
HAL Id: hal-04235131
https://hal.science/hal-04235131

Preprint submitted on 10 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

The Jacobian criterion of smoothness; a course at the
Hausdorff Institute Spring/Summer 2023

Laurent Fargues

To cite this version:
Laurent Fargues. The Jacobian criterion of smoothness; a course at the Hausdorff Institute
Spring/Summer 2023. 2023. �hal-04235131�

https://hal.science/hal-04235131
https://hal.archives-ouvertes.fr


The Jacobian criterion of smoothness; a course at

the Hausdorff Institute Spring/Summer 2023

Laurent Fargues





CHAPTER 1

1st lecture: Mai 16 2023

• The Jacobian criterion of smoothness is a key tool in our joint work with Scholze on
the geometrization of the local Langlands correspondence.
• This allows us to construct ”nice charts“ on BunG the stack of G-bundles on the
curve. Here charts=charts for the “smooth topology“ (we will precise later what this
means).

1. Algebraic classical analog

X is a smooth projective curve over the field k. The datum is the following:

Z

X

quasi-projective smooth morphism

Definition 1.1. MZ −→ Spec(k) represents the functor

S 7−→

sections s

Z

X ×k S X

s


Then: MZ is representable by a quasi-projective k-scheme.

Example 1.2. • Let E be a vector bundle on X and Z = V(E ) be its geometric
realization. Then,MZ is representable by the affine space V(H0(X,E )).
• E = v.b. on X and d ≥ 1 an integer. Let Z = Grd(E ) be the Grassmianian of
quotients of E that are locally free of rank d. Then

MZ(S) =
{
quotients of E|X×kS︸ ︷︷ ︸

pullback of E via X×kS→X

that are locally free of rank d
}
.

One has an open immersion

MZ ⊂
open

QuotE /X/k

where

QuotE /X/k(S) =
{
coherent quotients of E|X×kS that are flat over S

}
.

3



4 1. 1ST LECTURE: MAI 16 2023

Definition 1.3. We noteMsm
Z ⊂MZ the open sub-functor defined by

Msm
Z (S) =

{
sections s satisfying: ∀t ∈ S, H1

(
X ⊗k k(t), (s

∗TZ/X)|X⊗kk(t)

)
= 0

}
where

• TZ/X is the relative tangent bundle (that is well defined as a vector bundle on
Z since Z → X is smooth)
• s∗TZ/X is a vector bundle on X ×k S
• (s∗TZ/X)|X⊗kk(t) is the pullback of this vector bundle via X ⊗k k(t)→ X × S
via Spec(k(t))→ S.

Proposition 1.4 (Jacobian criterion of smoothness, classical case). The morphism

Msm
Z −→ Spec(k)

is smooth.

Proof. Let

Z

X ×k S X

s

lie inMsm
Z (S). Note

π : X ×k S −→ S

the projection. Using

• Rπ∗(s
∗TZ/X) ∈ Perf [0,1](OS) (perfect complex with amplitude in [0, 1]) since π is

proper and flat
• + the vanishing condition fiberwise
• + proper base change in coherent cohomology (aka Zariski formal function theorem,

see EGA III: if S is noetherian then for t ∈ S, Rπ∗(s
∗TZ/X)t⊗L

OS ,t
“OS,t = Rπ̂t∗◊�s∗TZ/X

where π̂t : X⊗̂k
“OS,t → Spf(“OS,t))

one deduces that R1π∗(s
∗TZ/X) = 0 and thus if S is affine then

H1(X ×k S, s
∗TZ/X) = 0.

Now, if S ↪→ S′ is a nilpotent immersion of affine schemes defined by I with I2 = (0) and
we are looking for s′ as in the following diagram

X ×k S
′ Z

X ×k S X

s′

s
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the sheaf on (X ×k S)Zar of liftings of s to s′ is a s∗TZ/X ⊗OX×kS
π∗I-torsor. Using the

projection formula, Rπ∗(s
∗TZ/X ⊗OX×kS

π∗I) = Rπ∗(s
∗TZ/X)⊗L I, one has

H1(X ×k S, s
∗TZ/X ⊗OX×kS

π∗I) = 0

and we conclude. □

Remark 1.5. We used the infinitesimal criterion for formal smoothness of Grothendieck
→ not available in the perfectoid world since there are no infinitesimals. This is why this is
much more difficult in the perfectoid world.

2. Example of application of the classical Jacobian criterion

X/k smooth projective curve as before, n ≥ 1,

Bunn

the stack of rank n vector bundles on X,

Bunn(S) =
{
rank n vector bundles on X ×k S

}
where the notation {. . . } here means ”the groupoid of“ and not the set. O(1) is an ample
line bundle on X. r ≥ 1, N ≥ 0 integers,

Ur,N −→ Spec(k)

is the moduli of quotients of OX(−N)r, on S this means a morphism

u : OX×kS(−N)r ↠ E ,

with E locally free of rank n s.t. fiberwise (on S with the preceding notations) H om(keru,E )︸ ︷︷ ︸
vector bundle

has no H1. Then, (
Ur,N −→ Bunn

)
r,N

is a set of smooth charts of Bunn.

3. The Jacobian criterion of smoothness

3.1. Background on the curve. E local field, Fq = OE/π:

(1) either |E : Qp] < +∞,
(2) or E = Fq((π)).

(R,R+) affinoid perfectoid over Fq

XR,R+︸ ︷︷ ︸
E-analytic adic space

= adic curve over Spa(E) attached to (R,R+)

Recall:

XR,R+ = YR,R+︸ ︷︷ ︸
Stein E-analytic

adic space

/φZ

where
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• the quotient YR,R+ −→ YR,R+/φZ is for the analytic topology i.e. this is a local
isomorphism,
• the group of deck transformations is φZ.

One has

YR,R+ = Spa(WOE
(R+),WOE

(R+))∖ V (π [ ϖ︸︷︷︸
pseudo

-uniformizer

])

→ remove two divisors stable under φ, (π) and ([ϖ]), after removing those two fixed
divisors the action of φZ is without fixed points totally discontinuous

• (π) = étale divisor,
• ([ϖ]) = crystalline divisor

→ see prismatic cohomology where one adds another divisor to the picture: the de Rham
divisor associated to an untilt.

Here

WOE
(R+) = ramified Witt vectors

that is R+⊗̂FqOE = R+JπK if E = Fq((π)) (in equal characteristic the Teichmüller is additive,

[−] : R+ ↪→WOE
(R+)). Moreover,

φ
(∑
n≥0

[an]π
n
)
=

∑
n≥0

[aqn]π
n.

There is an ”ample” line bundle OXR,R+ (1) on XR,R+ that is trivial when pulled back to

YR,R+ . It corresponds to the φ-equivariant line bundle(
OYR,R+ , π

−1φ
)

on YR,R+ . Set

B(R,R+)︸ ︷︷ ︸
Fontaine’s
period ring

= O
(

YR,R+︸ ︷︷ ︸
Stein

⇒lot of hol. fcts

)

Ample: Kedlaya-Liu; ∀E v.b. on XR,R+ for n≫ 0, E (n) is generated by its global sections

and H1(XR,R+ ,E (n)) = 0. See the article where we give a full proof.

If
P︸︷︷︸

graded alg.
of periods

=
⊕
d≥0

H0
(
XR,R+ ,O(d)

)︸ ︷︷ ︸
B(R,R+)φ=πd={f |φ(f)=πdf}

set
XR,R+ = Proj(P ) = “algebraic curve”

Fact: there is a canonical morphism of ringed spaces

XR,R+ −→ XR,R+
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that induces a GAGA equivalence by pullback

{
vector bundles on XR,R+

} ∼−−→
{
vector bundles on XR,R+

}
This morphism of ringed spaces is constructed in the following way: for t ∈ B(R,R+)φ=π

YR,R+ ∖ V (t) −→ Spec
(
B(R,R+)[1t ]

φ=Id
)
↪→︸︷︷︸
affine
open

XR,R+

is induced by

B(R,R+)[1t ]
φ=Id ↪→ B(R,R+)[1t ] −→ O

(
YR,R+ ∖ V (t)

)
.

When t varies

YR,R+ =
⋃
t

YR,R+ ∖ V (t)

and this glues to a morphism of ringed spaces

YR,R+ −→ XR,R+

that is φ-invariant. This defines our morphism of ringed spaces.

Remark 3.1. When we say that B(R,R+) is a Fontaine’s period ring we can give a more
precise content to this sentence. Suppose E = Qp. Let (R♯, R♯,+) be an untilt of (R,R+).
There is then a natural morphism

B(R,R+) −→ B+
cris(R

♯,+) := H0(Spec(R♯,+/p)/Spec(Zp),Ocris)
[
1
p

]
.

inducing an isomorphism B(R,R+)φ=πd ∼−−→ B+
cris(R

♯,+)φ=πd
for all d ≥ 0.

4. The Jacobian criterion

Let

Z Pn
XR,R+

analytically open
inside Zariski closed

XR,R+
quasi-projectivity

assumption

smooth morphism
of sous-perfectoid spaces

∃

In fact there is a good notion of smooth morphisms of sous-perfectoid spaces. Recall in fact;
XR,R+ is not perfectoid but

XR,R+⊗̂E
“E

is perfectoid. More generally, by definition, (A,A+) is sous-perfectoid if there exists a mor-
phism (A,A+)→ (B,B+) with (B,B+) affinoid perfectoid and an A-linear continuous section

A B . Sous-perfectoid implies sheafy.
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Remark 4.1. The sous-perfectoid space XR,R+ has a nice formula for its diamond. Namely,

X⋄
S = (XS⊗̂E

“E)♭/Gal(E|E)

is canonically identified with

S ×Spa(Fq)
Spd(E)︸ ︷︷ ︸

Y ⋄
S

/φZ
S × Id

Definition 4.2. Define

MZ : PerfR,R+ −→ Sets

S 7−→

sections s

Z

XS XR,R+

s


Remark 4.3. If Z is Zariski closed inside some Pn

XR,R+
it is of the form Zad for some

Zariski closed Z → XR,R+ (GAGA). Then, GAGA applies to give for S = Spa(A,A+) aff.

perf. with a morphism S → Spa(R,R+)sections s

Z

XA,A+ XR,R+

s


∼−−→

sections s

Z

XS XR,R+

s


→ can computeMZ using the adic or algebraic curve.

The first basic result is the following.

Proposition 4.4. MZ is representable by a locally spatial diamond with

MZ −→ Spa(R,R+)

compactifiable of finite dim trg.

→ compactifiable of finite dim trg.: to be explained later what this means.

Definition 4.5. Msm
Z ⊂MZ is the open sub-diamond such that

Msm
Z (S) =

{
sections s s.t. ∀t ∈ S,

(
s∗

v.b. on Z︷ ︸︸ ︷
TZ/XR,R+︸ ︷︷ ︸

v.b. on XS

)
|XK(t),K(t)+

has > 0 H.N. slopes
}
.

→ we use the fact that for a smooth morphism of sous-perfectoid spaces one can define
its relative tangent bundle as a vector bundle.
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→ the fact that Msm
Z is open inside MZ is a consequence of the semi-continuity of the

H.N. polygon of a vector bundle on the curve, see the article where we give a simple proof of
this using diamonds.

Remark 4.6 (link with the classical Jacobian criterion of smoothness). For (K,K+) an
Fq-affinoid perfectoid field and E a v.b. on XK,K+,

E has > 0 H.N. slopes ⇔ ∀(L,L+)|(K,K+), H1(XL,L+ ,E|XL,L+
) = 0

where (L,L+) is an affinoid perfectoid field.

The purpose of those lectures is then to prove the following.

Theorem 4.7 (Jacobian criterion of smoothness). The morphism

Msm
Z −→ Spa(R,R+)

is ℓ-cohomologically smooth of dimension deg(s∗TZ/XR,R+
) at a section s.

→ We will explain later what ℓ-cohomologically smooth means.

Example 4.8. (1) E = a v.b. on XR,R+, Z = V(E ). Then

MZ = BC(E )

and

Msm
Z = BC(E )×Spa(R,R+) U

where U ⊂ Spa(R,R+) is the open subset where E has > 0 H.N. slopes.
(2) E = v.b. on XR,R+, Z = P(E ). One has a decomposition

MZ =
∐
d∈Z
Md

Z

where Md
Z is the open/closed subset where s∗OP(E )(1) has degree d (s =section).

One has moreover

Picard stack
of deg. d line bundles︷︸︸︷

Picd ∼−−→

classifying stack
of pro-étale E×-torsors︷ ︸︸ ︷

[∗/E×]

L 7−→ Isom(O(d),L ).

From this we deduce that

Md
Z ≃ U/E× ⊂

punctured
BC- space︷ ︸︸ ︷

BC
(
E ∨(d)

)
∖ {0} /E×︸ ︷︷ ︸

”projective space“
associated to a BC space
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where U ⊂ BC
(
E ∨(d)

)
∖ {0} is the open sub-diamond defined by

U(S)

{
u : E|XS

→ OXS
(d) | ∀t ∈ S, u|XK(t),K(t)+

: E|XK(t),K(t)+
→ OXK(t),K(t)+

(d) is surjective
}

{
u : E|XS

→ OXS
(d) | ∀t ∈ S, u|XK(t),K(t)+

: E|XK(t),K(t)+
→ OXK(t),K(t)+

(d) is non-zero
}

(
BC

(
E ∨(d)

)
∖ {0}

)
(S)

(3) Z = XR,R+×Spa(E)W where W ⊂ Pn
E is smooth equal to V (fi)i∈I , fi = homogeneous

polynomial in n+ 1-variables with coefficients in E. Then,

MZ =
∐
d∈N
Md

Z

where

Md
Z =

{
(x0, . . . , xn) ∈ U ⊂

(
Bφ=πd)n+1 ∖ {(0, . . . , 0)} | ∀i ∈ I, fi(x0, . . . , xn) = 0︸ ︷︷ ︸

alg. equation in a BC space

}
/E×

where U is the open subset of
(
Bφ=πd)n+1 ∖ {(0, . . . , 0)} defined as before: U(S) is

the set of

(x0, . . . , xn) ∈
(
B(S)φ=πd)n+1

satisfying

∀aff. perf. field (K,K+)|E, ∀Spa(K♭,K♭,+)→ S,

(θK(x0), . . . , θK(xn)) ∈ Kn+1 ∖ {(0, . . . , 0)}
where θK : B(K♭,K♭,+)→ K is Fontaine’s θ map.

→Banach-Colmez spaces = linear objects of the category of diamonds, analogs of affine
spaces. For Z = V(E ) the Jacobian criterion of smoothness is ”easy“, established first much
before the Jacobian criterion
→ here we look more generally at solutions of algebraic equations inside BC spaces
→ this is already needed if we take Z = Grd(E ) with d > 1 since the Plücker embedding

of Grd(E ) inside P(∧dE ) is defined by quadratic equations.

5. The application to BunG

Here is how we use the Jacobian criterion in our work. Let G be a reductive group over
E and P a parabolic subgroup of G.

E a G-bundle on XR,R+ (one can give a meaning to this as an étale Gad-torsor over XR,R+ ,
at the end this is the same as an étale G-torsor over the scheme XR,R+ , the ”algebraic curve“).
Take

Z = P\E −→ XR,R+ .
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Then,
MZ = moduli of reductions of E to P

i.e.

MZ(S) =
{
EP a P -torsor + iso. EP

P
×G

∼−−→ E
}
.

Then,

Msm
Z (S) =

{
EP | EP

P
× g/p︸ ︷︷ ︸
v.b.

has > 0 H.N. slopes fiberwise/S
}

where g = Lie(G) and p = Lie(P) and P → GL(g/p) is given by the adjoint representation.

Jacobian criterion ⇒
BunsmP −→ BunG

EP 7−→ EP

P
×G

is ℓ-coho. smooth where BunsmP is the open substack of BunP formed by P -bundles EP

such that EP

P
× g/p has > 0 H.N. slopes fiberwise.

Remark 5.1 (Final remark). ”XS = X × S“ although this has no meaning: the curve
exists only after pullback to any Fq-perfectoid space S but not absolutely over Spa(Fq).





CHAPTER 2

2nd lecture: Mai 23 2023

1. We lied to you

X a (Grothendieck) topos, Λ a ring

D+(X,Λ)︸ ︷︷ ︸
good object

⊂

usual derived category
of complexes of Λ-modules on X︷ ︸︸ ︷

D(X,Λ)︸ ︷︷ ︸
not good object in general, does

not satisfy hyperdescent in general, not left complete

Let

XN

be the topos of projective systems of objects of X i.e. functors (N,≤)→ X.

