

𝐵𝑘+1 = 𝐵
(
C
𝐿𝑘
𝐵𝑘
, 𝐿𝑘 , 𝐻𝑘

)
, 𝐻𝑘+1 = ℎ − 𝜈

(
C
𝐿𝑘
𝐵𝑘+1

)
.

If 𝐻𝑘+1 = 0, we set 𝑁 = 𝑘 + 1 and stop, otherwise we set 𝐿𝑘+1 = ℓ̄
𝐿𝑘
𝐵𝑘+1

and continue (see Fig. 2 for an
illustration). In particular, observe that ℎ =

∑
1≤𝑘<𝑁+1 𝜈 (C𝐿𝑘−1𝐵𝑘

) by construction. When 𝑁 < ∞, we say that
ℎ targets the point 𝐵𝑁 . When 𝑁 = ∞, we say that ℎ targets the point which is the limit of the increasing
sequence (𝐵𝑖)𝑖≥0 (we will later see that when 𝑁 = ∞ the target point is necessarily a leaf).

Finally, we set
𝐹 (ℎ) =

∑︁
1≤𝑘<𝑁+1

𝜏𝐵𝑘 · 𝜈
(
C
𝐿𝑘−1
𝐵𝑘

)
, (4)

where we recall from (3) the notation 𝜏𝑥 for 𝑥 ∈ C. In order to unify the treatment, here and in the sequel,
when 𝑁 = ∞, the notation

∑
1≤𝑖<𝑁+1 simply means

∑∞
𝑖=1; similarly (·)1≤𝑖<𝑁+1 means (·)𝑖≥1.

Figure 2: Two illustrations of the construction: Pac-Man’s trajectory in the cut-tree is represented in green
and the eaten subtrees in red. For example, when reaching 𝐵1, Pac-Man eats the subtree containing 𝐿0 (it is
the rst time the mass of the subtree above is less than ℎ), and continues in direction of 𝐿1. The value 𝐹 (ℎ)
is obtained by summing weighted masses of the eaten subtrees.

It is rather straightforward to check that (4) denes a bounded function on [0, 1].

Lemma 3.1. We have supℎ∈[0,1] 𝐹 (ℎ) ≤ Height(C).

Proof. Take ℎ ∈ [0, 1] and keep the previous notation. To simplify notation, set 𝑚𝑘 = 𝜈 (C𝐿𝑘−1
𝐵𝑘

) for
1 ≤ 𝑘 < 𝑁 + 1. Since 𝐵𝑖 is an ancestor of 𝐵 𝑗 for 𝑖 < 𝑗 , for every 0 ≤ 𝑖 < 𝑁 + 1 we have∫

È𝐵𝑖 ,𝐵𝑖+1É

1
𝜈 (C𝑧)

𝜆(d𝑧) ≤ 𝑑 (𝐵𝑖 , 𝐵𝑖+1)∑
𝑖+1≤ 𝑗<𝑁+1𝑚 𝑗

.

It readily follows that for every 1 ≤ 𝑘 < 𝑁 + 1:

𝜏𝐵𝑘 =

∫
È𝜌,𝐵𝑘É

1
𝜈 (C𝑧)

𝜆(d𝑧) ≤
𝑘−1∑︁
𝑖=0

𝑑 (𝐵𝑖 , 𝐵𝑖+1)∑
𝑖+1≤ 𝑗<𝑁+1𝑚 𝑗

.
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Thus

𝐹 (ℎ) ≤
∑︁

1≤𝑘<𝑁+1
𝑚𝑘

𝑘−1∑︁
𝑖=0

𝑑 (𝐵𝑖 , 𝐵𝑖+1)∑
𝑖+1≤ 𝑗<𝑁+1𝑚 𝑗

=
∑︁

0≤𝑖<𝑁+1

∑︁
𝑖+1≤𝑘<𝑁+1

𝑚𝑘∑
𝑖+1≤ 𝑗<𝑁+1𝑚 𝑗

𝑑 (𝐵𝑖 , 𝐵𝑖+1) =
∑︁

0≤𝑖<𝑁+1
𝑑 (𝐵𝑖 , 𝐵𝑖+1),

and the desired conclusion follows. �

Remark 3.2. Given the rescaled convergence of discrete cut-trees to continuous cut-trees [13], it is natural to
expect that when one equips the discrete cut-trees with labels corresponding to cutting times, a joint convergence
holds towards C equipped with the labelling (𝜏𝑥 )𝑥 ∈C. In particular, it is interesting to notice that in the discrete
case, given the cut-tree, the labelling is random (see [30, Sec. 3]), while in the continuous case, given C, the
labelling (𝜏𝑥 )𝑥 ∈C is deterministic.

3.2 Continuity of the function 𝐹

We now prove that the function 𝐹 constructed this way is a.s. continuous. To this end, we rely on the fact
that C is distributed as a Brownian CRT, comparing as in Lemma 3.1 values of 𝐹 with distances in C.

Proposition 3.3. Almost surely, 𝐹 is continuous on [0, 1].

In order to establish the continuity of the function 𝐹 , it is useful to dene a “backward” construction.
Fix 𝑥 ∈ C. We dene a sequence (𝐵𝑖 , 𝐿𝑖)0≤𝑖<𝑁+1 with 𝑁 ∈ Z+ ∪ {+∞} as follows (we drop the dependence
in 𝑥 to simplify notation). Set 𝐵0 = 𝜌, 𝐿0 = 0. Then, by induction, if (𝐵𝑖 , 𝐿𝑖)0≤𝑖≤𝑘 have been constructed, we
dene 𝐵𝑘+1 by:

È𝐵𝑘 , 𝑥É ∩ È𝐵𝑘 , 𝐿𝑘É = È𝐵𝑘 , 𝐵𝑘+1É, 𝐿𝑘+1 =

{
ℓ̄
𝐿𝑘
𝐵𝑘+1

if 𝐵𝑘+1 is a branchpoint
𝐵𝑘+1 otherwise

If 𝑥 = 𝐵𝑘+1 we set 𝑁 = 𝑘 + 1 and stop, otherwise we continue. We say that (𝐵𝑖 , 𝐿𝑖)0≤𝑖<𝑁+1 is the record
sequence associated with 𝑥 (see Fig. 3 for an illustration).

Figure 3: Illustration of the backward construction: on the left, 𝑥 is a leaf and the record sequence associated
with 𝑥 is innite; in the middle, 𝑥 is a branchpoint and (𝐵𝑖 , 𝐿𝑖)0≤𝑖≤3 is the associated record sequence; on
the right, 𝑥 belongs to the skeleton and (𝐵𝑖 , 𝐿𝑖)0≤𝑖≤3 is the associated record sequence.

The next result characterizes points of C whose record sequence is innite.

Lemma 3.4. When 𝑁 = ∞, 𝑥 is a leaf, and (𝐵𝑖)𝑖≥0 converges to 𝑥 .

Proof. First, let us show that if 𝑥 is not a leaf, then 𝑁 < ∞. It suces to show that 𝑁 < ∞ when 𝑥
is a branchpoint (this will entail that 𝑁 < ∞ when 𝑥 ∈ Sk(C) by considering a descendent of 𝑥 which
is a branchpoint). To this end, recall from Sec. 2.2 that 𝑥 can be written as 𝑖 ∧ 𝑗 for some 𝑖, 𝑗 ≥ 1. Let
𝑐 ∈ È𝑈𝑖 ,𝑈 𝑗É be the cutpoint appearing at time 𝑡𝑖, 𝑗 (observe that 𝑐 is the rst cutpoint falling on È𝑈𝑖 ,𝑈 𝑗É).
Let (𝑐𝑝)1≤𝑝≤𝑀 be the cutpoints falling on È∅,𝑈𝑖É ∪ È∅,𝑈 𝑗É before time 𝑡𝑖, 𝑗 , ordered by their time of
appearance (observe that almost surely 𝑀 < ∞, and that all these points fall on È∅,𝑈𝑖 ∧𝑈 𝑗É except for
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𝑐). We construct a subsequence (𝑐𝑝𝑘 )1≤𝑘≤𝑁 of cutpoints precisely corresponding to (𝐵𝑘 )1≤𝑖≤𝑁 in C as
follows. Set 𝑝1 = 1. If 𝑐 = 𝑐1, we set 𝑁 = 1. Otherwise, assuming that (𝑝𝑘 )1≤𝑘≤𝑛 has been dened, set
𝑝𝑛+1 = min{𝑝 > 𝑝𝑛 : 𝑐𝑝𝑛 ≺ 𝑐𝑝 }; if 𝑐𝑝𝑛+1 = 𝑐 we set 𝑁 = 𝑝𝑛+1 and stop, otherwise we continue. It is clear that,
for all 1 ≤ 𝑘 ≤ 𝑁 , 𝑐𝑝𝑘 = 𝐵𝑘 . Furthermore, since𝑀 < ∞, this procedure eventually stops, thus showing that
𝑁 < ∞.

