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Abstract

We deal with quantum spin chains whose Hamiltonian arises from a representation

of the Temperley-Lieb algebra, and we consider the mean values of those local opera-

tors which are generated by the Temperley-Lieb algebra. We present two key conjectures

which relate these mean values to existing literature about factorized correlation func-

tions in the XXZ spin chain. The first conjecture states that the finite volume mean values

of the current and generalized current operators are given by the same simple formulas

as in the case of the XXZ chain. The second conjecture states that the mean values of

products of Temperley-Lieb generators can be factorized: they can expressed as sums of

products of current mean values, such that the coefficients in the factorization depend

neither on the eigenstate in question, nor on the selected representation of the algebra.

The coefficients can be extracted from existing work on factorized correlation functions

in the XXZ model. The conjectures should hold for all eigenstates that are non-degenerate

with respect to the local charges of the models. We consider concrete representations,

where we check the conjectures: the so-called golden chain, the Q-state Potts model, and

the trace representation. We also explain how to derive the generalized current operators

from concrete expressions for the local charges.
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1 Introduction

One dimensional quantum integrable models are special systems, which allow for exact

solutions, at least for certain physical quantities and in certain physical situations [1, 2]. The

Bethe Ansatz is a central method which is used to solve many such models. The strength of

the Bethe Ansatz lies in diagonalizing the Hamiltonian: in finding the eigenvectors and the

associated eigenvalues. However, the computation of correlation functions is a notoriously

difficult problem, already in equilibrium situations.

In this work, we contribute to the computation of correlation functions in a selected class

of integrable models: those quantum spin chains, which are related to the Temperley-Lieb

algebra.

The Temperley-Lieb algebra was discovered in the paper [3], where it was used to compute

the partition function of selected 2D statistical physical models by relating them to the XXZ

Heisenberg spin chain. The key observation is that the defining relations of the algebra are

strong enough to guarantee equivalences in the spectrum of different models. These models

are then seen as different representations of the same algebra. The precise statement is that

the eigenvalues of the Hamiltonians in some representation of the Temperley-Lieb algebra

are included in the spectrum of the XXZ model (with the same volume, and open boundary

conditions). However, the degeneracies of the states can differ in the various representations

[4–6] (see also [7]).

As opposed to the many studies dealing with the spectrum and the representation theory,

the correlation functions of these models have received far less attention. In fact, we are not

aware of any work dealing systematically with this problem. Specific correlation functions in

Temperley-Lieb models have been investigated in selected cases [8, 9], but we are not aware

of a general treatment. Meanwhile, correlation functions of the XXZ spin chain have been
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investigated for multiple decades (see the book [10] and the habilitation thesis [11]). This

leads to the idea of utilizing the Temperley-Lieb algebra to make connections between the

XXZ chain and other representations also on the level of the correlation functions, thus yielding

useful results for many models for which there are no results for correlators in the literature.

It is our goal to use the theory of factorized correlation functions of the XXZ chain (also

known as the “hidden Grassmann structure”) to compute correlations for other Temperley-

Lieb models. In the Heisenberg chain, this theory was initiated in [12], where it was observed

that certain multiple integrals for correlation functions in the XXX chain factorize: they can be

expressed as sums of products of single integrals. This led to the development of a complete

algebraic theory, which led to convenient factorized formulas for the mean values of short-

range operators [13–20]. On a practical level, the theory states that mean values of short-

range correlators can be expressed using the Taylor coefficients of a few number of functions

of one and two variables. The theory consists of two parts: the algebraic part expresses the

correlation functions using sums of products of these building blocks, whereas the physical part

gives concrete values to the building blocks, depending on the concrete physical situations. In

the first works, the ground state and finite temperature [21–23]mean values were considered

directly in the infinite volume limit. An extension to the finite volume ground state was given

in [24]. Excited states (with arbitrary Bethe root distributions) were later treated in [25], and

finally, an extension to arbitrary finite volume excited states was given in [26].

As an alternative method towards factorized correlations, functional relations for reduced

density matrices were considered in [27], and later for higher spin versions of the XXZ chain in

[28,29]. Higher rank models were considered in [30–32]. The work [33] raises the question of

whether all correlation functions of higher rank models can be expressed in a simple factorized

form, and [34] treated factorized correlations in the XYZ model.

A new contribution to the theory was given in the works [35–37], where a connection was

established to Generalized Hydrodynamics (GHD), a theory describing the large-scale trans-

port properties of integrable models [38,39]. The papers [35–37] considered the mean values

of current operators (including the so-called generalized current operators), which describe

the flow of conserved charges during real-time evolution. It was found that these mean values

are exceptionally simple: they are given simply by the Taylor coefficients of the so-called ω

function. In the finite volume case, these building blocks can be expressed in a very simple

way: they involve the one-particle charges corresponding to the Bethe roots and a single copy

of the inverse of the so-called Gaudin matrix. The final expression has a semi-classical interpre-

tation [35,40]: the currents of the conserved charges are given by a sum over the one-particle

charge eigenvalues, multiplied by a certain effective velocity describing particle propagation in

the background of the other particles. This simple result demonstrates the completely elastic

and factorized scattering characteristic of integrable models, and it underlies the formulation

of Generalized Hydrodynamics. The result for the current mean values was later extended to

the XYZ model in [41].

It is then very natural to ask whether some of the above results about the currents and the

factorized correlators can be worked out also for other integrable quantum spin chains. The

algebraic construction of [37] appears rather general, but so far it has been applied only to

the XXZ and XYZ spin chains. However, there is motivation to study other types of models as

well.

As examples, we mention the integrable quantum spin chains acting on constrained Hilbert

spaces with the Rydberg blockade [42]. The Hamiltonians of these models are related to the

Restricted Solid On Solid (RSOS) models of Andrews, Baxter, and Forrester [43,44], and they

have been studied for example in [45, 46]. Interest in these models also comes from the var-

ious studies on the so-called PXP model and its relatives, see [47–52]. The transport in these

integrable models has been studied numerically in [51], but GHD has not yet been established.

3



SciPost Physics Submission

At the same time, short-range correlation functions in these models were treated in [9, 53],

although general formulas have not yet been found. A specific model in this family is the so-

called “golden chain” introduced in [54]. It is a special point in the integrable family where

the Hamiltonian density satisfies the Temperley-Lieb algebra.

The goal of this work is to use the connections to the XXZ chain to find exact correlation

functions in the golden chain and other Temperley-Lieb models. Such an approach can not

yield the factorized correlation functions of all short-range operators, but it is natural to expect

exact relations for correlators built from the Temperley-Lieb algebra. This is the task that we set

ourselves in this work. Apart from the golden chain, we will consider the Q-state Potts model

and also the so-called trace representation of the Temperley-Lieb algebra, which appeared

recently in the study of Hilbert space fragmentation [55].

In the main text, we formulate the conjecture that for operators constructed in terms of

the Temperley-Lieb algebra, the factorization of the mean values works in essentially the same

way in all representations of the Temperley-Lieb algebra, and only minor modifications need

to be added. This seems to hold for all states with singlet eigenvalues of commuting set of

transfer matrices. Thus, we claim that both the algebraic part and the physical part of the

construction will be essentially the same. In particular, we conjecture that the physical part can

be computed in finite volume using the formulas first derived in [26]. We test our conjectures

in several representations. We also develop a method to compute generalized current operators

from local charges, and afterward, we present a few concrete generalized current operators

expressed via the Temperley-Lieb generators. These concrete formulas are then used to check

our conjectures. We should note that in [56], explicit and exact formulas were found for all

local conserved charges in the Temperley-Lieb models. However, we use a different basis of

charges and, therefore, do not directly use the results of [56].

This paper consists of the following Sections: In Section 2 we review the Temperley-Lieb

algebra and its several representations and explain the decomposition of the spectrum. In

Section 3, we discuss the local charges in the Temperley-Lieb algebra and derive a way to

construct the current operators. Section 4 gives a review of the factorization of correlation

functions in the XXZ chain. In Section 5, we formulate our main conjectures and give some

explicit formulas for short-range correlators. Section 6 contains our conclusions. Finally, some

examples of the expressions for the local charges and currents in the Temperley-Lieb algebra

are given in Appendix A, and some numerical checks are presented in Appendix B.

2 Temperley-Lieb algebra and its representations

The Temperley-Lieb (TL) algebra is defined as follows. There are generators e j with index

j = 1, . . . , L − 1, which satisfy the relations

e2
j = de j , e je j±1e j = e j , [e j , ek] = 0 for | j − k| > 1 . (1)

Here, d ∈ C is a fixed parameter of the algebra, which is also commonly parametrized as

d = q+ q−1 = 2 cosγ , q = eiγ . (2)

The TL Hamiltonian (with open boundary conditions) is then defined as

H =

L−1
∑

j=1

e j . (3)

We will also be interested in the case of periodic boundary conditions, where another generator

eL ≡ e0 is introduced.

4
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The Temperley-Lieb algebra has multiple representations that are of physical interest. In

particular, we will be interested in representations such as the XXZ spin chain, the quantum

Potts chain, the RSOS representations (also known as anyon chains), and the so-called “trace

representation”.

A crucial fact is that since the Hamiltonian (3) is part of the TL algebra, its spectrum in

a given representation is entirely determined by the way the latter decomposes as a sum of

irreducible representations. Starting from a given model, an important task is, therefore, to

see how its Hilbert space decomposes as a direct sum of the TL irreducible representations.

Below, we discuss a few key statements about the representation theory of the TL algebra,

and concrete representations will be considered in the following sections.

2.1 Irreducible representations of the (periodic) TL algebra

The TL algebra (1) can be viewed as an algebra of diagrams acting on L vertical strands,

by assigning to the generators ei the following graphical representation [57]

ei =
. . . . . .

1 i i + 1 L

. (4)

Multiplication of two generators corresponds to stacking the corresponding diagrams on top

of each other, and the rules (1) translate into the fact that diagrams are identified modulo

smooth stretching of strands, or removing of closed loops at the cost of a multiplicative scalar

factor d .