For each n ≥ 0 there is a ”stage n“ morphism of topos in : X → XN with i−1
n (Uk)k≥0 = Un

where · · · → Uk → · · ·U1 → U0 is a projective system.

Definition 1.1. We note “D(X,Λ) ⊂ D(XN,Λ)

for the sub-category of A ∈ D(XN,Λ) satisfying

(1) ∀n ≥ 0, An︸︷︷︸
i−1
n A

∈ D≥−n(X,Λ),

(2) ∀n ≥ 0, τ≥−nAn+1
∼−−→︸︷︷︸

in D+(X,Λ)
i.e. quasi-iso.

An

Two adjoint functors “D(X,Λ) D(X,Λ)

R lim←−
τ

where

• R lim←− is the derived functor of projective limits from Λ-modules in XN to Λ-modules
in X,
• τ sends A to the projective system of truncations (τ≥−nA)n≥0.

13
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Definition 1.2. (1) D(X,Λ) is left complete if those two adjoint functors are
equivalences i.e.

∀A ∈ D(X,Λ), A
∼−−→ R lim←−

n≥0

τ≥−nA

(2) “D(X,Λ) = left completion of D(X,Λ).

Remark 1.3. Although canonically defined as a composite of two functors applied to A,
R lim←−n≥0

τ≥−nA can be though of as a homotopy limit

h lim←−
n≥0

τ≥−nA

where by definition a homotopy limit of a projective system (Bn)n≥0 in a triangulated category
admitting countable products is C(f)[−1] where C(f) is a cone of f :

∏
n≥0Bn →

∏
n≥0Bn

sending (xn)n≥0 to (un+1(xn+1)− xn)n≥0, un+1 : Bn+1 → Bn. One can thus give a meaning
to the notion of a left complete triangulated category equipped with a t-structure and admitting
countable products.

For the next proposition recall that the topos X is replete if for any projective system
(Fn)n≥0 ∈ XN such that for all n, Fn+1 → Fn is surjective,

lim←−
n≥0

Fn −→ F0

is surjective (where we use the word surjective in the topos X as an abuse of terminology for

epimorphism). For example, if k is a field with [ks : k] = +∞ then ·�Spec(k)ét is not replete.
In fact, if (ki)i≥0 is a sequence of finite degree separable extensions of k with ki+1|ki then

∅ = lim←−
i≥0

Spec(ki) −→ Spec(k)

is not surjective in ·�Spec(k)ét. The topos of sets is replete.

Proposition 1.4. (1) (finite coho. dim. ⇒ left complete) If X = S̃ with S a site
and ∀F ∈ X a Λ-module, ∃d ≥ 0 s.t. ∀U ∈ S ∃(Vi → U)i∈I a cover in S s.t.

∀i ∈ I, Hq(Vi,F ) = 0 for q > d

then D(X,Λ) is complete.
(2) (replete implies left complete) If X is replete then D(X,Λ) is left complete.

Example 1.5. If X is a finite type k-scheme, Λ = Z/ℓnZ, ℓ any prime number, and
cdℓ(k) < +∞ then D(Xét,Λ) is left complete. This is for example the case when k is alge-
braically closed or when k is a finite field.
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Finally, left completeness has the following advantage. Let f : X → Y be a morphism of
topoi. Then the usual derived functor Rf∗ : D

+(X,Λ)→ D+(Y,Λ) extends to a functor“D(X,Λ)
Rf∗−−−→ “D(Y,Λ)

R lim←−−−−−→ D(Y,Λ)

and thus if D(X,Λ) is left complete we obtain a functor

Rf∗ : D(X,Λ)→ D(Y,Λ)

that is right adjoint to f∗.

2. Étale/pro-étale/v-topology for perfectoid spaces

2.1. The étale topology on perfectoid spaces.
2.1.1. Finite étale morphisms of perfectoid spaces. Recall: there is a good notion of vector

bundles on perfectoid spaces. Let X be a perfectoid space. By definition a vector bundle on
X is a locally free of finite rank OX -module. Then, if X = Spa(A,A+) is affinoid perfectoid

Γ(X,−) : {v.b. on X} ∼−−→ {A-modules that are projective of finite type}

with inverse given by P 7→ P ⊗A OX . This property is what we call ”a good notion“.

From this and the purity theorem we deduce that there is a good notion of finite étale
morphisms of perfectoid spaces such that for X perfectoid,

{
finite étale perf. spaces/X

} ∼−−→
ß

finite locally free OX -algebras A s.t.
the quad. form trA/OX

: A×A → OX is perfect

™
where here by perfect we mean A ∼−−→ A∨. Moreover, with this definition GAGA applies:

for (A,A+) affinoid perfectoid

{
finite étale/Spec(A)

} ∼−−→
{
finite étale/Spa(A,A+)}.

2.1.2. A result by Huber. The following result by Huber about étale morphisms of noe-
therian analytic adic spaces is a key point for the definition of an étale morphism of perfectoid
spaces. For morphisms of analytic noetherian adic spaces there is a ”good“ notion of étale
and smooth morphisms analogous to the one for morphisms of schemes using the infinitesi-
mal criterion for formal smoothness couples with some locally (topologically) of finite type
hypothesis.
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Proposition 2.1 (Huber). Let f : X → Y be a morphism between adic spectra of
strongly noetherian Tate rings. Then, for any y ∈ Y there exists a nbd. V of y and a
factorization in the category of Noetherian analytic adic spaces

f−1(V ) W

V

f

open immersion

finite étale

sketch of proof. Write X = Spa(B,B+) and Y = Spa(A,A+). General results about
étale morphisms of analytic noetherian adic spaces show that one can write

B = A⟨X1, . . . , Xn⟩/(f1, . . . , fn)

with

det

Å
∂fi
∂Xj

ã
1≤i,j≤n

mod (f1, . . . , fn) ∈ B×

(and B+ is the integral closure of the image of A+⟨X1, . . . , Xn⟩). An approximation result
”à la Elkik“ shows that if we ”modify slightly“ the equations f1, . . . , fn then the obtained
topological A-algebra B′ is isomorphic to B. We can thus suppose that

f1, . . . , fn ∈ A[X1, . . . , Xn]

(this is a typical algebraization result ”à la Elkik“). Up to replacingA[X1, . . . , Xn]/(f1, . . . , fn)
by its localization with respect to the image of an element of 1+A◦◦[X1, . . . , Xn] we can sup-
pose that the Jacobian becomes invertible and thus that we have a finite type étale A-algebra
C with a finite set of elements g1, . . . , gn ∈ C such that

X =
{
x ∈ Spec(C)ad | |g1(x)| ≤ 1, . . . , |gn(x)| ≤ 1

}
.

where (−)ad is the analytification functor

(−)ad : {finite type Spec(A)-schemes} −→ {loc. of finite type Spa(A,A+)-adic spaces}

that sends An
Spec(A) to An,ad

Spa(A,A+)
(affine schematical space to affine adic space). Since OY,y

is Henselian, the étale Spec(OY,y)-scheme

Spec(C)×Spec(A) Spec(OY,y)

splits as a disjoint union of a finite étale étale scheme together with an étale scheme over
Spec(OY,y) with image in Spec(OY,y) not containing the closed point. SinceOY,y = lim−→V ∋yO(V )

with V a rational neighborhood of y, a finite presentation argument shows that up to replac-
ing (A,A+) by a rational localization (A′, A′+) such that y ∈ Spa(A′, A′+), and C by C⊗AA′,
we can suppose that

Spec(C) = Spec(C1)
∐

Spec(C2)

with

(1) Spec(C2)→ Spec(A) finite étale,
(2) and supp(y) /∈ Im

(
Spec(C2)→ Spec(A)).
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Now, the image of Spec(C2)
ad ∩

{
|g1| ≤ 1, . . . , |gn| ≤ 1

}
in Spa(A,A+) is a quasi-compact

open subset and thus, since pro-constructible, its closure is its set of specializations in the
analytic adic space Spa(A,A+). Since in an analytic affinoid adic space z1 ≥ z2 ⇒ supp(z1) =
supp(z2), y does not ly in this closure. Up to another rational localization we can thus suppose
that

Spec(C2)
ad ∩ {|g1| ≤ 1, . . . , |gn| ≤ 1} = ∅.

The morphism f then factorizes as

Spec(C1)
ad ∩ {|g1| ≤ 1, . . . , |gn| ≤ 1} Spec(C1)

ad Spa(A,A+).
open immersion finite étale □

→ thus, the fact that such a result is true for noetherian analytic adic spaces but not
for schemes is, at the end, a consequence of the fact that the local rings are Henselian. For
schemes, Zariski’s main theorem says that we can only find a compactification of a spearated
étale morphism that is finite but no étale in general.

2.1.3. Étale morphisms of perfectoid spaces. Motivated by Huber’s definition we take the
following.

Definition 2.2. A morphism of perfectoid spaces X → Y is étale if locally on X and
Y it can be written as a composite

X X

X

open immersion

finite étale morphism of perf. spaces

→ good definition. Typically:

• étale morphisms are open
• a morphism between étale X-perfectoid spaces, X perfectoid, is étale.

This type of result is reduced via the tilting equivalence to characteristic p. For X affinoid
perfectoid space of char.p, ifX = lim←−i

Xi withXi affinoid top. of finite type over Spa(Fp((ϖ))),
and the limit is cofiltered, then

2− lim−→
i

{qc qs, étale/Xi}
∼−−→ {qc qs, étale/X}.

2.1.4. The étale site of a perfectoid space. The following definition is now evident.

Definition 2.3. X perfectoid space

Xét := {small étale site of étale perf. spaces over X}.
Coverings: families (Ui → V )i such that V = ∪i Im(Ui → V ).

We now set the following. Λ = torsion ring.
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Definition 2.4.

D+
ét(X,Λ) := D+(Xét,Λ)

Dét(X,Λ) := “D(Xét,Λ) (left completion of D(Xét,Λ))

→ we will give later a ”geometric incarnation of Dét(X,Λ)“, i.e. not using the abstract
left completion process, using the pro-étale topology on X.

2.2. The pro-étale topology on perfectoid spaces.
2.2.1. Pro-étale morphisms.

Recall: Aff.Perf.︸ ︷︷ ︸
affinoid perfetoid spaces

admits cofiltered limits:

lim←−
i

Spa(Ai, A
+
i ) = Spa(A∞, A+

∞)

where if ϖ = image of a p.u. of some Ai,

A+
∞ = ÷lim−→

i

A+
i , A∞ = A+

∞[ 1ϖ ]

(ϖ-adic completion).

→ not true for ”classical“ Noetherian analytic adic spaces; perfectoid spaces are much
more ”flexible“

Definition 2.5. (1) A morphism of affinoid perfectoid spaces is affinoid pro-étale
if it can be written as

lim←−
i≥i0

Xi −→ Xi0

where
(a) the limit is cofiltered with smallest index i0,
(b) each Xi is affinoid perfectoid,
(c) the transition morphisms in the projective system are étale.

(2) A morphism X → Y is pro-étale if locally on X and Y it is affinoid pro-étale.

Example 2.6. For X perfectoid and x ∈ X, the loalization of X at x,

Spa(K(x),K(x)+) = lim←−
U∋x

U ↪→ X

is pro-étale. In particular in general pro-étale morphisms, even the surjective one, are not
open in general. For example, ∐

x∈X
Spa(K(x),K(x)+) −→ X

is pro-étale surjective but not open in general.
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Example 2.7. For X = Spa(A,A+) aff. perf. and I ⊂ A an ideal, V (I) ⊂ |X| is
represented by an aff. perf. space pro-étale inside X,

V (I) = lim←−
n≥1

f1,...,fn∈I

{|f1| ≤ 1, . . . , |fn| ≤ 1}.

2.2.2. The pro-étale site of a perfectoid space. Here X is a perfectoid space.

Definition 2.8. Xpro-ét = the small site whose objects are perfectoid spaces that are
pro-étale over X.
Coverings=families (Ui → V )i∈I of X-morphisms satisfying the strong surjectivity
property

∀W ⊂
qc open

V, ∃ J︸︷︷︸
finite

⊂ I and ∀j ∈ J, Zj ⊂
qc open

Uj s.t. W =
⋃
j∈J

Im(Zj → V ).

Remark 2.9. The definition of a covering is subtle, like for the fpqc topology for schemes,
since pro-étale morphisms are not open in general. In fact, if (Ui → V )i∈I is a family of
morphisms of perfectoid spaces such that ∀i, Ui → V is open then

∀W ⊂
qc open

V, ∃ J︸︷︷︸
finite

⊂ I and ∀j ∈ J, Zj ⊂
qc open

Uj s.t. W =
⋃

j∈J Im(Zj → V )

V =
⋃

i∈I Im(Ui −→ V ) i.e.
∐

i∈I Ui −→ V is surjective

i.e. for families of open morphisms strongly surjective ⇔ surjective in the usual ”naive“
sense.

For example, if B1/1/p∞

K,K+ is the one dimensional perfectoid closed ball over the affinoid

perfectoid field (K,K+) then

Spa(K,K+)
∐

B1,1/p∞

K,K+ ∖ {0} −→ B1,1/p∞

K,K+ ,

where Spa(K,K+) → B1,1/p∞

K,K+ is given by the inclusion of the origin of the ball, is pro-étale

surjective but not a pro-étale cover.

Definition 2.10.

D+
pro-ét(X,Λ) := D+(Xpro-ét,Λ)

Dpro-ét(X,Λ) := D(Xpro-ét,Λ)

→ since ‹Xpro-ét is replete, D(Xpro-ét,Λ) is left complete.

Here is the verification that ‹Xpro-ét is replete. Let (Fn)n≥0 be a projective system of
pro-étale sheaves on X with surjective transition morphisms. Let U be an object of Xpro-ét

and s ∈ F0(U). Up to replacing U by an affinoid perfectoid cover and s by its restriction
to this cover we can suppose that U is affinoid perfectoid. Set U0 = 0 and s0 = s. Suppose
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by induction that we have constructed Un → U an affinoid pro-étale cover and sn ∈ Fn(Un)
such that sn 7→ s|Un

. Any pro-étale cover of Un is dominated by an affinoid pro-étale cover
formed by one element. We can thus find Un+1 → Un an affinoid pro-étale cover and sn+1 ∈
Fn+1(Un+1) such that sn+1 7→ sn|Un+1

. Let now U∞ = lim←−n≥0
Un that is an affinoid pro-étale

cover of U . The collection (sn|U∞)n≥0 lies in lim←−n≥0
Fn(U∞) and is mapped to s|U∞ . This

proves the result.

2.3. The v-topology on perfectoid spaces. Analog of fpqc topology for schemes.

Definition 2.11. X a perfectoid space. Xv = big site whose objects are PerfX and cov-
erings are families of morphisms (Ui → V )i∈I of X-perfectoid spaces that are strongly
surjective as in Definition 2.8.

As for the pro-étale site, ‹Xv is replete and we set.

Definition 2.12.

D+
v (X,Λ) = D+(Xv,Λ)

Dv(X,Λ) = D(Xv,Λ)

Remark 2.13. Xét and Xpro-ét are equivalent to small sites. This is not the case for Xv

and to do cohomology one needs to fix some set-theoretical bounds by fixing a ”sufficiently
large cardinal“ κ and consider only κ-small perfectoid spaces in the sense that the cardinal of
|X| and A for any Spa(A,A+) ⊂ X affinoid perfectoid is less than κ. Doing this the v-site
of κ-small perf. spaces is equivalent to a small site, and if κ is taken sufficiently large then
all results and constructions do not depend on κ.

2.4. Comparison of étale/pro-étale/v. X =perfectoid space. Evident continuous
morphisms of sites

Xv
λ−−→ Xpro-ét

ν−−→ Xét

Proposition 2.14. The functors

Dét(X,Λ)
ν∗−−−→ Dpro-ét(X,Λ)

λ∗
−−−→ Dv(X,Λ)

satisfy!

(1) ν∗ is fully faithful and Id
∼−−→ Rν∗ν

∗

(2) ν ◦ λ is fully faithful and Id
∼−−→ R(ν ◦ λ)∗(ν ◦ λ)∗.