Next, argue by contradiction and assume that 𝑁 = ∞, 𝑥 is a leaf and (𝐵𝑘 )𝑘≥0 converges to a point 𝑢 ∈ C

with 𝑢 ≠ 𝑥 (observe that (𝐵𝑘 )𝑘≥0 always converges as it is increasing). Since 𝐵𝑘 ≺ 𝑥 for every 𝑘 ≥ 0, we
have 𝑢 ≺ 𝑥 . Choose a branchpoint 𝑏 ∈ C such that 𝑢 ≺ 𝑏 ≺ 𝑥 . Then the record sequence associated with 𝑏
has innitely many terms, in contradiction with the previous paragraph. �

When 𝑥 is a branchpoint (then 𝑁 < ∞), we set:

ℓ (𝑥) = 𝐿𝑁−1, ℓ̄ (𝑥) = 𝐿𝑁 . (5)

In terms of the Pac-Man construction, these leaves can be interpreted as follows: when passing at 𝑥 during
its journey, if possible, the Pac-Man eats the subtree above 𝑥 containing ℓ (𝑥) and continues towards ℓ̄ (𝑥);
otherwise it continues towards ℓ (𝑥).

We also dene for every 𝑥 ∈ C:

ℎ1(𝑥) =
∑︁

1≤𝑘<𝑁+1
𝜈

(
C
𝐿𝑘−1
𝐵𝑘

)
. (6)

Then, by Lemma 3.4, for every 𝑥 ∈ C, if one takes ℎ = ℎ1(𝑥) in the Pac-Man construction, one precisely
gets the sequence (𝐵𝑘 , 𝐿𝑘 )0≤𝑘<𝑁+1 with target point 𝑥 .

The following result is an immediate consequence of the denition:

Lemma 3.5. For every branchpoint 𝐵, ℎ1 is decreasing on È𝐵, ℓ (𝐵)É.

When 𝑥 is a branchpoint, we also set

ℎ2(𝑥) =
∑︁

1≤𝑘≤𝑁+1
𝜈

(
C
𝐿𝑘−1
𝐵𝑘

)
; (7)

observe that if one takes ℎ = ℎ2(𝑥) in the Pac-Man construction, we also get a sequence with target point 𝑥
(see Fig. 4 for an illustration). Also note that ℎ2(𝑥) = ℎ1(𝑥) + 𝜈 (Cℓ̄ (𝑥)𝑥 ).

Figure 4: Illustration of the denitions of ℎ1(𝑥) and ℎ2(𝑥): on the left, 𝑥 is a leaf and ℎ1(𝑥) is the sum of the
masses of the red subtrees (there are innitely many of them); in the middle, 𝑥 is a branchpoint and ℎ1(𝑥)
is the sum of the masses of the three red subtrees; on the right, 𝑥 is the same branchpoint as in the middle
and ℎ2(𝑥) is the sum of the masses of the four red subtrees.

Finally, we dene
h2 = {ℎ2(𝑥) : 𝑥 ∈ B (C)}, (8)
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and, to simplify notation, when 𝑥 ∈ C is not a leaf, we set

ℎ0(𝑥) =
{
ℎ1(𝑥) − 𝜈 (C𝑥 ) if 𝑥 ∈ Sk(C)
ℎ1(𝑥) − 𝜈

(
C
ℓ (𝑥)
𝑥

)
if 𝑥 ∈ B (C) .

(9)

The following result is also an immediate consequence of the denition of the Pac-Man construction,
which we record for future use.

Lemma 3.6. Fix 𝑥 ∈ C.

– If 𝑥 ∈ Sk(C), then for every ℎ ∈ (ℎ0(𝑥), ℎ1(𝑥)], the target point of ℎ belongs to C𝑥 . Conversely, each
element of C𝑥 is the target point of an element ℎ ∈ (ℎ0(𝑥), ℎ1(𝑥)].

– If 𝑥 ∈ B (C), then for every ℎ ∈ (ℎ0(𝑥), ℎ1(𝑥)], the target point of ℎ belongs to C
ℓ (𝑥)
𝑥 and for every

ℎ ∈ [ℎ1(𝑥), ℎ2(𝑥)], the target point of ℎ belongs to Cℓ̄ (𝑥)𝑥 . Conversely, every point of Cℓ (𝑥)𝑥 is the target
point of some ℎ ∈ (ℎ0(𝑥), ℎ1(𝑥)], and every point of Cℓ̄ (𝑥)𝑥 is the target point of some ℎ ∈ [ℎ1(𝑥), ℎ2(𝑥)].

Before proving the continuity of 𝐹 , we gather some preparatory lemmas.

Lemma 3.7. Let ℓ ∈ C be a leaf. Then

𝜈 (C𝑥 ) · 𝜏𝑥 −→
𝑥→ℓ

0.

Proof. Write
𝜈 (C𝑥 ) · 𝜏𝑥 = 𝜈 (C𝑥 ) ·

∫
È𝜌,𝑥É

1
𝜈 (C𝑧)

𝜆(d𝑧) =
∫
È𝜌,ℓÉ

𝜈 (C𝑥 )
𝜈 (C𝑧)

1𝑧∈È𝜌,𝑥É𝜆(d𝑧) .

Then observe that the quantity 𝜈 (C𝑥 )/𝜈 (C𝑧)1𝑧∈È𝜌,𝑥É is bounded by 1 and tends to 0 since 𝜈 (C𝑥 ) → 0 as
𝑥 → ℓ . The conclusion follows by dominated convergence. �

The next lemma compares the dierence between two values of ℎ with masses of subtrees in the cut-tree
C.

Lemma 3.8. Take 𝑥 ≺ 𝑦 in C with 𝑥 ∈ Sk(C) and assume that ℎ′ targets 𝑦. Then:

(i) when 𝑦 ∈ Sk(C) we have |ℎ1(𝑥) − ℎ′ | ≤ 𝜈 (C𝑥\C𝑦).

(ii) |ℎ1(𝑥) − ℎ′ | ≤ 𝜈 (C𝑥 );

Proof. Let (𝐵1𝑖 , 𝐿1𝑖 )0≤𝑖<𝑁1+1 and respectively (𝐵2𝑖 , 𝐿2𝑖 )0≤𝑖<𝑁2+1 be the record sequences associated with 𝑥 and
𝑦. Since 𝑥 ≺ 𝑦, we have 𝑁1 ≤ 𝑁2. Also, 𝑥 is not a leaf, so that 𝑁1 < ∞ and 𝑥 = 𝐵1

𝑁1
. Observe that we may

have 𝐵1
𝑁1

≠ 𝐵2
𝑁1

(e.g. if 𝑥 ∈ Sk(C)). Then (𝐵1𝑖 , 𝐿1𝑖 )0≤𝑖<𝑁1 = (𝐵2𝑖 , 𝐿2𝑖 )0≤𝑖<𝑁1 and 𝐵2𝑁1
∈ È𝑥, 𝐿1

𝑁1−1É,
Recall the notation h2 from (8). Then

ℎ1(𝑥) =
∑︁

1≤𝑘<𝑁1+1
𝜈

(
C
𝐿1
𝑘−1
𝐵1
𝑘

)
and ℎ′ =

∑︁
1≤𝑘<𝑁2+1

𝜈

(
C
𝐿2
𝑘−1
𝐵2
𝑘

)
+ 1ℎ′∈h2𝜈

(
C
𝐿2
𝑁2
𝐵2
𝑁2

)
,

so that
ℎ1(𝑥) − ℎ′ =

∑︁
𝑁1≤𝑘<𝑁2+1

𝜈

(
C
𝐿2
𝑘−1
𝐵2
𝑘

)
+ 1ℎ′∈h2𝜈

(
C
𝐿2
𝑁2
𝐵2
𝑁2

)
− 𝜈

(
C
𝐿1
𝑁1−1
𝐵1
𝑁1

)
.

