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Abstract. Biochemical networks are usually modeled by Ordinary Dif-
ferential Equations (ODEs) that describe time evolution of the concen-
trations of the interacting (biochemical) species for specific initial con-
centrations and certain values of the interaction rates. The uncertainty
in the measurements of the model parameters (i.e. interaction rates) and
the concentrations (i.e. state variables) is not an uncommon occurrence
due to biological variability and noise. So, there is a great need to predict
the evolution of the species for some intervals or probability distributions
instead of specific initial conditions and parameter values. To this end,
one can employ either phase portrait method together with bifurcation
analysis as a dynamical system approach, or Dynamical Bayesian Net-
works (DBNs) in a probabilistic domain. The first approach is restricted
to the case of a few number of parameters, while DBNs have recently been
used for large biochemical networks. In this paper, we show that time-
homogeneous ODE parameters can be efficiently estimated with Bayesian
Networks. The accuracy and computation time of our approach is com-
pared to two-slice time-invariant DBNs that have already been used for
this purpose. The efficiency of our approach is demonstrated on two toy
examples and the EGF-NGF signaling pathway.

Keywords: Ordinary Differential Equations based models · Markov Chains
· Bayesian Networks · Biochemical Networks · Time Homogeneous Sys-
tems

1 Introduction

In-silico analyses of biochemical networks based on their ODE and Chemical
Master Equation (CME) models are valuable instruments for developing the
methods for diagnosis, prognosis, drug discovery, therapeutic procedures in the
clinical domain as well as for efficient and reliable experiment design. ODE mod-
els describe the deterministic future of the species’ concentrations given the ini-
tial concentrations and the interaction rates. On the other hand, CMEs provide
predictions for the stochastic future of the probabilities of the molecule numbers
for species. Both have advantages on their sides; ODE models are appropriate
⋆ This work was financed by the join ANR-JST project CyPhAI.
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when molecular species are available in large numbers whilst CMEs are more
appropriate for low molecule numbers.

As a consequence of biological variability within a population of biochemical
species of the same kind as well as measurement errors, environmental noise and
estimation errors in determining values of unmeasurable parameters by means
of directly measured ones, there is always uncertainty in the reaction rates [12].

Although both kinds of models for biochemical networks have been well-
established, their analytical solutions are rarely available and their numerical
analysis is computationally expensive and may become intractable due to the
combinatorial explosion of the state space for CMEs. Stochastic Simulation Algo-
rithms (SSAs) [9] for CMEs overcome this problem, however, simulations have to
be repeated several times to provide accurate estimations making this approach
excessively time consuming. In the literature, approximations and learning based
methods have become a popular approach to accelerate the CME based models
[19, 1].

The ODE models of biochemical networks consist, in general, of many vari-
ables and parameters. Their analysis becomes computationally expensive since
a large number of numerical simulations must be performed for numerous val-
ues of initial conditions and parameters. Approximations of ODEs are usually
done with numerical solvers [6, 5], but they usually provide approximations for
a given initial condition and parameter combination value. The first probabilis-
tic approximation of ODEs, aimed at capturing the behaviour of the evolution
of the solution, and not just approximating a single simulation, has been pro-
posed in [20] from researchers in the theoretical physics community. It has been
complemented over the years [22], but their applications have been limited to
very small dimensional systems, even though the dynamics can be very complex
(nonlinear).

Probabilistic approximation methods have been proposed to tackle with the
above-mentioned uncertainty in the ODE model parameters and also in the ini-
tial concentration levels of species. Although these approximations provide effi-
cient solutions for low dimensional models, computing them becomes time con-
suming for large numbers of species and reaction rates. A recent study [14] pro-
poses to use DBNs to efficiently encode the probabilistic approximations built,
which at the same time allows to use standard Bayesian inference methods for
computing marginal distributions of species, learning unobserved parameters,
and performing sensitivity analysis.

In this paper, we focus on the parameter identification problem, and show
that using BNs instead of DBNs allows better accuracy of the identification
given the same computational power. The description of the construction of the
approximations in [14] being very succinct, we first explain how to construct
them with as much details as possible, so that interested readers can implement
their own approximation methods easily in the future. We furthermore discuss
how the structure of the approximations (i.e. the structure of the networks, the
Markov chain time steps, and the size of the discrete states) play an important
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role in the accuracy of the identification problems. We finally exhibit that the
BN approach is more efficient than the DBN one.

To show that the BN method provides an effective solution to the parameter
identification problem also in high-dimensional networks, the EGF-NGF signal-
ing pathway [3] is considered as a case study. The rationale behind this choice
lies in the consideration of a case study on the same application area where the
method desired to be surpassed in terms of performance was applied before. In
this regard, the existing works [14, 13] that introduce DBN approximations of the
ODE models, were initially aimed at analysing EGF-NGF signaling pathways.