A natural basis for representations of the TL algebra is constructed in terms of “reduced

states”, obtained by cutting in half horizontally all possible diagrams formed by products of

TL generators. Those are constituted of a set of non-intersecting arcs joining pairs of strands,

and “through lines”, or “strings”, which propagate vertically without the possibility of being

contracted with one another by the action of TL generators. Irreducible representations are

characterized by their number 2 j of through-lines (where 0≤ j ≤ L/2 is an integer when L is

even, a half-integer when L is odd), and denoted as W j[L]. For instance, for L = 4 there are

three irreducible modules with respective basis states

W0[4] = { , }
W1[4] = { , , }
W2[4] = { } .

(5)

Turning to periodic boundary conditions by introducing the generator eL ≡ e0, the TL

algebra becomes infinite-dimensional, due to the possibility for through-lines to wind an ar-

bitrary number of times around the cylinder, as well as, in the sector with no through-lines,

the possibility for an arbitrary number of non-contractible loops wrapping around the cylinder.

Finite-dimensional quotients can be recovered by allowing to undo the winding of through-

lines at the price of multiplication by a complex factor z±1 (one such factor per through-line

per turn around the cylinder), and to eliminate non-contractible loops at the price of multipli-

cation by a factor z+ z−1 [58,59]. The corresponding irreducible representations are denoted

by W j,z[L], and generically have more states than the open TL ones. For instance, for L = 4,

basis states for the representations with j 6= 0 are

W1,z[4] = { , , , }
W2,z[4] = { }. (6)

For j = 0, we have to distinguish arcs which connect two strands by going one way or the

other around the cylinder, therefore, a basis is

W0,z[4] = { , , , , , } , (7)
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where an arc marked by a dot means that it goes around the periodic boundary conditions of

the cylinder. All these representations have dimension

dimW j,z =

�

L

L/2− j

�

, (8)

irrespectively of z.

These representations are irreducible for generic q and z. For specific cases, however (q

equal to a root of unity or z equal to some integer power of q), they become reducible but

indecomposable, as a result of the TL algebra becoming non-semisimple (similar conclusions

hold for the open case at root of unity). We refer to the existing literature [57, 60, 61] for a

more detailed exposition.

2.2 The XXZ model

In this case, the generators act on the Hilbert space of a spin-1/2 chain, and we have

e j = hXXZ
j, j+1 , (9)

where hXXZ
j, j+1 is a two-site operator given by [62]

hXXZ
j, j+1 = −

1

2

�

2eiφ/Lσ+j σ
−
j+1 + 2e−iφ/Lσ−j σ

+
j+1 + cosγ

�

σz
jσ

z
j+1 − 1

�

+ i sinγ
�

σz
j −σz

j+1

�
�

,

(10)

where γ is the parameter introduced above (see eq. (2)), in practice, restricted to be real

or pure imaginary. It is related to the so-called anisotropy parameter ∆ of the XXZ chain by

∆ = cosγ. Furthermore, φ ∈ C is the so-called twist parameter. In our representation, we

chose to apply a homogeneous distribution of the twist and focus on the periodic case. Note

that the normalization of the Hamiltonian density is now different from the usual one: now it

includes an overall factor of −1/2 so that hXXZ
j, j+1 satisfies the Temperley-Lieb algebra.

The XXZ model can be solved by the Bethe Ansatz. Eigenstates are constructed using in-

teracting spin waves, that are created on top of a reference state. The resulting eigenstates are

characterized by a set of rapidities λN = {λ1, . . . ,λN}, which satisfy the Bethe equations

eiφ

�

sinh(λ j + iγ/2)

sinh(λ j − iγ/2)

�L
∏

k 6= j

sinh(λ j −λk − iγ)

sinh(λ j −λk + iγ)
= 1. (11)

Here ∆ = cos(γ). If |∆| < 1 then γ ∈ R and the ground state configuration consists of real

roots.

The energies of the states (eigenvalues of H with the normalization given above) are given

by

E =

N
∑

j=1

ǫ(λ j) , (12)

with

ǫ(λ) =
sin2 γ

sinh(λ+ iγ/2) sinh(λ− iγ/2)
. (13)

Decomposition of the spectrum The Hilbert space can be split into sectors of fixed mag-

netization Sz = 1
2

∑L

i=1σ
z
i
, and any operator written in terms of the TL generators (10) is

block-diagonal in this decomposition. In fact, for generic γ and φ, we can identify each of

these sectors with one of the irreducible representations of the periodic TL algebra. Recalling

from Section 2.1 that those are indexed by a number 2 j of “through lines” and by a “twist”

6
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parameter z, and denoted W j,z, we find that the XXZ sector of magnetization Sz and twist φ

identifies as the representation W j,z , with the following correspondence

j = |Sz| , z = eiφ . (14)

Note in particular that sectors of opposite magnetization correspond to the same representa-

tion of TL and have the same spectrum.

2.3 The Potts model

The Q-states quantum Potts model is defined on a chain of L/2 sites carrying Q-dimensional

spins. On each sites one defines matrices X and Z , generalizing the Pauli matrices σx and σz ,

which satisfy the following “ZQ clock” algebra

X † = XQ−1, Z† = ZQ−1, XQ = ZQ = 1 , X Z =ωZX , (15)

where ω= ei 2π
Q . A concrete representation can be obtained, for instance, by taking

Z =









1

ω
. . .

ωn−1









, X =











0 1
...

. . .

. . . 1

1 0











. (16)

From there, the generators e1, . . . eL defined as [6]

e2 j =
1
p

Q

Q−1
∑

a=0

�

X
†
j
X j+1

�a
, e2 j+1 =

1
p

Q

Q−1
∑

a=0

Z a
j
, (17)

satisfy the Temperley-Lieb algebra with d =
p

Q, and periodic boundary conditions. Further-

more, they are manifestly Hermitian operators.

Decomposition of the spectrum As for the XXZ case, we can decompose the Hilbert space

of the periodic Potts chain in terms of the representations W j,z, where we recall the correspon-

dence (14) between the parameters j, z and the magnetization and twist in the XXZ chain.

We start with the case Q = 3, which corresponds to d =
p

3 = 2 cos(π/6) and hence

γ= π
6 . At such “roots of unity” cases (namely, whenever q is a root of unity), the TL algebra is

known to be non-semisimple, which means that the representations W j,z become reducible but

indecomposable: they cannot be decomposed as a direct sum of irreducible representations.

For our matters, we will not need to go into the details of this complicated subject, and we

refer the interested reader to the existing literature [57, 59–61]. In practice, we should only

stick to the observation that at the root of unity, the spectrum of the TL Hamiltonian (or more

general operators built out of the TL algebra) in representation W j′,z′ may arise as a subset of

the spectrum in a larger W j,z, and we note W j,z/W j′,z′ the remaining subspace. For L = 4, we

find that the Potts chain Hilbert space decomposes as

H
Q=3 =W0,−1 ⊕ (W0,q2/W1,1)⊕W2,1 . (18)

Similar decompositions can be written for other system sizes L (note that for j = 2 here, or

j = L/2 in general, WL/2,z is a one-dimensional representation where all TL generators cancel,

so the precise value of the twist z does not matter).

We now turn to Q = 4 and Q = 5, which correspond to γ= 0 and γ = arccos(
p

5/2) ≃ 0.48i,

respectively. Those are not “root of unity” points of the kind discussed above, however we shall

7
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still encounter quotients of the form W j,z/W j′,z′ . The reason is that, as explained in [8] (see

also [58, 62]), even for generic q representations W j,z become reducible when z = q2 j+2k,

where k is some positive integer, and contain some irreducible submodule isomorphic to

W j+k,q2 j . For Q = 5 we find accordingly, for L = 4

H
Q=5 = (W0,q2/W1,1)⊕ 2W0,−1 ⊕ 11W2,1 , (19)

while for Q = 4, L = 4

H
Q=4 =W0,1 ⊕ (W0,−1/W1,1)⊕

1

2
W0,−1 ⊕ 5W2,1 , (20)

(in this last case, other subtleties arise, leading in particular to the 1
2 factor which results from

the fact that W0,−1 contains two copies of the same irreducible representation, but we shall

not discuss these further here).

2.4 The golden chain

The Hamiltonian of the so-called golden chain was published in [54]. It is a special case of

the family of Hamiltonians related to the RSOS models [45,46].

In this case, the Hilbert space is constrained: in a volume L it is spanned by the states of

the computational basis, which do not have two neighboring down spins.

Let us define the local projectors

Pj = (1+σ
z
j
)/2 , N j = (1−σz

j
)/2 . (21)

Then, the constraint can be formalized as

N jN j+1 = 0 . (22)

A representation of the Temperley-Lieb algebra is the following:

e j = h j, j+1, j+2 , (23)

where h j, j+1, j+2 is a three-site operator acting on the constrained Hilbert space, given explicitly

by

h j, j+1, j+2 = −ϕ
�

(Pj + Pj+2 − 1)− Pj Pj+2

�

ϕ−3/2σx
j+1 +ϕ

−3Pj+1 +ϕ
−2 + 1

�
�

, (24)

where ϕ = (1 +
p

5)/2 = 2 cos(π/5) is the golden ratio. The Temperley-Lieb parameter is

d = ϕ.

Decomposition of the spectrum As for the XXZ and Potts representations, the RSOS Hilbert

space can be decomposed in terms of the TL standard representations. We have here q= eiπ/5,

again a root of unity, so similar comments to those made above for the Potts chain can be

addressed here. We find, for L = 4:

H
RSOS = (W0,q2/W1,1)⊕ (W0,q4/W2,1) ,

where again the correspondence with the XXZ parameters is encoded in (14).

8
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2.5 The trace representation

In this representation, we are dealing with local Hilbert spaces Cd with d ≥ 2, and the

generators are given by

e j = K j, j+1 , (25)

where K is the so-called trace operator, given explicitly by

K =

d
∑

a,b=1

|aa〉〈bb| . (26)

In this case, the parameter of the Temperley-Lieb algebra is equal to the local dimension d

(more generally, representations where d is a positive or negative integer can be constructed

by using graded vector spaces [63]).