Now dene
A = C

𝐿1
𝑁1−1
𝐵1
𝑁1

, B =
⋃

𝑁1≤𝑘<𝑁2+1
C
𝐿2
𝑘−1
𝐵2
𝑘

.

Observe that the union dening B is disjoint. When 𝑦 ∈ Sk(C) we have ℎ′ ∉ h2, A\B ⊂ C𝑥\C𝑦 . When 𝑦 is
a branchpoint, setting B′ = B ∪ C

𝐿2
𝑁

𝐵2
𝑁

, observe that this union is disjoint and A\B ⊂ C𝑥 . The conclusion
follows. �
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Figure 5: Illustration of the proof of Lemma 3.8 when 𝑥,𝑦 ∈ Sk(C). Here 𝑁1 = 2 and 𝑁2 = 4. Left: the sum
of the masses of the two red subtrees is ℎ1(𝑥). Middle: the sum of the masses of the four red subtrees is
ℎ1(𝑦). Right: the dierence |ℎ1(𝑥) − ℎ′ | is at most the mass of the blue subtree A\B.

The next lemma bounds from above the dierence between two values of 𝐹 .

Lemma 3.9. Take 𝑥 ≺ 𝑦 in C and ℎ,ℎ′ ∈ [0, 1] such that ℎ targets 𝑥 and ℎ′ targets 𝑦. Then

|𝐹 (ℎ) − 𝐹 (ℎ′) | ≤ 𝜏𝑥 |ℎ − ℎ′ | + 𝑑C(𝑥,𝑦) .

Proof. We keep the notation introduced in the beginning of Lemma 3.8 (in particular it may be helpful to
also refer to Fig. 5): we denote by (𝐵1𝑖 , 𝐿1𝑖 )0≤𝑖<𝑁1+1 and respectively (𝐵2𝑖 , 𝐿2𝑖 )0≤𝑖<𝑁2+1 the record sequences
associated with 𝑥 and 𝑦, so that 𝑁1 ≤ 𝑁2, 𝑥 is not a leaf, 𝑁1 < ∞, 𝑥 = 𝐵1

𝑁1
, (𝐵1𝑖 , 𝐿1𝑖 )0≤𝑖<𝑁1 = (𝐵2𝑖 , 𝐿2𝑖 )0≤𝑖<𝑁1

and 𝐵2
𝑁1

∈ È𝑥, 𝐿1
𝑁1−1É. Recall the denitions of 𝐹 in (4) and of ℎ1, ℎ2 in (6), (7).

We have

ℎ =
∑︁

1≤𝑘<𝑁1+1
𝜈

(
C
𝐿1
𝑘−1
𝐵1
𝑘

)
+ 1ℎ∈h2𝜈

(
C
𝐿1
𝑁1
𝐵1
𝑁1

)
, 𝐹 (ℎ) =

∑︁
1≤𝑘<𝑁1+1

𝜏𝐵1
𝑘
𝜈

(
C
𝐿1
𝑘−1
𝐵1
𝑘

)
+ 1ℎ∈h2𝜏𝐵1

𝑁1
𝜈

(
C
𝐿1
𝑁1
𝐵1
𝑁1

)
and

ℎ′ =
∑︁

1≤𝑘<𝑁2+1
𝜈

(
C
𝐿2
𝑘−1
𝐵2
𝑘

)
+ 1ℎ′∈h2𝜈

(
C
𝐿2
𝑁2
𝐵2
𝑁2

)
, 𝐹 (ℎ′) =

∑︁
1≤𝑘<𝑁2+1

𝜏𝐵2
𝑘
𝜈

(
C
𝐿2
𝑘−1
𝐵2
𝑘

)
+ 1ℎ′∈h2𝜏𝐵2

𝑁2
𝜈

(
C
𝐿2
𝑁2
𝐵2
𝑁2

)
.

Thus, setting
𝑚𝑘 = 𝜈

(
C
𝐿2
𝑘−1
𝐵2
𝑘

)
for 𝑘 < 𝑁2, 𝑚𝑁2 = 𝜈

(
C
𝐿2
𝑁2−1
𝐵2
𝑁2

)
+ 1ℎ′∈h2𝜈

(
C
𝐿2
𝑁2
𝐵2
𝑁2

)
with the convention that𝑚𝑁2 = 0 if 𝑁2 = ∞ and remembering that 𝑥 = 𝐵1

𝑁1
, we have

𝐹 (ℎ) − 𝐹 (ℎ′) = 𝜏𝑥𝜈
(
C
𝐿1
𝑁1−1
𝐵1
𝑁1

)
+ 1ℎ∈h2𝜏𝑥𝜈

(
C
𝐿1
𝑁1
𝐵1
𝑁1

)
−

∑︁
𝑁1≤𝑘<𝑁2+1

𝜏𝐵2
𝑘
𝑚𝑘

and
ℎ − ℎ′ = 𝜈

(
C
𝐿1
𝑁1−1
𝐵1
𝑁1

)
+ 1ℎ∈h2𝜈

(
C
𝐿1
𝑁1
𝐵1
𝑁1

)
−

∑︁
𝑁1≤𝑘<𝑁2+1

𝑚𝑘 .

It follows that
𝐹 (ℎ) − 𝐹 (ℎ′) = 𝜏𝑥 (ℎ − ℎ′) +

∑︁
𝑁1≤𝑘<𝑁2+1

(𝜏𝑥 − 𝜏𝐵2
𝑘
)𝑚𝑘 . (10)

In particular,
|𝐹 (ℎ) − 𝐹 (ℎ′) | ≤ 𝜏𝑥 |ℎ − ℎ′ | +

∑︁
𝑁1≤𝑘<𝑁2+1

(𝜏𝐵2
𝑘
− 𝜏𝑥 )𝑚𝑘 .
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To control the sum, we perform an Abel transformation by setting 𝜎𝑘 = 𝜏𝐵2
𝑘
− 𝜏𝐵2

𝑘−1
for 𝑁1 < 𝑘 < 𝑁2 + 1

and 𝜎𝑁1 = 𝜏𝐵2
𝑁1

− 𝜏𝑥 . Then∑︁
𝑁1≤𝑘<𝑁2+1

(𝜏𝐵2
𝑘
− 𝜏𝑥 ) ·𝑚𝑘 =

∑︁
𝑁1≤𝑘<𝑁2+1

∑︁
𝑖∈È𝑁1,𝑘É

𝜎𝑖 ·𝑚𝑘 =
∑︁

𝑁1≤𝑖<𝑁2+1
𝜎𝑖

∑︁
𝑘∈È𝑖,𝑁2+1È

𝑚𝑘 .

Then observe that, as in the proof of Lemma 3.8, for every 𝑁1 ≤ 𝑖 < 𝑁2 +1we have
∑
𝑘∈È𝑖,𝑁2+1È𝑚𝑘 ≤ 𝜈

(
C𝐵2

𝑖

)
.