The paper is organized as follows: Section 2 is devoted to the considered
problem setting and to introduce briefly the applied models. In Section 3, we
detail the proposed construction of the BN and emphasize that the structure of
the network depends also the method used to simulate the ODEs. The numer-
ical examples are given in Section 4, and finally we conclude and present our
perspectives.

2 Problem setting

As in [14, 13], we consider biochemical networks modeled by ODEs. However
a large number of numerical simulations for all possible initial conditions and
parameter values is necessary to perform parameter estimation or sensitivity
analysis in such systems. The main idea in [14, 13] is to generate several trajecto-
ries of the ODE model by sampling different initial conditions and to construct
an approximate discrete-time and discrete-valued stochastic model. Dynamic
Bayesian inference methods are then applied to compute marginal distributions
of some species, to provide parameter estimation, sensitivity analysis of large
biochemical networks.

In this paper we propose a similar approach. However, we advocate that
Bayesian networks would be sufficient if the underlying ODEs are autonomous
(i.e. they do not explicitly depend on the time variable) which is hypothesized in
[14, 13]. In the following subsections we briefly define the considered deterministic
and stochastic models, and then explain the probabilistic approximation of ODE
based models.

2.1 ODE based continuous-valued deterministic models

The biochemical systems we consider are modeled by ODEs written under the
following form:

ẋi(t) = fi(x(t), k), (1)
the variables x(t) = x1(t), x2(t), ..., xn(t) are real-valued concentrations of species
at time t. The set k1, k2, ..., km is the set of (positive) real-valued parameters,
they are supposed to be constant over time, but unknown. We are interested in
studying the system with various combinations of parameter values. The vari-
ables xi(t) for i ∈ {1, . . . , n} and the parameters kj for j ∈ {1, . . . ,m} are sup-
posed to take values in products of intervals X = [xmin

1 , xmax
1 ]×. . .×[xmin

n , xmax
n ]

and K = [kmin
1 , kmax

1 ]× . . .× [kmin
m , kmax

m ].
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The functions fi are issued from mass action kinetics, we assume them to be
continuously differentiable. This ensures that the flows (vector fields) that are
solutions of the ODE are measurable functions. We refer the reader to [14, 10, 7]
for more details on the mathematical soundness ensured by these assumptions.

Our main motivating case study is the EGF-NGF network, described in [14],
but our methods are illustrated on the following simpler examples.

Example 1. Our first example is a toy with two variables and one parameter:

ẋ1 = kx1 (2)
ẋ2 = −0.9kx1

Example 2. Our second example comes from a typical biochemical enzyme cat-
alyzed reaction. Its continuous dynamics is given by

ẋ1 = −k1x1x2 + k2x3 (3)
ẋ2 = −k1x1x2 + (k2 + k3)x3

ẋ3 = k1x1x2 − (k2 + k3)x3

ẋ4 = k3x3

In the following, we need to designate how one variable affects the others in
the continuous dynamics. We thus define a function pa, which stands for parents,
as follows.

Definition 1. The function pax(fi) (resp. pak(fi)) maps to the set of indices of
variables (resp. parameters) on which variable i depends. Each variable depends
at least on itself.

For instance, for Example 2, pax(f1) = pax(f2) = pax(f3) = {1, 2, 3}, pax(f4) =
{3, 4} and pak(f1) = {1, 2}, pak(f2) = pak(f3) = {1, 2, 3} and pak(f4) = {3}. We
will denote x|pa(j) the projection of x where only the coordinates belonging to
the parents of j remain, for example in the previous example x|pax(f4) = (x3, x4).

2.2 Discrete-valued probabilistic models

The first step of the approximation is the discretization of the value intervals
(i.e. X and K) for each variable and parameter leading them to take values in
a finite set of sub-intervals. Since each sub-interval is considered as a discrete
state, the model is now discrete-valued.

Let us emphasize that it is not irrelevant to consider value intervals instead of
precise values in biochemical systems, since model parameters are often subject
to uncertainties. Furthermore it is assumed that the system is not observed
continuously but at discrete time instants, the time is thus also discretized. The
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discrete time instants are an increasing sequence (ti)
τ
i=0 with t0 = 0, t1 = δ, . . . ,

and tτ = T = δτ with time step δ. The flow of the differential equation thus
induces a discrete-time Markov chain (DTMC) by assuming a prior distribution
of initial values [21].