These models appeared recently in the study of Hilbert space fragmentation [55].

Decomposition of the spectrum We take d = 3 for the example. Here γ = arccos(3/2) is

pure imaginary, and q = eiγ is not a root of unity. In terms of the modules W j,z, with again

(14), we find for L = 2

H
d=3 =W0,q2 ⊕ 7W1,1 . (27)

For L = 4, we find

H
d=3 =W0,q2 ⊕ 7W1,1 ⊕ 47W2,1 . (28)

For L = 6, we find

H
d=3 =W0,q2 ⊕ 7W1,1 ⊕ 27W2,1 ⊕ 20W2,−1 ⊕ 322W3,1 . (29)

3 Charges and currents in the Temperley-Lieb algebra

In this Section we discuss the family of conserved charges and their currents in the models

related to the Temperley-Lieb algebra. To this order we first discuss the integrability properties,

and afterward we turn to the charges and currents.

3.1 Integrability

The models defined by (3) are integrable, both in the open and in the periodic case. The

Hamiltonians can be embedded into a family of commuting transfer matrices. It is possible, by

going to a specific representation, to construct commuting transfer matrices in finite volume

with periodic or open boundary conditions. For the XXZ representation such transfer matrices

are related to the six-vertex model [2]; in this case we give concrete formulas in the Appendix

B.1. For the golden chain the transfer matrices are related to integrable RSOS models [64]; for

the Potts representation, they are based on the Star-Triangle Relation [65, 66]. However we

do not know of a representation-independent formulation in finite volume, and will therefore

restrict to a definition in infinite volume, valid for any representation.

First, we define

Ř j(u) = 1+ ue j , (30)

where u ∈ C is a spectral parameter. Then, the formal definition of the transfer matrices can

be given as

t(u) =
∏

j

Ř j(u) . (31)

9
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For the ordering of the operators, we choose a convention that operators with lower indices

act first. These operators should be regarded as a formal power series in u. Their finite volume

counterparts can also be specified.

It can be shown by formal manipulation that

[t(u), t(v)] = 0 . (32)

Let us now define the operators with k > 1

Ak = (∂u)
k−1 log(t(u))

�

�

u=0
. (33)

We have

A2 = H . (34)

It follows from (32) that the Ak form a commuting family, and their construction ensures that

they are extensive operators with a short-range operator density.

The alternative to the transfer matrix is the boost operator formalism [67–69]. This method

for obtaining the charges is also limited to the infinite volume case. We define formally

B =

∞
∑

j=−∞
je j , (35)

and define a series of charges via the formal rule

Qk+1 = [Qk,B] , (36)

with the initial condition

Q2 = H . (37)

These charges are linear combinations of the Ak given by (33). The definition (36) does not

yield Hermitian charges, in fact with this definition every second charge is anti-Hermitian.

However, we use this convention because it is convenient for our purposes.

The Hamiltonians (3) with additional generator eL also enjoy translational invariance,

either in finite volume with periodic boundary conditions, or formally in the infinite volume

case. However, there is a subtlety in connection with the translations.

For a given model, let us define U as the one-site translation operator acting on the physical

Hilbert space. In all cases we have

[U , H] = 0 . (38)

Furthermore, U also commutes with the higher charges. It is then very natural to consider the

simultaneous diagonalization of U and the extensive local charges. The Bethe states will be

eigenvectors of U as well, therefore U is the natural translational symmetry of both the charges

and the states.

However, the situation is more delicate in the Potts model. In that case, we can also define

the operator U based on its action in real space, but then U will shift the Temperley-Lieb

generators by two indices, due to the staggering introduced in (17). On the level of operators,

we have an additional symmetry V , which shifts the indices of the operators by one. However,

on the level of the Hilbert space, the operation V is seen as a duality, and it is not guaranteed

that the Bethe states will be eigenvectors of V .

10
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3.2 Local charges and currents in Temperley-Lieb models

The charges introduced above are extensive and are expressed as

Qα =
∑

j

qα( j) , (39)

where qα( j) is a short-range operator density which can be expressed using the generators of

the Temperley-Lieb algebra.

We choose our conventions such that qα( j) spans α sites in the XXZ representation, and

we choose q2( j) = e j , which also implies that Q2 = H in our conventions.

The first non-trivial charge above the Hamiltonian is

q3( j) =e je j+1 − e j+1e j . (40)

Further examples are found in the Appendix A.

The general explicit expressions for the local charges of the Temperley-Lieb models were

derived by Nienhuis and Huijgen [56]. However, these expressions are some linear combina-

tion of the charges obtained from expanding the transfer matrix constructed from the usual

6-vertex R-matrix in the XXZ representation, or obtained through the boost operation. There-

fore, the concrete formulas of [56] coincide neither with our Ak nor with our Qk.

The current operators Jα(x) are defined through the continuity equations

[H,qα(x)] = Jα(x)− Jα(x + 1) . (41)

We also introduce the generalized currents Jα,β(x) [35,37] that describe the flow of qα(x)

under the time evolution generated Qβ by

�

Qβ ,qα(x)
�

= Jα,β(x)− Jα,β(x + 1) . (42)

The locality of the charge densities and the global relation [Qα,Qβ ] = 0 imply that the operator

equation (42) can always be solved with a short-range operator Jα,β(x).

The definition (42) holds for α,β ≥ 2, but it will turn out convenient to extend it to β = 1

by setting

Jα,1(x)≡ qα(x) . (43)

3.3 Construction of the current operators

Below, we demonstrate the procedure for constructing the expressions of current opera-

tors and generalized current operators from the corresponding expressions of local conserved

quantities. The construction of the current operators was originally derived for the spin-1/2

XYZ chain [70]. Here, we generalize this result of [70] to the construction of the generalized

current operators. Notably, this method applies to general quantum integrable spin chains of

local Hamiltonian. We first show the general procedure, which does not involve the Temperley-

Lieb algebra. Afterwards, we apply the result to the Temperley-Lieb Hamiltonian.

We start by reviewing the procedure for constructing the current operators [70]. In the

following, we refer to an operator that acts on the x -th site and also locally on sites beyond the

x -th site as “starting from the x -th site”. We assume qα(x) is starting from x -th site. Since the

Hamiltonian is a two-site operator, the left-hand side of (41) is constructed from the operator

starting from the (x −1)-th, x -th, and (x +1)-th sites, which we denote by F−1
α (x −1), F0

α(x),

and F1
α(x + 1), respectively:

[H,qα(x)] = F−1
α (x − 1) + F0

α(x) + F1
α(x + 1) . (44)

11
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The current operator is given by

Jα(x) = F−1
α (x − 1)− F1

α(x) . (45)

The proof of (45) is as follows: substituting (45) to the RHS of (41), we have

Jα(x)− Jα(x + 1) = [H,qα(x)]−δα(x) , (46)

where δα(x)≡ F−1
α (x)+F0

α(x)+F1
α(x) and δα(x) is proved to be zero. Summing over x of (44),

we have 0=
∑L

x=1 δα(x). Since {δα(x)}x=1,2,...,L are mutually linear independent, each δα(x)

should be zero itself. Now, we have proved (45) satisfies the continuity equation (41).

Concrete examples for current operators are found in the Appendix A.

3.4 Construction of generalized current operator

We generalize the result for the current operator [70] to the generalized current operator.

Since Qβ is a β -site operator, the left-hand side of (41) is written as

�

Qβ ,qα(x)
�

=

β−1
∑

y=−(β−1)

F
y

α,β
(x + y) , (47)

where F
y

α,β
(x + y) is an operator starting from x + y-th site. By summing up the x in (47) and

in the same manner as the usual current operator case, we have

β−1
∑

y=−(β−1)

F
y

α,β
(x) = 0 . (48)

The generalized current operator is given by

Jα,β(x) =

β−1
∑

b=1

b
∑

y=1

�

F−b
α,β
(x − y)− F b

α,β
(x + y − 1)

�

. (49)

The β = 2 case of (49) recovers (45).

We prove (49) in the following. We define E
y
±(x) ≡

∑β−1

b=y
F±b
α,β
(x), and we can write the

generalized current as Jα,β(x) =
∑β−1

y=1

�

E
y
−(x − y)− E

y
+(x + y − 1)

�

. Substituting (49) to the

RHS of (42), we have

Jα,β(x)− Jα,β(x + 1) =

β−1
∑

y=1

�

E
y
−(x − y) + E

y
+(x + y)

�

−
β−1
∑

y=1

�

E
y
−(x − y + 1) + E

y
+(x + y − 1)

�

=
∑

β−1≥|y|>0

F y(x + y) +

β−2
∑

y=1

�

E
y+1
− (x − y) + E

y+1
+ (x + y)

�

−
β−1
∑

y=1

�

E
y
−(x − y + 1) + E

y
+(x + y − 1)

�

=
�

Qβ ,qα(x)
�

− F0
α,β (x)− E1

+(x)− E1
−(x)

=
�

Qβ ,qα(x)
�

−
β−1
∑

y=−β+1

F
y

α,β
(x)

=
�

Qβ ,qα(x)
�

, (50)

12
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where in the second equality, we have used E
y
±(x) = E

y+1
± (x)+ F

y

α,β
(x) and E

β
±(x) = 0, and in

the last equality we have used (48). Thus, we have proved (49) actually satisfies (42).

In principle, we can obtain the explicit expressions of the generalized currents by eval-

uating the commutator in the continuity equation and subsequently obtaining F
y

α,β
(x) and

using (49), provided that we have the explicit expressions of the local charges Qα.

The aforementioned index x need not strictly denote a physical site index; the only re-

quirement is that the operators with different indices are to be linearly independent. Thus,

the above construction of the generalized currents is also applicable to the Potts representa-

tion where the indices of the Temperley-Lieb generators do not correspond to the physical site

indices.

Concrete examples for generalized current operators in the Temperley-Lieb algebra are

found in the Appendix A.