Also, 𝜎𝑁1 ≤ 𝑑C(𝑥, 𝐵2𝑁1
)/𝜈 (C𝐵2

𝑁1
) and 𝜎𝑖 ≤ 𝑑C(𝐵2𝑖−1, 𝐵2𝑖 )/𝜈 (C𝐵2

𝑖
) for 𝑁1 < 𝑖 < 𝑁2 + 1. The conclusion

follows. �

We can now prove the continuity of the function 𝐹 .

Proof of Proposition 3.3. Fix ℎ ∈ [0, 1]. We want to prove that 𝐹 is continuous at ℎ. We distinguish several
cases according to the nature of the target point 𝑧 of ℎ.

★ First case: 𝑧 is a leaf (see Fig. 6, left). Fix 𝜀 > 0. Using in particular Lemma 3.7 and the fact that C is a
Brownian CRT, we may choose 𝑥 ∈ Sk(C) such that 𝑥 ≺ 𝑧 and 𝜏𝑥 𝜈 (C𝑥 ) ≤ 𝜀, 𝜈 (C𝑥 ) ≤ 𝜀 and Diam(C𝑥 ) < 𝜀.
Observe that ℎ1(𝑥) − 𝜈 (C𝑥 ) < ℎ < ℎ1(𝑥) by Lemma 3.6. Then, by Lemmas 3.8 (ii) and 3.9, we have

|𝐹 (ℎ1(𝑥)) − 𝐹 (ℎ) | ≤ 𝜏𝑥 |ℎ1(𝑥) − ℎ | + 𝑑C(𝑥, 𝑧) ≤ 𝜏𝑥𝜈 (C𝑥 ) + 𝜀 ≤ 2𝜀.

Next, take ℎ′ ∈ (ℎ1(𝑥) − 𝜈 (C𝑥 ), ℎ1(𝑥)). By Lemma 3.6, there exists 𝑦 ∈ C𝑥 such that ℎ′ targets 𝑦. Then, as
before, again by Lemmas 3.8 (ii) and 3.9, we have

|𝐹 (ℎ1(𝑥)) − 𝐹 (ℎ′) | ≤ 𝜏𝑥 |ℎ1(𝑥) − ℎ′ | + 𝑑C(𝑥, 𝑧) ≤ 𝜏𝑥𝜈 (C𝑥 ) + 𝜀 ≤ 2𝜀.

We conclude that |𝐹 (ℎ) − 𝐹 (ℎ′) | ≤ 4𝜀.
★ Second case: 𝑧 ∈ Sk(C) (see Fig. 6, right). Fix 𝜖 > 0. Let (𝐵𝑖 , 𝐿𝑖)0≤𝑖<𝑁+1 be the record sequence

associated with 𝑧, so that 𝑧 = 𝐵𝑁 and 𝑧 ∈É𝐵𝑁−1, 𝐿𝑁−1È. Fix 𝑧 ′ ∈ C such that 𝑧 ≺ 𝑧 ′ ≺ 𝐿𝑁−1. Take
𝜀 > 0. Then choose 𝑢, 𝑣 ∈ Sk(C) such that 𝐵𝑁−1 ≺ 𝑢 ≺ 𝑧 ≺ 𝑣 ≺ 𝑧 ′ such that 𝜈 (C𝑢\C𝑣) ≤ 𝜀/𝜏𝑧′ and
Diam(C𝑢\C𝑣) ≤ 𝜀. Then, by Lemmas 3.8 (i) and 3.9, we have

|𝐹 (ℎ1(𝑢)) − 𝐹 (ℎ) | ≤ 𝜏𝑢 |ℎ1(𝑢) − ℎ | + 𝑑C(𝑢, 𝑧) ≤ 𝜏𝑧′𝜈 (C𝑢\C𝑧) + 𝜀 ≤ 𝜏𝑧′𝜈 (C𝑢\C𝑣) + 𝜀 ≤ 2𝜀.

Next, observe that by Lemma 3.5 we have ℎ1(𝑣) < ℎ < ℎ1(𝑢). Take ℎ′ ∈ (ℎ1(𝑣), ℎ1(𝑢)). By Lemma 3.6, since
𝑣 ∈ C𝑢 , we have ℎ1(𝑢) − 𝜈 (C𝑢) < ℎ1(𝑣), so we have ℎ1(𝑢) − 𝜈 (C𝑢) < ℎ′ < ℎ1(𝑢).

By Lemma 3.6, there exists 𝑦 ∈ C𝑢 such that ℎ′ targets 𝑦. Then, again by Lemma 3.9, we have

|𝐹 (ℎ1(𝑢)) − 𝐹 (ℎ′) | ≤ 𝜏𝑢 |ℎ1(𝑢) − ℎ′ | + 𝑑C(𝑢,𝑦) ≤ 𝜏𝑧′ (ℎ1(𝑢) − ℎ1(𝑣)) + 𝜀 ≤ 𝜏𝑧′𝜈 (C𝑢\C𝑣) + 𝜀 ≤ 2𝜀

where we have also used Lemma 3.8 (i) to writeℎ1(𝑢)−ℎ1(𝑣) ≤ 𝜈 (C𝑢\C𝑣). We conclude that |𝐹 (ℎ)−𝐹 (ℎ′) | ≤
4𝜀.

Figure 6: Illustration of the rst case when 𝑧 is a leaf (left) and the second case where 𝑧 ∈ Sk(C) (right).

★ Third case: 𝑧 is a branchpoint. Let (𝐵𝑖 , 𝐿𝑖)0≤𝑖<𝑁+1 be the record sequence associated with 𝑧 with
𝑁 < ∞. We consider two subcases.
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★★ First subcase: ℎ is of the form ℎ = ℎ1(𝑧) (see Fig. 7). We rst show that 𝐹 is right-continuous at
ℎ. Fix 𝜖 > 0. Choose a point 𝑢 ∈ Sk(C) such that 𝑧 ≺ 𝑢 ≺ 𝐿𝑁 and 𝜈 (C𝑢) ≤ 𝜀/𝜏𝑢 and Diam(C𝑢) < 𝜀. By
denition of the Pac-Man construction, ℎ1(𝑢) = ℎ + 𝜈 (C𝑢) and 𝐹 (ℎ1(𝑢)) = 𝐹 (ℎ) + 𝜏𝑢𝜈 (C𝑢). In particular,
|𝐹 (ℎ1(𝑢)) − 𝐹 (ℎ) | ≤ 𝜀.

Now take ℎ′ ∈ (ℎ,ℎ + 𝜈 (C𝑢)). Since ℎ1(𝑢) − 𝜈 (C𝑢) < ℎ′ < ℎ1(𝑢), by Lemma 3.6, there exists 𝑦 ∈ C𝑢 such
that ℎ′ targets 𝑦. Then, as before, by Lemma 3.9, we have

|𝐹 (ℎ1(𝑢)) − 𝐹 (ℎ′) | ≤ 𝜏𝑦 |ℎ1(𝑢) − ℎ′ | + 𝑑C(𝑢,𝑦) ≤ 𝜏𝑢𝜈 (C𝑢) + 𝜀 ≤ 2𝜀.

We conclude that |𝐹 (ℎ) − 𝐹 (ℎ′) | ≤ 3𝜀.
Let us next show that 𝐹 is left-continuous at ℎ. Fix a point 𝑣 ∈ Sk(C) such that 𝑧 ≺ 𝑣 ≺ 𝐿𝑁−1. Take

𝜀 > 0 and choose a point 𝑢 ∈ Sk(C) such that 𝑧 ≺ 𝑢 ≺ 𝑣 and 𝜈 (C𝐿𝑁−1
𝑧 \C𝑢) ≤ 𝜀/𝜏𝑣 and Diam(C𝐿𝑁−1

𝑧 \C𝑢) < 𝜀.
Observe that by denition of the Pac-Man construction, ℎ1(𝑢) + 𝜈 (C𝐿𝑁−1

𝑧 \C𝑢) = ℎ. Take ℎ′ ∈ (ℎ1(𝑢), ℎ). By
Lemma 3.6, there exists 𝑦 ∈ C

𝐿𝑁−1
𝑧 \C𝑢 such that ℎ′ targets 𝑦. Then, as before, by Lemma 3.9, we have

|𝐹 (ℎ) − 𝐹 (ℎ′) | ≤ 𝜏𝑧 |ℎ − ℎ′ | + 𝑑C(𝑧,𝑦) ≤ 𝜏𝑣𝜈 (C𝐿𝑁−1
𝑧 \C𝑢) + 𝜀 ≤ 2𝜀.