Definition 2. A time-homogeneous discrete-time Markov chain (DTMC) with
finite or countable state space H is a sequence X0, X1, . . . of H-valued random
variables such that for all states i, j, x0, x1, . . . and all times t = 0, 1, 2, . . . ,

Pr(Xn+1 = j|Xn = i,Xn−1 = xn−1, . . . ) = Pr(Xn+1 = j|Xn = i) = p(i, j)

where the transition probability p(i, j) depends only on the states i, j, and not
on the time nor the previous states xn−1, xn−2, . . . .

The estimation of transition probabilities for the approximate DTMC by the
statistical analysis of ODE trajectories will be described in the following sec-
tions. BN models will be used for the compact representation of the approximate
DTMC of the underlying ODE model. We refer to [18] for further information.

Definition 3. A Bayesian network (BN) is a finite acyclic directed graph BN =
(V,E). For each node v ∈ V , a finite-valued random variable Xv and a condi-
tional probability table CPTv are associated. The entries in CPTv are of the
form Pr(Xv = x|Xv1 = x1, Xv2 = x2, ..., Xvj = xj) where v1, v2, ..., vj is the set
of parents of v given by pa(v) = {u|(u, v) ∈ E}.

BN represents the joint probability distribution over the random variables
{Xv}, 1 ≤ v ≤ n given by: Pr(X) =

∏n
v=1 Pr(Xv|pa(Xv)).

Dynamic Bayesian Networks (DBNs) are Bayesian Networks that allow us to
model the temporal evolution of the system.

Definition 4. A Dynamic Bayesian Network (DBN) is a tuple (B0, {Bj
→}Tj=1),

where B0 defines the initial probability distributions of the random variables,
and {Bj

→} are two-slice temporal Bayesian networks for the transition from time
step j − 1 to j: Pr(Xj | Xj−1) =

∏n
v=1 Pr(Xj

v | pa(Xj
v)). In the case of time-

invariant DBNs, there exists one two-slice BN, B→ whatever the time step j
is.

DBNs are useful for computing joint distributions of species after several time
steps, or estimating initial distributions. In the case of parameter identification
for time-homogeneous systems, the transition model (CPT) from time j to j+1
should be constant. In this paper, contrary to [14] where they use DBNs, we
propose to use BNs for parameter inference.

2.3 Probabilistic approximation of ODE based models

The main idea of the approximation is to estimate approximate transition proba-
bilities from the numerical simulation of ODEs. The distribution of initial values
is sampled several times and for each sampled initial value, the trajectory of the
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ODE is constructed. A sufficiently large set of such trajectories provides a good
approximation of the dynamics of the ODE model. The transition probabilities
of the underlying approximate Markov chain are estimated by analyzing the
statistical properties of the ODE trajectories.

The probabilistic approximation of ODEs proposed in [14] consists of model-
ing the approximate DTMC by a two-slice time-variant DBN. Our observation
is that the ODE considered in [14] is autonomous, and the parameters are con-
sidered constant over time. Transition probabilities should not vary with time.
Contrary to [14], we propose to use Bayesian networks to store the transition
probabilities, whatever the time step is.

As that will be explained in the next section, the underlying graph is con-
structed by exploiting the structure of the ODEs, as well as the continuous
simulation method used to generate the sample set. The entries of the CPT are
specified by the probability transition probabilities of the time-homogeneous ap-
proximate Markov chain. Using BN inference techniques for parameter marginal
distribution computations leads to the following main computational improve-
ments: the inference algorithms are less time consuming for BNs than DBNs;
for large networks, one can use exact inference algorithms for BNs, while they
become intractable for DBNs. The discrete probabilistic model still requires nu-
merous simulations to compute the probability tables whatever is the kind of
network. Let us emphasize that more simulations used in the BN or DBN con-
struction lead to more accurate parameter estimation.

3 Construction of the probabilistic approximation

3.1 Computation of the BN model

The BN model is built using two main steps which are the construction of both
spatially and temporally discretized trajectories and the parameter estimation
of the approximate Markov chain from these trajectories.

Construction of discretized trajectories First step is the discretization of
the continuous state spaces in which the state variable and parameter values lie:
X = [xmin

1 , xmax
1 ]× . . .× [xmin

n , xmax
n ] for variables and K = [kmin

1 , kmax
1 ]× . . .×

[kmin
m , kmax

m ] for parameters. The value interval for each variable i, [xmin
i , xmax

i ]
is divided in Li sub-intervals: [xmin

i , x1
i ), [x1

i , x
2
i ), . . . , [x

Li−1
i , xmax

i ). Similarly in
Mj sub-intervals for each parameter j: [kmin

j , k1j ), [k1j , k2j ), . . . , [k
Mj−1
j , kmax

j ).