→ using left completness this is reduced to prove that for F an étale sheaf of Λ-modules
on X and G a pro-étale sheaf of Λ-modules on X, ∀q ∈ N,

Hq(Xét,F )
∼−−→ Hq(Xpro-ét, ν

∗F )

Hq(Xpro-ét, ν
∗F )

∼−−→ Hq(Xv, λ
∗ν∗F )
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→ analogous to the following ”classical“ result for schemes: X a scheme,

Xfpqc
λ−−→ Xpro-ét︸ ︷︷ ︸

Bhatt-Scholze pro-étale site

ν−−→ Xét

then one can compute the étale cohomology of an étale torsion sheaf using the pro-étale
or even the fpqc site: for F an étale sheaf of Λ-modules on X and G a pro-étale sheaf of
Λ-modules on X,

Hq(Xét,F )
∼−−→ Hq(Xpro-ét, ν

∗F )
∼−−→ Hq(Xfpqc, λ

∗ν∗F )

This type of results itself is an abelian generalization of well known results about the non-
abelian H1. Typically, if G is a smooth X-group scheme then any fpqc G-torsor on X is
representable by a smooth X-scheme (smooth morphisms satisfy fpqc descent). It has thus a
section over an étale cover of X and is thus an étale G-torsor. This gives

H1
ét(X,G)

∼−−→ H1
fpqc(X,G).

Here is the key point in the proof of H•
ét(X,F )

∼−−→ H•
pro-ét(X, ν∗F ). This is the following

result.

Proposition 2.15. X =affinoid perfectoid.

(1) The functor lim←− induces an equivalence

Pro category (affinoid perfectoid, étale/X)
∼−−→ {affinoid pro-étale/X}

(2) If U = lim←−i
Ui with Ui affinoid perfectoid étale over X then

ν∗F (U) = lim−→
i

F (Ui).

Point (2) is an easy consequence of point (1) that reduces the problem to an ”algebraic
statement“ like in Bhatt-Scholze. Point (1) is a ”decompletion argument“ that is obtained
by devissage from the following using a ”graph of a morphism“ argument.

Proposition 2.16 (Elkik). If (Ai, A
+
i )i∈I is a filtered inductive system of affinoid

complete Tate rings and A+
∞ = Ÿ�lim−→i∈I A

+
i , A∞ = A+

∞[ 1ϖ ] then

2− lim−→
i∈I
{finite étale Ai-alg.}

∼−−→ {finite étale lim−→
i∈I

Ai-alg.}
∼−−→ {finite étale A∞-alg.}

2.5. Description of the essential image of ν∗ : Dét ↪→ Dpro-ét.

2.5.1. Strictly totally disconnected perfectoid spaces. Let us recall the following.

Definition 2.17. A perfectoid space is strictly totally disconnected if it is quasi-
compact quasi-separated and any étale cover has a section.
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It is immediately checked that any s.t.d. perfectoid space is affinoid perfectoid (a section
of

∐
i Ui → X with (Ui)i an aff. perf. covering gives a decomposition X =

∐
i Vi with Vi

open/closed in Ui and thus aff. perf.).

Proposition 2.18. X = qc qs perfectoid space. The following are equivalent:

(1) X is strictly totally disconnected
(2) ∀F étale sheaf of abelian groups on X and q > 0, Hq

ét(X,F ) = 0
(3) for all x ∈ X, K(x) is algebraically closed and the connected components of
|X| have a unique closed point i.e. are of the form Spa(K(x),K(x)+) for some
x ∈ X.

→ If X is a qc qs perfectoid space there is a continuous surjective map

|X|︸︷︷︸
spectral space

−→ π0(|X|)︸ ︷︷ ︸
profinite space

and thus a surjective morphism of v-sheaves

X −→ π0(X)

where for P a profinite set P = v-sheaf on Perf s.t.

P (S) = C (|S|, P ),

if P = lim←−i
Pi︸︷︷︸

finite set

then P = lim←−i
Pi︸︷︷︸

constant sheaf wt. value Pi

.

⇒ any qc qs perf. space X is fibered naturally over a profinite set with connected fibers.

Then,

X strictly totally disconnected

the fibers of X → π0(X) are of the form Spa(C,C+) wt. C alg.closed

Remark 2.19. There is a stronger notion than s.t.d. perf. spaces: strictly w-local perf.
spaces. For this one adds the condition that X → π0(X) has a section

X π0(X).

In this case one can really think about strictly w-local perf. spaces as ”amalgmations of
Spa(C(x), C(x)+), x ∈ P , along a profinite set P with C(x) alg. closed.
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Proposition 2.20. Any perfectoid space X admits a pro-étale cover (Ui → X)i such
that for all i, Ui → X is open and Ui is strictly totally disconnected.

→ the proof consist in giving a meaning to

” lim←−
U→X

étale cover
U aff. perf.

U“→ has no sense from the set theoretical point of view

This is done via an induction process that stops at some point; we don’t even need any
transfinite induction!

Remark 2.21. There is no explicit formula for such a s.t.d. pro-étale cover in general,

typically for the ball B1,1/p∞

K,K+ over the affinoid perfectoid field (K,K+). The only ”most general

case“ where one can give such an explicit forumla is for Spa(K,K+)×P = Spa(C (P,K),C (P,K+))

where P is a profinite set. For such a space one can take Spa(“K, “K+

)×P → Spa(K,K+)×P
as a s.t.d. pro-étale cover.

2.5.2. Description of the image.

→ ν∗ : Dét(X,Λ) ↪→ Dpro-ét(X,Λ) is far from being essentially surjective in general.

For example, if X = Spa(C,OC) with C alg. closed this is the embedding

ν∗ : D(Λ) ↪→ D(condensed Λdisc-modules).

More generally, if X = Spa(K,K+) is the spectrum of an affinoid perfectoid field this is
the embedding

D(Λ-modules + discrete Gal(K|K) linear action)

D(condensed Λdisc-modules + linear action of Gal(K|K)︸ ︷︷ ︸
condensed group

)

ν∗

The starting point is the following remark.

Proposition 2.22. If X is a s.t.d. perf. space then

(1) any qc open subset is strictly totally disconnected

(2) the projection Xét → |X| induces an equivalence of topoi ‹Xét
∼−−→ |X|‹

(3) ν∗ : Dét(X,Λ)
∼−−→ D(|X|,Λ)

(4) for any étale sheaf of ab. gp. F on X and U → X étale with U perfectoid qc
qs, Hq

ét(U,F ) = 0 for q > 0.
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→ proof is easy using Prop. 2.18. Vanishing of cohomlogy (point (4)) implies that
D(Xét,Λ) is left complete, see point (1) of Prop. 1.4.

Remark 2.23. In the scheme context, see Bhatt-Scholze’s article, any scheme X admits a pro-
étale cover (Ui → X)i∈I with Ui strictly totally disconnected schemes (which means in this context that
Ui is affine with connected components spectra of strictly Henselian local rings). In this context Prop.
2.22 is false: a qc open subset of a s.t.d. scheme may not be s.t.d.. For example, if K is a complete
non-archimedean field for a rank 1 valuation with residue field kK separably closed then Spec(OK) is
strictly totally disconnected but the open subset Spec(K) ↪→ Spec(OK) may not be s.t.d. i.e. K may
not be separably closed. One of the points is that spectral spaces associated to analytic adic spaces
satisfy: for any x ∈ this space, the set of generalizations of x is a chain. This is not true for schemes
in general. What is true for X a s.t.d. scheme is that if F an étale sheaf of abelian groups on X then
Hq

ét(X,F ) = 0 when q > 0.

Proposition 2.24. For X a perfectoid space

(1) There are equivalences

Dét(X,Λ)

{
A ∈ Dpro-ét(X,Λ) | ∀S → X, S s.t.d. , A|S ∈ Dét(S,Λ) = D(|S|,Λ)

}

{
A ∈ Dv(X,Λ) | ∀S → X, S s.t.d. , A|S ∈ Dét(S,Λ) = D(|S|,Λ)

}

∼

ν∗

∼

λ∗

(2) If (Ui → X)i∈I is a pro-étale cover with ∀i, Ui is s.t.d. then this reduces to

Dét(X,Λ)

{
A ∈ Dpro-ét(X,Λ) | ∀i ∈ I, A|Ui

∈ Dét(Ui,Λ) = D(|Ui|,Λ)
}

{
A ∈ Dv(X,Λ) | ∀i ∈ I, A|Ui

∈ Dét(Ui,Λ) = D(|Ui|,Λ)
}

∼

ν∗

∼

λ∗

→ the fact that ν∗ is fully faithful on D+
ét +

‹Xpro-ét is replete and thus D(Xpro-ét,Λ) is left
complete + for all S perfectoid s.t.d. D(Sét,Λ)) is complete ⇒ we get a ”geometric concrete

incarnation“ of the abstractly defined left completion “D(Xét,Λ).
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3. Étale/quasi-pro-étale/v-topology for locally spatial diamonds

3.1. A Key descent result.

Proposition 3.1. Separated étale morphisms of perfectoid spaces satisfy descent for
the v-topology.

→ if (Ui → X)i is a v-cover of perf. spaces then{
separated étale perf. spaces /X

}
{
separated étale perf. spaces /

∐
i Ui + descent datum w.r.t.

}∼
By a descent datum we mean cartesian separated étale perfectoid spaces over the diagram∐

i,j,k Ui ×X Uj ×X Uk
∐

i,j Ui ×X Uj
∐

i Ui

→ For finite étale morphism of perf. spaces this is ”easy“ because vector bundles on
perfectoid spaces satisfy v-descent:

Proposition 3.2. If (Ui → X)i∈I is a v-cover of perfectoid spaces,

v.b. on X

v.b. on
∐

i Ui + descent datum

∼

→ One of the key tools of the descent results for the v-topology on perf. spaces is that
after a pro-étale covering one can suppose that our perfectoid spaces are s.t.d. and the use
of the following key remark:

Let X = Spa(A,A+) be s.t.d. and let Y → X be a morphism with Y = Spa(B,B+)
affinoid perfectoid then:

(1) Spec(B+/ϖ) −→ Spec(A+/ϖ) is flat
(2) if Y → X is surjective i.e. a v-cover then

Spec(B+/ϖ) −→ Spec(A+/ϖ) is faithfully flat

Example 3.3. Here is an application of Proposition 3.1 that we use all the time. Let X
be a perf. space.

(1) Let G be a finite group and T → X be a G-torsor for the v-topology. Then T is
represented by an étale separated perf. space over X and is thus an étale G-torsor;
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H1
ét(X,G)

∼−−→ H1
v (X,G).

(2) Suppose now that G is locally profinite. If T → X is a G-torsor for the v-topology

then T
∼−−→ lim←−

K⊂G
compact open subgp.

K\T and K\T is represented by a separated étale X-

perfectoid space. Thus, T → X is represented by a pro-étale perfectoid space and is
thus a pro-étale G-torsor,

H1
pro-ét(X,G)

∼−−→ H1
v (X,G).

3.2. Locally spatial diamonds.

Recall: A diamond is a pro-étale sheaf X on PerfFp (i.e. on the big pro-étale site)
satisfying:

∃‹X perf. space and R ⊂ ‹X × ‹X an eq. relation representable by a perf. space s.t.

(1) ‹X X are pro-étale

(2) X ≃ ‹X/R as pro-étale sheaves on the big pro-étale site (PerfFp)pro-ét.

→ thus a diamond is an ”algebraic space for the pro-étale topology“ on PerfFp . One can
verify that a diamond is in fact a v-sheaf (analogous result to : any algebraic space in the
sense of Artin is in fact an fpqc sheaf (Gabber)).
→ the category of diamonds is ”too large“ to work with. For Artin ”classical“ algebraic

spaces it is for example usual to assume that our algebraic spaces are quasi-separated to
remove pathological objects like Ga,k/Z, k a field of char. 0.

Definition 3.4. A spatial diamond is a diamond X satisfying

(1) X is qc qs as a v-sheaf
(2) each point of |X| has a basis of qc open nbd.

For X a spatial diamond the first basic result is that in fact

|X| is spectral.

The typical example of a locally spatial diamond is X⋄ for X a locally Noetherian analytic
adic space where

|X| = |X⋄|.
But those are not the only one locally spatial diamonds we deal with: we deal with ”more
exotic ones“ like punctured absolute BC’s.

Spatial diamonds share a lot of properties with analytic adic spaces, typically:



3. ÉTALE/QUASI-PRO-ÉTALE/v-TOPOLOGY FOR LOCALLY SPATIAL DIAMONDS 27

• in the spectral space |X| the set of generalizations of a point form a chain,
• for f : X → Y a morphism of spatial diamonds, |f | : |X| → |Y | is generalizing.
• Any morphism between spatial diamonds is qc qs.

One has to be careful still: any morphism of perfectoid spaces is locally separated (since
any morphism of aff. perf. spaces is separated) but this is not the case for morphisms of
locally spatial diamonds: they are only locally quasi-separated in general.

Finally let us cite the following.

Proposition 3.5. X =spatial diamond, Z ⊂ |X| pro-constructible generalizing subset
then the v-sheaf

PerfFp ∋ S 7−→ {S → X | Im(|S| → |X|) ⊂ Z}
is represented by a spatial diamond Y with Y ↪→ X quasi-compact quasi-pro-étale and
|Y | = Z.

→ if X is a qs finite type adic space over Spa(K), K non-archi. field, any Z ⊂ |X| = |X⋄|
defines a sub spatial diamond of X⋄ → can speak about the étale cohomology of such a subset
even if this is not a rigid analytic space this has a nice geometric structure in the world of
diamonds

3.3. The étale site of a locally spatial diamond.

Let X be a loc. spatial diamond. Since separated étale morphisms of perf. spaces descend
for the v-topology and thus the pro-étale one, there is a good notion of a locally separated
étale morphism of locally spatial diamond. As for perfectoid spaces, those are open mor-
phisms.

Definition 3.6. For X a loc. spatial diamond we note

Xét

for the small site of locally separated étale loc. spatial diamonds over X. A family of
morphisms (Ui → V )i in Xét is a cover if

∐
i |Ui| → |V | is surjective.

→ if X is a perfectoid space one recovers the preceding étale site of a perfectoid space;
the definition is thus coherent.

Definition 3.7. For X a loc. spatial diamond we note

D+
ét(X,Λ) = D+(Xét,Λ)

Dét(X,Λ) = “D(Xét,Λ) (left completion)

Finally let us cite.
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Proposition 3.8. If X is an adic space locally of finite type over Spa(K,K+), K a
complete non-archimedean field, the continuous morphism of sites

(X⋄)ét −→ Xét︸︷︷︸
étale site

as defined by Huber

induces an equivalence of topoi

(X⋄)‹́et ∼−−→ ‹Xét.

→ in particular one can compute étale cohomology of rigid analytic spaces using diamonds

3.4. Quasi-pro-étale morphisms.

Contrary to (separated) étale morphisms that satisfy descent wrt v-covers, pro-étale mor-
phisms do not even descend along pro-étale morphisms and we need to take care of this. This
is for example the case for the Kummer morphism z 7→ z2 from the perfectoid closed ball to
itself that is not pro-étale but becomes pro-étale after a pro-étale localization of the target.

Definition 3.9. A morphism X → Y of perfectoid spaces is quasi-pro-étale if there

exists a pro-étale cover ‹Y → Y s.t. X ×Y
‹Y → ‹Y is pro-étale.

This definition is a little bit abstract and hopefully we have this geometric caracterization.

Proposition 3.10. For f : X → Y a morphism of perfectoid spaces the following are
equivalent:

(1) f is quasi-pro-étale

(2) if ‹Y → Y is a pro-étale cover with ‹Y a disjoint union of s.t.d. perf. spaces

then X ×Y
‹Y → ‹Y is pro-étale

(3) if (Ui)i is a cover of X by qc qs open subsets s.t. f|Ui
: Ui → Y is separated,

f|Ui
: Ui → Y has profinite geometric fibers

→ ∀Spa(C,C+)→ Y , ∀i, Ui×Y Spa(C,C+) is isomorphic to Spa(C,C+)×P
with P a profinite set.

→ thus, quasi-pro-étale morphisms=morphisms with locally on the source profinite geo-
metric fibers.
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3.5. The quasi-pro-étale site.

Definition 3.11. (1) A morphism X → Y of locally spatial diamonds is quasi-
pro-étale if ∀S s.t.d. perf. space and S → Y , X ×Y S → S is pro-étale

(2) For X a loc. spatial diamond

Xq-pro-ét = small site of quasi-pro-étale loc. spatial diamonds /X

where the covers are defined as for the pro-étale site of a perf. space using the
”strong surjectivity condition“.