Figure 7: Illustration of the case ℎ = ℎ1(𝑧). Left: proof of the left-continuity; right: proof of the right-
continuity.

★★ Second subcase: ℎ is of the form ℎ = ℎ2(𝑧) (see Fig. 8).
Let us rst show that 𝐹 is left-continuous at ℎ. Fix a point 𝑣 ∈ Sk(C) such that 𝑧 ≺ 𝑣 ≺ 𝐿𝑁 . Take 𝜀 > 0

and choose a point 𝑢 ∈ Sk(C) such that 𝑧 ≺ 𝑢 ≺ 𝑣 , 𝜈 (C𝐿𝑁𝑧 \C𝑢) ≤ 𝜀/𝜏𝑣 and Diam(C𝐿𝑁𝑧 \C𝑢) < 𝜀. Observe that
by denition of the Pac-Man construction, ℎ1(𝑢) + 𝜈 (C𝐿𝑁−1

𝑧 \C𝑢) = ℎ. Take ℎ′ ∈ (ℎ1(𝑢), ℎ). By Lemma 3.6,
there exists 𝑦 ∈ C

𝐿𝑁−1
𝑧 \C𝑢 such that ℎ′ targets 𝑦. Then, as before, by Lemma 3.9, we have

|𝐹 (ℎ) − 𝐹 (ℎ′) | ≤ 𝜏𝑧 |ℎ1(𝑧) − ℎ′ | + 𝑑C(𝑧,𝑦) ≤ 𝜏𝑣𝜈 (C𝐿𝑁−1
𝑧 \C𝑢) + 𝜀 ≤ 2𝜀.

Figure 8: Illustration of the case ℎ = ℎ2(𝑧). Left: proof of the left-continuity; right: proof of the right-
continuity.

Let us next show that 𝐹 is right-continuous at ℎ. Take 𝜀 > 0 and x a point 𝑢 ∈ Sk(C) such that
𝐵𝑁−1 ≺ 𝑢 ≺ 𝑧, 𝜈 (C𝑢\C𝑧) ≤ 𝜀/𝜏𝑧 and Diam(C𝑢\C𝑧) < 𝜀. Observe that by denition of the Pac-Man
construction, ℎ1(𝑢) = ℎ + 𝜈 (C𝑢\C𝑧). Take ℎ′ ∈ (ℎ,ℎ1(𝑢)). By Lemma 3.6, there exists 𝑦 ∈ C𝑢\C𝑧 such that
ℎ′ targets 𝑦. Then, as before, by Lemma 3.9, we have

|𝐹 (ℎ) − 𝐹 (ℎ′) | ≤ 𝜏𝑢 |ℎ − ℎ′ | + 𝑑C(𝑢,𝑦) ≤ 𝜏𝑧𝜈 (C𝑢\C𝑧) + 𝜀 ≤ 2𝜀.

This completes the proof. �

14



3.3 The function 𝐹 codes the Aldous-Pitman fragmentation of the CRT

We have constructed a continuous excursion-type function 𝐹 from the Aldous-Pitman fragmentation of the
Brownian CRT T. In order to prove Theorem 1.1 (i), before showing that 𝐹 is in law the Brownian excursion,
we rst show that a.s. for every 𝑡 ≥ 0, the nonincreasing rearrangement of the masses of the connected
components of T\P𝑡 is the same as the nonincreasing rearrangement of the lengths of the excursions of
(𝐹 (ℎ) − 𝑡ℎ)0≤ℎ≤1 above its running inmum. To simplify notation, set 𝐹𝑡 (ℎ) = 𝐹 (ℎ) − 𝑡ℎ for 0 ≤ ℎ ≤ 1.

Lemma 3.10. Take 𝑥 ≺ 𝑦 in C and ℎ,ℎ′ ∈ [0, 1] such that ℎ targets 𝑥 and ℎ′ targets 𝑦. Then 𝐹𝜏𝑥 (ℎ′) > 𝐹𝜏𝑥 (ℎ).

Proof. This readily follows from the identity (10) appearing in the proof of Lemma 3.9. Indeed, keeping
the same notation, if 𝑥 = 𝐵1

𝑁1
= 𝐵2

𝑁1
then 𝑁2 > 𝑁1 and 𝜏𝑥 < 𝜏𝐵2

𝑘
for every 𝑁1 < 𝑘 < 𝑁2 + 1 since 𝑥 is an

ancestor of 𝐵2
𝑘
. If 𝑥 = 𝐵1

𝑁1
≠ 𝐵2

𝑁1
then similarly 𝜏𝑥 < 𝜏𝐵2

𝑁1
. �

By Lemma 2.2, for every 𝑡 ≥ 0, the connected components of T\P𝑡 are in bijection with subtrees of C of
the form 𝐶

ℓ (𝑥)
𝑥 or Cℓ̄ (𝑥)𝑥 for 𝑥 ∈ C with 𝜏𝑥 = 𝑡 ; and this bijection conserves the masses. If 𝐶 is a connected

component, recall that we denote by Φ(𝐶) the corresponding subtree of C (in particular 𝜈 (Φ(𝐶)) = 𝜇 (𝐶)).
Let 𝐶 be a connected component of T\P𝑡 and 𝑥 ∈ C with 𝜏𝑥 = 𝑡 . Observe that then 𝑥 is not a leaf; we

denote by (𝐵𝑖 , 𝐿𝑖)0≤𝑖≤𝑁 the record sequence of 𝑥 . Recall from (9) the denition of ℎ0(𝑥).
We claim that 𝐹𝑡 (ℎ0(𝑥)) = 𝐹𝑡 (ℎ1(𝑥)) and that

∀ℎ ∈ (ℎ0(𝑥), ℎ1(𝑥)), 𝐹𝑡 (ℎ) > 𝐹𝑡 (ℎ1(𝑥)); ∀ℎ ∈ (0, ℎ0(𝑥)), 𝐹𝑡 (ℎ) > 𝐹𝑡 (ℎ1(𝑥)) . (11)

This implies that when 𝑥 ∈ Sk(C), we have an excursion of length 𝜈 (C𝑥 ) of 𝐹𝑡 above its running inmum,
and when 𝑥 is a branchpoint we have an excursion of length 𝜈 (Cℓ (𝑥)𝑥 ) of 𝐹𝑡 above its running inmum.

To check that 𝐹𝑡 (ℎ0(𝑥)) = 𝐹𝑡 (ℎ1(𝑥)), observe that by denition

𝑥 = 𝐵𝑁 , 𝑡 = 𝜏𝐵𝑁 , ℎ1(𝑥) =
∑︁

1≤𝑘≤𝑁
𝜈

(
C
𝐿𝑘−1
𝐵𝑘

)
, 𝐹 (ℎ1(𝑥)) =

∑︁
1≤𝑘≤𝑁

𝜏𝐵𝑘 · 𝜈
(
C
𝐿𝑘−1
𝐵𝑘

)
,

so
𝐹𝑡 (ℎ1(𝑥)) =

∑︁
1≤𝑘≤𝑁

𝜏𝐵𝑘 · 𝜈
(
C
𝐿𝑘−1
𝐵𝑘

)
− 𝜏𝐵𝑁

∑︁
1≤𝑘≤𝑁

𝜈

(
C
𝐿𝑘−1
𝐵𝑘

)
.

In addition, observe that
ℎ0(𝑥) =

∑︁
1≤𝑘≤𝑁−1

𝜈

(
C
𝐿𝑘−1
𝐵𝑘

)
= ℎ1(𝐵𝑁−1).