– We define the discretization function dLi (resp. dMi) such that dLi(xi) = a
iff xi ∈ [xa−1

i , xa
i ) the function which maps the ith state variable (resp.

parameter) to the index a of the corresponding sub-interval with 1 ≤ a ≤ Li

(resp. 1 ≤ a ≤ Mi). Therefore for the vector of a continuous state (x,k) we
define the vector of the corresponding discrete state (dL(x),dM(k)).

– A number of (continuous) simulations of the ODE (Eq. (1)) is then per-
formed. Any simulation method yielding approximations of the continuous
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trajectories can be used, Runge-Kutta schemes are used here. These simula-
tions are performed from random initial conditions in X, and using random
parameter values in K. In order to get a probabilistic model that approx-
imates the continuous equation as closely as possible for all the possible
initial conditions, the random initial conditions need to cover the initial sets
as uniformly as possible. To this end, we make use of Halton sequences [8]
to choose the initial conditions.

– The continuous simulations are converted spatially in discrete state simula-
tions by applying dL. More precisely, consider a given continuous trajectory
(or an approximation of it) x(t), 0 ≤ t ≤ T . It is converted in a sequence of
discrete states dL(x(t)), 0 ≤ t ≤ T .

– This sequence of discrete states is also converted temporally by specifying
an increasing sequence of time (tj)

τ
j=0 with t0 = 0 and tτ = T .

– The continuous parameters values are only converted spatially since parame-
ters do not depend on time. By applying dM(k), we obtain the corresponding
discrete parameter values.

Thus, for a trajectory (simulation) with the initial values x(t0), and parameter
values (k), we produce the pair ⟨(dL(x(tj)))

τ
j=0;dM(k)⟩ containing the sequence

of variables x at time tj and parameter values k. In the following, we note this
pair for a discretized (both spatially and temporarily) trajectory of Eq. (1) by
⟨(lj)τj=0;m⟩.

Transition probabilities estimation for the Markov chain In the sec-
ond step, we have a set S of discretized trajectories with elements of the form
⟨(lj)τj=0;m⟩S of the Eq. (1). We estimate the transition probabilities of the ap-
proximate Markov chain (see Definition 2) by counting which transitions are
taken, compared to the total possible transitions from the set S.

– Given S the set of discretized trajectories, NT (S, lpred, lnext,m, i) denotes
the number of transitions taken during all of the trajectories in S which lead
to a state where li = lnexti for a given variable index i from a state of lpred.
The transition may happen during time step j to time step j + 1 whatever
j is. However at time step j of the trajectory, the values for the parents of
variable i denoted by i: pax(fi) (see Definition 1) must match those in lpred.
Similarly the parameters in the set pak(fi) must match with m.

NT (S, lpred, lnext,m, i) =
∑

⟨(lj)τj=0;m
′⟩∈S

|{0 ≤ j < τ s.t. lpred|pax(fi)
= lj|pax(fi)

∧ lnexti = lj+1
i ∧m|pak(fi) = m′

|pak(fi)}|
(4)

The transition probabilities are estimated from the number of transitions for
each variable as follows:

(5)p(⟨lpred;m⟩, ⟨lnext;m⟩) =
n∏

i=1

NT (S, lpred, lnext,m, i)∑
⟨l;m⟩∈S NT (S, lpred, l,m, i)
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In Figure 1, we illustrate a continuous simulation of the simple Example 1
and a realization of the approximate Markov chain.

– The approximate Markov chain built is finally efficiently stored as a BN. Its
structure depends on the ODE and the numerical scheme used for Eq. (1).
The structure of the BN to be used is discussed in the following section.

Inference Once a BN is computed, various algorithms can be used for inference,
parameter learning, structure learning, sensitivity analysis etc. Whether BNs or
DBNs are considered, parameter inference is performed with some evidence that
ideally consists of real life measurements. Here, we generate some continuous
simulations with given parameter values and observe how accurately we recover
these parameter values. For DBNs, the evidence takes the form of a sequence of
variable values (species concentrations). For BNs, the same simulations are used,
except that the sequence of variable values is simply decomposed in multiple
couples (values at t and t+δ). For BNs, we use a standard junction tree algorithm
implemented in the BNT toolbox [16]. For DBNs, we use the DBN version of
junction trees for exact inference, and the the Boyen and Koller fully factored
(BKFF) algorithm [2] for approximate inference.