(3) For X a loc. spatial diamond

D+
pro-ét(X,Λ) = D+(Xq-pro-ét,Λ)

Dpro-ét(X,Λ) = D(Xq-pro-ét,Λ)

→ If X is a perf. space then the continuous morphism of sites Xq-pro-ét → Xpro-ét induces
an equivalence of topoi ‹Xq-pro-ét

∼−−→ ‹Xpro-ét

and thus our definition of Dpro-ét is coherent.

Proposition 3.12. Propositions 2.14 and 2.24 remain valid by replacing the perfectoid
space X by a locally spatial diamond:

Dét(X,Λ) Dpro-ét(X,Λ)

Dv(X,Λ)

ν∗

λ∗

where here Dv(X,Λ) = D(Xv,Λ) where Xv is the big site Perf/X equipped with the
localized v-topology on Perf. And the essential image is given by{

A ∈ Dv(X,Λ) | ∀S s.t.d. perf. space , ∀S → X, A|S ∈ D(|S|,Λ)
}
.

Remark 3.13. The functor λ∗ : Dpro-ét(X,Λ)→ Dv(X,Λ) is in general not fully-faithful

and does not satisfy Id
∼−−→ Rλ∗λ

∗. That being said, this is the case when restricted to

Dpro-ét,■(X,Λ) ⊂ Dpro-ét(X,Λ)

and we have a diagram

Dét(X,Λ) Dpro-ét,■(X,Λ)

Dv(X,Λ)

ν∗

λ∗





CHAPTER 3

3rd lecture: Mai 30 2023

1. Dét(X,Λ) for X a small v-sheaf

1.1. Small v-sheaves. X = v-sheaf of sets on the big site PerfFp .

Definition 1.1. X is small if there exists a perfectoid space U and an epimorphism
of v-sheaves U → X.

→ one has to be careful that there exists non-small v-sheaves. For example, {s, η} is

non-small where {s, η}(S) = {open subsets of S}
→ for example, diamonds are small v-sheaves since if X is a diamond, X ≃ ‹X/R with ‹X

perfectoid and R ⊂ ‹X × ‹X a pro-étale equivalence relation and thus ‹X → X is a v-cover.
→ need to work with more general objects than loc. spatial diamonds.

The good category of geometric objects we work with is the category of small v-sheaves
equipped with morphisms that are relatively representable in loc. spatial diamonds

Example 1.2. (1) If k is a char. p discrete field then Spa(k) is a small v-sheaf, not
representable by a loc. spatial diamond

(2) (Loc. profinite sets) If P is a locally profinite set then P is a small v-sheaf not
representable by a loc. spatial diamond although

P not a loc. spatial diamond

Spa(Fp)

rel. rep. in perf. spaces

(3) (Formal schemes) If X = more generally an Fp-formal scheme 7→ a small v-sheaf X⋄

by taking the analytic sheaf associated to the presheaf (R,R+) 7→ X(Spf(R+))
→ small v-sheaf not representable by a loc. spatial diamond. For example, X =

Spf(FpJx1, . . . , xdK), X⋄(S) = (Γ(S,OS)
◦◦)d,

X⋄ ×Spa(Fp) S ≃ B̊d,1/p∞

S︸ ︷︷ ︸
open perf. ball/S

31
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but X⋄ is not a loc. spatial diamond. The small v-sheaf

X⋄ ∖ (Xred)
⋄ ⊂︸︷︷︸

represented by
an open immersion

X⋄

is always representable by a perf. space for any X, for example

Spf(FpJx1, . . . , xdK)⋄ ∖ Spec(Fp)

= Spa
(
FpJx

1/p∞

1 , . . . , x
1/p∞

d ,FpJx
1/p∞

1 , . . . , x
1/p∞

d K
)
∖ V (x1, . . . , xd)︸ ︷︷ ︸

qc qs perfectoid space

qc qs perf. space X⋄ ∖ (Xred)
⋄ X⋄ not a loc. spatial diamond

Spa(Fp)

rel. rep. in perf. spaces

(4) (Absolute positive BC spaces). For (D,φ) an Fq-isocrystal relative to E, i.e. D =

Ĕ︸︷︷︸‘Eun

-v.s. and φ is a σ︸︷︷︸
Frob of Eun|E

-linear auto, with ≤ 0 slopes the functor

BC(D,φ) : PerfFq
−→ Sets

S 7−→ H0(XS ,E (D,φ))

is
(a) representable by a formal scheme (G⋄, G a formal p-divisible gp./Fq) for slopes
∈
[
− [E : Qp], 0[.

(b) representable by a formal scheme × a locally profinite set for slopes ∈ [−[E :
Qp], 0],

(c) only a small v-sheaf for any slopes.

If ∗ = Spa(Fq) there is a ”zero section“ ∗ ↪→ BC(D,φ). In general, for any
slope, one has the picture for any (D,φ)

spatial diamond BC(D,φ)∖ {0} BC(D,φ) not a loc. spatial diamond

∗

rel. rep. in loc. spatial diamonds

(5) (Absolute negative BC spaces) (D,φ) has < 0 slopes,

BC((D,φ)[1]) : PerfFq
−→ Sets

S 7−→ H1(XS ,E (D,φ))
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is a small v-sheaf and we have the same picture

spatial diamond BC((D,φ)[1])∖ {0} BC((D,φ)[1]) not a loc.
spatial diamond

∗

rel. rep. in loc. spatial diamonds

For example,

BC(O(−1)[1])︸ ︷︷ ︸
small v-sheaf
not a diamond

×Spa(Fq)Spa(E)⋄ ≃ (Ga/E)
⋄/E︸ ︷︷ ︸

loc. spatial diamond

and the spatial diamond BC(O(−1)[1])∖ {0} is an absolute version of

Ω⋄/Å1 E
0 1

ã
Proposition 1.3. If X is a small v-sheaf there exists a v-hypercover

U• −→ X

such that for all n ≥ 0, Un is a
∐

of strictly totally disconnected perfectoid spaces.

→ any U as in the definition of a small v-sheaf can be replaced, up to a pro-étale cover,
by a

∐
of s.t.d. perfectoid spaces. Now,

U ×X U ⊂︸︷︷︸
sub v-sheaf

U × U︸ ︷︷ ︸
perf. space

Use the following:

Any sub-v-sheaf of a diamond is a diamond and in particular a small v-sheaf.

That is deduced from the following:

If X is a s.t.d. perf. space then any pro-constructible generalizing subset of |X| is
representable by a perfectoid space pro-étale inside X.

Here is how to use the preceding. Let F ⊂ X be a sub-v-sheaf of X s.t.d. perfectoid.
For each S affinoid perfectoid and each element of F (S) there is an associated morphism
S → X to which is associated Im(|S| → |X|) that is pro-constructible generalizing. Thus,
applying the preceding result, for each element of F (S), S aff. perf., is associated an affinoid
perfectoid Z ⊂ X that is pro-étale inside X. When S and the element of F (S) vary this
forms a subset of the set Σ of such Z ⊂ X. Then, using the v-sheaf property, there is a
quasi-pro-étale surjection

∐
Z∈Σ Z → F .
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1.2. Dét(X,Λ). Let X be a small v-sheaf. Let Xv = (Perf)v/X be the v-site of X whose
underlying category is the one of perfectoid spaces over X.

Definition 1.4. Set

Dét(X,Λ) =
{
A ∈ D(Xv,Λ) | ∀S → X S perf. s.t.d., A|S ∈ Dét(S,Λ) = D(|S|,Λ)

}
.

→ one recovers Dét(X,Λ) for X a locally spatial diamond.
→ since D(Xv,Λ) and Dét(S,Λ) for S perf. s.t.d. are left complete, Dét(X,Λ) is left

complete.

The main remark is now the following. Let

S• −→ X

be a v-hypercover s.t. for all n ≥ 0, Sn is a
∐

of s.t.d. perf. spaces. Then, pull back from

the topos ‹Xv to the topos of cartesian sheaves on S•,v induces

Dét(X,Λ)
∼−−→ Dcart(|S•|,Λ)︸ ︷︷ ︸

derived cat. of cartesian
sheaves of Λ-mod. on

the simplicial top. space |S•|

Moreover if A ∈ Dét(X,Λ) corresponds to F• then

RΓ(X,A)
∼−−→ Γ(|S•|,F•).

→ étale cohomology of perfectoid spaces / locally spatial diamonds / small v-sheaves
is simpler than étale cohomology of schemes: everything is reduced to simplicial cartesian
sheaves on top. spaces !!

We have in fact the ore general formula for S• → X a v-hypercover by perfectoid space

Dét(X,Λ)
∼−−→ “Dcart(S•,ét,Λ)︸ ︷︷ ︸

left completion of
derived cat. of cartesian étale sheaves

on S•

We will need the following Lemma.

Lemma 1.5. The inclusion Dét(X,Λ) ⊂ Dv(X,Λ) admits a right adjoint RXét
:

Dv(X,Λ)→ Dét(X,Λ).

Proof. One can apply Freyd’s adjunction theorem (or its upgrade to ∞-categories by
Lurie) and the result is then a consequence of the fact that Dét(X,Λ) is stable under colimits.
A slightly more constructive proof consists in replacing X by a v-hypercover S• with Sn a

∐
of s.t.d. perf. spaces for all n ≥ 0. Then,

RXét
= RCartR(νS• ◦ λS•)∗
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where (
(νS• ◦ λS•)

∗, (νS• ◦ λS•)∗
)
: S̃•,v −→ |S•|‹

is a morphism of simplicial topoi and Cart is the cartesianification functor that is the right
adjoint of the inclusion of cartesian sheaves on |S•| inside all sheaves on |S•|. □

→No explicit formula in general for the Cartesianification functor. This cartesianification
functor exists by an application of Freyd’s adjunction theorem since the cat. of cart. sheaves
is stable under colimits.

Example 1.6. If ∗ = Spa(Fq) as a small v-sheaf then one has D(Λ)︸ ︷︷ ︸
usual derived cat.

of Λ-modules

∼−−→ Dét(∗,Λ).

This is a consequence of the fact that if C =
÷Fp((T )) then Spa(C) ×Spa(Fp)

Spa(C) is a con-

nected perfectoid space isomorphic to a projective limit with finite étale transition morphisms

of open punctured disks over C (write C = ◊�∪r≥0Kr with Kr ⊂ Kr+1 and Kr|Fp((T )) separable

of finite degree, Kr ≃ Fp((T ))).

2. Dét(X,Λ) for X a small v-stack

2.1. Small v-stacks. → I lied:

The good category of geometric objects we work with is the category of small v-stacks
equipped with morphisms that are 0-truncated representable in loc. spatial diamonds
(compactifiable loc. of finite dim trg.)

Definition 2.1. A stack X on PerfFp equipped with the v-top. is small if ∃S → X and
T → S ×X S that are v-surjective with S and T perf. spaces.

→ X is a rule that sends S an Fp-perf. space to a groupoid X(S) s.t. S 7→ X(S) is a
fibered category over PerfFp s.t. if T → S is a v-cover of aff. perf. spaces then

X(S) −→ 2− lim←−︸ ︷︷ ︸
objects of X(T )
+ descent datum

[
X(T ) X(T ×S T ) X(T ×S T ×S T )

]

is an equivalence of categories.

→ S → X, S perf. space, is v-surjective if ∀T perf. space, ∀T → X, ∃T̃ → T a v-cover

and a morphism T̃ → S such that T̃ → T → X and T̃ → S → X are isomorphic as elements
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of the groupoid X(T̃ )

T̃

T T̃ X

S X

∃ v-cover
∃

∃

Example 2.2. (1) If S is a small v-sheaf and H → S is v-sheaf in groups that is
small we can consider the classifying stack

X =
[
S/H

]
−→ S.

This is the small v-stack over S such that for a perf. space T over S, X(T ) is the
groupoid of H ×S T -v-torsors over T .

(2) If X is a small v-stack, S an Fp-perfectoid space and x ∈ X(S) we can consider the
small v-sheaf in groups Aut(x) → S. The morphism x : S → X then factorizes
canonically as a morphism of small v-stacks[

S/Aut(x)
]
−→ X.

(3) The stack BunG of G-bundles on the curve is small.

As for small v-sheaves:

Proposition 2.3. If X is a small v-stack then ∃ a v-hypercover

S• −→ X

such that for all n ≥ 0, Sn is a
∐

of s.t.d. perfectoid spaces.

2.2. Dét(X,Λ). X = small v-stack. We note

X̃v = 2− lim←−
S→X

perf. space

S̃v

for the topos of cartesian v-sheaves on X.

Definition 2.4. We note for X a small v-stack

Dét(X,Λ) = {A ∈ D(X̃v,Λ) | ∀S → X, S s.t.d. perf. space, A|S ∈ Dét(S,Λ) = D(|S|,Λ)}

→ left complete by construction since S̃v is replete and Dét(S,Λ) is left complete for S
s.t.d. perf. space.

As before for small v-sheaves, if

S• −→ X

is a v-hypercover by s.t.d. perf. spaces then
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Dét(X,Λ)
∼−−→ Dcart(|S•|,Λ).

More generally for a v-hypercover by locally spatial diamonds S• one has

Dét(X,Λ)
∼−−→ “Dcart(S•,ét,Λ)︸ ︷︷ ︸

left completion of
derived cat. of cartesian étale sheaves

on S•

Let now H be a locally pro-p topological group, typically G(E) where G is an affine
algebraic group over E. We consider the small v-stack[

∗ /H
]

where ∗ = Spa(Fp) is the final object of the v-topos. If M is a Λ-module it defines a v-sheaf
by setting for S ∈ PerfFp

M(S) = {f : |S| →M | f is locally constant}.
Recall that we set

H(S) = C (|S|, H).

Suppose now that M is equipped with a smooth action of H. Then, M is equipped with
a smooth action of H. In fact, if S is qc, f : |S| → M is loc. constant, g : |S| → H is
continuous: there exists K ⊂ H compact open s.t. f : |S[→ MK . Then, the composite

|S| g−−→ H → H/K is loc. constant and thus

|S| −→ M

s 7−→ g(s).f(s)

is locally constant. This defines an action of the v-sheaf H on the v-sheaf M and thus a
v-sheaf on [∗/H]. This v-sheaf is étale since isomorphic to M after pull-back to ∗ via the
v-cover ∗ → [∗/H]. This defines an exact functor

{smooth rep. of H on Λ-modules} −→ {étales sheaves of Λ-modules on [∗/H]}

and thus an exact functor

D(H,Λ)︸ ︷︷ ︸
derived cat. of
smooth rep. of

H wt. coeff. in Λ

−→ Dét([∗/H],Λ).

We prove the following theorem.

Theorem 2.5. If Λ is killed by a power of prime number different from p then the
preceding functor

D(H,Λ) −→ Dét([∗/H],Λ)

is an equivalence.
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Proof. One uses the v-hypercover

S• −→ [∗/H]

where if C =
÷Fp((T )) for n ≥ 0

Sn = Spa(C)×Spd(Fp)
· · · ×Spd(Fp)

Spa(C)︸ ︷︷ ︸
(n+1)-times, connected

×Hn

One obtains an identification

Dét([∗/H],Λ) = “D(H,Λ).

Now, the category of Λ-modules with a linear smooth H action is the category of Λ-modules
in the topos of discrete H-sets (i.e. sets + action of H s.t. the stabilizer of a point is
open). Any object in this topos has a cover formed of discrete H-sets of the form H/K
for K compact open. Now, the cohoology of H/K with values in the smooth module M is

H•(K,M) := lim−→K′⊂K
H•(K/K ′,MK′

). □

Remark 2.6. The proof gives that we always have an equivalence “D(H,Λ)
∼−−→ Dét([∗/H],Λ)

and that if H has a basis of compact open subgroups K such that cdΛ(K) < +∞ (cohomolog-
ical dimension of the category Λ-modules equipped with a smooth action of K) then D(H,Λ)
is left complete.

2.3. ∞-categorical point of view. At the end we can apply the ∞-categorical point
of view in the preceding although this is not strictly necessary.

Proposition 2.7. There exists a unique v-hypersheaf of presentable stable ∞-
categories on PerfFp,

S 7→ Dét(S,Λ)

such that if S is a s.t.d. perfectoid space then Dét(S,Λ) = D(|S|,Λ). One has for X a
small v-stack

Dét(X,Λ) = lim←−
S→X

Dét(S,Λ)

with π0Dét(X,Λ) = Dét(X,Λ).
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1. The four operations (f∗, Rf∗, RH om,⊗L
Λ)

1.1. (Rf∗, f
∗) in general.

