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We consider spin-1/2 chains with external driving that breaks the continuous symmetries of the
Hamiltonian. We introduce a family of models described by the Lindblad equation with local jump
operators. The models have hidden strong symmetries in the form of quasi-local charges, leading to
multiple non-equilibrium steady states. We compute them exactly in the form of Matrix Product
Operators, and argue that they are the analogues of quantum many body scars in the Lindbladian
setting. We observe that the dynamics leads to the emergence of a Gibbs ensemble constructed from
the hidden charges.

Introduction.— If a small physical system is made into
contact with a much larger system (the bath), which is
itself in thermal equilibrium, then the interaction with
the bath will typically induce thermalization of the small
system: in the long time limit all details of its initial state
will be washed away and its emerging steady state will
be determined by the thermodynamical state functions of
the bath [1]. This is a general phenomenon in both the
classical and in the quantum world, and it is essential for
the formulation of statistical physics and thermodynam-
ics.

A similar phenomenon happens also in situations with
external driving [2, 3]. Typically there is a unique steady
state, whose properties depend only on the parameters
of the driving, and all properties of the initial states are
eventually lost during time evolution. Quantum many-
body systems with driving (or simply in contact with
their environment) can often be described by the Lind-
blad equation [4], and generic Lindblad systems have a
unique non-equilibrium steady state (NESS) [5].

Models with a non-unique NESS are exceptional: they
conserve additional information about the initial state
[6]. They are analogous to isolated systems with ergod-
icity breaking, which have been well studied in the last
two decades. Today various mechanisms leading to er-
godicity breaking are known [7–9], and all of them are
associated with exotic symmetries of the system.

We focus on the question: What are possible ways
to have multiple NESS in a many-body Lindblad sys-
tem? Similar to ergodicity breaking, non-uniqueness of
the NESS is associated with the presence of extra con-
servation laws. In Lindblad systems conserved quantities
can be constructed if the model has so-called strong sym-
metries [10–13].

In this work we uncover a novel mechanism leading to
unexpected degenerate NESS in a Lindblad system. We
introduce a model with a local Hamiltonian and local
jump operators in the bulk, which break the standard
U(1) symmetry of the Hamiltonian. Nevertheless we
find hidden strong symmetries in the form of quasi-local
charges: extensive operators with a quasi-local operator

density. Previously such operators were treated in the
context of the Generalized Gibbs Ensemble [14, 15], and
our work is the first one to uncover quasi-local charges in
a Lindblad system with local driving in the bulk.

We also find explicit and exact formulas for the de-
generate NESS in our model: we present them as Ma-
trix Product Operators (MPO) with fixed bond dimen-
sion. We argue that they are analogous to the quan-
tum many body scars known from Hermitian systems
[9, 16]. We also consider time evolution from selected
initial states, and rigorously compute the steady state
values of selected observables, thereby proving that the
system retains memory of the initial state. Furthermore,
we show that in the infinite volume limit the emerging
steady states can also be described by a Gibbs Ensemble
constructed from the hidden quasi-local charge.
Lindblad systems.— We consider the dynamics of a

quantum spin-1/2 chain in contact with its environment.
If the environment is Markovian, the time evolution of
the density matrix ρ of the system can be described by
the Lindblad equation, which reads

ρ̇ = i[ρ,H] +
∑

a

ua

[
`aρ`

†
a −

1

2
{`†a`a, ρ}

]
, (1)

and equivalently in the superoperator formalism ρ̇ = Lρ,
where L is the so-called Lindblad superoperator [17, 18].

Here H is the Hamiltonian of the system and `a are
the jump operators, which describe processes mediated
by the environment. The parameters ua ∈ R+ are cou-
pling constants, and the index a labels the various jump
operators.

We are interested in models where the jump operators
are localized in real space, and the system is translation-
ally invariant. Furthermore, we consider periodic bound-
ary conditions and one family of jump operators in the
bulk. In such a case ua ≡ U with a uniform coupling U
and `a ≡ `(j) is a fixed short range operator localized
around the site j.
Symmetries and NESS.— In a Lindblad system the

non-equilibrium steady states (NESS) are the density
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matrices ρ which emerge in the long time limit, and they
satisfy Lρ = 0. In a generic Lindblad system without
symmetries there is a unique NESS, but counterexam-
ples are also known [5, 12]. In such exceptional cases
the system preserves memory of the initial state, be-
cause different initial density matrices evolve to different
NESS in the long time limit. One of the possible ways
to have non-unique NESS is to have conservation laws
in the model, because different initial mean values of the
conserved quantity necessarily lead to multiple NESS.

Conservation laws are typically associated with sym-
metries. In Hermitian quantum mechanics, symme-
tries are represented by linear operators which commute
with the Hamiltonian, and every symmetry automati-
cally leads to a conservation law for an observable quan-
tity. The situation is very different in the non-Hermitian
setting of the Lindblad equation [11]. In these systems
a symmetry operation might or might not lead to a con-
served quantity, and not all conserved quantities origi-
nate in symmetries.

However, there is a direct connection in the case of
a “strong symmetry”. We say that an operator Q is a
strong symmetry of a Lindblad system, if Q commutes
with the Hamiltonian H and all jump operators indi-
vidually. In this case L†Q = LQ = 0 and thus Q is
also a NESS. Of special interest are those strong sym-
metries which are represented by extensive operators, ie.
Q =

∑
j q(j), where q(j) is the operator density of the

conserved charge.
The Hubbard Lindbladian.— An example for a Lind-

blad system with such a strong symmetry was considered
in [19]. Using the notation Xj , Yj , Zj for the Pauli ma-
trices acting on site j of the spin chain, we can write the
Hamiltonian and the jump operators of the model of [19]
as

H =
∑

j

XjXj+1 + YjYj+1, `(j) = Zj . (2)

The system is homogeneous with a global coupling con-
stant U .

Here the Hamiltonian describes the so-called XX
model, while the jump operators describe local de-
phasing effects. Substituting (2) into (1), the result-
ing Lindblad superoperator can be seen as the Hubbard
model with imaginary coupling constant [19], which im-
plies that the superoperator is Yang-Baxter integrable,
and the Lindblad superoperator can be diagonalized us-
ing Bethe Ansatz.

This model has an extensive strong symmetry given by

Q0 =
∑

j

Zj , (3)

which is the global magnetization. Accordingly, in this
model the NESS is not unique and in a finite volume L
the null space of the superoperator L is L+1 dimensional.