0
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6 8
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4

2

6

8

4

2

10

6

62 10

4

8

0
80

10

2

4

x2

x1

Fig. 1. Left: one realization of the approximate DTMC with 10 sub-intervals for x and
2 sub-intervals for k; Right: the continuous simulation of the ODE from the initial con-
dition (x0

1, x
0
2) = (1.5, 8.5), using parameter k = 0.19. The initial sets of the continuous

systems are [0, 10]× [0, 10] for xs and [0, 0.2] for k.

3.2 Structure of the Bayesian Network

Let us now discuss the structure of the networks that should be used. If we
consider ODE simulations performed with a simple Euler scheme, for which the
time-step corresponds to Markov chain time step (i.e. with the abuse of notation
δ = 1, the solution of Eq. (1) is approximated by the series yn+1 = yn+f(yn, p)),
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then the structure proposed in [14] can be used. However, if a higher order scheme
is used, then more edges should be added to the network.

Let us recall the principle of explicit S-stage Runge-Kutta (RK) schemes [4]:

yn+1 = yn + h

S∑
i=1

biκi (6)

where

κ1 = f(tn, yn),

κ2 = f(tn + c2h, yn + (a21κ1)h),

κ3 = f(tn + c3h, yn + (a31κ1 + a32κ2)h),

...
κS = f(tn + csh, yn + (aS1κ1 + aS2κ2 + · · ·+ aS,S−1κS−1)h).

Let us now consider Example 2, and add an exponent i ∈ {1, 2, 3, 4} to the
variables yn and κj to denote its ith component (dimension). Application of an
explicit 4-stage RK scheme to this example exhibits that:

– κ3
1 depends on y1n, y2n, y3n; κ4

1 depends on y3n, y4n (parents in ODE as defined
in Definition 1);

– the definition of κ4
2 implies that κ4

2 depends on y3n, y4n, κ3
1, κ4

1;
– then κ4

2 depends on y1n, y2n, y3n, y4n.

And in the end, y4n+1 depends on y1n, y2n, y3n and y4n. Therefore, as illustrated in
Figure 2, node X ′

3 should have X1, X2, X3 and X4 as parents in the BN. The
following definition reformulates the parent definition for BN nodes, it was used
earlier for variables in Definition 1.

Definition 5. The one-stage parents of node Xi, denoted by paBN (Xi), are the
nodes corresponding to the variables given by pax(fi) and the parameters given
by pak(fi).

Definition 6. The s-stage parents of node Xi, denoted by pasBN (Xi) for any
s ≥ 1, are defined recursively as follows :

pa1BN (Xi) = paBN (Xi),

pas+1
BN (Xi) =

⋃
X∈pas

BN (Xi)

paBN (X).

In the above definitions, if pax(fi)={1, 2} and pak(fi) = {1}, then paBN (Xi)
= {X1, X2,K1}. The 2-stage parents pa2BN (Xi) are the one stage parents of the
one stage parents of Xi. Such node connections are then used to build the BN
structure depending on the numerical scheme used. If an explicit Euler scheme
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with time step δ was used as the continuous simulation scheme, then the struc-
ture of the BN would be given by paBN (Xi) for all i (this is the BN structure
suggested in [14], it is represented in Figure 2(a) for Example 2). The follow-
ing theorem formally states the graph structure yielding the highest accuracy
depending on the numerical scheme used to generate the continuous trajectories.

Theorem 1. Consider the system of Eq. (1) simulated with time step δ using
an S-stage RK scheme. The most accurate BN approximation is obtained with
the following graph structure. Node Xi has parents:

paBNS
(Xi) =

S⋃
s=1

pasBN (Xi)

where pasBN (Xi) are the s-stage parents of node Xi as defined in Definition 6.

The above theorem formalizes that computing an S-stage RK step requires
at least S repeated applications of function f of Eq. (1), which the BN node
connections should reflect. Application of this theorem to Example 2 yields the
structure represented in Figure 2(b). One can observe that, contrary to Fig-
ure 2(a), the nodes X ′

1, X ′
2, X ′

3, X ′
4 all depend on all the parameter nodes K1,

K2, K3. Note however that the graph is not fully connected, repeated appli-
cations of f do not connect X4 to the other nodes. Once a graph structure is
chosen, computation of the transition probabilities should be performed with
modified functions pax and pak that take into account node dependencies and
not continuous variable dependencies of Definition 1.

X1

X2

X3

X4

K1

K2

K3

X ′
1

X ′
2

X ′
3

X ′
4

X1

X2

X3

X4

K1

K2

K3

X ′
1

X ′
2

X ′
3

X ′
4

(a) (b)

Fig. 2. The BN structure used in [14] (left) and the BN structure we suggest for an
RK4 scheme (right).
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3.3 Time and space discretization discussion

The time and space discretization parameters used in the present method play
an important role in the accuracy of the parameter learning and the computation
times, and their choice heavily depends on each other. Let us first observe that
over a short discrete time step δ, very small changes in the continuous state are
made. If these changes are small enough, the corresponding discrete state does
not change. On the other hand, if the space discretization is fine enough, discrete
state changes will be observed in the approximating Markov chain.