1.1.1. Morphisms of small v-sheaves. Let

f : X −→ Y

be a morphism of small v-stacks. There is an evident continuous morphism of topoi

(f∗
v , fv∗) :

‹Xv −→ ‹Yv
that is a particular case of the following: if T is a topos and g : U → V is a morphism in T
there is a morphism of localized topos

(g∗, g∗) : T /U −→ T /V.
This induces a couples of adjoint functors (use the left complete property to see that Rfv∗
extends to the whole derived category and not only the D+)

D(Xv,Λ) D(Yv,Λ)
Rfv∗

f∗
v

Now the point is the following.

Proposition 1.1. (1) f∗
v sends Dét(X,Λ) to Dét(Y,Λ) and induces a functor

f∗ : Dét(Y,Λ) −→ Dét(X,Λ)

(2) f∗ admits a right adjoint Rf∗

Dét(X,Λ) Dét(Y,Λ)
Rf∗

f∗

Proof. Point (1) is evident since we work ”in a big topos“ and f∗
v is just a restriction

functor. More precisely, if S is a s.t.d. perfectoid space with a morphism S → X, and
B ∈ D(Yv,Λ) then (f∗

vB)|S = B|S via the composite S → X → Y . For point (2) one can take

Rf∗ = RYét
◦ (Rfv∗)|Dét(X,Λ).

□

39
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→ no explicit formula in general for Rf∗ : Dét(X,Λ)→ Dét(Y,Λ).

There is an evident case when there is an explicit formula for Rf∗.

If X and Y are represented by locally spatial diamonds, via the identifications

Dét(X,Λ) = “D(Xét,Λ), Dét(Y,Λ) = “D(Yét,Λ) (left completion), one has

Rf∗ = Rfét∗ and f∗ = f∗
ét

where fét : Xét → Yét is the continuous morphism of étale sites.

→ it suffices to verify that f∗ = f∗
ét that is evident, the equality Rf∗ = Rfét∗ follows by

adjunction.

Example 1.2. If f : X → Y is a morphism of locally of finite type K-adic spaces,
K =non-archi. field, then via the identifications Dét(X

⋄,Λ) = D(Xét,Λ), (f
⋄∗, Rf⋄

∗ ) is the
usual couple of adjoint functors (f∗

ét, Rfét∗) defined by Huber.

1.1.2. 0-truncated morphisms of small v-stacks. Let

f : X −→ Y

be a morphism of small v-stacks. Suppose it is 0-truncated; this means that if F is a v-sheaf
together with a morphism F → Y then the v-stack

X×Y F

is a v-sheaf in the sense that it is a fibered category in ” discrete groupoids“ i.e. groupoids
where objects have no automorphisms, that is to say a set. Another way to say it is that it is
relatively representable in v-sheaves. This is for example the case if X is itself is a small v-sheaf.

There is associated a morphism of topoi

(f∗
v , fv∗) : X̃v −→ ‹Yv

of cartesian sheaves. This morphism of topoi exists even when f is not 0-truncated but
there is a simpler expression for fv∗ when f is 0-truncated (and this is the only case we use
in our work). More precisely, the category of perfectoid spaces over X, Perf/X, whose objects
are perfectoid spaces S → X together with morphisms given by

Hom
(
S

x−→ X, S′ x′
−→ X

)
= {(f, u) | f : S → S′, u : f∗x′

∼−−→ x}

S

X

S′

x

f f∗x′
u

x′

is equiped with an evident functor by composing with f

Perf/X −→ Perf/Y
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that induces

f∗
v : 2− lim←−

T→Y

T̃v︸ ︷︷ ︸
X̃v

−→ 2− lim←−
S→X

S̃v︸ ︷︷ ︸‹Yv

i.e. the value (as an element of S̃v) of the cartesian sheaf f∗
vF on S → X is given by the value

of F on S → X
f−→ Y i.e.

(f∗
vF )|S = F|S

via S → X→ Y.

The functor fv∗ sends the cartesian sheaf F to the cartesian sheaf whose value on T → Y

is the pushforward via fiPerfv/X ×Y S → S of the value (as a v-sheaf sitting over the v-sheaf
X×Y S) of F restricted to X×Y S (this defines a cartesian sheaf since we are working with
big topoi and pullback is nothing else than restriction) i.e.

(fv∗F )|S = fS,v∗(F|X×YS)

where fS : X×Y S −→ S.

We thus obtain a couple of adjoint functors

Dv(X,Λ) Dv(Y,Λ)
Rfv∗

f∗
v

It is immediately checked that f∗
v sends Dét(Y,Λ) to Dét(X,Λ). This is not the case for Rfv∗

in general. We set

Rf∗ = RYét
◦Rfv∗|Dét(X,Λ)

This defines a couple of adjoint functors

Dét(X,Λ) Dét(Y,Λ)
Rf∗

f∗

As before, there is in general no explicit formula for Rf∗.

Example 1.3. H ′ ⊂ H closed subgroup → f : [∗/H ′]→ [∗/H]. Then, f∗ = ResHH′ (exact

functor, extends immediately to the derived category) and Rf∗ = IndHH′ (smooth induction,
exact functor).

1.2. The case of a qc qs morphism representable in locally spatial diamonds.

There is a particular case when on can compute Rf∗. This is the following.
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Proposition 1.4 (Quasi-compact base change). Let f : X → Y be a qc qs morphism
of small v-stacks representable in locally spatial diamonds i.e. ∀S → Y with S a loc.
spatial diamonds X×Y S is a loc. spatial diamond. Suppose that Λ is killed by a power
of a prime to p integer. Let A ∈ D+

ét(X,Λ):

(1) Rfv∗A ∈ Dét(Y,Λ) and is equal to Rf∗A.
(2) If S is a loc. spatial diamond, S → Y and

fS : X×Y S −→ S,

inducing
(fS)ét : (X×Y S)ét −→ Sét

one has for A ∈ D+
ét(X,Λ)

R(fS)ét∗
(
A|X×YS)

∼−−→ (Rf∗A)|S

via the identifications D((X ×Y S)ét,Λ) = Dét(X ×Y S,Λ) and D(Sét,Λ) =
Dét(S,Λ).

→ uses Huber’s quasi-compact base change.
→ The hypothesis Λ killed by a power of ℓ with ℓ ̸= p is essential. In fact, already the

étale cohomology of the one dimensional ball over C|Qp algebraically closed, H•
ét(B1

C ,Fp),
depends on C and thus qc base change does not hold in this situation.

Here is a strinking application.

Corollary 1.5. Let j : U ↪→ X be an open immersion of small v-stacks. Suppose that
j is qc qs. Then for A an étale v-sheaf of Λ-modules︸ ︷︷ ︸

an object of Dét(U,Λ)
concentrated in deg. 0

on U with Λ killed by a power of

ℓ ̸= p,

Rij∗A = 0 for i > 0.

Proof. Compute the pullback of Rij∗A via pullback via Spa(C,C+) → X using the qc
base change theorem. But now if U is a qc open subset of Spa(C,C+), j′ : U ↪→ Spa(C,C+),
since any qc open subset of Spa(C,C+) is strictly totally disconnected one has Rij′∗ = 0 for
i > 0. □

→ the quasi-compactness assertion is essential. For example, if j : B1,⋄
K,K+ ∖{0} ↪→ B1,⋄

K,K+

is the inclusion of the punctured closed ball over the affioid field (K,K+) inside the ball then
R1j∗Fℓ ̸= 0 if ℓ is invertible in K.
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Remark 1.6. The stack BunG is not quasi-separated and thus Corollary 1.5 does not
apply to open subs-tacks of BunG. For example, j : [∗/G(E)] ↪→ BunG and to any π

a smooth rep. of G(E) one can associate Fπ an étale v-sheaf on [∗/G(E)]. Then in

general Rij∗Fπ ̸= 0 for i > 0.

1.3. ⊗L
Λ and RH om(−,−).

X =small v-stack

It is easy to verify that − ⊗L
Λ − on Dv(X,Λ) ×Dv(X,Λ) sends Dét(X,Λ) ×Dét(X,Λ) to

Dét(X,Λ).

Now, for A ∈ Dét(X,Λ) we can look at the functor

Dét(X,Λ) −→ Dét(X,Λ)

B 7−→ A⊗L
Λ B

This commutes with colimits and thus has a right adjoint (Freyd’s adjunction theorem)

C 7−→ RH omΛ(A,C).

Once again there is no explicit formula in general for this functor, like Rf∗ in general.

If S• → X is a v-hypercover by
∐

of s.t.d. perfectoid spaces then via

Dét(X,Λ)
∼−−→ Dcart(|S•|,Λ),

One has
RH omΛ(A,B) = R Cart︸︷︷︸

Cartesianification
functor

RH omΛ(A,B)︸ ︷︷ ︸
usual RH om
in D(|S•|,Λ)

→ as for Rf∗, if X = X is a locally spatial diamond then RH omΛ(A,B) is the usual

derived functor computed in “D(Xét,Λ).

2. The two operations (Rf!, Rf !)

2.1. Huber’s canonical compactification.

2.1.1. classical context. Recall: Let

f : X → Y

be a morphism of adic spaces locally of finite type over Spa(K,K+) an affinoid field. We say
that f is proper if it is qc separated and universally closed. This is equivalent to f qc qs and
∀(R,R+) top. of finite type over (K,K+),

Spa(R,R◦) X

Spa(R,R+) Y

f
∃ !
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This last property is called partially proper. Thus,

proper ⇐⇒ quasi-compact quasi-separated and partially proper.

Separated partially proper morphisms are exactly the good one for which the derived
functor of fét! is the good notion for relatic cohomology with proper support. More precisely,
if F is an étale sheaf on X and U → Y is étale then

Γ(U, fét!F ) = {s ∈ Γ(X ×Y U,F ) | supp(s)
f| supp(s)−−−−−−→ U is proper}.

Then,
Rfét! : D(Xét,Λ) −→ D(Yét,Λ)

is ”the good relative cohomology with proper support“ functor.

Example 2.1. Let f : X → Y be a morphism of formal schemes locally formally of
finite type over Spf(OK). Let Xη, resp. Yη, be their generic fiber as adic spaces locally
of finite type over Spa(K,OK). Then if fη : Xη −→ Yη,

∀Z irred. comp. of Xred, fred|Z proper ⇐⇒ fη partially proper.

For f : X → Y as before Huber says that f is taut if ∀V ⊂ Y open qc qs and U ⊂ f−1(V )
qc then U is qc. Let f be separated and taut. Then Huber defines a canonical compactification

X X
/Y

Y

f

j

f̄

where j is an open immersion and f̄ is separated partially proper. Then he defines

Rfét! = Rf̄ét! ◦ j!
and proves Poincaré duality in this context when f is moreover smooth→ good definition for
relative cohomology with proper support.

WhenX = Spa(B,B+) and Y = Spa(A,A+) define (B+)′ = integrale closure of f∗(A+)+
B◦◦. Then,

X = Spa(B,B+) X
/Y

= Spa(B, (B+)′)
open immersion

is an open immersion.

→ In fact, since f is of finite type, by definition, there exists an open surjective morphism
A⟨T1, . . . , Tn⟩ → B such that B+ is the integral closure of the image of A+⟨T1, . . . , Tn⟩.
Thus A+/A◦◦ → B+/B◦◦ is integral over a finite type A+/A◦◦-algebra. Now, if g1, . . . , gn ∈
B+ is a lift of a set of elements ḡ1, . . . , ḡn ∈ B+/B◦◦ such that B+/B◦◦ is integral over
A+/A◦◦[ḡ1, . . . , ḡn] then

X = {|g1| ≤ 1, . . . , |gn| ≤ 1} ⊂ X
/Y

|X/Y |∖ |X| is made of rank > 1 valuations only.
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Example 2.2. Take X = B1
K = Spa(K⟨T ⟩,OK⟨T ⟩)→ Spa(K,OK) = Y . Then,

X
/Y

= Spa(K⟨T ⟩,OK +K◦◦⟨T ⟩).

One has |X/Y | = |X| ∪ {x} where

v
(∑

n≥0

anT
n(x)

)
= inf

{
(v(an),−n) ∈ ΓK × Z︸ ︷︷ ︸

+lexicographic
order

| n ≥ 0
}

with x a specialization of the Gauss norm.

X = adic space associated to a classical rigid space i.e. Sp(R) 7→ Spa(R,R◦)

X
/Y

= adic space not associated to a classical rigid space i.e. Spa(R,R+) with R+ ̸=
R◦.

→ for Berkovich spaces one considers only rank 1 valuations and |B1
K | is compact →

cohomology with compact support=cohomology → not the good definition of coho. with

compact support ∂B1,an
K ̸= ∅ ⇔ B1,ad

K → Spa(K,OK) not partially proper. We need to
consider non-overconvergent étale sheaves like ix∗Λ to define coho. with compact support.
This is why we can not define coho. with compact support in general for K-Berkovich spaces
X such that ∂(X/K) ̸= ∅, typically for affinoid Berkovixh spaces X where |X| is compact
and thus Γc(X,−) = Γ(X,−). In fact if XBerk =M(A) and Xad = Spa(A,A◦) then there is
an equivalence of topoi„�(XBerk)ét

∼−−→ {overconvergent étale sheaves on Xad}

where overconvergent means that for x ∈ X, if x : Spa(C,C+)→ X, C alg. closed,

x∗F

is a constant sheaf on |Spa(C,C+)| with value its stalk at the generic point Spa(C,OC).

→morale of the story: even to define compactly supported cohomology for overconvergent
sheaves like Λ we need to go through non-overconvergent sheaves when f is not partially
proper.

2.2. Compactifiable morphisms of small v-stacks. Let

f : X −→ Y

be a 0-trunncated morphism of small v-stacks. Define

X︸︷︷︸
absolute compactification

of X→∗

= v-stack
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such that X(R,R+) = X(R,R◦). This is the ”absolute compactification of X over ∗“. Then,
one verifies that

X

smallv-stack︷︸︸︷
X

Y Y︸︷︷︸
smallv-stack

f f̄=0-truncated

And define

X
/Y︸︷︷︸

relative
compactification

= X×Y Y

There is a diagram

X X
/Y

Y

j

f

f
/Y

We now take the result that says that for separated taut morphisms of adic spaces locally
of finite type over Spa(K,K+), j is an open immersion as definition.

Definition 2.3. The morphism f is compactifiable if it is separated and j;X ↪→ X
/Y

is representable by an open immersion.

→ f qc compactifiable ⇒ f
/Y

is proper ⇒ canonical compactification. In general, if f is

not qc then f
/Y

is only partially proper.

Remark 2.4. One has to be careful that f representable in loc. spatial diamonds com-

pactifiable does only imply that f
/Y

representable in diamonds but à priori non locally
spatial one..although in all cases when we apply this compactification construction this
is the case.

Example 2.5. If f : X → Y is a separated taut morphism of adic spaces locally of finite
type over Spa(K,K+) then f⋄ : X⋄ → Y ⋄ is compactifiable.

2.3. Geometric transcendance degree. → need to bound some cohomological dimen-
sion to have a ”good” Rf!.
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Let C ′|C be an extension of complete algebraically closed non-archimedean fields. Define
the topological transcendance degree

tr. c(C ′/C) ∈ N ∪ {+∞}
as the minimum of the cardinal of I where there exists (xi)i∈I ∈ C ′I such that the sub-field

C(xi)i∈I of C ′ is dense in C ′.

→ well behaved when finite (Temkin): if C ⊂ C ′ ⊂ C ′′ and tr. c(C ′/C) < +∞ then
tr. c(C ′/C) ≤ tr. c(C ′′/C). But it may happen (the answer to this is not known) that
tr. c(C ′/C) = +∞ and tr. c(C ′′/C) < +∞. Since we don’t know we setfitr. c(C ′/C)︸ ︷︷ ︸

topological
transcendance degree

= infC′′/C′ tr. c(C ′′/C).

Then C ′|C 7→fitr. c(C ′/C) is monotonic sub-additive: for C ′′|C ′|Cfitr. c(C ′/C) ≤ fitr. c(C ′′/C)fitr. c(C ′′/C) ≤ fitr. c(C ′′/C ′) +fitr. c(C ′/C).