It follows that ℎ0(𝑥) targets 𝐵𝑁−1, and

𝐹 (ℎ1(𝐵𝑁−1)) =
∑︁

1≤𝑘≤𝑁−1
𝜏𝐵𝑘 · 𝜈

(
C
𝐿𝑘−1
𝐵𝑘

)
.

Hence

𝐹𝑡 (ℎ0(𝑥)) = 𝐹𝑡 (ℎ1(𝐵𝑁−1)) =
∑︁

1≤𝑘≤𝑁−1
𝜏𝐵𝑘 · 𝜈

(
C
𝐿𝑘−1
𝐵𝑘

)
− 𝜏𝐵𝑁

∑︁
1≤𝑘≤𝑁−1

𝜈

(
C
𝐿𝑘−1
𝐵𝑘

)
= 𝐹𝑡 (ℎ1(𝑥)) .

The rst inequality in (11) readily follows from Lemma 3.10, since the target point of any element
ℎ ∈ (ℎ0(𝑥), ℎ1(𝑥)) belongs to C𝑥\{𝑥} by Lemma 3.6.

To establish the second inequality in (11), take ℎ ∈ (0, ℎ0(𝑥)). Let 1 ≤ 𝑚 ≤ 𝑁 − 1 be such that∑︁
1≤𝑘≤𝑚−1

𝜈

(
C
𝐿𝑘−1
𝐵𝑘

)
≤ ℎ <

∑︁
1≤𝑘≤𝑚

𝜈

(
C
𝐿𝑘−1
𝐵𝑘

)
= ℎ1(𝐵𝑚) .

Thenℎ targets a point in C
𝐿𝑚−1
𝐵𝑚

, so that by Lemma 3.10 we have 𝐹𝜏𝐵𝑚 (ℎ) ≥ 𝐹𝜏𝐵𝑚 (ℎ1(𝐵𝑚)) (with the inequality
being strict if ℎ targets a point dierent from 𝐵𝑚). Since 𝑡 ≥ 𝜏𝐵𝑚 , this entails 𝐹𝑡 (ℎ) ≥ 𝐹𝑡 (ℎ1(𝐵𝑚)). It remains
to note that

𝐹𝑡 (ℎ1(𝐵𝑚)) ≥ 𝐹𝑡 (ℎ1(𝑥))
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with the inequality being strict if𝑚 < 𝑁 − 1. Indeed,

𝐹𝑡 (ℎ1(𝐵𝑚)) =
∑︁

1≤𝑘≤𝑚
𝜏𝐵𝑘 · 𝜈

(
C
𝐿𝑘−1
𝐵𝑘

)
− 𝜏𝐵𝑁

∑︁
1≤𝑘≤𝑚

𝜈

(
C
𝐿𝑘−1
𝐵𝑘

)
so

𝐹𝑡 (ℎ1(𝐵𝑚)) − 𝐹𝑡 (ℎ1(𝑥)) = 𝜏𝐵𝑁
∑︁

𝑚+1≤𝑘≤𝑁−1
𝜈

(
C
𝐿𝑘−1
𝐵𝑘

)
−

∑︁
𝑚+1≤𝑘≤𝑁−1

𝜏𝐵𝑘 · 𝜈
(
C
𝐿𝑘−1
𝐵𝑘

)
,

which entails the result since 𝜏𝐵𝑁 > 𝜏𝐵𝑘 for 𝑚 + 1 ≤ 𝑘 ≤ 𝑁 − 1. Since one of the two inequalities
𝐹𝑡 (ℎ) ≥ 𝐹𝑡 (ℎ1(𝐵𝑚)) or 𝐹𝑡 (ℎ1(𝐵𝑚)) ≥ 𝐹𝑡 (ℎ1(𝑥)) is strict (because ℎ < ℎ0(𝑥) so ℎ does not target 𝐵𝑁−1), the
second inequality in (11) follows.

To nish the proof, assume that 𝑥 is a branchpoint. We claim that 𝐹𝑡 (ℎ1(𝑥)) = 𝐹𝑡 (ℎ2(𝑥)) and that

∀ℎ ∈ (ℎ1(𝑥), ℎ2(𝑥)), 𝐹𝑡 (ℎ) > 𝐹𝑡 (ℎ1(𝑥)). (12)

This implies that we have an excursion of length 𝜈
(
C
ℓ̄ (𝑥)
𝑥

)
of 𝐹𝑡 above its running inmum.

The fact that 𝐹𝑡 (ℎ1(𝑥)) = 𝐹𝑡 (ℎ2(𝑥)) is proved exactly in the same way as the identity 𝐹𝑡 (ℎ0(𝑥)) =

𝐹𝑡 (ℎ1(𝑥)), by using the denition of 𝐹𝑡 . Finally, (12) follows from Lemma 3.10 by observing that when
ℎ ∈ (ℎ1(𝑥), ℎ2(𝑥)), the target point of ℎ belongs to C𝑥\{𝑥}.

3.4 The function 𝐹 is a Brownian excursion

In order to prove that 𝐹 is distributed as a Brownian excursion e, we show that they both satisfy a same
recursive equation, which has a unique solution in distribution.

For every continuous function 𝑓 : [0, 1] → R+, dene (𝑃𝑡 (𝑓 ), 𝑡 ≥ 0) as follows:

∀𝑡 > 0, 𝑃𝑡 (𝑓 ) = inf {𝑢 > 0, 𝑓 (𝑢) − 𝑡𝑢 = 0} .

Proposition 3.11. Let 𝑓 : [0, 1] → R+ be a (random) continuous function satisfying the following:

(i) 𝑓 (0) = 0 a.s.

(ii) The two processes (𝑃𝑡 (𝑓 ))𝑡 ≥0 and
(

1
1+𝑆𝑡

)
𝑡 ≥0

have the same law, where 𝑆 is a 1/2-stable subordinator.

(iii) Dene (𝑡𝑖 , 𝑎𝑖 , 𝑏𝑖)𝑖≥1 as follows: {𝑡𝑖 , 𝑖 ≥ 1} is the set of jump times of (𝑃𝑡 (𝑓 ), 𝑡 ≥ 0) and, for all 𝑖 ≥ 1,
(𝑔𝑖 , 𝑑𝑖) =

(
𝑃𝑡𝑖 (𝑓 ), 𝑃𝑡𝑖−(𝑓 )

)
. Furthermore, the 𝑡𝑖 ’s are sorted in nonincreasing values of 𝑑𝑖 − 𝑔𝑖 . Then,

conditionally given (𝑃𝑡 (𝑓 ))𝑡 ≥0,
{(√

𝑏𝑖 − 𝑎𝑖 𝑓 (𝑎𝑖 + (𝑏𝑖 − 𝑎𝑖)𝑢) − 𝑡𝑖 (𝑎𝑖 + (𝑏𝑖 − 𝑎𝑖)𝑢)
)
0≤𝑢≤1

}
𝑖≥1

are i.i.d.

random variables distributed as (𝑓 (𝑢), 0 ≤ 𝑢 ≤ 1).

Then 𝑓 and e have the same law.

In particular, observe that if 𝑓 satises these assumptions, then 𝑓 (1) = 0 a.s.

Lemma 3.12. The standard Brownian excursion e on [0, 1] satises (i), (ii), (iii).

In order to prove that e satises these properties, we need the following result from Chassaing and
Janson [19].

Theorem 3.13. [19, Theorem 2.6] Consider 𝑏 and e, respectively Brownian bridge and Brownian excursion on
[0, 1], extended on R so that they are 1-periodic. For all 𝑎 ≥ 0, dene the following two processes:

• 𝑋𝑎 the reecting Brownian bridge |𝑏 | conditioned to have local time at 0 equal to 𝑎;

• 𝑍𝑎 = Ψ𝑎e, where Ψ𝑎 𝑓 (𝑡) = 𝑓 (𝑡) − 𝑎𝑡 − inf−∞<𝑠≤𝑡 {𝑓 (𝑠) − 𝑎𝑠}.