As a general guideline, we propose to choose the discrete time step, δ and
the number of sub-intervals for variable i, Li such that there exists at least one
i ∈ {1, . . . , n} such that:∫

y0∈X

∫
k∈K

∥yiδ(y0, k)− yi0∥
|X|×|K|

≥ xmax
i − xmin

i

Li

where |X|= (xmax
1 −xmin

1 )× . . .× (xmax
n −xmin

n ), |K|= (kmax
1 −kmin

1 )× . . .×
(kmax

m −kmin
m ), and yδ(y0, k) is (the Runge-Kutta approximation of) the solution

at time δ of Eq. (1) from the initial condition y0 at t = 0 and using parameter
k. This formula ensures that, on average, the continuous state variation over a
time step δ is greater than the size of at least one sub-interval considered for the
Markov chain, thus inducing at least one discrete state change over time step
δ. This formula cannot be computed exactly, but a few Monte-Carlo simula-
tions should yield a satisfying first estimate of the time and space discretization
parameters to use. Note that we do not have a proof that such a parameter
combination exists, but we hope to have one in a future work using uniform
discretizations and additional hypotheses on function f .

4 Application to biochemical networks

Experimental settings The experiments presented in this section have been
performed with GNU Octave, and ran on a MacBook Pro 2017 using a dual
core 2.3GHz Intel Core i5 with 8GB of RAM. The probability tables have been
generated with an ad hoc prototype that we intend to share in the near future.
The BN and DBN analyses have been performed using the BNT toolbox [16].

4.1 The enzyme catalyzed reaction

Consider Example 2 with initial sets X = [0, 10]× [0, 10]× [0, 15]× [0, 15] for the
variables and K = [0, 1]× [0, 1]× [0, 1] for the parameters. For this example, we
first illustrate the approach by generating a BN and a DBN using 5 sub-intervals
per variable and parameter. I.e., the interval [0, 10] for variable x1 is divided in
[0, 2), [2, 4), [4, 6), [6, 8), [8, 10].

To test the accuracy of the BN and DBN learning methods, we generate a
sample set, i.e. some continuous trajectories for a given parameter combination
and some random initial conditions. They are taken as evidence to learn some
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parameter probability distributions. We generate 10 continuous samples using
(k1, k2, k3) = (0.9, 0.5, 0.1), and random initial conditions in X. We suppose that
parameter k2 is observed (taken as evidence), the distributions for k1 and k3 have
to be estimated.

An example of parameter combination learned is given in Table 1. For samples
generated using k1 = 0.9 and k3 = 0.1, k2 being known, the highest probability
for parameter k1 estimation is 0.45 (given in bold). Similarly k3 is estimated
to be in [0.0, 0.2) with a 67% probability in the BN approach. With the DBN
approach, the highest probability for k1 estimation is 0.58 for interval [0.6, 0.8)
while the estimation to be in [0.8, 1.0] is with a 31% probability. And k3 is
estimated to be in [0.0, 0.2) with a 59% probability. We have tested the approach
for different sets of samples and parameter combinations. We obtain similar
results using 7 sub-intervals per parameter and variable.Note that the results
obtained highly depend on the sample set. On average, the BN approach yields
right parameter intervals more often than the DBN approach. Interestingly, the
DBN approach gives results with higher confidence (probability), even though
these results might be wrong. Depending on the sample set, the BN learning
time is between 25% and 95% faster than the DBN learning time.

original
parameters sub-interval BN marginal

distribution
DBN marginal
distribution

[0, 0.2) 0.0106 0.0000
[0.2, 0.4) 0.1034 0.0039

k1 = 0.9 [0.4, 0.6) 0.1480 0.0993
[0.6, 0.8) 0.2889 0.5855
[0.8,1.0] 0.4501 0.3114
[0,0.2) 0.6770 0.5940
[0.2, 0.4) 0.2582 0.2845

k3 = 0.1 [0.4, 0.6) 0.0456 0.1215
[0.6, 0.8) 0.0072 0.0000
[0.8, 1.0] 0.0120 0.0000

Table 1. An example of parameter marginal distribution learned with the BN and
DBN approaches, using 5 sub-intervals per parameter. The highest probability is in
bold for each method.