4 Factorized correlation functions in XXZ

4.1 Hidden Grassmann structure

The theory of the factorized correlation functions [13–20] concerns the mean values of

local operators in the XXZ chain in a variety of physical situations. The goal is to compute

mean values of the form

〈Ψ|O|Ψ〉 , (51)

in finite volume or in the thermodynamic limit. The papers [13–20] considered the ground

state and finite temperature situations in infinite volume. The ground state in finite volume

was treated in [24], and an extension to arbitrary finite volume excited states was given in [26].

Excited states in thermodynamic limit were treated earlier in [25].

The results of the theory for the homogeneous limit can be summarized as follows. The

mean values can be expressed as a sum of products of certain building blocks, which are the

Taylor expansion coefficients of a few number of functions of one and two variables. For exam-

ple, in the XXZ spin chain the mean values of spin reflection invariant operators are expressed

using the Taylor coefficients of just two functions ω(x , y) and ω′(x , y), both of which are

symmetric with respect to the exchange of the two variables. The construction consists of the

algebraic part and the physical part. The algebraic part describes the expressions of the mean

values of a given operator as a combination of the building blocks, and this computation is

independent of the physical situation. The physical part gives concrete values to the functions

involved, depending on the physical situation considered.

Simple examples of short-range correlators are:




σz
1σ

z
2

�

= coth(η)ω0,0 +W1,0




σx
1σ

x
2

�

= −
ω0,0

2 sinh(η)
− cosh(η)

2
W1,0




σz
1σ

z
3

�

= 2 coth(2η)ω0,0 +W1,0 + tanh(η)
ω2,0 − 2ω1,1

4
− sinh2(η)

4
W2,1




σx
1σ

x
3

�

= − 1

sinh(2η)
ω0,0 −

cosh(2η)

2
W1,0 − tanh(η) cosh(2η)

ω2,0 − 2ω1,1

8

+ sinh2(η)
W2,1

8
.

(52)

Here

ωa,b =ωb,a = (∂x)
a(∂y)

bω(x , y)
�

�

x ,y=0
, (53)
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and the functionω(x , y) coincides with the one defined in [21,22], and Wa,b are given similarly

by the coefficients of the function W (x , y) =ω′(x , y)/η, where ω′(x , y) is defined in [21,22]

and ∆ = cosh(η). The concrete values of these functions in the finite temperature ensembles

were given in [21,22].

For operators which are invariant under the action of the quantum group Uq(sl(2)) the

mean values involve only the function ω [18, 71]. For the closely related SU(2)-symmetric

case see [20, 24, 27, 72]. In the XXZ chain the operators invariant under the quantum group

are generated by the Temperley-Lieb algebra. Therefore, the works [18, 71] compute those

mean values which we are interested in, specifically in the XXZ chain.

4.2 Specific results for mean value of the current operators

The key result of the works [35–37] is that the mean values of the generalized currents

are given by the coefficients of the ω function. However, for our purposes it is convenient to

define a new function ψ(x , y) =ψ(y, x) which is related to ω via

ψ(x , y) = −i sin(γ)

�

1

2
ω(i sin(γ)x , i sin(γ)y) +

i

4
K(i sin(γ)(x − y))

�

, (54)

where

K(u) =
sin(2γ)

sinh(u+ iγ) sinh(u− iγ)
. (55)

Similarly to (53) we define

ψa,b =ψb,a = (∂x)
a(∂y )

bψ(x , y)
�

�

x ,y=0
, (56)

They are related to the coefficients ωa,b via

ψa,b = −
�

1

2
ωa,b + (−1)a

i

4

�

(∂u)
a+bK(u) |u=0

�

�

sinha+b+1(iγ) . (57)

The main result of [35–37] is that for any Bethe state |λN 〉 given by the set of Bethe roots

λN = {λ1, . . . ,λN}, the current mean values are given by

〈λN |Jα,β |λN 〉 =ψα−2,β−1 , (58)

and ψ(x , y) is written using the Bethe roots by

ψ(x , y) = h(i sin(γ)x) · G−1 · h(i sin(γ)y)× (− sin(γ)) , (59)

where h(x) is a parameter dependent vector of length N with elements h j(x) = h(λ j− x)with

h(λ) given by

h(λ) = coth(λ− iγ/2)− coth(λ+ iγ/2) , (60)

and G is the Gaudin matrix, defined as

G jk = δ jk

�

L
sin(γ)

sinh(λ j + iγ/2) sinh(λ j − iγ/2)
−

N
∑

l=1

K(λ jl)

�

+ K(λ jk) , (61)

where we denote λ jk ≡ λ j −λk.

In the specific case of the charge densities we get

〈{λ}N |qα|{λ}N 〉 =ψ0,α−2 . (62)

Note that the quantities ψα,β are symmetric with respect to α,β , but the current mean

values involve certain shifts in the indices. These shifts appear due to our definitions of the

charges and currents. The symmetry of the ψα,β leads to the symmetry

〈λN |Jα,β |λN 〉 = 〈λN |Jβ+1,α−1|λN 〉 (63)

for the mean values. This equation does not hold on the level of the operators, only on the

level of the mean values.
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5 Correlation functions

In this section, we formulate two conjectures about the correlation functions for the quan-

tum integrable models, which are representations of the (affine) TL algebra (3).

We are interested in correlation functions of the form

〈ΨL|O|ΨR〉
〈ΨL |ΨR〉

. (64)

Here, |ΨR〉 is an eigenvector of the Temperley-Lieb Hamiltonian in a selected representation.

For the correlation functions, we will consider only the periodic case. Furthermore, we will

focus on states which are singlets of the transfer matrix. The vector 〈ΨL| is the left eigenvector

of the transfer matrices corresponding to the same eigenvalue.

The operator O is chosen to be a word from the Temperley-Lieb algebra. We will focus on

short-range operators, which include products of Temperley-Lieb generators with indices close

to each other.

5.1 Main results and numerical checks

We first introduce the linear map T over the TL algebra. This map generates a shift-

invariant operator, such that the result is translationally invariant with respect to the Temperley-

Lieb indices. More concretely, the action of T is defined by:

T [ei1
ei2
· · · eim

] ≡ 1

L

L
∑

j=1

ei1+ jei2+ j · · · eim+ j . (65)

In many representations, T generates operators that are invariant with respect to a shift in the

physical sites. However, in the case of the Potts model, we are dealing with the invariance with

respect to shifts in the Temperley-Lieb indices, which is not identical to the physical shifts.

In the following, we assume |E〉 is an eigenstate of a Hamiltonian of TL representation with

an eigenenergy E. We assume that |E〉 is a singlet of the commuting set of charges. We define

the translational mean value 〈·〉 ≡ 〈E|T [ · ]|E〉.
Below, we present two conjectures, which we tested in multiple representations and various

volumes and singlet eigenstates.

Conjecture 1 The translationally invariant mean values of the generalized current operators are

given by



Jβ+2,α+1( j)
�

=ψα,β (α,β ≥ 0) , (66)

where ψα,β are the Taylor coefficients of the function ψ(x , y), which is expressed via the Bethe

roots in eq. (59), corresponding to the eigenstate with the same value of local charges in the XXZ

representation with the same TL parameter d, and appropriate twits φ.

The expression for ψα,β is the same in all different representations with the same TL pa-

rameters d .

Conjecture 2 The translationally invariant mean values of operators generated by the TL algebra

are universally factorized as:




ei1
ei2
· · · eim

�

=

p f
∑

p=1

∑

α,β

 

p
∏

j=1

ψα j ,β j

!

Cα,β (d) , (67)
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where α = {α1,α2, . . . ,αp} and β = {β1,β2, . . . ,βp} satisfies 0 ≤ αn ≤ βn ≤ M and αn ≤ αn+1

and βn ≤ βn+1, and M and p f are some positive integers. The coefficients Cα,β(d) are independent

of the choice of the eigenstate |E〉 and the representation of the TL algebra. The information about

our choice of the operator ei1
. . . eim

is encoded in Cα,β (d). They depend only on the parameter d

of the TL algebra. This implies that all the Cα,β (d) can be found in the concrete example of the

XXZ spin chain, and they can be extracted from the existing works [18,22,71].

We stress that the conjectures refer to the shift-invariant mean values generated by the

operator T . In many models, it is not necessary to introduce T , because all mean values are

shift-invariant. However, in the Potts model, there is a distinction between translational invari-

ance and shift invariance, and while all mean values are translationally invariant (with respect

to physical translations), they are not shift-invariant. We observed that the conjectures hold

only for the shift-invariant combinations.

We computed several examples of factorized formulas, using the results of [22]. These are

presented in the following. Furthermore, in Subsection 5.2 below we consider special combi-

nations of charges and currents, whose mean values are always bi-linear in ψa,b.