Representative NESS can be chosen as the L+ 1 projec-
tors PN to the different sectors of the Hilbert space with
a given total magnetization N . Alternatively, an over-
complete basis for the null-space can be chosen as

ρ(α) ∼ eαQ0 =
∏

j

eαZj , α ∈ R. (4)

These density matrices are linear combinations of PN .
They are product operators in real space: their operator
space entanglement is zero.
Our model.— We consider a deformation of the model

given by (2). In our case, the Hamiltonian is

H =
∑

j

XjYj+1 − YjXj+1, (5)

which is known as the Dzyaloshinskii–Moriya interaction
term. It can be related to the XX Hamiltonian (2) by
applying an homogeneous twist along the chain [20]. We
have a global coupling constant U , and the jump opera-
tors are given by

`(j) =
1

1 + γ2
(Zj+1 + γ(Xj +Xj+2)Xj+1

−γ2XjZj+1Xj+2

)
, (6)

where γ ∈ R is seen as a deformation parameter, such
that γ = 0 describes the original model (2). The jump
operator (6) acts non-trivially on three neighbouring sites
and satisfies the special relations

(`(j))† = `(j), (`(j))2 = 1. (7)

Neighbouring jump operators do not commute, but
[`(j), `(k)] = 0 if |j − k| ≥ 2.

For simplicity we consider the regime 0 < γ < 1 in
all of this paper. Other regimes can be treated by spe-
cial similarity and duality transformations. Furthermore,
the points γ = ±1 require special care due to extra U(1)
charges, which enlarge the null space of the Lindbladian.
The other regimes and the special points deserve a sepa-
rate study.

The model can also be formulated in terms of fermion
operators, following the usual Jordan-Wigner trans-
formation [21]. Introducing the Majorana operators
ψ2j−1 = Xj

∏
l<j Zl, ψ2j = Yj

∏
l<j Zl, which satisfy

{ψa, ψb} = 2δa,b, we have

H =
∑

k

ψk−1ψk+1 , (8)

where the sum is now over twice the number of sites of the
original spin model. Considering the spin chain defined
on L sites with periodic boundary conditions translates
in the Majorana language into ψL+k = Zψk, where Z ≡
(−1)F ≡∏j Zj is the fermion number parity. The jump
operators take the form

`(j) =
i

1 + γ2
(ψ2j+2 − γψ2j) (ψ2j+1 − γψ2j+3) . (9)
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The jump operators break the U(1) symmetry of the
original model: they induce particle creation and annihi-
lation, but due to conservation of Z creation an annihi-
lation happens in pairs.

While the Hamiltonian (8) is bilinear in terms of the
Majorana operators and can therefore be diagonalized
using free-fermion techniques [21], the jump operators
(9) introduce quartic terms in the Lindblad equation (1),
and our model is therefore truly interacting.

Integrability.— The work [19] initiated the study of
integrable Lindbladians: these are models where the su-
peroperator originates from solutions of the Yang-Baxter
equation. Recently a systematic search was initiated to
find integrable Lindbladians [22] (see also [23]), and the
present model was discovered with the same methods.
The model given by (2) can be related to the Hubbard
model, whereas our Lindblad superoperator is related to
the deformation of the Hubbard model treated in the re-
cent work [24]. Therefore our model is also Yang-Baxter
integrable. Interestingly, the derivations below do not
make use of this property. They will, however, make use
of the “superintegrability” property of the Hamiltonian
(5), namely the fact that it allows for non-abelian fam-
ilies of conserved charges, which commute with H but
not necessarily with one another [20, 25] (see [26] for a
detailed discussion).

Main results.— We find that our Lindbladian possesses
a null space which is L+1 dimensional in a finite volume
L. The existence of the degenerate NESS is explained
by an unexpected strong symmetry in the system. This
symmetry and the associated conserved charge are ob-
tained from the original Q0 of the un-deformed model
via a non-local transformation, which is performed by a
Matrix Product Operator (MPO).

More specifically, let us define the MPO T (γ) as

T (γ) = TrA(AL(γ)AL−1(γ) . . . A1(γ)) . (10)

Here A is a two-dimensional ancillary space, and the ten-
sor A(γ) is written with respect to this space as

Aj(γ) =
1

2

(
g− + g+Zj g+Xj − ig−Yj

g−Xj + ig+Yj g+ − g−Zj

)
, (11)

where g± =
√

1± γ. The operators T (γ) form a mutually
commuting family, namely [T (γ), T (γ′)] = 0: in [26] we
show that they can be recast as a series expansion in
powers of γ, whose coefficients are expressed in terms of
the mutually commuting conserved charges of H. From
there, we further show that the operators T (γ) and T (γ)†

obey the property:

T (γ)T (γ)† = T (γ)†T (γ) = 1 + γLZ . (12)

Hence, in the L → ∞ limit they become inverse of each
other.

Next, we define the deformation of Q0 as

Qγ = T (γ)†Q0T (γ), (13)

which in the L → ∞ limit corresponds to a conju-
gation relation. This conjugation can be understood
as a quasi-local deformation of Q0, involving the non-
abelian conserved charges of the Hamiltonian (5). Qγ
remains an extensive operator, but its operator density
qγ(j) = T (γ)†ZjT (γ) becomes quasi-local; details are
given in [26].

In [26] we show that the operator Qγ is a strong sym-
metry of the Lindbladian: it commutes with the Hamil-
tonian (5) and also with the jump operators (6). This
implies that it is a conserved charge for the Lindbladian
time evolution.

We further find that the matrices

ργ(α) = T (γ)†eαQ0T (γ) = T (γ)†


∏

j

eαZj


T (γ) (14)

are (un-normalized) density matrices: they are Hermitian
and positive definite. They are also strong symmetries.
It follows, that the matrices ργ(α), α ∈ R are NESS of
the Lindbladian with fixed deformation parameter γ and
arbitrary coupling strength U . Alternatively, we could
consider the density matrices ρ̃γ(α) = T (γ)−1eαQ0T (γ),
which coincide with (14) up to corrections of order γL.

The operators ργ(α), α ∈ R form an overcomplete ba-
sis for the null space of the Lindbladian, which has di-
mension L+ 1 in a finite volume L. This can be proven
by expanding ργ(α) into a power series in α: this pro-
duces the powers of Qγ (up to corrections of the order
γL), which (together with the identity) span a space of
dimension L+ 1.