Definition 2.6. (1) f : X → Y morphism of diamonds. Set

dim. trg︸ ︷︷ ︸
geometric

transcendance degree

f = sup
x∈X

fitr. c(C(x)|C(f(x))

where Spa(C(x), C(x)+) → X and Spa(C(f(x), C(f(x))+) → Y are quasi-
pro-étale with x and f(x) in their image and we have an extension

Spa(C(x), C(x)+) X

Spa(C(f(x), C(f(x)+) Y

f

(2) if f : X→ Y is representable in diamonds,

dim. trg(f) = sup
S→Y

S diamond

dim .trg(X ×Y S → S)

Example 2.7. Let (D,φ) be an isocrystal with ≤ 0 slopes. Then

BC(D,φ) −→ ∗
is of finite dim. trg → There exists d ≥ 0, V a finite dim. E-v.s., such that for any S there
exists a pro-étale surjection

B̊d,1/p∞

S × V −→ BC(D,φ)×Spa(Fq)
S

and dim .trg(f) ≤ d.
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Proposition 2.8 (Key cohomological bound). Let f : X → Spa(C,C+) be a spatial
diamond

(1) for all maximal point x ∈ X, Xx ≃ Spa(C ′,OC′)/Gx for a profinite group
Gx ⊂ Aut(C ′) satisfying cdℓ(Gx) ≤ dim. trg.(f)

(2) dim |X| ≤ dim. trg(f)
(3) for all F étale sheaf on Λ-modules on X with Λ killed by a power of ℓ one

has H i
ét(X,F ) = 0 for i > 2dim. trg.(f).

(4) if f is compactifiable then H i
ét,c(X,F ) = 0 for i > 3 dim .trg.(f)

(2 dim .trg.(f) if X
/Spa(C,C+

, that is à priori only a diamond, is moreover
spatial).

→ here dim |X| is the usual dimension of a spectral space: the maximal length of a chain
of specializations

→ the proof is like the one for schemes: if X is a finite type k-scheme, k alg. closed, and
F an étale torsion sheaf on X then H i

ét(X,F ) = 0 for i > 2 dimX:

(1) One has first that (Tsen theorem: k alg. closed implies k(T ) is (C1) and thus
cd(Gk(T )) ≤ 1; and thus if K|k is finite type then cd(GK) ≤ tr.deg(K/k)) for all
x ∈ X, cd(Spec(k(x))) ≤ dim(X)

(2) We use the projection µ : Xét → XZar

(3) We use (Grothendieck: Noetherian induction on open subsets of |X|) that if S is a
Noetherian topological space then cd(S) ≤ dim(S).



CHAPTER 5

5th lecture: June 21 2023

1. The two operations (Rf!, Rf !)

1.1. Rf! for f representable in spatial diamonds. We are seeking to define (Rf!, Rf !)
for f represntable in locally spatial diamonds compactifiable of finite dim. trg. Let us begin
first with the case when f is qc i.e. f is representable in diamonds.

from now on Λ is killed by a power of ℓ ̸= p

→ used to bound coh. dimensions of Rf! by 3dim. trg.(f) (and even 2dim. trg.(f) if f
/Y

is representable in loc. spatial diamonds).

Definition 1.1. Let f : X → Y be a morphism of small v-sheaves
representable in spatial diamonds︸ ︷︷ ︸

and thus qc

compactifiable of finite dim. trg. We define

Rf! = R( f
/Y︸︷︷︸

proper morphism
representable in qc qs diamonds

)∗ ◦ j! : Dét(X,Λ) −→ Dét(Y,Λ).

where j : X ↪→ X
/Y

.

→ finite dim. trg ⇒ Rf! commutes with direct sums + finite cohomological dimension.

1.2. Rf! for f a morphism of loc. spatial diamonds. f : X → Y a morphism of
loc. spatial diamonds, compactifiable of finite dim. trg.

Definition 1.2. We define

Rf! : D
+
ét(X,Λ) −→ D+

ét(Y,Λ)

as R(f
/Y

)ét!◦j! where (f
/Y

)ét! is the functor from sheaves of Λ-modules on (X
/Y

)ét︸ ︷︷ ︸
small site of
loc. separated

étale morphisms

to sheaves of Λ-modules on Yét that is the subfunctor fét∗ of section with relative proper
support.

The extension to the full derived category Dét(X,Λ) is delicate. For Rf∗, the extension
from D+

ét to Dét is straightforward since Rf∗ commutes with limits and we can use the formula

49
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Rf∗A = lim←−n≥0
Rf∗τ≥−nA that makes sense since our target category is left complete. This

is not the case of Rf! that commutes with colimits but not with any limit.

We have to use a process of left Kan extension to solve this, this can only be done in the
∞-categorical setting → since Rf! has to commute with colimits this has to commute with
left Kan extensions.

Definition 1.3. Let Dét,prop/Y(X,Λ) be the presentable stable ∞-category of A ∈
Dét(X,Λ) such that there exists U ⊂ X such that U → Y is qc. and j!j

∗A
∼−−→ A.

The funtor Rf! is the left Kan extension of

R(f
/Y

)∗ ◦ j! : Dét,prop/Y(X,Λ) −→ Dét(Y,Λ)

to Dét(X,Λ).

→ for A ∈ Dét(X,Λ), since X → Y is taut

can write A = lim−→i
Ai (filtered colimit as a complex of v-sheaves) with ki!k

∗
iAi

∼−−→ Ai with ki :

Ui ↪→ X and Ui → Y qc.. Take simply Ai = ki!k
∗
iA.

Then,

Rf!A = lim−→
i

R(f|Ui

/Y
)∗ji!Ai︸ ︷︷ ︸

homotopy colimit

where ji : Ui ↪→ Ui
/Y

and f|Ui

/Y
: Ui

/Y → Y proper. Here the homotopy limit is only defined
up to a non-canonical isomorphism in the usual triangulated category Dét(Y,Λ)→ this defines

Rf!A only up to a non-canonical isomorphism as a cone︸ ︷︷ ︸
not defined canonically

, if Bi = R(f|Ui

/Y
)∗ji!Ai

⊕
i≤j

Bi −→
⊕
i

Bi −→ lim−→
i

Bi
+1−−−→

To have a definition of Rf! as a functor we need to upgrade to ∞-categories where this limit,
the so-called process of Kan extension, is defined canonically.

1.3. Rf! for f representable in locally spatial diamonds. Let f : X −→ Y be a
morphism of small v-stacks representable in locally spatial diamonds compactifiable of finite
dim. trg..

We use the preceding with the proper base change theorem to construct Rf!. Let

T• −→ Y

be a v-hypercover with Tn a locally spatial diamond for all n. We note

S• = X×Y T•.
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One has (S 7→ Dét(S,Λ) is a v-hypersheaf on loc. spatial diamonds)

Dét(X,Λ)
∼−−→ lim←−

[n]∈∆
Dét(Sn,Λ)

Dét(Y,Λ)
∼−−→ lim←−

[n]∈∆
Dét(Tn,Λ).

For each n ≥ 0, we have the ∞-functor

Rfn! : Dét(Sn,Λ) −→ Dét(Tn,Λ).

Proper base change (that is an immediate application of quasi-compact base change) implies
this extends to an ∞-functor

Rf! : lim←−
[n]∈∆

Dét(Sn,Λ) −→ lim←−
[n]∈∆

Dét(Tn,Λ).

All of this being done, proper base change applies

Theorem 1.4 (proper base change). f : X −→ Y morphism of small v-stacks repre-
sentable in loc. spatial diamonds compactifiable of finite dim. trg., Λ killed by a power
of ℓ ̸= p. Cartesian diagram of small v-stacks

X′ Y′

X Y

g′

f ′

g

f

For all A ∈ Dét(X,Λ) one has

g∗Rf!A
∼−−→ Rf ′

! g
′∗A.

1.4. Rf !.

Rf! commutes with direct sums⇒ there exists a right adjoint Rf !. Let us be more precise
since this is a delicate point. Let f : X → Y is a compactifiable morphism of locally spatial
diamonds. Let (Ai)i∈I be a collection of objects in D+(Xét,Λ) satisfying

∃N ∈ Z, ∀i ∈ I, Ai ∈ D≥N (Xét,Λ).

Then it is easily checked ⊕
i∈I

Rf!(Ai)
∼−−→ Rf!

(⊕
i∈I

Ai

)
.

Suppose now that f is of finite dim. trg. and thus Rf! has cohomological degree bounded by
some integer c ∈ N. Then, for all i ∈ Z,

Hi(Rf!A) = Hi(Rf!τ≥i−cA)

and one deduces from the preceding case that Rf! commutes with arbitrary direct sums.
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Definition 1.5. For f : X −→ Y a morphism of small v-stacks representable in locally
spatial diamonds, compactifiable of finite dim. trg.

Rf ! : Dét(Y,Λ) −→ Dét(X,Λ)

is the right adjoint of Rf!.

2. Annexe: the catalog of operations

Cartesian diagram

X′ Y′

X Y

g′

f ′

g

f

where all morphisms are compactifiable representable in loc. spatial diamonds of finite dim.
trg.. Λ is killed by a power of ℓ ̸= p.

Relative tautological adjunction RH om(A,Rf∗B)
∼−−→ Rf∗RH om(f∗A,B)

Tautological base change map
(iso. if g qc qs: qc base change) f∗Rg∗ −→ Rg′∗f

′∗

Relative proper adjunction RH om(Rf!A,B)
∼−−→ Rf∗RH om(A,Rf !B)

Proper base change f∗Rg!
∼−−→ Rg′!f

′∗

Dual proper base change Rg′∗Rf ′! ∼−−→ Rf !Rg∗

Projection formula Rf!(f
∗A⊗L

Λ B)
∼−−→ A⊗L

Λ Rf!B

Expectational pull-back of Hom RH om(f∗A,Rf !B)
∼−−→ Rf !RH om(A,B)
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→ formulas are deduced from the proper base change and the projection formula. For
example, for the ”dual proper base change“,

Hom(A,Rf !Rg∗B) =︸︷︷︸
adjunction

Hom(g∗Rf!A,B) =︸︷︷︸
proper BC

Hom(Rf ′
! g

′∗A,B)

=︸︷︷︸
adjunction

Hom(A,Rg′∗Rf ′
!B)

and thus Yoneda ⇒ the result. The same goes on for the exceptional pullback of Hom.

3. Cohomologically smooth morphisms

3.1. Definition. → The definition of coho. smooth morphisms is more subtle than what
one may think: we have to force the property to be stable under base change. Here ℓ ̸= p.

Definition 3.1. Let f : X −→ Y be a separated morphism of small v-stacks repre-
sentable in locally spatial diamonds. Then, f is ℓ-coho. smooth if

(1) it is compactifiable of finite dim. trg.,
(2) for any S → Y with S strictly totally disconnected, if

fS : X×Y S −→ S

then there exists D ∈ Dét(X×Y S,Fℓ) invertible and an isomorphism of func-
tors from Dét(S,Fℓ) to Dét(X×Y S, ,Fℓ),

Rf !
S(−) ≃ D ⊗Fℓ

f∗
S(−).

→ For any f as before there is a natural morphism obtained by playing with the different
adjunctions

Rf !(Λ)⊗L
Λ f∗(−) −→ Rf !(−)

Then f is ℓ-coho. smooth iff for all S → Y with S a s.t.d. perf. space,

(1) Rf !
S(Fℓ)⊗ f∗

S(−) −→ Rf !
S(−) is an iso.

(2) Rf !
SFℓ is invertible.

→ here invertible with respect to the monoidal structure ⊗L
Λ is in fact equivalent to étale

locally iso. to Fℓ[2d] for some d ∈ 1
2Z that we call the dimension of f as a locally constant

function on |S|.

Can descend the preceding and prove:

Theorem 3.2. Let f : X → Y be separated ℓ-coho. smooth. Then, if Λ is killed by a
power of ℓ,

Rf !(Λ)⊗L
Λ f∗(−) ∼−−→ Rf !(−)

as functors from Dét(Y,Λ) to Dét(X,Λ), and Rf !Λ is invertible in Dét(X,Λ). More-
over, the formation of Rf !(Λ) is compatible with base change.
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→ now the function ”dimension of f“ is a locally constant function |X| → 1
2Z.

3.2. Examples.

3.2.1. First easy examples.

Example 3.3. (1) Any loc. separated étale morphism of loc. spatial diamonds is
ℓ-coho. smooth

(2) Any perfectoid ball Bd → ∗ is ℓ-coho. smooth
(3) f : X → Y smooth morphism of (K,K+)-adic spaces loc. of finite type implies

f⋄ : X⋄ → Y ⋄ is ℓ-coho. smooth (Huber)
(4) k discrete field, Spd(k(T )) → Spd(k) is ℓ-coho. sm. since representable in

annuli Spa(R⟨T±p−∞⟩, R+⟨T±p−∞⟩)→ Spa(R,R+).

3.2.2. Open BdR-Schubert cells.

Example 3.4. G split reductive gp. over E. For a dominant coweight µ let

GrµBdR
−→ Spa(E)⋄

be the open Schubert cell of the BdR-affine Grassmanian. Then this is an ℓ-coho.
smooth morphism.

→ use Bialynicki-Birula morphism

GrµBdR
−→︸︷︷︸

iterated loc. trivial
fibration in A1,⋄

( G/Pµ︸ ︷︷ ︸
flag variety
smooth/E

)⋄ −→ Spa(E)⋄

3.2.3. Quotient by a pro-p group.

Here is a new example where we leave the ”usual world“ of rigid spaces even further.

Proposition 3.5. Let f : X −→ Y representable in loc. spatial diamonds. K = pro-p
group such that K acts on X over Y and K × X→ X×Y X is qc. 0-truncated.
Then,

X→ Y ℓ-coho. smooth =⇒ X/K → Y ℓ-coho. smooth.

One has to be careful that X→ X/K is not ℓ-coho. smooth in general (unless K is finite
in which case this is finite étale)

Let P be a profinite set. Then P −→ ∗ = Spa(Fp) is not ℓ-coho. smooth unless P is
finite.
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→ for S a perfectoid space

Dét(P × S,Λ) = Dét(S, C (P,Λ)︸ ︷︷ ︸
loc. constant
functions

)

and

Dét(P ,Λ) = D(C (P,Λ)).

Let f : P −→ ∗.
• The functor Rf∗ : D(C (P,Λ))→ D(Λ) is the evident one given by the morphism of
rings Λ→ C (P,Λ).
• The functor f∗ is −⊗L

Λ C(P,Λ).
• f is proper and thus Rf∗ = Rf!
• One has Rf !(−) = RHomΛ(C (P,Λ),−).

In particular, Rf !Λ = D(P,Λ) = distributions on P with values in Λ as a C (P,Λ)-module
→ projective of finite type iff P is finite.

Example 3.6. ∗ = Spa(Fq). Then Spa(Ĕ)⋄ → ∗ is ℓ-coho. smooth and

Div1︸︷︷︸
moduli of deg. 1

eff. divisors
on the curve

= Spa(Ĕ)⋄/φZ −→ ∗

is proper ℓ-coho. smooth.

→ Ĕ∞ completion of the extension generated by torsion points of a LT group = perfectoid
field with Ĕ♭

∞ = Fq((T
1/p∞)). Then, Spa(E♭

∞) → ∗ is ℓ-coho. smooth since representable in
perfectoid open punctured disks. Thus,

Spa(Ĕ♭
∞) Spa(Ĕ)⋄ Spa(E♭

∞)/O×
E Spa(Ĕ♭

∞)/1 + πOE ∗

ℓ-coho. sm.

not ℓ-coho.
sm.

ℓ−coho. sm.

finite étale
ℓ-coho. sm.
by Prop. 3.5

→ as an application finds back Tate-Nakayama duality for finite Gal(E|E)-modules killed by
a power of ℓ.

Example 3.7 (Ivanov, Weinstein). Let X ≃ B̊d−1

Ĕ
be the generic fiber of Lubin-Tate space

associated to GLd and (XK)K⊂GLd(OE) → X be Lubin-Tate tower. Let X∞ = lim←−K
XK , a

perfectoid space over Spa(Ĕ∞). Then, for each K, X⋄
K → Spa(Ĕ)⋄ is ℓ-coho. smooth as the



56 5. 5TH LECTURE: JUNE 21 2023

diamond of a smooth morphism of rigid spaces. But going to the limit, X♭
∞ → Spa(Ĕ♭

∞) is not
ℓ-coho. smooth. In fact, as an application of the Jacobian criterin of smoothness Ivanov and
Weinstein prove that the (partially proper) open subset U ⊂ X∞ where there is no complex

multiplication is such that U ♭ → Spa(Ĕ♭
∞) is ℓ-coho. sm..

3.2.4. BC spaces.

→ linear case of the Jacobian criterion of smoothness

Theorem 3.8 (Linear case of the Jacobian criterion).