The simplest short-range correlation function (involving at least two TL generators) is

〈e1e2〉=
1

d

�

1

2
ψ0,2 − 2ψ0,0 −ψ1,1

�

+
1

2
ψ0,1 . (68)

In this case, there is no actual factorization happening because the decomposition above works

on the level of the operators, guaranteed by the operator identity

e1e2 =
1

d

§

1

2
q4(1)− 2q2(2)− J3,2(2)

ª

+
1

2
q3(1) . (69)

Actual factorization is observed in more complicated cases. For example

〈e1e3〉=
1

d(d2 − 1)

�

(d2 − 4)ψ0,0 + 2ψ0,2 +
d2 − 40

12
ψ1,1 +

1

6
ψ1,3 −

1

4
ψ2,2

�

+
1

d2 − 1

�

d2 − 28

12
(ψ2

0,1 −ψ0,0ψ1,1)−
1

4
(ψ2

0,2 −ψ0,0ψ2,2)

+
1

2
(ψ0,2ψ1,1 −ψ0,1ψ1,2) +

1

6
(ψ0,1ψ0,3 −ψ0,0ψ1,3)

�

. (70)

Furthermore

〈e1e2e3 + e3e2e1〉=
1

6d (d2 − 1)

�

5d3ψ1,1 + 11d2
�

ψ2
1,0 −ψ0,0ψ1,1

�

+d(36ψ0,0 + 34ψ1,1 − 24ψ2,0 + 3ψ2,2 − 2ψ3,1) + 3ψ2,0(ψ2,0 − 2ψ1,1)

+2ψ1,0(8ψ1,0 + 3ψ2,1 −ψ3,0) +ψ0,0(−16ψ1,1 − 3ψ2,2 + 2ψ3,1)
�

, (71)
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and




e1e4

�

=
1

d(d2 − 1)(d2 − 2)

�

2(d2 − 4)ψ0,0 −
11d2 − 92

12
ψ0,2 +

d4 + 40d2 − 392

36
ψ1,1 +

d2 + 56

36
ψ1,3

−d2 + 44

24
ψ2,2 −

1

12
ψ0,4 +

1

24
ψ2,4 −

1

18
ψ3,3

�

+
1

(d2 − 1)(d2 − 2)

�

5d4 − 28d2 − 220

18

�

ψ2
0,1 −ψ0,0ψ1,1

�

+
2d2 + 16

9

¦

2(ψ0,1ψ0,3 −ψ0,0ψ1,3) + 3(ψ0,0ψ2,2 −ψ2
0,2)
©

+
7d4 + 226d2 + 928

144

�

ψ0,2ψ1,1 −ψ0,1ψ1,2

�

+
5d2 + 22

144

¦

ψ0,1ψ1,4 −ψ1,1ψ0,4 − 2ψ0,1ψ2,3 + 6(ψ1,1ψ2,2 −ψ2
1,2
)
©

+
10d2 + 140

144
ψ0,3ψ1,2 +

1

6

�

ψ0,2ψ0,4 −ψ0,0ψ2,4

�

+
2

9

�

ψ0,0ψ3,3 −ψ2
0,3

�

− 2

3
ψ0,2ψ1,3

+
1

12

�

ψ1,3ψ2,2 −ψ1,2ψ2,3

�

+
1

18

�

ψ1,1ψ3,3 −ψ2
1,3

�

+
1

24

�

ψ1,2ψ1,4 −ψ1,1ψ2,4

�

+
1

36

�

ψ0,3ψ2,3 −ψ0,2ψ3,3

�

+
1

48

�

ψ0,2ψ2,4 −ψ0,4ψ2,2

�

+
1

72

�

ψ0,4ψ1,3 −ψ0,3ψ1,4

�

�

. (72)

We numerically confirmed the above equations in the XXZ chain, the golden chain, the Potts

chain with 2 ≤ Q ≤ 5, and for the trace representation, in various finite volumes. A selection

of concrete numerical data is presented in Appendix B. We note that the denominator of (72)

diverges for Q = 2 Potts (Ising case), thus we checked the formula (72) works in the Potts

chain for 2< Q ≤ 5.

5.2 Special bi-linear combinations

The work [73] found a special family of operators, whose mean values always factorize in

integrable quantum spin chains. These operators are bi-linear combinations of (generalized)

currents and charge densities. Now we also summarize these results here.

Let us introduce the operators Kα,β ,γ( j, k), which depend on three indices α,β ,γ and two

coordinates (site indices) j, k:

Kα,β ,γ( j, k) = Jα,γ( j)qβ (k)− qα( j)Jβ ,γ(k + 1) (73)

It can be shown that the mean values of these operators do not depend on k; the proof relies on

the continuity equations. Afterwards, it can be shown that the mean values factorize, namely

for the mean values in all eigenstates we have



Kα,β ,γ( j, k)
�

=



Jα,γ

� 


qβ
�

− 〈qα〉



Jβ ,γ

�

(74)

In the present conventions this means that



Kα,β ,γ( j, k)
�

=ψα−2,γ−1ψβ−2,0 −ψα−2,0ψβ−2,γ−1 (75)

These special operator combinations can be seen as the lattice version of the famous T T̄ -

operator known in conformal field theories [74,75].

6 Conclusions and Outlook

It has been known for many decades that the Temperley-Lieb algebra connects the spectra

of different models, which are seen as different representations of the same algebra. However,
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no systematic study of correlation functions of Temperley-Lieb models existed before our work.

The main conclusion of this work is that the TL algebra also connects the correlation functions,

and that the existing results of the XXZ spin chain can be used to compute correlation functions

in many other models. It is important that our results are not limited to the ground states,

instead they can be applied to any state which is a singlet of the local charges in the Temperley-

Lieb algebra.

We presented our results in the form of conjectures. An actual proof of these conjectures

is desirable.

Also, it would be useful to investigate those states which are not singlets of the Temperley-

Lieb algebra. This is beyond the scope of the present paper.

As a by-product of our computations, we found an apparently new way to construct the

generalized current operators from the expressions for the local charges, see Sections 3.3-3.4.

This result is independent of the Temperley-Lieb algebra, therefore it could be applied to the

other integrable spin chains, and it might facilitate the search for factorized correlators in other

circumstances.
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A Current operators of Temperley-Lieb Hamiltonian

Here, we provide examples of the current and generalized current operators. We use the

conventions given in the main text; this convention corresponds to using the boost operator,

or equivalently, the usual R-matrix in the 6-vertex model.

Examples of the lower-order charges are

q4( j) =2(e j+2e j+1e j − e j+1e je j+2 − e je j+2e j+1 + e je j+1e j+2) + de j+1e j + de je j+1 , (76)

q5( j) =6(e je j+1e j+2e j+3 − e j+3e j+2e j+1e j + e j+2e j+1e je j+3 + e j+1e je j+3e j+2 + e je j+3e j+2e j+1

− e j+1e je j+2e j+3 − e je j+2e j+1e j+3 − e je j+1e j+3e j+2 − de j+2e j+1e j + de je j+1e j+2)

+ (2+ d2)
�

e je j+1 − e j+1e j

�

, (77)

q6( j) =24(e j+4e j+3e j+2e j+1e j − e j+3e j+2e j+1e je j+4 − e j+2e j+1e je j+4e j+3 − e j+1e je j+4e j+3e j+2

− e je j+4e j+3e j+2e j+1 + e j+2e j+1e je j+3e j+4 + e j+1e je j+3e j+2e j+4 + e j+1e je j+2e j+4e j+3

+ e je j+3e j+2e j+1e j+4 + e je j+2e j+1e j+4e j+3 + e je j+1e j+4e j+3e j+2 − e j+1e je j+2e j+3e j+4

− e je j+2e j+1e j+3e j+4 − e je j+1e j+3e j+2e j+4 − e je j+1e j+2e j+4e j+3 + e je j+1e j+2e j+3e j+4)

+ 36d(e j+3e j+2e j+1e j + e je j+1e j+2e j+3)− 12d(e j+2e j+1e je j+3 + e j+1e je j+3e j+2 + e je j+3e j+2e j+1

+ e j+1e je j+2e j+3 + e je j+2e j+1e j+3 + e je j+1e j+3e j+2) + (16+ 14d2)(e j+2e j+1e j + e je j+1e j+2)

+ (−16− 2d2)(e j+1e je j+2 + e je j+2e j+1) + (8d + d3)(e j+1e j + e je j+1)− 24de je j+2 .

(78)
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We give a few examples of the corresponding current operators:

J3,2( j) =e j+1e je j−1 − e je j−1e j+1 − e j−1e j+1e j + e j−1e je j+1 − 2e j , (79)

J3,3( j) =− e j+2e j+1e je j−1 − e j+1e je j−1e j−2 + e j+1e je j−1e j+2 + e je j−1e j+2e j+1 + e je j−1e j−2e j+1

+ e j−1e j+2e j+1e j + e j−1e j−2e j+1e j + e j−2e j+1e je j−1 − e je j−1e j+1e j+2 − e j−1e j+1e je j+2

− e j−1e je j+2e j+1 − e j−1e j−2e je j+1 − e j−2e je j−1e j+1 − e j−2e j−1e j+1e j + e j−1e je j+1e j+2

+ e j−2e j−1e je j+1 − de j+1e je j−1 + de j−1e je j+1 + e j+1e j + e je j−1 − e je j+1 − e j−1e j ,

(80)

J4,2( j) =− 2e j+2e j+1e je j−1 + 2e j+1e je j−1e j+2 + 2e je j−1e j+2e j+1 + 2e j−1e j+2e j+1e j − 2e je j−1e j+1e j+2

− 2e j−1e j+1e je j+2 − 2e j−1e je j+2e j+1 + 2e j−1e je j+1e j+2 − de j+1e je j−1 − de je j−1e j+1

+ de j−1e j+1e j + de j−1e je j+1 + 2e j+1e j − 2e je j+1 , (81)

J4,3( j) =2(e j+3e j+2e j+1e je j−1 + e j+2e j+1e je j−1e j−2 − e j+2e j+1e je j−1e j+3 − e j+1e je j−1e j+3e j+2

− e j+1e je j−1e j−2e j+2 − e je j−1e j+3e j+2e j+1 − e je j−1e j−2e j+2e j+1 − e j−1e j+3e j+2e j+1e j

− e j−1e j−2e j+2e j+1e j − e j−2e j+2e j+1e je j−1 + e j+1e je j−1e j+2e j+3 + e je j−1e j+2e j+1e j+3

+ e je j−1e j+1e j+3e j+2 + e je j−1e j−2e j+1e j+2 + e j−1e j+2e j+1e je j+3 + e j−1e j+1e je j+3e j+2

+ e j−1e je j+3e j+2e j+1 + e j−1e j−2e j+1e je j+2 + e j−1e j−2e je j+2e j+1 + e j−2e j+1e je j−1e j+2

+ e j−2e je j−1e j+2e j+1 + e j−2e j−1e j+2e j+1e j − e je j−1e j+1e j+2e j+3 − e j−1e j+1e je j+2e j+3

− e j−1e je j+2e j+1e j+3 − e j−1e je j+1e j+3e j+2 − e j−1e j−2e je j+1e j+2 − e j−2e je j−1e j+1e j+2

− e j−2e j−1e j+1e je j+2 − e j−2e j−1e je j+2e j+1 + e j−1e je j+1e j+2e j+3 + e j−2e j−1e je j+1e j+2)

+ d(+3e j+2e j+1e je j−1 + e j+1e je j−1e j−2 − e j+1e je j−1e j+2 − e je j−1e j+2e j+1 + e je j−1e j−2e j+1

− e j−1e j+2e j+1e j − e j−1e j−2e j+1e j − e j−2e j+1e je j−1 − e je j−1e j+1e j+2 − e j−1e j+1e je j+2

− e j−1e je j+2e j+1 − e j−1e j−2e je j+1 − e j−2e je j−1e j+1 + e j−2e j−1e j+1e j + 3e j−1e je j+1e j+2

+ e j−2e j−1e je j+1 − 2e je j−1e j+1e j + 3e j+1e j + e je j−1 + 3e je j+1 + e j−1e j)

+ d2(e j−1e je j+1 + e j+1e je j−1 + 2e j) + 4(e j + e j+1) . (82)

The higher-order generalized currents have a more complicated structure.