Steady states in MPO form have been found earlier
in multiple instances in the literature (for systems with
boundary driving see for example [12, 27–29]). Our re-
sults are unique because we treat a system locally driven
in the bulk, and the bond dimension of the MPO is a
fixed small number.
Frustration free property and Lindbladian scars.— The

density matrices ργ(α) can be written as an MPO with
bond dimension 4. Therefore, their operator space en-
tanglement satisfies an area law. Interestingly, the ργ(α)
are related to frustration free Hamiltonians.

To see this, we define an auxiliary Hermitian superop-
erator M , which acts on any ρ as

Mρ =
∑

j

`(j)ρ`†(j). (15)

In our case, the strong symmetry and the relations (7)
imply that ργ(α) are eigenvectors of M with eigenvalue
L, and that is the maximal possible eigenvalue of M .
By definition, this means that the superoperator M is
frustration free.

A related model with the frustration free property was
investigated in [30] (see also [31, 32]). Their Hamiltonian
acts on the spin-1/2 Hilbert space and it can be written
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as

K =
∑

j

`(j). (16)

It has two extremal states |Ψ±〉 satisfying the frustra-
tion free condition `(j)|Ψ±〉 = ±|Ψ±〉. It follows that
the density matrices ρ± = |Ψ±〉〈Ψ±| are frustration free
eigenstates of M . Furthermore, they are NESS for our
Lindbladian, and they are reproduced by ργ(α) in the
α → ±∞ limit. Our procedure to obtain the density
matrices ργ(α) can be seen as a generalization of the
methods of [30] to the Lindbladian setting.

After re-normalization and shifting by a matrix pro-
portional to the identity, the action of the full superop-
erator can be written as

L̃ρ ≡ (U−1L+ L)ρ = Mρ+ i U−1[ρ,H]. (17)

The superoperator L̃ becomes Hermitian [33] for U =
iu, u ∈ R. In such a case ργ(α) are still eigenoperators of

L̃, they have low spatial entanglement, and they are in
the middle of the spectrum for a generic real u. There-
fore, they can be seen as quantum many body scars of
L̃ [9, 16]. We suggest to call them Lindbladian scars for
our original superoperator L [34].

Mean values.— The physical properties of ργ(α) can
be demonstrated by computing the mean values of local
observables in these states, which can be done using stan-
dard MPO techniques [26]. First we compute the mean
value of the local operator Z placed at any site j. We
find

〈Zj〉 =
Tr(ργ(α)Zj)

Trργ(α)
=

(
1− γ2

)
tanh(α)

(γ tanh(α))L + 1
(18)

In the large volume limit this gives

〈Zj〉L→∞ =
(
1− γ2

)
tanh(α). (19)

In the un-deformed model (γ = 0) the mean value is
tanh(α), thus the transformation (14) decreases the mean
value by a factor that depends only on γ.

It is also useful to consider a measure for the breaking
of the standard U(1)-symmetry. We choose the two-site
operator

XjXj+1 − YjYj+1 = 2(σ+
j σ

+
j+1 + σ−j σ

−
j+1) (20)

which is sensitive to the creation/annihilation of pairs of
particles. For the mean value we find

(γ tanh(α))L−1 − γ
(
γ2 − 2

)
tanh(α)

(γ tanh(α))L + 1
. (21)

The infinite volume limit becomes

〈XjXj+1 − YjYj+1〉L→∞ = γ(2− γ2) tanh(α). (22)

Having a non-zero mean value is a clear sign of the break-
ing of the original U(1)-symmetry.
Dynamics and Gibbs ensemble.— We consider real

time evolution from selected initial states, focusing on

ρ(t = 0) = ρ0(β) ≡ eβQ0

(2 coshβ)L
. (23)

These are steady states of the undeformed model (γ = 0).
They are product operators in real space and in the limit
β → ±∞ they also include pure states obtained from the
reference states with all spins up/down.

Due to the conserved charge Qγ we expect that the sys-
tem has memory: the long time limit of the observables
will depend on the initial state. On the other hand, since
the emerging NESS are strong symmetries of the model,
they are independent from the coupling U , therefore we
expect that U influences only the speed of convergence
towards them. This is confirmed by numerical computa-
tion of the real time dynamics for small volumes, results
are presented in Fig. 1.

It is important to clarify the nature of the emerging
steady states. Our Lindblad system has a single extensive
conserved charge Qγ . In analogy with thermalization in
an isolated system, we postulate that in large volumes
the emerging steady states can be described by a Gibbs
Ensemble of the form

ρG ∼ e−λQγ , (24)

such that λ should be determined by the initial mean
value:

Tr
(
ρGQγ

)
= Tr

(
ρ0Qγ

)
. (25)

For the initial density matrices (23) this computation can
be performed easily in the infinite volume limit, yielding
tanh(λ) = −(1− γ2) tanh(β). This result can be used to
compute mean values of local observables in the Gibbs
Ensemble. We obtain for example the prediction

lim
t→∞

〈Zj(t)〉 = Tr
(
ρGZj

)
= (1− γ2)2 tanh(β). (26)

Remarkably, we also performed an exact finite volume
computation to find the asymptotic mean values [26]. For
the observable Zj we find

lim
t→∞
〈Zj〉 =

(γ2 − 1)2 tanhβ(1− 2γL tanhL−2 β + γ2L)

(1− γ2L)2
.

(27)

These values are confirmed by the numerics at finite L.
Furthermore, it is easy to take the large volume limit, and
for 0 < γ < 1 we always recover (26), thus confirming also
our postulate about the Gibbs Ensemble.
Conclusions.— We demonstrated that a Lindblad sys-

tem with local jump operators can have quasi-local sym-
metries, crucially affecting the real time dynamics. The
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Figure 1. Time evolution of 〈Z1(t)〉 from a selected initial
density matrix ρ0(β) (23) with β = 0.5, in a finite volume
L = 7. We choose two different deformation parameters γ
and three coupling strengths U . It is seen that the asymp-
totic values depend only on γ and not on U , which influences
only the speed of convergence. The asymptotic values agree
with those predicted by the exact formula (27), therefore they
also confirm our postulate about the emergence of the Gibbs
ensemble.

steady states of our model were obtained from those of
the “Hubbard Lindbladian” after a similarity transfor-
mation with an MPO. Surprisingly, this similarity trans-
formation is compatible with local jump operators. Curi-
ously we did not use the integrability of the Lindbladian,
but the superintegrability of the Hamiltonian did play a
crucial role. Perhaps integrability plays a hidden role in
the derivation of (27).