We also compared the accuracy of the parameter identification using the BN
structures suggested in [14] and our proposition (Theorem 1). We built two BNs
with the structures given in Figure 2(a) and Figure 2(b), with 5 sub-intervals
per variable and parameter. The sample set was generated using k1 = 0.9 and
k3 = 0.1, k2 being known. As expected, the graph that is more connected yields
more accurate results, as seen in Table 2. The computation time was slightly
higher with the more connected graph of Figure 2(a) with 3.86s, compared to
3.32s with the graph of Figure 2(b), which is a 16% increase in computation
time. This is also expected since the junction tree algorithm is polynomial in the
number of cliques [11], which is increased by the number of edges in the graph.
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original
parameters sub-interval BN marginal distribution

with structure of Theorem 1
BN marginal distribution

with structure of [14]
[0, 0.2) 0.0000 0.0000
[0.2, 0.4) 0.0806 0.0947

k1 = 0.9 [0.4, 0.6) 0.1875 0.2075
[0.6, 0.8) 0.3159 0.5249
[0.8,1.0] 0.4160 0.1730
[0,0.2) 0.9001 0.8462
[0.2, 0.4) 0.0362 0.1502

k3 = 0.1 [0.4, 0.6) 0.0638 0.0036
[0.6, 0.8) 0.0000 0.0000
[0.8, 1.0] 0.0000 0.0000

Table 2. An example of parameter marginal distribution learned with the BN with
our suggested graph connection and the graph connection suggested in [14], computed
with 5 sub-intervals. The highest probability is in bold for each method.

Finally, the parameter learning accuracy has been tested with different state
and time discretizations. Very fine time discretization (δ < 0.1) led to very
random results since the BN barely captures any dynamical behaviour, this is
due to the number discrete state transitions being very small compared to the
number of trajectories used to generate the BNs, and confirms our suggestions in
Section 3.3. On Example 2, we observe that state discretization has a noticeable
influence on computation time, as shown in Table 3.

number of sub-intervals BN DBN
3 28s 35s
5 37s 45s
7 83s 108s

Table 3. Average parameter marginal distribution learning times (in seconds) for the
BN and DBN approaches, using different numbers of sub-intervals per parameter and
variable.

4.2 The EGF-NGF model

The EGF-NGF signaling pathway is a large biochemical network that has been
extensively studied in [3, 14]. The model under consideration, which is described
by the ODEs in Appendix in (7), is depicted as a hybrid functional Petri net
(HFPN) [15] in Fig. 3. The original model has 32 variables and 48 parameters,
28 of which are known, the remaining ones needing to be learned. A first formal
analysis of the network allowed us to identify that only 14 of the 20 unknown
parameters are essential to fully grasp the dynamics of the system.

We have successfully computed a BN and a DBN approximation of the model
in 53 hours with a very straightforward implementation. They have been con-
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structed with 106 trajectories, using 5 sub-intervals per variables and unknown
parameter. The number of trajectories is very small compared to what is used
in [14]. To test the learning accuracy, we generated 5 trajectories of length 10
taken as evidence, for given randomly selected parameter values, and observed
how often the learned parameters were in the right sub-interval. Note that exact
inference methods quickly become intractable for large DBNs, and approximate
inference methods were required to test the DBN learning approach. We used
here the Boyen and Koller fully factored (BKFF) algorithm [2] which is already
implemented in the BNT toolbox. More time-efficient algorithms such as the
factored frontier algorithm could be considered [17], but the accuracy of the BN
approach would still be higher since we can use an exact inference algorithm
(the junction-tree algorithm). Our approach, despite the small number of trajec-
tories used for generating the BN, recovers the right parameter sub-intervals for
7 of the 14 parameters on average, the others being close, compared to 5 for the
DBN. Using exact inference, the learning time is around 15 seconds for the BN,
and 3 hours for the DBN. Using the BKFF algorithm, the computation time is
lowered to 3 minutes for the DBN, with a minor accuracy decrease.

5 Conclusions and future work

Throughout this paper, we have shown that using BNs as probabilistic ap-
proximations for biochemical networks yields better accuracy and computation
times than using DBNs for parameter learning, provided that the ODEs are
autonomous. We provided a detailed explanation for building the BN approx-
imation. We compared our approach to the DBN approximations suggested in
[14]. We furthermore proposed a BN structure that, depending on the numerical
schemes used, provides the highest possible accuracy. We compared the accuracy
of the parameter identification with BN and DBN approximations on a simple
biochemical system, and computed parameters on the real life sized case study
of the EGF-NGF signaling pathway model.