(1) E a v.b. on XS such that ∀s ∈ S, E|XK(s),K(s)+
has > 0 H.N. slopes. Then

BC(E ) −→ S

is ℓ-coho. smooth of dim. deg(E )
(2) E a v.b. on XS such that ∀s ∈ S, E|XK(s),K(s)+

has < 0 H.N. slopes. Then

BC(E [1]) −→ S

is ℓ-coho. smooth of dim. −deg(E )

→ For point (1), we prove that up to replacing S by an étale cover, one can find an exact
sequence 0 → E ′ → E ′′ → E → 0 where E ′′ is ≃ to ⊕iO(λi) with 0 < λi ≤ 1 and E ′ is
fiberwise s.s. of slope 0. ⇒ after replacing S by a s.t.d. perf. space BC(E ) is a quotient of
an open perfectoid ball by the action of En for some n ≥ 0,

B̊1/p∞,d
S B̊1/p∞,d

S /On
E B̊1/p∞,d

S /En BC(E )

S

ℓ-coho.sm.
ℓ-coho.sm.

by Prop. 3.5

étale

ℓ-coho.sm.

3.3. Openness of smooth morphisms.

The following is quite important.

If f : X→ Y is a morphism of small v-sheaves representable in locally spatial diamonds,
separated ℓ-coho. smooth morphism then Im(f) ⊂ Y is represented by an open sub-
stack.

→ We will give the proof later using constructible sheaves.

This result is quite important for the following reason.
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Corollary 3.9. Let X be a small v-stack and consider a family (Ui → X)i∈I of
morphisms toward X where each Ui is a locally spatial diamond, Ui → X is representable
in locally spatial diamonds separated ℓ-coho. smooth. Then, the family (Ui → X)i∈I is a
v-cover if and only if and only if it is ”in the näıve sense“ that is to say

∐
i∈I |Ui| → |X|

is surjective !

4. Smooth base change

Start with
f : X −→ Y

a 0-truncated morphism of small v-stacks and let A ∈ Dét(X,Λ). As we said before, it is
difficult to compute

Rf∗A ∈ Dét(Y,Λ)

in general unless f is qc qs (quasi-compact base change). There is another case that is very
useful and allows us to compute this in terms of ”smooth charts“.

Proposition 4.1 (Smooth base change). Consider a cartesian diagram

X′ Y′

X Y

g′

f ′

g

f

where

• f is a 0-truncated morphism of small v-stacks,
• g is representable in locally spatial diamonds separated ℓ-coho. sm.

Then, for any A ∈ Dét(X,Λ),

g∗Rf∗A
∼−−→ Rf ′

∗g
′∗A.

Proof. Use the ”dual proper base change formula”

Rf ′
∗Rg′!A

∼−−→ Rg!Rf∗A

coupled with g and g′ separated ℓ-coho. smooth and Dg′
∼−−→ f ′∗Dg. □

In the same vein, we have the smooth base change of Hom’ using the exceptional pull-back
of Hom’s

Proposition 4.2 (Smooth base change of Hom). For f : X → Y a separated ℓ-coho.
smooth of small v-stacks and A,B ∈ Dét(Y,Λ) one has

f∗RH omΛ(A,B)
∼−−→ RH omΛ(f

∗A, f∗B).
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5. Artin v-stacks

5.1. The example of classifying stacks.

Recall: ∗ = Spa(Fq).

Proposition 5.1. Let G be an affine algebraic group over E and X = [∗/G(E)] seen
as a small v-stack. Its diagonal is representable in loc. spatial diamonds and there
exists f : U → X v-surjective with

(1) U a locally spatial diamonds
(2) f v-surjective
(3) f separated ℓ-coho. smooth.
(4) U → ∗ separated ℓ-coho. smooth.

→ Take U = Gad,⋄/K → [∗/G(E)] for K ⊂ G(E) open pro-p:

Gad,⋄/K [Spa(E)/K] [∗/K] [ ∗ /G(E)]

∗

ℓ-coho. sm.
since Gad→Spa(E)

sm.⇒Gad,⋄→Spa(E)⋄

ℓ-coho. sm.

ℓ−coho. sm.
since Gad,⋄→∗
is ℓ-coho. sm.
+Prop. 3.5

ℓ-coho. sm. since
Spa(E)⋄→∗ is
ℓ-coho. sm. separated étale

5.2. Artin v-stacks.

5.2.1. Definition.

→ Leads to the following definition.

Definition 5.2. An artin v-stack is a small v-stack X s.t.

(1) Its diagonal is representable in loc. spatial diamonds
(2) The exists a locally spatial diamond U and a separated surjective ℓ-coho. sm.

morphism U → X.

→ if one can take U → ∗ ℓ-coho. sm. we say that X is ℓ-coho. smooth. If this is the
case then this is true for any U → X that is ℓ-coho. sm.. One can then define its dualizing
complex DX as an invertible object in Dét(X,Λ) canonically.
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Theorem 5.3. The small v-stack BunG of G-bundles on the curve is an Artin v-stack
ℓ-coho. sm. with DBunG ≃ Λ.

Proof. Suppose G is split to simplify. Fix µ a dominant coweight. Beauville-Laszlo
morphism

BLµ : GrµBdR
−→ BunG × Spa(E)⋄

induces an ℓ-coho. smooth morphism

[G(E)\GrµBdR
] −→ BunG × Spa(E)⋄.

□

5.2.2. Cohomological operations on Artin v-stacks using smooth charts.

For a 0-truncated morphism of Artin v-stacks

f : X→ Y

and A ∈ Dét(X,Λ), Rf∗A is computable using the smooth base change theorem and smooth
charts. More precisely, if V is a locally spatial diamond and V → Y is separated ℓ-coho.
smooth then if

fV : U := X×Y V −→ V

one has

(Rf∗A)|V = R(fV )ét∗
(

A|U︸︷︷︸
∈“D(Uét,Λ)

)

and
(fV )ét : Uét −→ Vét

is the morphism of small étale sites induced by fV . One can even go further:

In the same vein, if X is an Artin v-stack one can compute smooth locally RH om(A,B)
for A,B ∈ Dét(X,Λ). In fact, if U → X is separated ℓ-coho. smooth with U a locally spatial
diamonds then

RH omΛ︸ ︷︷ ︸
abstract RH omΛ

defined for any small
v-stack

(A,B)|U = RH omΛ︸ ︷︷ ︸
usual concrete

RH omΛ in D(Uét,Λ)

(A|U , B|U )





CHAPTER 6

6th Lecture: June 23 2023

1. Constructible sheaves and complexes

1.1. Constructible sheaves on spectral spaces. X = spectral space. Λ = Noetherian

Recall:

constructible sets

Boolean algebra generated by quasi-compact open subsets

∐
finite locally closed constructible sets︸ ︷︷ ︸

U∖V with U and V open qc.

→ Xcons = topology generated by constructible subsets = topology whose closed subsets
are the pro-constructible subsets.

= compact totally disconnected space i.e. profinite space whose closed/open subsets are
exactly the constructible subsets of X.

Definition 1.1. A sheaf of Λ-module F on the spectral space X is constructible if
there exists a finite partition of X, X =

⋃
i Zi, in locally closed constructible subsets

such that for all i, F|Zi
is a constant sheaf with value a Λ-module of finite type.

→ sub-abelian category of the category of sheaves of Λ-modules on X
→ F is constructible iff it is a successive extension of j!M where j : Z ↪→ X with Z loc.

closed constructible and M of finite type. Thus, ShvΛ(X)cons = thick sub-category generated
by the j!M as before.
→ F is constructible iff its pullback to Xcons is locally constant, locally isomorphism to

a finite type Λ-module

Remark 1.2. If X is a spectral space and Z ⊂ X constructible then Z is a nbd. of
any maximal point of X lying in Z. In fact, if x is such a point, {x} = Xx. And thus
∩U∋x(U ∩X ∖ Z) = ∅ where U is a qc open nbd. of x. Since U ∩X ∖ Z is constructible, the
compacity of Xcons then implies that a finite sub-intersection is empty.
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For example, if X = |Spa(A,A+)| where A is topologically of finite type over a non-
archimedean field K then any Tate classical point of X that is contained in Z has a neigh-
borhood contained in Z. For example, if Z ⊂ |Bd

K | containing the origin 0 then Bd(0, ε) ⊂ Z
for some ε > 0.

Proposition 1.3.

(1) The constructible sheaves are exactly the compact objects of the category
ShvΛ(X)

(2) Any sheaf of Λ-modules is a filtered colimit of constructible sheaves and

lim−→ : Ind
(
ShvΛ(X)cons︸ ︷︷ ︸

Ind-category

) ∼−−→ ShvΛ(X).

One of the great properties of constructible sheaves is the following.

Proposition 1.4. If X = lim←−i
Xi with Xi spectral and the transition morphisms are

qc qs then
2− lim−→

i

ShvΛ(Xi)cons
∼−−→ ShvΛ(X)cons.

At the end for any X spectral one can write X = lim←−i
Xi with Xi a finite (T0) space.

Then,

Ind
(
2− lim−→

i

ShvΛ(Xi)︸ ︷︷ ︸
sheaves on a finite ordered set

)
∼−−→ ShvΛ(X)

→ combinatorial description of sheaves of Λ-modules on X.

1.2. Background on overconvergent étale sheaves. X=spatial diamond.

Definition 1.5. F an étale sheaf on X is overconvergent if ∀x̄ a geometric point of
X and ∀ȳ a generalization of x̄,

Fx̄
∼−−→ Fȳ.

This is equivalent to saying that

∀x̄ : Spa(C,C+) −→ X,

the sheaf
x∗F

on |Spa(C,C+)| is constant.
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Recall that if S is a spectral space such that for all s ∈ S, Ss is a chain then S has a
biggest Hausdorff quotient

SB︸︷︷︸
Berkovich quotient

=compact
Hausdorff

= S/ ∼

where ∼ is the equivalence relation generated by the specialization order. Equivalently,

s ∼ t⇐⇒ smax = tmax

where smax is the maximal generalization of s (if S is the top. space of an analytic adic space
and Ss = |Spa(K(s),K(s)+)| then smax is the maximal point of Spa(K(s),K(s)+) given by
the rank 1 valuation Spa(K(s),OK(s)). The quotient map

β : S −→ SB

induces

{sheaves on SB} {overconvergent sheaves on S}

{
sheaves F on S s.t. ∀U ⊂︸︷︷︸

q.c.
open

X, lim−→
V⊂X open

U⊂V

F (V )
∼−−→ F (U)

}

β∗

∼

Example 1.6. If S = |Spa(A,A+)| with (A,A+) an affinoid Tate ring. Then a sheaf F
on S is overconvergent iff ∀f1, . . . , fn ∈ A that generate the unit ideal, ∀g ∈ A,

lim−→
k≥1

Γ
(
S
〈ϖfk

1 , . . . , ϖfk
n

gk

〉
︸ ︷︷ ︸

basis of nbd. of

S⟨ f1,...,fn
g

⟩
S

when k varies

,F
)

∼−−→ Γ
(

S
〈f1, . . . , fn

g

〉
︸ ︷︷ ︸
rational open subset

,F
)

If

S︸︷︷︸
s.t.d.

perf. space

quasi-pro-étale
surjective−−−−−−−−−−→ X

then the overconvergent étale sheaves on X are identified with the sheaves F on Xét such
that F|S comes from a sheaf on |S|B.

There is a partially proper étale site together with a continuous morphism of sites

π : Xét −→ Xp.p.ét
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that induces an equivalence of topoi‹Xp.p.ét
∼−−→

{
overconvergent sheaves on Xét

}
Thus, we have the following equivalent description of overconvergent étale sheaves.

Étale sheaves F on X satisfying Fx̄
∼−−→ Fȳ if x̄ ≤ ȳ

Étale sheaves F on X satisfying: F|S comes from a sheaf on the
Berkovich spectrum
|M(R)| = SB

if Spa(R,R+) = S −→ X is a quasi-pro-étale cover
with S a strictly totally disconnected perf. spaces

Sheaves on the partially proper étale site of X

1.3. Étale constructible sheaves on spatial diamonds.

X = spatial diamond. Λ Noetherian.

Definition 1.7. F a sheaf of Λ-modules on Xét is constructible if ∀S → X with S a
s.t.d. perf. space, F|S is constructible as a sheaf on |S|.

Proposition 1.8.

(1) F constructible ⇔ ∃ finite partition |X| =
⋃

i Zi with Zi loc. closed con-
structible and ∀f : S → X with S s.t.d. perf. space, ∀i, F|f−1(Zi) is isomor-
phic to M with M a finite type Λ-module

(2) F constructible ⇔ F is a compact object of ShvΛ(Xét)

(3) ShvΛ(Xét) is compactly generated and

lim−→ : Ind
(
ShvΛ(Xét)cons

)
∼−−→ ShvΛ(Xét)

(4) If X = lim←−i
Xi, a cofiltered limit with qc transition morphisms of spatial dia-

monds,
2− lim−→

i

ShvΛ(Xi,ét)cons
∼−−→ ShvΛ(Xét)cons
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Example 1.9. Consider X = B1,⋄
K the 1-dim. closed ball over the non-archi. field K and

j : (B1
K ∖ {0})⋄ ↪→ B1,⋄

K the inclusion of the punctured ball. For a radius ρ ∈]0, 1[∩|K| let
jρ : {ρ ≤ |z| ≤ 1}⋄ ↪→ B1,⋄

K be the inclusion of the qc annulus with radii {ρ, 1}. Then

j!Λ = lim−→
ρ→
>
0

jρ!Λ

is a writing of j!Λ as an ind-constructible étale sheaf on B1,⋄
K .

Here is a key remark/application.

Lemma 1.10 (loc. systems=overconvergent constructible sheaves). Let F ∈
ShvΛ(Xét). The following are equivalent:

(1) F is constructible and overconvergent
(2) F is étale locally isomorphic to M with M a finitely generated Λ-module

Proof. For x ∈ X one has

Spa(K(x),K(x)+) = lim←−
U∋x

open aff. perf.
nbd. of x

U

and thus

2− lim−→
U∋x

open aff. perf.
nbd. of x

ShvΛ(Uét)cons
∼−−→ ShvΛ(Spa(K(x),K(x)+)ét)cons.

Now, F overconvergent exactly means that for all x ∈ X, if x : Spa(K(x),K(x)+)→ X, then
x∗F is étale locally constant. □

Here is another example.

Example 1.11. Let F be constructible on Xét. Then, F is locally constant in any
nbd. of a maximal point of |X|. For example, if X = Y ⋄ where Y is a qc qs rigid
analytic analytic space then any étale constructible sheaf on Y is locally constant on an
open subset U of Y containing all maximal points and in particular all classical Tate
points of Y .

→ This is where Berkovich theory breaks down: does not see the difference between
constructible sheaves and local systems

1.4. Étale perfect-constructible complexes on spatial diamonds. X =spatial di-
amond. Any Λ.
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Definition 1.12. An object A ∈ Dét(X,Λ) is perfect constructible if ∀S → X with S a
s.t.d. perf. space there exists a finite partition |S| =

⋃
i Zi in loc. closed cons. subsets

such that for all i, ( A|S︸︷︷︸
∈D(|S|,Λ)

)|Zi
is constant with value a perfect complex of Λ-modules

via D(Λ)→ D(Zi,Λ).

One can characterize them in sheafy/fiberwise terms and descend the stratification along
which they are loc. cst..

Proposition 1.13.

(1) The object A ∈ Dét(X,Λ) is perfect constructible iff
(a) it is bounded,
(b) ∀i ∈ Z, Hi(A) is a constructible étale sheaf on X,
(c) ∀x : Spa(C,C+)→ X, x∗A ∈ D(Λ) is a perfect complex.

(2) The object A ∈ Dét(X,Λ) is perfect constructible iff there exists a finite strat-
ification |X| =

⋃
i Zi by loc. closed constructible subsets s.t. ∀f : S → X with

S s.t.d. perf. space s.t. ∀i,
(

A|S︸︷︷︸
∈D(|S|,Λ)

)
|f−1(Zi)

is constant with value a perfect

complex of Λ-modules.

Remark 1.14. One has to be careful that for Z ⊂ |X| locally closed constructible, Z does
not define a ”sub-spatial diamond“ of X (unless it is open) and the expression ”A|Z“does
not make any sense. The only sub-spaces of |X| defining sub-spatial diamonds are the pro-
constructible generalizing subsets.

Let us come to the main point why we are interested in perfect constructible complexes
and the way they will be related to our cohomological operations.

Proposition 1.15. Let X be a spatial diamond satisfying: ∃N ∈ N s.t. ∀U → X
separated étale qc, ∀F ∈ ShvΛ(Xét), H

i
ét(U,F ) = 0 for i > N .