Additional physical properties of the model, such as
the Lindbladian gap could be computed from a full Bethe
Ansatz solution, which is not yet available. Also, it would
be interesting to consider analogous models with discrete
time evolution [35, 36]. This would open up the way
towards the experimental realization of our findings.
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[16] Z. Papić, Weak ergodicity breaking through the lens
of quantum entanglement, in Entanglement in Spin
Chains: From Theory to Quantum Technology Applica-
tions, edited by A. Bayat, S. Bose, and H. Johannes-
son (Springer International Publishing, Cham, 2022) pp.
341–395, arXiv:2108.03460 [cond-mat.quant-gas].

[17] G. Lindblad, On the generators of quantum dynamical
semigroups, Commun.Math. Phys. 48, 119 (1976).

[18] H.-P. Breuer, F. Petruccione, et al., The theory of open
quantum systems (Oxford University Press on Demand,
2002).

[19] M. V. Medvedyeva, F. H. L. Essler, and T. Prosen, Exact
Bethe Ansatz Spectrum of a Tight-Binding Chain with
Dephasing Noise, Phys. Rev. Lett. 117, 137202 (2016),
arXiv:1606.09122 [quant-ph].

[20] E. Vernier, E. O’Brien, and P. Fendley, Onsager symme-
tries in u(1)-invariant clock models, J. Stat. Mech. 2019,
043107 (2019), arXiv:1812.09091.



6

[21] E. Lieb, T. Schultz, and D. Mattis, Two soluble models
of an antiferromagnetic chain, Ann. Phys. 16, 407 (1961).

[22] M. de Leeuw, C. Paletta, and B. Pozsgay, Construct-
ing Integrable Lindblad Superoperators, Phys. Rev. Lett.
126, 240403 (2021), arXiv:2101.08279 [cond-mat.stat-
mech].

[23] A. A. Ziolkowska and F. H. L. Essler, Yang-Baxter inte-
grable Lindblad equations, SciPost Phys. 8, 044 (2019),
arXiv:1911.04883 [cond-mat.stat-mech].

[24] M. de Leeuw, C. Paletta, and B. Pozsgay, A range three
elliptic deformation of the Hubbard model, arXiv e-prints
(2023), arXiv:2301.01612 [cond-mat.stat-mech].

[25] J. Miller, Willard, S. Post, and P. Winternitz, Classi-
cal and quantum superintegrability with applications, J.
Phys. A 46, 423001 (2013), arXiv:1309.2694 [math-ph].

[26] Supplemental Materials to “Hidden quasi-local charges
and Gibbs ensemble in a Lindblad system”.

[27] T. Prosen, Open XXZ Spin Chain: Nonequilibrium
Steady State and a Strict Bound on Ballistic Transport,
Phys. Rev. Lett. 106, 217206 (2011), arXiv:1103.1350
[cond-mat.str-el].

[28] T. Prosen, E. Ilievski, and V. Popkov, Exterior inte-
grability: Yang-Baxter form of non-equilibrium steady-
state density operator, New J. Physi. 15, 073051 (2013),
arXiv:1304.7944 [math-ph].

[29] T. Prosen, Exact Nonequilibrium Steady State of a
Strongly Driven Open XXZ Chain, Phys. Rev. Lett. 107,
137201 (2011), arXiv:1106.2978 [quant-ph].

[30] N. G. Jones, J. Bibo, B. Jobst, F. Pollmann, A. Smith,
and R. Verresen, Skeleton of matrix-product-state-
solvable models connecting topological phases of mat-
ter, Phys. Rev. Res. 3, 033265 (2021), arXiv:2105.12143

[cond-mat.str-el].
[31] I. Peschel and V. Emery, Calculation of spin correlations

in two-dimensional ising systems from one-dimensional
kinetic models, Z. Physik B 43, 241 (1981).

[32] J. Wouters, H. Katsura, and D. Schuricht, Interrelations
among frustration-free models via Witten’s conjugation,
SciPost Phys. Core 4, 027 (2021), arXiv:2005.12825
[cond-mat.str-el].

[33] We would like to clarify that we are referring about the
Hermiticity property of the action of the superoperator
L̃. This is not the same as Hermiticity or anti-Hermiticity
of the commutator [ρ,H].

[34] Closely related notions of a Lindbladian scar appeared in
[37, 38], see also [39].
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Supplemental Material to “Hidden quasi-local charges and Gibbs ensemble in a
Lindblad system”

I. CONSTRUCTION OF THE NESS USING THE CONSERVED CHARGES OF THE HAMILTONIAN

In this section we show how the deformed Linbladian considered in the main text as well as the corresponding
L + 1 NESS can be constructed as a deformation of the γ = 0 case (imaginary coupling Hubbard model) using the
conserved charges of the Hamiltonian (5) in main text.

A. Conserved charges of the Hamiltonian

The Hamiltonian (5) commutes with an extensive set of charges which we label as [ab]m, where a and b can take
the label X or Y , and for m ≥ 0,

[ab]m ≡
L∑

j=1

aj


 ∏

1≤k<m
Zj+k


 bj+m , (S1)

where Xj , Yj and Zj are the Pauli matrices acting on site j of the spin chain.
In the fermionic formulation of the model, detailed in the main text, the corresponding charges are the set of all

possible translationally invariant fermion bilinears.
An extensive set of local charges usually signals integrability, and indeed the Hamiltonian (5) can be related to

the well-known integrable XX Hamiltonian (see eq. (2) in main text) by a homogeneous twist along the chain. It is
in fact superintegrable, as the charges [ab]m form various families which in turn do not commute with one another.
For instance, the sets of charges {[XY ]m} and {[Y X]n} commute with one another, but only the combinations
{[XY ]m − [Y X]m} commute with the charges {[XX]n} or {[Y Y ]n}. We also introduce the charge

Z =

L∏

j=1

Zj , (S2)

which commutes with the Hamiltonian as well as with all the charges [ab]m.