Our future work will be devoted to using model reduction techniques as a
preliminary step before building the BN approximations, in order to use more
computational power on the learning part and less on the BN construction part.
Experimental measurements are potentially performed at times that are not in
a perfect time sequence (e.g. some species concentrations are obtained at times
0, 5, 20, 50, ...). To use such experimental measurements, our method should be
extended to BNs that allow learning parameters with samples that have missing
time instants.
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6 Appendix

ẋ1 = −k1 ∗ x1 ∗ x3 + k2 ∗ x4

ẋ2 = −k3 ∗ x2 ∗ x5 + k4 ∗ x6

ẋ3 = −k1 ∗ x1 ∗ x3 + k2 ∗ x4

ẋ4 = k1 ∗ x1 ∗ x3 − k2 ∗ x4

ẋ5 = −k3 ∗ x2 ∗ x5 + k4 ∗ x6

ẋ6 = k3 ∗ x2 ∗ x5 − k4 ∗ x6

ẋ7 = k9 ∗ x10 ∗ x8/(x8 + k10)− k5 ∗ x4 ∗ x7/(x7 + k6)− k7 ∗ x6 ∗ x7/(x7 + k8)

ẋ8 = −k9 ∗ x10 ∗ x8/(x8 + k10) + k5 ∗ x4 ∗ x7/(x7 + k6) + k7 ∗ x6 ∗ x7/(x7 + k8)

ẋ9 = −k27 ∗ x21 ∗ x9/(x9 + k28)

ẋ10 = k27 ∗ x21 ∗ x9/(x9 + k28)

ẋ11 = −k11 ∗ x8 ∗ x11/(x11 + k12) + k13 ∗ x13 ∗ x12/(x12 + k14)

ẋ12 = k11 ∗ x8 ∗ x11/(x11 + k12)− k13 ∗ x13 ∗ x12/(x12 + k14)

ẋ13 = 0

ẋ14 = −k15 ∗ x12 ∗ x14/(x14 + k16) + k45 ∗ x32 ∗ x15/(x15 + k46)

+ k35 ∗ x25 ∗ x15/(x15 + k36)

ẋ15 = k15 ∗ x12 ∗ x14/(x14 + k16)− k45 ∗ x32 ∗ x15/(x15 + k46)

− k35 ∗ x25 ∗ x15/(x15 + k36)

ẋ16 = −k43 ∗ x29 ∗ x16/(x16 + k44) + k47 ∗ x32 ∗ x17/(x17 + k20)

ẋ17 = k43 ∗ x29 ∗ x16/(x16 + k44)− k47 ∗ x32 ∗ x17/(x17 + k20)

ẋ18 = −k17 ∗ x15 ∗ x18/(x18 + k18)− k19 ∗ x17 ∗ x18/(x18 + k48)

+ k21 ∗ x31 ∗ x19/(x19 + k22)

ẋ19 = k17 ∗ x15 ∗ x18/(x18 + k18) + k19 ∗ x17 ∗ x18/(x18 + k48)

− k21 ∗ x31 ∗ x19/(x19 + k22)

ẋ20 = −k23 ∗ x19 ∗ x20/(x20 + k24) + k25 ∗ x31 ∗ x21/(x21 + k26)

ẋ21 = k23 ∗ x19 ∗ x20/(x20 + k24)− k25 ∗ x31 ∗ x21/(x21 + k26)

ẋ22 = −k29 ∗ x4 ∗ x22/(x22 + k30)− k31 ∗ x12 ∗ x22/(x22 + k32)

ẋ23 = k29 ∗ x4 ∗ x22/(x22 + k30) + k31 ∗ x12 ∗ x22/(x22 + k32)

ẋ24 = −k33 ∗ x23 ∗ x24/(x24 + k34)

ẋ25 = k33 ∗ x23 ∗ x24/(x24 + k34)

ẋ26 = −k37 ∗ x6 ∗ x26/(x26 + k38)

ẋ27 = k37 ∗ x6 ∗ x26/(x26 + k38)

ẋ28 = −k39 ∗ x27 ∗ x28/(x28 + k40) + k41 ∗ x30 ∗ x29/(x29 + k42)

ẋ29 = k39 ∗ x27 ∗ x28/(x28 + k40)− k41 ∗ x30 ∗ x29/(x29 + k42)

ẋ30 = 0

ẋ31 = 0

ẋ32 = 0

(7)
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Fig. 3. The HFPN model of the EGF-NGF signaling pathway [14]. The HFPN rep-
resentation of chemical networks is detailed in [15]. In a few words, circles (places)
represent species, squares (transitions) represent reactions, and arrows represent how
the species are involved in the reactions, dashed arrows mean that the species are not
consumed (like in enzyme reactions).