Denote by 𝐿𝑡 (𝑋𝑎) the local time of 𝑋𝑎 up to time 𝑡 , and 𝑉 the unique point at which 𝑡 ↦→ 𝐿𝑡 (𝑋𝑎) − 𝑎𝑡 is
maximum. Then,

𝑍𝑎
(𝑑)
= 𝑋𝑎 (𝑉 + ·) .
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Let us show Lemma 3.12.

Proof of Lemma 3.12. First observe that it is clear by the Markov property and [9, Proposition 11] that e
satises (i) and (ii). Let us prove that it satises (iii). To this end, observe that almost surely 𝑋𝑎 (𝑉 ) = 0 by
denition of 𝑉 . Hence, the excursions of 𝑍𝑎 , ordered by non-increasing order of length, are distributed as
the excursions, ordered by non-increasing order of length, of 𝑋𝑎 . As a consequence, conditionally given
their endpoints, the excursions of 𝑋𝑎 ordered by non-increasing order of length, are independent and
distributed as appropriately rescaled standard Brownian excursions (see e.g. the proof of [35, Lemma 12]).
This proves that e satises (iii). �

Let us now prove Proposition 3.11.

Proof of Proposition 3.11. It thus remains to check that these assumptions uniquely characterize the distribu-
tion of 𝑓 . Let 𝑓 be a function satisfying (i), (ii), (iii). For every 𝜀 > 0we shall construct a coupling (𝑓 , e) such
that P(‖ 𝑓 − e‖ > 𝜀) < 𝜀, which will imply that 𝑓 and e have the same law (indeed, this implies e.g. that the
Lévy-Prokhorov distance between the laws of 𝑓 and e is at most 𝜀). To simplify notation, set

U =
⋃
𝑘∈Z+

N𝑘 .

If s ∈ N𝑘 with 𝑘 ≥ 0 we set |s| = 𝑘 . Consider a family of i.i.d. 1/2-stable subordinators (𝑆s)s∈U, where by
convention N0 = {∅}. For each s ∈ U, set 𝑍 s

𝑡 = (1 + 𝑆s𝑡 )−1 for 𝑡 ≥ 0. Denote by Ts B (𝑡 s𝑖 )𝑖≥1 the set of jump
times of 𝑆s, ordered by decreasing values of 𝑑s𝑖 − 𝑔s𝑖 , where 𝑑s𝑖 = 𝑍 s

𝑡𝑖− and 𝑔s𝑖 = 𝑍 s
𝑡𝑖
(in case of equality, sort

them by increasing value of 𝑔s𝑖 ).
Now we dene by induction sets of points (Rs)s∈U as follows. Dene intervals [𝑎s, 𝑏s]s∈U as:

• for s = ∅, 𝑎∅ = 0, 𝑏∅ = 1;

• for s ≠ ∅, let s ∈ U, 𝑖 ∈ N be such that s = s · 𝑖 . Then, we dene

𝑎s B 𝑎s +
(
𝑏s − 𝑎s

)
𝑔s𝑖 , 𝑏s B 𝑎s +

(
𝑏s − 𝑎s

)
𝑑s𝑖 .

For every 𝜀 > 0, we shall now use the subordinators (𝑆s)s∈U to construct a coupling between 𝑓 and e
such that P(‖ 𝑓 − e‖ > 𝜀) < 𝜀. For every xed 𝑘 ≥ 1, set R𝑘 := {𝑎s, |s| ≤ 𝑘} ∪ {𝑏s, |s| ≤ 𝑘}. Since 𝑓 and e
both satisfy (ii) and (iii), we can couple them using the subordinators (𝑆s) |s | ≤𝑘 , so that a.s.

∀𝑢 ∈ R𝑘 , 𝑓 (𝑢) = e(𝑢) .

Next, for every 𝜖 > 0, one can nd 𝐾𝜖 ∈ Z+ such that

P
(
sup{𝑏 − 𝑎 : 𝑎, 𝑏 ∈ R𝐾𝜖

, (𝑎, 𝑏) ∩ R𝐾𝜖
= ∅} > 𝜖

)
< 𝜖.

Furthermore, since e and 𝑓 are continuous on [0, 1], they are uniformly continuous. In particular, there
exists 𝐶𝜂 > 0 such that P

(
𝜔 (e) > 𝐶𝜂

)
< 𝜂 and P

(
𝜔 (𝑓 ) > 𝐶𝜂

)
< 𝜂. Now, on the event that {sup{𝑏 − 𝑎 :

𝑎, 𝑏 ∈ R𝐾𝜖
, (𝑎, 𝑏) ∩ R𝐾𝜖

= ∅ < 𝜖, 𝜔 (e) < 𝐶𝜂, 𝜔 (𝑓 ) < 𝐶𝜂}, we have clearly ‖ 𝑓 − e‖ < 2𝐶𝜂𝜖 . Thus
P(‖ 𝑓 − e‖ > 2𝐶𝜂𝜖) ≤ 𝜀 + 2𝜂 (observe that the choice of 𝐶𝜂 is independent of 𝜖). This completes the
proof. �

This allows us to prove the following corollary:

Corollary 3.14. Let (𝐹 (𝑡), 0 ≤ 𝑡 ≤ 1) be the function obtained by the Pac-Man algorithm from the Brownian
CRT T. Then

(𝐹 (𝑡), 0 ≤ 𝑡 ≤ 1) (𝑑)
= (e𝑡 , 0 ≤ 𝑡 ≤ 1) .

Proof of Corollary 3.14. We need to prove that 𝐹 is continuous and satises (i), (ii), (iii). We immediately
obtain (i) from 3.7 applied to the leaf 0, continuity from Proposition 3.3 and (ii) from [9, Theorem 1 and
Proposition 11] combined with invariance by uniform rerooting of the Brownian CRT. Finally, (iii) comes
from [18, Corollary 2.3]. �

17



4 Recovering the original tree together with its Poissonian rain

Let T be a Brownian CRT with mass measure 𝜇,𝑈 B (𝑈𝑖)𝑖≥1 a sequence of i.i.d. leaves of T with common
distribution 𝜇, and P a Poissonian rain on Sk(T) independent of 𝑈 . Denote by M the law of the triple
(T,𝑈 ,P). An important question in the literature (see [2, 14, 18]) concerns the problem of reconstruction of
the original tree: is it possible to reconstruct (T,𝑈 ,P) being given the cut-tree?

It turns out that there is a loss of information when one goes from a triple (T,𝑈 ,P) to the cut-tree
(C,N). More precisely, the following holds:

Theorem 4.1. [18, Theorem 3.2 (c)] Let T be a Brownian CRT. Then there exists a (random) tree shu(T) such
that in distribution:

(T, shu(T)) (𝑑)
= (Cut(T), T) .

Here one recovers T fromCut(T) only in distribution. Later, Addario-Berry, Dieuleveut and Goldschmidt
[2] have shown that, if one considers an enrichment of the cut-tree transform with information called
routings, it is possible to almost surely recover the initial tree (along with 𝑈 and P) from this enriched
cut-tree (see [14] for an extension to Inhomogeneous Continuum Random Trees). We refer to [2] for more
details, and only recall the main ideas. Recall from (5) that with each cutpoint 𝑐 ∈ P∞ is associated a
branchpoint 𝑏 ∈ C, and two leaves ℓ (𝑏), ℓ (𝑐), one in each connected component of C\𝑏 not containing the
root. For sake of brevity, we shall use, but not dene, the notion of routings and refer the reader to [2,
Section 3].

Theorem 4.2. [2, Corollary 17] Let (T,𝑈 ,P) be a Brownian CRT along with a collection of i.i.d. leaves and
a Poissonian rain on its skeleton. Let 𝑅 be the collection of routings obtained from it. Then, there exists a
(deterministic) measurable map Φ such that, almost surely:

(T,𝑈 ,P) = Φ ((C,N, 𝑅)) .

Our question is quite similar: being given the “Bertoin” Brownian excursion e, is it possible to construct
a map Ψ such that Ψ(𝐹 ) has the law of M and 𝐹 ◦ Ψ(e) = Id?