B. The operator T (γ)

As usual when dealing with quantum integrable models, families of mutually conserved charges can be generated
by a matrix-product operator (MPO) called the transfer matrix. Introduce the following MPO

T (γ) = TrA(AL(γ)AL−1(γ) . . . A1(γ)) , (S3)

where the ancillary space A has dimension 2, and where the matrices Aj(γ) are defined as

Aj(γ) =

( √
1−γ+√1+γZj

2

√
1+γXj−i

√
1−γYj

2√
1−γXj+i

√
1+γYj

2

√
1+γ−√1−γZj

2

)
. (S4)

The matrices T (γ) commute with one another for different γ, as can be traced back to known integrability properties
of the XX chain (more precisely, they correspond to transfer matrices based on cyclic representations of the quantum
group Uq(sl2) at q = i), and admit the following series expansion around γ = 0 :

T (γ) = U exp(G(γ)) , (S5)

where U is the one-site discrete translation operator, and

G(γ) = i
∑

m≥1

γm

2m
[Y X]m . (S6)
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We emphasize that the expansion (S6) holds at all orders, even for a system for finite size L, as can be checked by
computing explicitly the successive logarithmic derivatives of T (γ) at γ = 0. For L → ∞, the series (S6) defines a
quasi-local operator for |γ| < 1. For finite L, it can be further rearranged using the properties : [Y X]m+L = −Z[Y X]m
for m ≥ 1, and [Y X]L = −iLZ. A practical expression is

G(γ) =
1

2
log(1 + γLZ) + i

∑

m≥1
m/∈LZ

γm

2m
[Y X]m, (S7)

which splits between a first term which is hermitian, and an anti-hermitian part. From there, see in particular:

T (γ)T (γ)† = 1 + γLZ , (S8)

or, equivalently,

T (γ)−1 =
1− γLZ
1− γ2L T (γ)† . (S9)

The result of equation (S8) can be seen directly in the MPO formalism. We can write T (γ)T (γ)† as a MPO of bond
dimension 4, with ancillary space A⊗A, namely

T (γ)T (γ)† = TrA⊗A(ML(γ)ML−1(γ) . . .M1(γ)) , (S10)

where the Mj(γ) are 4 × 4 matrices with entries expressed in terms of Xj , Yj , Zj . The MPO is invariant under any

change of basis performed in the ancillary space. Defining V = e
iπ
4 Y⊗X , where X and Y are now Pauli matrices

acting in each copy of the ancillary space A, (S10) can therefore be recovered by replacing the matrices Mj(γ) by
VMj(γ)V −1, which take the form

VMj(γ)V −1 =




1
√

1− γ2Xj −iYj −
√

1− γ2Zj
0 γZj 0 γXj

0 0 0 0
0 0 0 0


 . (S11)

From the block-diagonal form of (S11), it is clear that after taking the trace in (S10) only the two diagonal terms
contribute, which give rise to the two terms in (S8).

C. Construction of the NESS

As we will now see, the transfer matrix T (γ) can be used to construct the jump operators and NESS described in
the main text. Let us study the transformation of the jump operators `(j) (defined in eq. (6) of the main text) under
conjugation by T (γ). For this sake, it will be useful to introduce the following MPOs :

T (γ)BjT (γ)† = TrA⊗A(ML(γ) . . .MB
j (γ) . . .M1(γ)) , (S12)

where B ∈ {X,Y, Z}. We find similarly:

VMX
j (γ)V −1 =




0 γZj 0 γXj

1
√

1− γ2Xj −iYj −
√

1− γ2Zj
0 0 0 0
0 0 0 0


 , (S13)

VMY
j (γ)V −1 =




0 0 0 0
0 0 0 0

i
√

1− γ2 iXj

√
1− γ2Yj −iZj

γYj 0 −iγ 0


 , (S14)
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VMZ
j (γ)V −1 =




0 0 0 0
0 0 0 0

iγYj 0 γ 0

−
√

1− γ2 −Xj i
√

1− γ2Yj Zj


 . (S15)

It will also be useful, for practical calculations, to introduce M(α)
j = coshαMj + sinhαMZ

j . After rotation, we
have similarly

VM(α)
j (γ)V −1 =




coshα coshα
√

1− γ2Xj −i coshαYj − coshα
√

1− γ2Zj
0 γ coshαZj 0 γ coshαXj

iγ sinhαYj 0 γ sinhα 0

− sinhα
√

1− γ2 − sinhαXj i sinhα
√

1− γ2Yj sinhαZj


 . (S16)

For any three consecutive sites j, j + 1, j + 2, we then have

T (γ)`(j)T (γ)† = TrA⊗A(ML(γ) . . .M`
j,j+1,j+2(γ) . . .M1(γ)) , (S17)

where

M`
j,j+1,j+2(γ) ≡ 1

1 + γ2
(
Mj+2MZ

j+1Mj + γ(MX
j+2MX

j+1Mj +Mj+2MX
j+1MX

j )− γ2MX
j+2MZ

j+1MX
j

)
, (S18)

which can be brought to the following form after rotation in ancillary space:

VM`
j,j+1,j+2(γ)V −1 =




˜̀(j) . . . . . . . . .

0 γ3ZjZj+1Zj+2
˜̀(j) 0 . . .

0 0 0 0
0 0 0 0


 . (S19)

Here we have defined

˜̀(j) ≡ 1

1 + γ2
(
Zj+2 + γ(Xj+1Xj+2 + Yj+1Yj+2) + γ2Zj+1

)
, (S20)

and the . . . denote other combinations of the Pauli matrices which we will not need to consider. Indeed, from the
triangular structure of (S19), we see again that only the two non-zero diagonal entries give a non-zero contribution
to the trace (S17). As a result we find

T (γ)`(j)T (γ)† = (1 + γLZ)˜̀(j) , (S21)

or, equivalently,

T (γ)`(j)T (γ)−1 = ˜̀(j) . (S22)

The modified jump operators ˜̀(j) all square to one, and commute with the global charge Q0 =
∑
j Zj . Since

furthermore T (γ)HT (γ)−1 = H, we can readily conclude that all powers of Q0, or equivalently all exponentials of the
form eαQ0 , are (un-normalized) NESS of the Lindbladian defined from the Hamiltonian H and the jump operators
˜̀(j). These form a basis for a L+ 1-dimensional space, including the identity.