The explicit expressions for the local conserved quantities of the Temperley-Lieb Hamil-

tonian were obtained by Nienhuis and Huijgen [56]. However, the local conserved quantities

obtained in [56] differ from those obtained by the boost operation; they are linearly depen-

dent, but the choice of the linear combination is different.

B Numerical checks

We performed exact diagonalization to check our conjectures. Our procedure included the

following steps:

• We numerically constructed the transfer matrix of the XXZ representation, local charges

and generalized current operators which are relevant to our factorization formula (68)–

(72) using (49). Our definitions and conventions are listed in Section B.1 Then, we

exactly diagonalize the transfer matrix and store the eigenstates for the local charges.

• For each eigenstate, we numerically computed the current mean values to obtain ψα,β

and then calculated the prediction of short-range correlation functions from the factor-

ization formula (68)–(72), and compared them to the numerics from exact diagonaliza-

tion.
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• We also checked the current mean values are actually reproduced by the formula (59)

using the corresponding Bethe roots. We utilized the famous TQ relation and calculated

the Q function from the eigenvalue of the transfer matrix, and then we obtained the

corresponding Bethe roots. This strategy is described in detail in [76].

• For other representations, the Potts, the golden, and the trace representation, we con-

struct the eigenstates simultaneously diagonalizing the local charges and additional sym-

metries such as momentum and check the factorization formula in the same way as the

case of the XXZ rep. If there are common eigenstates with the XXZ representation with

the same energies and the same eigenvalues of the higher local charges, we checked the

current mean values also coincide.

It was observed that our factorization formula (68)–(72) holds for all the eigenstates for the

finite size system in all representations we give in this work.

B.1 Definition of the transfer matrix in the XXZ representation

The transfer matrix for the XXZ model with periodic boundary conditions and twist φ is

defined as :

T (u) = Tr0 (R0L(u) . . . R01(u)) , (83)

where each index i = 1, . . . L stands for a spin-1/2, and 0 is an auxiliary spin-1/2 which is

traced over in the definition of T (u). The R matrix acting on the ith spin and the auxiliary spin

is defined as :

R0i(u) = ei
φ
2Lσ

z
0

�

cos
γ
2 sin(u+

γ
2 )

sinγ
+

sin
γ
2 cos(u+

γ
2 )

sinγ
σz

0σ
z
i + (σ

−
0σ
+
i +σ

+
0σ
−
i )

�

. (84)

B.2 Numerical data

We list some concrete numerical data in Table 1–14. In the upper table on each page, i.e.

in Table 1, 3, 5, 7, 9, 11, 13, we list the values of the correlation functions considered in the

factorization formula (68)– (72) w.r.t. several eigenstates. The detailed setups are explained in

the next paragraphs. In the upper table on each page, we denote 〈e1e2e3〉′ ≡ 〈e1e2e3 + e3e2e1〉.
In the lower table on each page, i.e., in Table 2, 4, 6, 8, 10, 12, 14, we list the values of the

current mean values used in the factorization formula (68)– (72) w.r.t. the same eigenstates

as those referred to in the corresponding upper tables. The errors of the correlation functions

listed in the upper tables and the predicted values from the factorization formula (68)– (72)

calculated by the current mean values listed in the lower tables are at most of the order of

10−9.

We list the values of the correlation functions related to the factorization formula (68)–(72)

for several eigenstates in the XXZ representation for L = 8 and the corresponding Bethe roots

in Table 1, 3, 5, 7, and list the corresponding current mean values in Table 2, 4, 6, 8. Table 1

and 2 are the zero-twist case. Table 3 and 4 correspond to the Q = 3 Potts case. Table 5 and 6

correspond to the golden chain case. Table 7 and 8 correspond to the trace representation with

d = 3.

We also list examples of numerical data for the other representations. We consider the

3-state Potts representation, the golden chain, and the trace representation for L = 8, and

consider Q = 3 for the Potts representation and d = 3 for the trace representation. We show

the values of the correlation functions and the current mean values of the 3-state Potts repre-

sentation in Table 11 and 12, and for the golden chain representation in Table 9 and 10, and

for trance representation with d = 3 in Table 13 and 14.
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We note that for the trace representation, the Hamiltonian is non-Hermitian, and we have

to use the left and right eigenvectors for the calculation of the current mean values and the

correlation functions.
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Table 1: List of the correlation functions in the first 8 eigenstates of the XXZ representation calculated by exact diagonalization for

d = 0.35, φ = 0, total magnetization sector of M = 0, and L = 8. E is the eigenenergy and k is the overall momentum quantum number.

We list the eigenstates with 0 ≤ k ≤ 4 to resolve degeneracies caused by inversion symmetry. We also list the corresponding Bethe

roots. We denote 〈e1e2e3〉′ ≡ 〈e1e2e3 + e3e2e1〉. The numerical errors of the correlation functions compared to those computed from the

factorization formula (68)–(72), using the current mean values in Table 2, are at most 10−13. The third eigenstate marked with a star

includes singular rapidities iγ/2.

E k 〈e1e2〉 〈e1e3〉 〈e1e2e3〉′



e1e4

�

λ1 λ2 λ3 λ4

1 6.2368 0 0.8020 0.5782 1.6032 0.6098 −0.7220 −0.1795 0.1795 0.7220

2 4.7474 4 0.6817 −0.0914 0.9435 0.8249 1.5708i −0.2551 0 0.2551

3∗ 4.6747 4 0.4845 0.4747 1.2679 −0.1142 −0.6974i −0.1881 0.1881 0.6974i

4 4.5583 1 0.5222+ 0.2063i 0.1942 0.9298 0.3235 −0.7688+ 1.5708i −0.1538 0.1915 0.7311

5 3.5526 3 0.5550− 0.0321i −0.0375 0.6384 −0.0798 −0.3035+ 1.5708i −0.3514 −0.0980 0.7529

6 3.4703 2 0.4184+ 0.1691i 0.2523 0.6000 0.0446 −0.4989+ 1.5708i −0.4435 0.2022 0.7402

7 3.4083 3 0.2689− 0.0114i 0.2701 0.4907 0.2383 −0.2845− 0.6975i −0.1751 −0.2845+ 0.6975i 0.7442

8 3.3539 2 0.3032+ 0.2103i 0.0395 0.2004 0.1721 −0.4630− 0.6977i 0.1901 −0.4630+ 0.6977i 0.7358

Table 2: List of the current mean values in the XXZ representation used in the factorization formula (68)–(72). The parameters and the

setup are the same as Table 1. The numerical errors of the current mean value formula (59) against the above numerics are at most

10−10 except for the third eigenstate with singular Bethe roots.

ψ0,0 ψ0,1 ψ0,2 ψ0,3 ψ0,4 ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ2,2 ψ2,3 ψ2,4 ψ3,3

1 0.7796 0 1.0815 0 10.4254 −1.2991 0 −7.0213 0 8.8692 0 85.4961 −153.1087

2 0.5934 0 1.8072 0 13.7250 −0.5219 0 −8.5822 0 5.9757 0 83.4127 −141.1362

3∗ 0.5843 0 1.8194 0 14.7781 −0.4285 0 −8.4151 0 6.0217 0 78.4259 −143.1089

4 0.5698 0.4126i 1.6891 0.3878i 19.2954 −0.4778 −1.2087i −6.4624 −17.0919i 6.9130 0.0233i 72.5437 −140.0925

5 0.4441 −0.0641i 0.7184 −5.0049i 9.4013 −0.7232 −1.2983i −3.8280 −3.8111i 5.5405 −11.0802i 90.1072 −56.6526

6 0.4338 0.3381i 0.3301 3.2589i −7.8149 −0.8489 0.1415i −5.4473 12.3512i 3.7061 15.5615i 28.0494 −93.2620

7 0.4260 −0.0228i 0.6272 −4.7661i 6.4299 −0.6326 −1.5619i −3.5612 −11.3436i 4.5125 −14.1238i 65.2281 −63.3650

8 0.4192 0.4205i 0.5331 4.0813i 2.5638 −0.6781 −0.0447i −4.2107 2.4632i 3.8831 17.0993i 45.2646 −71.6897

2
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Table 3: List of the correlation functions in the 8 eigenstates of the XXZ representation calculated by exact diagonalization for d =
p

3,

z = −1, total magnetization sector of M = 0, and L = 8. E is the eigenenergy and k is the overall momentum quantum number. We list

the eigenstates for which the TQ equation can be solved, with 0 ≤ k ≤ 2 to resolve the degeneracy, and if there are still degeneracies,

only one of the degenerate states was listed. We also list the corresponding Bethe roots. The numerical errors of the correlation functions

compared to those computed from the factorization formula (68)–(72), using the current mean values in Table 4, are at most 10−9.