Theorem 4.3. Let e be a standard Brownian excursion. Then there exists a tree T(e), a sequence of points
𝑉 (e) B (𝑉𝑖 (e), 𝑖 ∈ N) and a point process Q(e) on Sk(T(e)) × R+ such that the following holds:

• In distribution, (T(e),𝑉 (e),Q(e)) (𝑑)
= (T,𝑈 ,P);

• almost surely, 𝐹 (T(e),𝑉 (e),Q(e)) = e, where 𝐹 (T(e),𝑉 (e),Q(e)) stands for the excursion obtained
from the Pac-Man algorithm on the cut-tree of (T(e),𝑉 (e),Q(e)).

In other words, it is possible to obtain from e a random tree T(e) along with a collection of i.i.d. leaves
𝑉 (e) and a Poissonian rain Q(e) on its skeleton such that, a.s., e is the “Bertoin” excursion obtained from
the Aldous-Pitman fragmentation of this tree.

We shall prove Theorem 4.3 in Sec. 4.1 and 4.2.

4.1 From Bertoin’s excursion to the semi-enriched cut-tree

We rst prove that having the “Bertoin” excursion 𝐹 obtained from the Aldous-Pitman fragmentation of a
CRT T is equivalent to having the cut-tree C, along with a collection of points that we call half-routings, a
notion which we shall now dene.

Let T be a compact binary real tree with root 𝜌 , and recall that B(T) denotes the set of branchpoints
of the tree T. We call half-routings on T a collection of leaves H B {ℓ𝑏, 𝑏 ∈ B(T) ∪ {𝜌}} such that
ℓ𝑏 ∈ T𝑏 for every 𝑏 ∈ B(T) ∪ {𝜌}. For every 𝑏 ∈ B(T), we dene its associated so-called record sequence
(𝑏𝑖)𝑖≥0 ∈ (B(T) ∪ {𝜌})Z+ by induction as follows. Set 𝑏0 = 𝜌 . Then for every 𝑘 ≥ 0, assuming that (𝑏𝑖)0≤𝑖≤𝑘
has been dened, we set 𝑏𝑘+1 = ℓ𝑏𝑘 ∧ 𝑏. Since (𝑏𝑘 )𝑘≥0 is increasing, it converges in T.
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We say that the collection H of half-routings is consistent if the following holds:

∀𝑏 ∈ B(T) ∪ {𝜌}, ∃𝑁 ≥ 0, 𝑏𝑁 = 𝑏.

In particular, when H is consistent, the sequence (𝑏𝑘 )𝑘≥0 is stationary after time 𝑁 and, for all 𝑘 ≥ 1 such
that 𝑏𝑘 ≠ 𝑏, we have ℓ𝑏𝑘 ∈ T

ℓ𝑏𝑘−1
𝑏𝑘

. Furthermore, every branchpoint has a nite record sequence. Finally,
denote by T𝐻𝑅 the set of compact rooted binary real trees enriched with the a consistent collection of
half-routings. Observe that the Pac-Man algorithm can be applied mutatis mutandis to any enriched tree
(T,H), where H is a consistent collection of half-routings on T. We denote by X𝑃𝑀 (T,H) the function
obtained from this algorithm.

Proposition 4.4. Let e be a standard Brownian excursion. Then, there exists a deterministic map 𝜙 :
D ( [0, 1], [0,∞]) → T𝐻𝑅 such that, a.s., X𝑃𝑀 (𝜙 (e)) = e.

Proof of Proposition 4.4. Let (T,𝑈 ,P) be a Brownian CRT along with a sequence of i.i.d. leaves and a
Poissonian rain on its skeleton, C its associated cut-tree, and set HC B {ℓ (𝑏), 𝑏 ∈ B(C)}, with ℓ (𝑏) dened
by (5). Observe that HC is a.s. a consistent collection of half-routings on C. Since X𝑃𝑀 (C) has the law of
a standard Brownian excursion, we only need to prove that we can a.s. reconstruct the cut-tree (C,HC)
from X𝑃𝑀 (C). To this end, we use a stick-breaking construction in the spirit of [7]. We rst construct the
branch È𝜌, ℓ∅É, with length

∫ ∞
0 𝜆(𝑠)d𝑠 , where 𝜆(𝑠) B inf{𝑢 > 0, 𝑓 (𝑢) = 𝑠𝑢}. Furthermore, to each 𝑡 such

that 𝜆(𝑡) < 𝜆(𝑡−) corresponds a branchpoint 𝑏𝑡 on this branch, such that 𝑑 (𝜌, 𝑏𝑡 ) =
∫ 𝑡
0 𝜆(𝑠)d𝑠 . The two

subtrees of C rooted in 𝑏𝑡 have respective masses 𝜆(𝑡) and 𝜆(𝑡−) − 𝜆(𝑡). Iterating this process provides a
tree C◦, whose completion is by construction C. �

4.2 From the semi-enriched cut-tree to the initial tree

We show here how to recover the original tree (in distribution) from its cut-tree with its collection of
half-routings, by using and adapting the results of [2]. From the construction of the routing 𝑅 associated
with the fragmentation of T in [2], it is clear that HC constructed from 𝐹 is included in 𝑅, in the following
sense. Recall that 𝑅 can be seen as a map that associates to each point 𝑏 ∈ B(C) ∪ {𝜌} and each connected
component 𝑇 of C\{𝑏} not containing the root, a leaf 𝑟𝑇 (𝑏) (see [2, Proposition 12]). Then, letting 𝑇𝑏 be the
connected component of C\{𝑏} containing ℓ (𝑏), we have a.s.:

(ℓ (𝑏), 𝑏 ∈ B (C) ∪ {𝜌}) 𝑎.𝑠.=
(
𝑟𝑇𝑏 (𝑏), 𝑏 ∈ B (C) ∪ {𝜌}

)
.

It is a mere consequence of [2, Proposition 12] that the law of (C,N,HC) is as follows:

Proposition 4.5. (i) C is a CRT endowed with its mass measure 𝜈 .

(ii) The elements of {𝜌} ∪ N are i.i.d. with law 𝜈 ;

(iii) ℓ (𝜌) ∼ 𝜈 ;

(iv) For each branchpoint 𝑏 ∈ C, each component𝐶 of C𝑏\{𝑏}, let ℓ (𝐶) be a random leaf distributed according
to 𝜈𝐶 , so that moreover, these random variables are conditionally independent given (C, {𝜌} ∪ N). Then,
letting 𝑏0 B 𝜌, . . . , 𝑏𝑁 = 𝑏 the record sequence of 𝑏, set 𝑓 (𝑏) = ℓ (𝐶), where𝐶 is the connected component

of C𝑏\{𝑏} not containing ℓ (𝑏𝑁−1). Then, (ℓ (𝑏), 𝑏 ∈ B(C) ∪ {𝜌}) (𝑑)
= (𝑓 (𝑏), 𝑏 ∈ B(C) ∪ {𝜌}).

Let us prove that it implies Theorem 4.3.

Proof of Theorem 4.3. By [2, Proposition 12 and Corollaries 17 and 18], a way to construct from 𝐹 a tree
(Tree(𝐹 ),𝑉 ,Q) satisfying Theorem 4.3 is the following. For each branchpoint 𝑏 of C, sample a variable
ℓ (𝑏) according to 𝜈

C𝑏\Cℓ (𝑏)𝑏

, so that {ℓ (𝑏), 𝑏 ∈ B(C)} ∪ {ℓ (𝑏),B(C)} are conditionally independent given
(C, {𝜌} ∪ N). It is clear then that this induces a routing 𝑅 on C in the sense of [2]. Applying to (C,N, 𝑅) the
map Φ of [2, Corollary 17] provides a triple Φ(C,N, 𝑅) with law M, such that almost surely, by Proposition
4.4, X𝑃𝑀 ◦ Φ(C,N, 𝑅) = 𝐹 . �
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