Undoing the similarity transformation, this shows that the matrices T (γ)−1eαQ0T (γ) are (un-normalized) NESS
for the Lindbladian constructed out of the Hamiltonian H and jump operators `(j). Since Z commutes with both the
Hamiltonian and jump operators, we can further replace T (γ)−1 by T (γ)†, and conclude that the density matrices
(14) in the main text are a family of NESS.

II. MEAN VALUES IN NESS

In this Section we compute mean values of local observables in states of the form ργ(β) = T (γ)†eβQ0T (γ). In
particular, we derive eqs. (18) and (21) of the main text.
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A. Expectation values of matrix product operators

We start by computing the following objects

G(α, β) = Tr(eαQ0T (γ)†eβQ0T (γ)) (S23)

G̃(α, β) = Tr(eαQ0T (γ)−1eβQ0T (γ)) , (S24)

in terms of which we will see that all quantities of interest can be expressed.
Let us start with G(α, β). Using the MPO formalism above, we can rewrite:

G(α, β) = TrA⊗A

1∏

j=L

trj

(
M(α,β)

j (γ)
)
, (S25)

where M(α,β)
j (γ) ≡M(α)

j (γ)eβZj . After rotation in ancillary space (see eq. (S16)), we have

trj

(
VM(α,β)

j (γ)V −1
)

=




2 coshα coshβ 0 0 −2
√

1− γ2 coshα sinhβ
0 2γ coshα sinhβ 0 0
0 0 2γ sinhα coshβ 0

−2
√

1− γ2 sinhα coshβ 0 0 2 sinhα sinhβ


 .

(S26)
The computation of G(α, β) can be performed by diagonalizing (S26) in ancillary space, leading to :

G(α, β) = (λ1(α, β))L + (λ2(α, β))L + (λ3(α, β))L + (λ4(α, β))L , (S27)

where

λ1(α, β) = cosh(α+ β) +

√
cosh2(α+ β)− γ2 sinh(2α) sinh(2β)

λ2(α, β) = cosh(α+ β)−
√

cosh2(α+ β)− γ2 sinh(2α) sinh(2β)

λ3(α, β) = 2γ sinhα coshβ

λ4(α, β) = 2γ coshα sinhβ (S28)

are the eigenvalues of (S26). For later use, we evaluate the function G(α, β) and its derivatives at particular points :

G(0, β) = 2L(coshβL + (γ sinhβ)L)

1

L
∂αG(α, β)|α=0 =

(
1− γ2

)
2L tanhβ coshL(β)

G(−iπ/2, β) = (−2i)L
(
γL coshL β + sinhL β

)

1

L
∂αG(α, β)|α=−iπ/2 =

(
1− γ2

)
(−2i)L cothβ sinhL β (S29)

We now turn to G̃(α, β). Using (S9), we have

G̃(α, β) = Tr(eαQ0
1− γLZ
1− γ2L T (γ)†eβQ0T (γ)) =

G(α, β)− (iγ)LG(α− iπ/2, β)

1− γ2L , (S30)

where in the last equality we have used the identity Zje
αZj = ie(α−iπ/2)Zj .

B. Mean values in NESS

Now we compute the mean values of local operators Zj and XjXj+1 − YjYj+1. Using translation invariance, we
find

〈Zj〉β ≡
Tr(ZjT (γ)†eβQ0T (γ))

Tr(T (γ)†eβQ0T (γ))
=

1
L∂αG(α, β)|α=0

G(0, β)
=

(1− γ2) tanhβ

1 + (γ tanhβ)L
, (S31)
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hence recovering eq. (18) in main text, once done the substitution β → α.
Expectation of other local operators such as XjXj+1 − YjYj+1 could be similarly obtained from suitably defined

generating functions, but we here compute directly :

Tr(XjXj+1T (γ)†eβQ0T (γ)) = Tr
(

TrA⊗A(M(0,β)
L (γ) . . .M(X,β)

j+1 (γ)M(X,β)
j (γ) . . .M(0,β)

1 (γ))
)
, (S32)

where M(X,β)
j = XjM(0,β)

j =MX
j e

βZj . A similar formula holds with X → Y .
Using

trj(VM(0,β)
j V −1) =




2 coshβ 0 0 −2
√

1− γ2 sinhβ
0 2γ sinhβ 0 0
0 0 0 0
0 0 0 0


 , (S33)

trj(VM(X,β)
j V −1) =




0 2γ sinhβ 0 0

2 coshβ 0 0 −2
√

1− γ2 sinhβ
0 0 0 0
0 0 0 0


 , (S34)

trj(VM(Y,β)
j V −1) =




0 0 0 0
0 0 0 0

2i
√

1− γ2 coshβ 0 0 −2i sinhβ
0 0 −2iγ coshβ 0


 , (S35)

we find

〈XjXj+1 − YjYj+1〉β =
Tr((XjXj+1 − YjYj+1)T (γ)†eβQ0T (γ))

Tr(T (γ)†eβQ0T (γ))
=
γ
(
2− γ2

)
tanh(β) + (γ tanh(β))L−1

γL tanhL(β) + 1
, (S36)

which recovers (21) in main text.

III. LATE TIME EXPECTATION VALUES – GIBBS ENSEMBLE

Here we consider real time evolution in the Linbdlad system, and the emergence of the Gibbs Ensemble. We show
how to compute the Lagrange multiplier of the Gibbs ensemble, which eventually leads to a prediction for the long
time limit of local observables. The computations in this Section are performed in the infinite volume limit. Exact
finite volume computations confirming the general statements for specific cases will be provided in the next Section.

The conservation of Qγ implies that if a Gibbs ensemble ρG ∼ e−λQγ emerges during time evolution, then it has to
satisfy

Tr
(
ρ0Qγ

)
=

Tr
(
e−λQγQγ

)

Tre−λQγ
. (S37)

This equation can be used to fix λ using knowledge of the initial state.
Once λ is found, the predictions for the steady state values of observables can be given by results from the previus

subsection. For example, for the mean value of Zj we find

〈Zj〉 =
Tr
(
e−λQγQγ

)

Tre−λQγ
= −(1− γ2) tanh(λ). (S38)

Using the similarity transformation the r.h.s. is actually found to be

− tanh(λ) (S39)

Furthermore, the l.h.s. can be expressed as

Tr
(
T (γ)ρ0T

†(γ)Q0

)
(S40)
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If the initial density matrix is chosen to be

ρ0 ∼ eβQ0 (S41)

then once again we can use the results from the next subsection to conclude

(1− γ2) tanh(β) = − tanh(λ). (S42)

Combining everything we obtain the prediction for the long time limit

〈Zj〉 = (1− γ2)2 tanh(β) (S43)

IV. LATE TIME EXPECTATION VALUES – EXACT COMPUTATIONS

In this section we detail the computation of the late-time expectation values of local observables following a quantum
quench from initial states given by eq. (23) in main text. In particular we focus on the local observable 〈Zj〉.