E k 〈e1e2〉 〈e1e3〉 〈e1e2e3〉′



e1e4

�

λ1 λ2 λ3 λ4

1 10.0809 0 1.2053 1.7059 2.4500 1.5374 −0.1783 −0.0222 0.1171 0.4927

2 7.9421 1 0.8162+ 0.2823i 0.8367 1.3574 0.9696 −0.5795 −0.0068 0.1306 0.5258

3 7.4797 0 0.8192 0.6285 1.6802 0.7205 −0.5658− 0.3534i −0.5658+ 0.3534i −0.0603 0.0657

4 7.0595 2 0.6589 0.8285 0.5820 0.5595 −0.5470 −0.1381 0.1381 0.5470

5 6.1962 2 0.5458+ 0.4208i 0.3010 0.4200 0.5750 0.3458− 0.2891i 0.0564 0.2747 0.3458+ 0.2891i

6 5.8054 0 0.4385 0.5467 1.0597 0.3386 −0.5792 0.1972− 0.2614i −0.0033 0.1972+ 0.2614i

7 4.5898 0 0.2697 0.2594 −0.4439 0.0679 −0.4953− 0.3368i −0.4953+ 0.3368i −0.2421 0.2268

8 4.4528 1 0.4040+ 0.1477i 0.1972 0.8463 0.1012 0.2167− 0.5333i 0.0369 0.2167+ 0.5333i 0.2313

Table 4: List of the current mean values in the XXZ representation with the parameters being the same as Table 3. The numerical errors

of the current mean value formula (59) against the above numerics are at most 10−8.

ψ0,0 ψ0,1 ψ0,2 ψ0,3 ψ0,4 ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ2,2 ψ2,3 ψ2,4 ψ3,3

1 1.2601 0 3.3463 0 31.6763 −2.9346 0 −39.9194 0 34.6966 0 1172.5214 −931.3222

2 0.9928 0.5646i 3.3830 10.0458i 95.2807 −1.7078 −0.0231i −18.8898 −137.1473i 34.2995 0.1941i 1198.6269 −528.0020

3 0.9350 0 4.9451 0 98.2431 −0.8162 0 −31.1809 0 27.9266 0 614.1580 −1106.1864

4 0.8824 0 0 0 −121.1016 −2.9061 0 −40.3672 0 3.7137 0 −171.0383 −910.7546

5 0.7745 0.8415i 2.0736 15.6585i 35.9072 −1.4575 0.2653i −16.7290 −32.4849i 21.4550 79.1153i 712.4336 −429.6805

6 0.7257 0 3.3595 0 159.4623 −0.5310 0 2.6678 0 34.2559 0 1208.7936 −126.7140

7 0.5737 0 −1.5182 0 −65.9139 −2.3736 0 −8.1776 0 6.4392 0 272.2224 −8.7733

8 0.5566 0.2953i 2.9808 9.1305i 115.1619 −0.3225 1.2303i −4.7323 63.9288i 23.5032 74.0467i 836.7167 −226.6202
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Table 5: List of the correlation functions in 8 eigenstates of the XXZ representation calculated by exact diagonalization for d = 1+
p

5
2 ,

z = ei2γ, total magnetization sector of M = 0, and L = 8. E is the eigenenergy and k is the overall momentum quantum number. We list

the eigenstates for which the TQ equation can be solved, with 0 ≤ k ≤ 4 to resolve the degeneracy, and if there are still degeneracies,

only one of the degenerate states was listed. We also list the corresponding Bethe roots. The numerical errors of the correlation functions

compared to those computed from the factorization formula (68)–(72), using the current mean values in Table 6, are at most 10−11.

E k 〈e1e2〉 〈e1e3〉 〈e1e2e3〉′



e1e4

�

λ1 λ2 λ3 λ4

1 10.0259 0 1.2264 1.7212 2.4912 1.5016 −0.2745 −0.0580 0.1055 0.4036

2 7.9546 4 0.8090 1.0181 1.8625 0.6663 0.3081− 0.3184i −0.0967 0.0665 0.3081+ 0.3184i

3 6.2683 3 0.5180− 0.0180i 0.6133 0.7581 0.6905 0.0797− 0.3142i −0.0868 0.0797+ 0.3142i 0.3956

4 6.2025 2 0.5312+ 0.3708i 0.3187 0.3476 0.6375 −0.0397− 0.3142i −0.0397+ 0.3142i 0.0966 0.4025

5 4.6077 4 0.2387 0.2136 −0.4355 0.0837 0.1632− 0.3142i −0.3152 0.1632+ 0.3142i 0.3873

6 4.1221 0 0.3851 0.1706 1.0268 0.0217 0.4136− 0.6247i −0.0010 0.4136+ 0.6247i 0.4584

7 3.4399 1 0.2320− 0.2680i 0.0412 0.0510 0.1185 0.4503− 0.6307i −0.1456 0.4503+ 0.6307i 0.4963

8 2.4143 0 −0.1593 0.1490 −0.0909 0.0357 −0.1660− 0.3142i 0.4358− 0.3290i −0.1660+ 0.3142i 0.4358+ 0.3290i

Table 6: List of the current mean values in the XXZ representation with the parameters being the same as Table 5. The numerical errors

of the current mean value formula (59) against the above numerics are at most 10−8 except for the eigenstates indexed by 3 and 4.

The current mean values of the eigenstates indexed by 3 and 4 calculated by (59) have larger numerical errors up to the order of 10−3

because the corresponding Bethe roots include (small value) + iγ/2 and cause loss of digits in the calculation of the Gaudin matrix.

ψ0,0 ψ0,1 ψ0,2 ψ0,3 ψ0,4 ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ2,2 ψ2,3 ψ2,4 ψ3,3

1 1.2532 0 2.7575 0 40.1762 −3.1122 0 −30.4413 0 35.7292 0 699.9198 −1041.1975

2 0.9943 0 4.4673 0 58.7948 −1.0641 0 −35.8730 0 24.2381 0 636.4054 −977.7322

3 0.7835 −0.0360i 1.6763 −14.6067i 23.9194 −1.5671 −4.8238i −15.9397 −64.9254i 17.9797 −77.5466i 514.1511 −421.2121

4 0.7753 0.7416i 1.4832 12.7286i 10.2488 −1.6686 −0.1011i −18.3237 9.9267i 15.8433 90.9083i 386.2803 −477.2798

5 0.5760 0 −1.2677 0 −24.5509 −2.1720 0 1.5124 0 11.0947 0 359.2093 133.1447

6 0.5153 0 3.4066 0 139.3342 0.0497 0 0.2926 0 24.9705 0 1033.3667 −13.3474

7 0.4300 −0.5360i 0.7507 −12.0616i −46.6899 −0.8600 −0.8968i −19.5390 79.3132i 1.3187 −20.1408i −95.3254 −444.0795

8 0.3018 0 0.3445 0 −7.5902 −0.1736 0 −4.2120 0 −1.6588 0 141.3088 93.4591

2
4



S
ciP

o
st

P
h

y
sics

S
u

b
m

issio
n

Table 7: List of the correlation functions in 8 eigenstates of the XXZ representation calculated by exact diagonalization for d = 3,

z = ei2γ, total magnetization sector of M = 0, and L = 8. E is the eigenenergy and k is the overall momentum quantum number. We list

the eigenstates for which the TQ equation can be solved, with 0 ≤ k ≤ 4 to resolve the degeneracy, and if there are still degeneracies,

only one of the degenerate states was listed. We also list the corresponding Bethe roots. We denote 〈e1e2e3〉′ ≡ 〈e1e2e3 + e3e2e1〉. The

numerical errors of the correlation functions compared to those computed from the factorization formula (68)–(72), using the current

mean values in Table 8, are at most 10−12.

E k 〈e1e2〉 〈e1e3〉 〈e1e2e3〉′



e1e4

�

λ1 λ2 λ3 λ4

1 14.7275 0 1.6655 4.3998 3.6248 2.6996 −0.1177− 0.4815i −0.1177+ 0.4815i −0.0474+ 0.1232i −0.0474− 0.1232i

2 13.2170 4 1.0245 4.1074 3.1863 1.1395 −1.5652− 1.5708i −0.0084+ 0.2508i −0.0084− 0.2508i −0.0070

3 10.4142 3 0.6402− 0.1402i 1.6553 1.1036 2.5303 −0.9135− 0.2344i −0.0550+ 0.5535i 0.0313− 0.0726i 0.0968− 0.2466i

4 10.0000 2 0.7000+ 0.5000i 1.0500 0.3000 2.1000 −0.7742− 0.3414i −0.0764+ 0.5237i −0.0175+ 0.1471i 0.1867− 0.3294i

5 8.9038 0 0.1595 1.8310 2.1352 0.6915 −0.5422+ 1.5708i −0.6884 0.0112 0.2740

6 8.0000 4 0.2727 0.6364 −0.5455 0.6364 −0.7277 −0.0668− 0.5371i −0.0668+ 0.5371i 0.2349

7 7.5858 1 0.1098− 0.3902i 0.5947 0.3964 1.4697 −0.6223− 1.5383i −0.6377+ 0.1239i −0.0117− 0.2804i 0.3247+ 0.1239i

8 5.3687 0 −0.2000 0.1442 −0.2600 0.1089 −0.6759+ 0.4202i −0.6759− 0.4202i 0.2793+ 0.4224i 0.2793− 0.4224i

Table 8: List of the current mean values in the XXZ representation with the parameters being the same as Table 7. The numerical errors

of the current mean value formula (59) against the above numerics are at most 10−10.

ψ0,0 ψ0,1 ψ0,2 ψ0,3 ψ0,4 ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ2,2 ψ2,3 ψ2,4 ψ3,3

1 1.8409 0 4.7764 0 146.8741 −6.2902 0 −77.6288 0 114.3119 0 1840.2901 −5749.4570

2 1.6521 0 7.4127 0 76.7147 −2.6713 0 −132.1650 0 74.1274 0 4818.2829 −3336.7489

3 1.3018 −0.2803i 3.8410 −37.3575i 145.4547 −2.6036 −12.0533i −34.1685 42.6595i 60.8878 −225.5422i 3698.3625 −1340.4055

4 1.2500 1.0000i 2.0000 26.0000i −50.0000 −3.6000 −1.2000i −68.4000 147.6000i 28.4000 397.2000i 650.8000 −2559.6000

5 1.1130 0 7.1515 0 417.1100 0.8714 0 −1.6636 0 85.6498 0 4379.9362 −1014.5115

6 1.0000 0 −2.0000 0 14.0000 −3.8182 0 26.7273 0 46.0000 0 2198.0000 1324.9091

7 0.9482 −0.7803i 0.6590 −18.8575i −158.9547 −1.8964 1.4467i −60.3315 566.1595i 3.6122 57.9578i −711.8625 −1976.0945

8 0.6711 0 0.3220 0 −55.7341 −0.5812 0 −22.7075 0 −14.4617 0 545.2737 385.9685
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Table 9: List of the correlation functions in 8 eigenstates of the golden chain representation calculated by exact diagonalization for L = 8.

E is the eigenenergy and k is the overall momentum quantum number. We list the eigenstates with 0≤ k ≤ 4. The numerical errors of the

correlation functions compared to those computed from the factorization formula (68)–(72), using the current mean values in Table 10,

are at most 10−13. The eigenstates indexed 1,4 correspond to the eigenstates of the XXZ chain indexed 1,2 in Table 5 respectively. The

errors between the corresponding correlation functions are at most of the order 10−13.

E k 〈e1e2〉 〈e1e3〉 〈e1e2e3〉′



e1e4

�

1 10.0259 0 1.2264 1.7212 2.4912 1.5016

2 9.8473 4 1.1926 1.6279 2.4183 1.4663

3 9.5601 0 1.1441 1.4711 2.3027 1.4244

4 7.9546 4 0.8090 1.0181 1.8625 0.6663

5 7.7141 3 0.8007+ 0.2901i 0.7735 1.3479 0.9368

6 7.5275 1 0.7862− 0.2483i 0.7364 1.2794 0.8243

7 7.3934 0 0.7990 0.6750 1.6799 0.6794

8 6.7599 2 0.6397+ 0.0425i 0.7590 0.5768 0.5047

Table 10: List of the current mean values in the Potts representation with the parameters being the same as Table 9. The eigenstates

indexed 1,4 correspond to the eigenstates of the XXZ chain indexed 1,2 in Table 6 respectively. The errors between the corresponding

mean values are at most of the order 10−12.

ψ0,0 ψ0,1 ψ0,2 ψ0,3 ψ0,4 ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ2,2 ψ2,3 ψ2,4 ψ3,3

1 1.2532 0 2.7575 0 40.1762 −3.1122 0 −30.4413 0 35.7292 0 699.9198 −1041.1975

2 1.2309 0 2.9948 0 32.2644 −2.8941 0 −34.0877 0 32.8961 0 921.9507 −876.4761

3 1.1950 0 3.3370 0 25.1091 −2.5726 0 −38.1117 0 29.3764 0 1094.4553 −746.0619

4 0.9943 0 4.4673 0 58.7948 −1.0641 0 −35.8730 0 24.2381 0 636.4054 −977.7322

5 0.9643 0.5801i 3.3212 7.8011i 86.8173 −1.5634 −0.6982i −18.2058 −120.7357i 31.1574 −1.7555i 966.7497 −546.4995

6 0.9409 −0.4965i 3.0183 −10.7810i 83.9916 −1.6448 −0.6943i −16.0361 117.2059i 30.5524 −3.5068i 1088.4021 −376.7953

7 0.9242 0 4.6091 0 80.9245 −0.8367 0 −30.1360 0 24.9617 0 537.6382 −981.7392

8 0.8450 0.0850i 0.0164 1.3714i −107.6978 −2.7168 0.0721i −36.1226 23.1560i 3.7302 19.0219i −139.8274 −787.5306
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Table 11: List of the correlation functions in 8 eigenstates of the Potts representation calculated by exact diagonalization for Q = 3 and

L = 8. E is the eigenenergy and k is the overall momentum quantum number, and zq is the ZQ quantum number. We list the eigenstates

with 0 ≤ k ≤ 2 and zq = 0,1. We note that the physical system size here is L/2 = 4. The numerical errors of the correlation functions

compared to those computed from the factorization formula (68)–(72), using the current mean values in Table 12, are at most 10−11.

The eigenstates indexed 2,4,5,6 correspond to the eigenstates of the XXZ chain indexed 1,2,3,4 in Table 3 respectively. The errors

between the corresponding correlation functions are at most of the order 10−10.

E k zq 〈e1e2〉 〈e1e3〉 〈e1e2e3〉′



e1e4

�

1 10.4050 0 0 1.2666 1.8830 2.5827 1.5995

2 10.0809 0 1 1.2053 1.7059 2.4500 1.5374

3 8.3849 0 0 0.8296 1.2029 1.9706 0.7067

4 7.9421 1 1 0.8162+ 0.2823i 0.8367 1.3574 0.9696

5 7.4797 0 1 0.8192 0.6285 1.6802 0.7205

6 7.0595 2 1 0.6589 0.8285 0.5820 0.5595

7 6.7970 1 0 0.7641+ 0.2602i 0.3195 1.2012 0.6615

8 6.6104 1 0 0.5281+ 0.0281i 0.6812 0.7866 0.8062

Table 12: List of the current mean values in the Potts representation with the parameters being the same as Table 11. The eigenstates

indexed 2,4,5,6 correspond to the eigenstates of the XXZ chain indexed 1,2,3,4 in Table 4 respectively. The errors between the corre-

sponding mean values are at most of the order 10−7.

ψ0,0 ψ0,1 ψ0,2 ψ0,3 ψ0,4 ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ2,2 ψ2,3 ψ2,4 ψ3,3

1 1.3006 0 2.9079 0 45.7228 −3.3411 0 −33.2258 0 39.9918 0 771.4239 −1229.7023

2 1.2601 0 3.3463 0 31.6763 −2.9346 0 −39.9194 0 34.6966 0 1172.5214 −931.3222

3 1.0481 0 4.7128 0 60.2540 −1.1768 0 −41.0506 0 26.7520 0 775.6237 −1112.7968

4 0.9928 0.5646i 3.3830 10.0458i 95.2807 −1.7078 −0.0231i −18.8898 −137.1473i 34.2995 0.1941i 1198.6269 −528.0020

5 0.9350 0 4.9451 0 98.2431 −0.8162 0 −31.1809 0 27.9266 0 614.1580 −1106.1864

6 0.8824 0 0 0 −121.1016 −2.9061 0 −40.3672 0 3.7137 0 −171.0383 −910.7546

7 0.8496 0.5205i 4.1880 11.2664i 98.8764 −0.9287 0.4442i −22.1164 −114.5883i 28.0232 2.6114i 1096.6866 −528.9631

8 0.8263 0.0562i 1.8294 16.1408i 30.2047 −1.6526 5.3119i −17.0107 63.9912i 20.3713 85.8017i 631.6663 −468.8777
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Table 13: List of the correlation functions in 8 eigenstates of the trance representation calculated by exact diagonalization for d = 3. We

restrict the eigensubspace of the U(1) charges: Na = 0 (a = 1,2,3) where Na is defined in the Eq. (50) in [55]. E is the eigenenergy

and k′ is the overall momentum quantum number concerning the two-site shift. We list the eigenstates with 0 ≤ k′ ≤ 2. The numerical

errors of the correlation functions compared to those computed from the factorization formula (68)–(72), using the current mean values

in Table 14, are at most 10−13. The eigenstates indexed 1,2,7 correspond to the eigenstates of the XXZ chain indexed 1,2,3 in Table 7

respectively. The errors between the corresponding correlation functions are at most of the order 10−13.

E k′ 〈e1e2〉 〈e1e3〉 〈e1e2e3〉′



e1e4

�

1 14.7275 0 1.6655 4.3998 3.6248 2.6996

2 13.2170 0 1.0245 4.1074 3.1863 1.1395

3 13.0858 0 1.4722 2.6731 2.8585 3.0251

4 11.7967 1 1.0923+ 0.5002i 2.0904 1.9444 2.4491

5 10.9631 1 1.0293+ 0.2706i 1.9718 1.7179 1.3104

6 10.5358 0 1.0130 1.5571 2.3080 1.2967

7 10.4142 1 0.6402+ 0.1402i 1.6553 1.1036 2.5303

8 10.3673 2 0.8388+ 0.2242i 2.0426 0.8651 1.0503

Table 14: List of the current mean values in the trace representation with the parameters being the same as Table 13. The numerical

errors of the current mean value formula (59) against the above numerics are at most 10−10.

ψ0,0 ψ0,1 ψ0,2 ψ0,3 ψ0,4 ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ2,2 ψ2,3 ψ2,4 ψ3,3

1 1.8409 0 4.7764 0 146.8741 −6.2902 0 −77.6288 0 114.3119 0 1840.2901 −5749.4570

2 1.6521 0 7.4127 0 76.7147 −2.6713 0 −132.1650 0 74.1274 0 4818.2829 −3336.7489

3 1.6357 0 7.5679 0 83.0324 −3.9041 0 −118.2845 0 73.0298 0 4623.7150 −3583.7330

4 1.4746 1.0003i 6.8665 11.5587i 255.2844 −2.7927 −4.9296i −61.9843 −402.8328i 91.8175 −10.2651i 3458.0998 −3489.5801

5 1.3704 0.5411i 4.8218 33.9784i 212.4193 −3.4178 5.5017i −44.7668 −283.1773i 85.5345 73.1007i 4790.6704 −1252.5544

6 1.3170 0 8.7549 0 307.2956 −1.2956 0 −72.0023 0 77.4292 0 2530.5220 −4001.5256

7 1.3018 0.2803i 3.8410 37.3575i 145.4547 −2.6036 12.0533i −34.1685 −42.6595i 60.8878 225.5422i 3698.3625 −1340.4055

8 1.2959 0.4484i 0.3683 11.3196i −267.3614 −4.9239 0.7804i −96.6653 257.4877i 23.2054 210.6901i −237.9226 −3551.3820
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