Let us start by recalling that an over-complete basis of the L+ 1-dimensional space of NESS can be generated by
the ρ̃γ(α) = T (γ)−1eαQ0T (γ). Since Q0 =

∑
j Zj has L+ 1 distinct eigenvalues of the form 2n−L with n = 0, . . . , L,

we can alternatively define a basis of the space of NESS in terms of the projectors P̃n = T (γ)−1PnT (γ), where

Pn =
1

L+ 1

L∑

k=0

ei
2πk
L+1 (

L+Q0
2 −n) (S44)

is the projector onto the subspace where Q0 has eigenvalue 2n− L.
As a consequence, any density matrix in the space of NESS can be decomposed as :

ρNESS =
L∑

n=0

Tr(ρNESSP̃n)

Tr(P̃n)
P̃n. (S45)

Starting from an arbitrary ρ(t = 0), we therefore have at late times

lim
t→∞

eLtρ(t = 0) =
L∑

n=0

Tr(ρ(t = 0)P̃n)

Tr(P̃n)
P̃n (S46)

and therefore, for any observable O,

lim
t→∞
〈O〉 =

L∑

n=0

Tr(ρ(t = 0)P̃n)

Tr(P̃n)
Tr(P̃nO) . (S47)

All the traces involved in (S47) can be computed using the matrix product operator techniques.
Focusing on the observable Zj we need to compute :

lim
t→∞
〈Zj〉 =

L∑

n=0

Tr(ρ(t = 0)P̃n)

Tr(P̃n)
Tr(P̃nZj) . (S48)

The first trace Tr(P̃n) = Tr(Pn) can easily be computed without resorting to MPO techniques, as it corresponds
to the dimension of the eigenspace of Pn with eigenvalue 2L− n, however as a warm-up we present its computation
using the previously computed function G̃(α, β). Using the decomposition (S44) of the projector Pn, we have

Tr(P̃n) =
1

L+ 1

L∑

k=0

ei
2πk
L+1 (

L
2 −n)Tr

(
T (γ)−1ei

πk
L+1Q0T (γ)

)

=
1

L+ 1

L∑

k=0

ei
2πk
L+1 (

L
2 −n)G̃(0,

ikπ

L+ 1
)

=
2L

L+ 1

L∑

k=0

ei
2πk
L+1 (

L
2 −n)(cos

kπ

L+ 1
)L

=

(
L

n

)
. (S49)
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The second trace can be similarly evaluated as :

Tr(P̃nZj) =
1

L+ 1

L∑

k=0

ei
2πk
L+1 (

L
2 −n) 1

L
∂αG̃(α,

ikπ

L+1
)|α=0

= i2L
1− γ2
1− γ2L

1

L+ 1

L∑

k=0

ei
2πk
L (L2 −n)(sin

kπ

L+ 1
(cos

kπ

L+ 1
)L−1 + (iγ)L cos

kπ

L+ 1
(sin

kπ

L+ 1
)L−1)

= − 1− γ2
1− γ2L (1− (−1)L−nγL)

L− 2n

n

(
L− 1

n− 1

)
. (S50)

We now move to the third trace, Tr(ρ(t = 0)P̃n). Taking the normalized density matrix ρ(t = 0) = eαQ0/(2 coshα)L,

Tr(ρ(t = 0)P̃n) =
1

(2 coshα)L
1

L+ 1

L∑

k=0

ei
2πk
L+1 (

L
2 −n)G̃(α,

ikπ

L+ 1
)

=
1

(2 coshα)L
1

L+ 1

1

1− γ2L
(
Fn(α)− (iγ)LFn(α− iπ/2)

)
(S51)

where in the last line we have used the expression (S30) of G̃ in terms of G, and introduced the functions

Fn(α) ≡
L∑

k=0

ei
2πk
L+1 (

L
2 −n)G̃(α,

ikπ

L+ 1
) (S52)

=

L∑

k=0

ei
2πk
L+1 (

L
2 −n)

(
λ1(α,

ikπ

L+ 1
)L + λ2(α,

ikπ

L+ 1
)L + λ3(α,

ikπ

L+ 1
)L + λ4(α,

ikπ

L+ 1
)L
)

(S53)

≡ F (1)
n (α) + F (2)

n (α) + F (3)
n (α) + F (4)

n (α) (S54)

Using the expressions (S28) of the eigenvalues λi, the contributions F (3) and F (4) are easily evaluated. We find :

1

(2 coshα)L
1

L+ 1

1

1− γ2LF
(3)
n (α) =

1

2L
(γ tanhα)L

1− γ2L
(
L
n

)
, (S55)

1

(2 coshα)L
1

L+ 1

1

1− γ2LF
(4)
n (α) =

1

2L
γL

1− γ2L (−1)L−n
(
L
n

)
. (S56)

We now move to the contribution F (1) + F (2). Using the expression (S28),

λ1(α, β)L + λ2(α, β)L = 2
L∑

j=0
j even

(
L

j

)
(cosh(α+ β))

L−j (
cosh2(α+ β)− γ2 sinh(2α) sinh(2β)

)j/2
. (S57)

Hence,

F (1)
n (α) + F (2)

n (α) =

2

2L

L∑

k=0

L∑

j=0
j even

(
L

j

)
e−αLe

−2inkπ
L+1

(
1 + e

2ikπ
L+1 e2α

)L−j (
(1 + e

2ikπ
L+1 e2α)2 − γ2(1− e 4ikπ

L+1 )(1− e4α)
)j/2

(S58)

=
e−αL

2L−1

L∑

k=0

L/2∑

l=0

L−2l∑

a=0

∑

b1,b2≥0
b1+b2≤l

(
L

2l

)(
L− 2l

a

)(
l

b1, b2, l − b1 − b2

)
e

2i(a+b1+2b2−n)kπ
L+1 e2aα(2e2α)b1

(e4α(1− γ2) + γ2)b2

(1− γ2(1− e4α))b1+b2−l

=
L+ 1

eαL
2

2L

L/2∑

l=0

∑

b1,b2≥0
b1+b2≤l

L! e2nα(1− γ2(1− e4α))l−b12b1

(2l)!(n− b1 − 2b2)!(L− 2l − n+ b1 + 2b2)!

(
l

b1, b2, l − b1 − b2

)(
1− γ2(1− e−4α)

1− γ2(1− e4α)

)b2
.

(S59)
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We further expand this expression to write it as a polynomial in γ (the deformation parameter) and we obtain
(after proper re-arranging the sum)

(L+ 1)L! e2αn

2L−1eαL
∑ l! 2l−b3

(
e−4α − 1

)t (
e4α − 1

)f−t

(2l)! t! (b2 − t)!(l − b3)!(f − t)!(t− b2 + b3 − f)!(n− 2b2 + b3 − l)!(2b2 − b3 − l + L− n)!
γ2f ,

(S60)

where we used the shortcut

∑
→

L/2∑

f=0

L/2∑

l=f

l∑

b3=f

b3∑

b2=0

b2∑

t=0

. (S61)

We used the software Mathematica 12.3 to further simplify this expression and we obtained

F (1)
n (α) + F (2)

n (α) =κ

L/2∑

f=0

(
e4α − 1

)f
γ2f (L− f)!

f !n! eα(L−2n) 2L−n
3F̃ 2

(
−f, 1− n

2
,−n

2
;
L− n− 2f + 1

2
,
L− n− 2f + 2

2
;

1

e4α

)
,

(S62)

where κ = (L+ 1)
√
πL and 3F̃2 is the hypergeometric function regularized.

Reporting the results (S55), (S56) and (S62) into (S51) (where the terms Fn(α − iπ/2) can just be obtained by
shifting the argument), we get :

Tr(ρ(t = 0)P̃n) =
1

2L
(−1)nγL

γ2L − 1

(
L

n

)(
(−γ tanh(α))L − (−1)n tanhL(α) + (−1)nγL − (−1)L

)
+

1

(2 coshα)L
1

1− γ2L
L/2∑

f=0

√
πL
(
1− e4α

)f
γ2f (−1)f+n2n−L(L− f)!e−α(L−2n)

(
(−1)L+1γL + (−1)n

)

f !n!

3F̃ 2

(
−f, 1− n

2
,−n

2
;
L− n− 2f + 1

2
,
L− n− 2f + 2

2
;

1

e4α

)
. (S63)

The three factors (S49), (S50) and (S63) can now be gathered in the initial expression (S48) for lim〈Zj〉. Performing

the sum over n, we find that the contributions coming from F (3)
n and F (4)

n vanish. It remains to compute

lim
t→∞
〈Zj〉 =

√
π
(
1− γ2

)
e−αL

2L (γ2L − 1)
2

(sinh(2α)csch(α))L

L∑

n=0

L/2∑

f=0

2n
(
e4α − 1

)f
γ2f (2n− L)e2αn(L− f)!

(
(−1)n − (−γ)L

)2

(f + 1)!(n+ 1)!

3F̃ 2

(
−f, 1− n

2
,−n

2
;
L− n− 2f + 1

2
,
L− n− 2f + 2

2
;

1

e4α

)
. (S64)

This expression looks complicated at first sight, but we will now see that it is equivalent to the expression (27) in the

main text. Both expressions contain a prefactor 1−γ2

(1−γ2L)2
which we therefore omit in the following, and compare the

remaining polynomials in γ order by order. Starting from (27), the remaining polynomial takes the form

(
1− γ2

)
tanh(α)

(
1 + γ2L − 2γL tanhL−2 α

)
, (S65)

in particular the exponents of γ that gives a contribution different from 0 are 0, 2, L, 2L,L+ 2, 2L+ 2. We shall now
demonstrate that all other powers indeed vanish in the polynomial associated with expression (S64). In (S64), the
coefficients are 2f, 2f + L, 2f + 2L, so the only non-zero contribution should come from f = 0, 1, L/2, the last one
only for L even.

By direct computation, we found that to obtain (S65) it is enough to sum the contribution of f = 0 and f = 1. Let
us show that the other terms vanish. First, we consider the contribution of f = L/2 in (S64). This is proportional to

L∑

n=0

(L− 2n)e2αn
(
(−1)n − (−γ)L

)2
sin(πn)

n
2F1

(
−L

2
,−n

2
; 1− n

2
;

1

e4α

)
. (S66)
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Since the function 2F1

(
−L2 ,−n2 ; 1− n

2 ; e−4α
)

is finite for n odd, (S66) vanishes due to sin(nπ), while for n even:

2F1

(
−L

2
,−n

2
; 1− n

2
;x

)
=

L/2∑

k=0

(−1)kn
(
L/2
k

)
xk

n− 2k
, (S67)

and if we substitute this into (S66), we get

L/2∑

k=0

L∑

n=0

(−1)k(L− 2n) sin(πn)
(L

2
k

)
e2α(n−2k)

n− 2k
=

L∑

n=0

in(L− 2n)

(L
2
n
2

)
= 0, (S68)

where since sin(nπ) is zero, we need to only keep the singular term.
It remains to show that all the terms with f > 1 do not contribute. Removing the irrelevant terms and considering

e−α = z, we should prove that the following term vanishes

L∑

n=0

(L− 2n)zL−2n

(n+ 1)!(1− 2f + L− n)!
3F2

(
−f, 1− n

2
,−n

2
;
L− n− 2f + 1

2
,
L− n− 2f + 2

2
; z4
)
. (S69)

Expanding as a series in z and re-shifting the sum over n we obtain

∞∑

m=0

L−2m∑

n=−2m

(−1)m
(
f
m

)
(L− 4m− 2n)zL−2n

(n+ 1)! (1− 2f + L− n)!
=
∞∑

m=0

L∑

n=0

(−1)m
(
f
m

)
(L− 4m− 2n)zL−2n

(n+ 1)! (1− 2f + L− n)!
. (S70)

We can now sum over m and we are left with

L∑

n=0

(L− 2n) 1F0(−f ; ; 1) + 4f 1F0(1− f ; ; 1). (S71)

Considering that

1F0(a; ;x) = (1− x)−a, (S72)

each terms of (S71) are zero for f > 1 as stated at the beginning.
To summarize, we proved that (S48) is equivalent to the expression (27) given in the main text.