Then,
Dét(X,Λ) = D(Xét,Λ)

i.e. D(Xét,Λ) is left complete and Dét(X,Λ) is compactly generated with compact
objects the perfect constructible étale complexes.

→ the finite coh. dimension hypothesis is satisfied if for example there exists f : X → S
qc. of finite dim. trg. with S a s.t.d. perf. space.

Finally this has a description as successive extensions of some ”simple“ perfect con-
structible objects.
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Proposition 1.16. For X a spatial diamond, the triangulated category

Dét(X,Λ)p.c.

is the thick triangulated sub-category generated by the objects

j!L

where j is the inclusion of a locally closed constructible subset Z of |X| and L an
object of Dét(U,Λ), U an open nbd. of Z, étale locally isomorphic to a perfect complex
of Λ-modules.

→ One has to be careful in the preceding statement: such a Z has no structure of a spatial
diamond, unless it is open, and j!L is a notation for j′!i∗i

∗L where Z ⊂ U , j′ : U ↪→ X,
i : Z ↪→ X and i∗i

∗L is a notation for an object sitting in an exact triangle

i∗i
∗L → L → k!k

∗L
+1−−→

where k : U \ Z ↪→ U .





CHAPTER 7

7th Lecture: June 30 2023

1. First applications of étale perfect constructible complexes

1.1. Toward f-ULA complexes.

Proposition 1.1. Let f : X → Y be a separated ℓ-coho. smooth morphism of spatial
diamonds. Then, for A ∈ Dét(X,Λ) perfect constructible, Rf!A is perfect constructible.

Proof. Using the proper base change theorem we can base change and suppose that Y
is a s.t.d. perf. space. It then suffices to prove that Rf!A is compact. But this follows from
the fact that since f is ℓ-coho. sm. Rf! has a right adjoint that commutes with direct sums
and the fact that A is compact and thus Hom(A,−) commutes with direct sums. □

→ Key lemma

Lemma 1.2 (Neeman). Let F be an additive functor between additive categories admit-
ting arbitrary direct sums. If F as a right adjoint that commutes with arbitrary direct
sums then F sends compact objects to compact objects.

Proposition 1.3. Let f : X −→ Y be a proper ℓ-coho. smooth morphism of spatial
diamonds and F ∈ Dét(X,Λ) be étale locally isomorphic to M where M is a perfect
complex of Λ-modules. Then, Rf∗F is étale locally isomorphic to the constant complex
associated to a perfect complex of Λ-modules.

Remark 1.4. Proposition 1.3 remains true under the weaker assumption that F is perfect
constructible and ”overconvergent along f“ in the sense that ∀y, y′ ∈ Y with y ≥ y′, if
j : Xy ↪→ Xy′ then F|Xy′

∼−−→ j∗(F|Xy
). Using qc. base change this is equivalent to ∀x̄,

∀s̄ ≥ f(x̄),

Fx̄
∼−−→ Γ(Xx̄ ×Sf(x̄)

Ss̄,F ).

69
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1.2. Openness of cohomologically smooth morphisms.

Corollary 1.5. Separated ℓ-coho. smooth morphisms are open.

Proof. Let f : X → S be a separated ℓ-coho. smooth morphism of spatial diamonds.
Since the image of f is generalizing it suffices to prove it is constructible. since f is qc
separated ℓ-coho. smooth,

A = Rf!Rf !Fℓ

is perfect constructible. Let us prove that

Im(|f |) = {s ∈ S | As̄ ̸= 0}

where s̄ is a geo. point over s. The formation of A is compatible with base change on S and
thus we can suppose that S = Spa(C,C+). Then, As̄ is RΓ(S,Rf!Rf !Fℓ). Suppose that the
closed point s of S is not in the image of f . Then, f factorizes as j ◦ g where j : S \ {s} ↪→ S.
Thus, Rf! = j!Rg!. But since any non-empty closed subset of S contains s, Γ(S,−) ◦ j! = 0.
We thus have As̄ = 0.

Suppose now that s is in the image of f . One computes, using the cohomological smooth-
ness of f ,

Rf!Rf !j!Fℓ = j!j
∗Rf!Rf !Fℓ.

In particular, if one has a distinguished triangle

j!j
∗A→ A→ B

+1−−−→

then B is concentrated on {s} with stalk As̄ at s. But now,

Hom(B,Fℓ) = Hom(Rf !i∗Fℓ, Rf !i∗Fℓ)

where i∗Fℓ is a notation for a cone of j!Fℓ → Fℓ. This is identified with endomorphisms of
the étale local system Rf !Fℓ restricted to f−1(s). Since f−1(s) ̸= ∅ the identity is such a
non-zero endomorphism and B ̸= 0. □

2. f-ULA complexes: the classical scheme case

Motivation: If S is a base scheme and f : X → S is a finite presentation morphism of
schemes, the question is ”What is a family of coherent sheaves parametrized by X?“
The answer given by Grothendieck is: this is a coherent sheaf on X that is flat over
S. Another question is ”What is an étale complex of Λ-modules parametrized by X?“
The answser is ”this an f -ULA étale complex on X“.

Here Λ is a Noehterian ring killed by a power of ℓ invertible on our schemes. All our
schemes are qc qs.

If X is a scheme we note

Dét(X,Λ)

for the left completion of D(Xét,Λ), that is equal to D(Xét,Λ) if for example X is of finite
type over a field k satisfying cdℓ(k) < +∞.
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Recall the following definition. For a scheme S and a geometric point s̄ of S we note
Ss = Spec

(
OS,s̄︸︷︷︸

strict henselization
at s̄

)
. If s̄ : Spec(K)→ S with K separably closed,

Ss̄ = lim←−
U

Spec(K) S

étale
s̄

U

the étale localization of S at s̄. This is the spectrum of the strict Henselization of S at s̄.

Recall that a specialization s̄′ of s̄ is the datum of a geometric point s̄′ of S together with
a factorization of s̄ : Spec(K)→ S via Ss̄′ → S. This is possible if and only if s ≥ s′ as point
of S. There is then induced a canonical pro-étale morphism

Ss̄ −→ Ss̄′

For any étale sheaf F on S, its stalk at s̄ is

Fs̄ = Γ(Ss̄,F|Ss̄
).

Since Ss̄ is the spectrum of a strictly Henselian ring, Γ(Ss̄,−) is exact and for A ∈ Dét(X,Λ),
Γ(Ss̄, ASs̄) = RΓ(Ss̄, A|Ss̄

) is the complex of stalks of A at s̄, As̄. There is a specialization
map

Fs̄′ −→ Fs̄.

Recall that a complex A ∈ Db
ét(X,Λ) with constructible cohomology is étale locally con-

stant on X if and only if for all geometric point x̄ of X together with a specialization x̄′,

Ax̄′
∼−−→ Ax̄

i.e. all specialization maps are isomorphisms.

We now use the following notation

Dét(X,Λ)p.c.︸ ︷︷ ︸
perfect constructible

complexes

is the subcategory of Dét(X,Λ) formed by complexes that are bounded with constructible
cohomology sheaves and whose stalks at geometric points are perfect complexes of Λ-modules.
When Dét(X,Λ) = D(Xét,Λ) those are exactly the compact objects of Dét(X,Λ).
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Definition 2.1 (Classical defintion of ULA complexes). Let f : X → S be a finite
presentation morphism of schemes.

(1) A complex A ∈ Dét(X,Λ) is f -locally acyclic if it is perfect constructible and
∀x̄ a geometric point of X, ∀s̄ a generalization of f(x̄) there is an isomorphism

Ax̄ = RΓ(Xx̄, A)
∼−−→ RΓ(Xx̄ ×S ¯f(x)

s̄, A).

(2) A is f -universally locally acyclic if it is locally acyclic after any base change
S′ → S.

Remark 2.2. We wrote Xx̄×S ¯f(x)
s̄ for the pullback via s̄ : Spec(L)→ Sf(x̄) of Xx̄ → Sf(x̄).

Thus, RΓ(Xx̄×S ¯f(x)
s̄, A) is the étale cohomology of the L-scheme Xx̄×S ¯f(x)

s̄ with coefficients

in (the pullback of) A.

Remark 2.3. When S is a curve this is equivalent to ∀s̄ a geometric closed point of
S, if Xs̄ = X ×S Ss̄, for a choice η̄ of a geometric point over the generic point of Ss̄

RΦη̄(A|Xs̄
) = 0 in Dét(X ×S Spec(k(s̄)))

where RΦ is the vanishing cycle functor

RΦη̄ : Dét(Xs̄,Λ) −→ Dét(X ×S Spec(k(s̄)),Λ).

→ locally acyclic complexes are a generalization of complexes without vanishing cycles
when the base is a curve. Terminology locally acyclic=”without any vanishing cycles“

In fact one can verify the following.

Proposition 2.4. A perfect constructible is f -ULA if and only if for every morphism
g : Spec(V )→ S with V a Henselian rank 1 valuation ring and a choice of a separable
closure of Frac(V ),

RΦη̄

(
A|X×SSpec(V )

)
= 0.

Example 2.5. A complex A ∈ Db
c(Xét,Λ) is f -ULA for f = Id if and only if A is étale

locally constant.

→ ULA complexes are some kind of relative notion for locally constant.
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Spec(K) X ×S s̄ X ×S Spec(V ) Xη̄

s̄ Spec(V ) η̄

x̄

closed
géà. point

ī j̄

Ax̄
∼−−→

(
ī∗Rj̄∗(A|Xη̄

)
)
x̄

= RΓ
((

X ×S Spec(V )
)
x̄
[1t ], A

)
︸ ︷︷ ︸

cohomology of the schematical
Milnor fiber over x̄

= RΓ
(

sp−1(x̄)︸ ︷︷ ︸
rigid analytic
Milnor fiber
as a tube

,
(
A|X ˆ̄η

)ad)

Recall now the following classical theorem. The first part implies the smooth base change
theorem.

Theorem 2.6. Let f : X → S be a smooth morphism of schemes.

(1) If A is an étale local system i.e. is étale locally isomorphic to M with M a
free Λ-module of finite type then A is f -ULA.

(2) Being ULA is smooth local on the source and on the target.

Remark 2.7. The fact that being ULA is smooth local implies ther is a ”good notion“ of
f -ULA complexes in Dét(X,Λ) where f : X→ Y is a finite type morphism of Artin stacks.

Let us note the following now. Proper base change implies that if we have a sequence

X
g−−→ Y

f−−→ S

and A ∈ Dét(X,Λ) that is f ◦ g-ULA then g proper ⇒ Rg∗A is f -ULA.

Example 2.8. If A is f -ULA and f is proper then Rf∗A is étale locally constant, étale
locally isomorphic to M• where M• is a perfect complex of Λ-modules.
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Theorem 2.9 (Gabber). LA implies ULA for finite type morphisms of Noetherian
schemes.
In particular, if A ∈ Dét,pc(X,Λ) where X is a finite type k-schemes, k a field, A is
ULA with respect to X → Spec(k) and thus for any k-scheme S, A|X×Spec(k)S is locally

acyclic relatively to X ×Spec(k) S → S.

Gaitsgory realized that ULA complexes behave well wrt to Verdier duality.

Theorem 2.10 (ULA complexes behave well with respect to Verdier duality). Let A
be f -ULA where f : X → S. Then,

(1) The formation of the Verdier dual DX/S(A) behaves well with respect to base
change: for S′ → S,

DX/S(A)|X×SS′ = DX×SS′/S′(A|X×SS′)

and A|X×SS′ is ULA relatively to X ×S S′ → S′

(2) For B ∈ Db
c(Xét,Λ) one has

DX/S(A)⊗L
Λ f∗B

∼−−→ RH omΛ(f
∗A,Rf !B)

.

→ this has lead at the end to a new ”Verdier duality point of view“ on ULA complexes

Theorem 2.11 (Verdier duality characterization of ULA complexes, Lu-Zheng). For
A ∈ Dét(X,Λ) one has if p1 and p2 are the two projections from X ×S X to X

A is f -ULA ⇐⇒
[
DX/S(A)⊠

L
Λ A

∼−−→ RH omΛ(p
∗
1A,Rp!2A)

]
⇐⇒ X

A−−→ S is a left adjoint in the 2-cat.of correspondences

→ second condition to be explained later
→ ”Compact“ definition, does not involve something like ”for any S′ → S...“ or ”∀Spec(V )→

S“, just one thing to test.
→ Let us cite as an example an immediate corollary of this point of view that is difficult

to obtain without it.
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Corollary 2.12. If A is f -ULA then it is dualizable, A
∼−−→ DX/S(DX/S(A)).

The following 3 definitions are then equivalent:

Classical definition (Grothendieck):

Complexes without vanishing cycles ∀ Spec( V︸︷︷︸
rank one

valuation ring

)→ S,

RΦη̄

(
A|X×SSpec(V )

)
= 0

Modern definition (Gaitsgory):
DX/S(A)|X×SS′ = DX×SS′/S′(A|X×SS′)

Complexes that behave nicely

with respect to Verdier duality DX/S(A)⊗L
Λ f∗B

∼−−→ RH omΛ(f
∗A,Rf !B)

universally /S

Ultra modern 2-categorical The 1-morphism X
A−→ S

super chic definition (Lu-Zheng) is a left adjoint in the
2-category of correspondences

Let us cite another example of application of this ULA formalism.

Corollary 2.13. Let f : X → S and g : Y → S be two morphisms of finite presenta-
tion and A ∈ Dét(X,Λ), B ∈ Dét(Y,Λ) be ULA over S. Then,

(1) A⊠L
Λ B is ULA over S and there is an isomorphism

DX/S(A)⊠L
Λ DY/S(B)

∼−−→ DX×SY/S(A⊠L
Λ B).

(2) One has the Künneth formula: if h : X ×S Y → S,

Rf∗A⊗L
Λ Rg∗B

∼−−→ Rh∗
(
A⊠L

Λ B
)
.

Point (2) is immediately deduced from point (1) by applying Künneth formula with com-
pact support (that is a formal consequence of the projection formula and is always true
without any ULA hypothesis) that implies

Rf!DX/S(A)⊗L
Λ Rg!DY/S(B)

∼−−→ Rh!
(
DX/S(A)⊠L

Λ DY/S(B)
)

and an application of RH om(−,Λ) + Point (1) + the biduality of ULA complexes.





CHAPTER 8

8th Lecture: July 4 2023

1. ULA complexes on locally spatial diamonds: the classical definition

1.1. First step of finding the classical definition: mimicking the classical defi-
nition. X a locally spatial diamond.

For x̄ : Spa(C,C+)→ X a geometric point we define

Xx̄

as for a scheme,

Xx̄ = lim←−
U

Spa(C,C+) S

separated étale

x̄

U

where U is a spatial diamond. If Y → X is quasi-pro-étale where Y is a perfectoid
space then we can lift x̄ to a geometric point ȳ : Spa(C,C+) → Y . Then, Yȳ

∼−−→ Xx̄ where

Yȳ = Spa
(’
K(y),

’
K(y)

+)
with y ∈ |Y | the image of the closed point of Spa(C,C+) and K(y)

the algebraic closure of K(y) inside C.

Suppose

f : X → S

is a morphism of locally spatial diamonds and

A ∈ Dét(X,Λ).

For such a x̄ let s̄ be a generalization of f(x̄) i.e. s̄ is a geometric point of Sf(s̄). There is a
diagram of strictly local perfectoid spaces

Xx̄

Spa(C,C+) Ss̄ Sf(x̄)

s̄

qc open
subset

77
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Since Λ is killed by a power of ℓ ̸= p, qc base chnage applies and there are maps

Ax̄ −→ RΓ(Xx̄ ×Sf(x̄)
Ss̄︸ ︷︷ ︸

qc open
subset of Xx̄
thus s.t.d.

, A) = Γ(Xx̄ ×Sf(x̄)
Ss̄, A)

∼−−→ RΓ(Xx̄ ×Sf(x̄)
Spa(C,C+), A)

→ the classical definition in terms of the cohomology of Milnor fibers translates here in
an overconvergence like statement:

Ax̄
∼−−→ Γ(Xx̄ ×Sf(x̄)

Ss̄, A)

→ this involves no ”higher degree cohomology classes“ since, contrary to schemes, any qc
open subset of a strictly local perf. spaces is strictly local

→ if R is a strictly Henselian local ring then, F an étale sheaf of abelian groups on
Spec(R), in general, there exists qc open subsets U of Spec(R) such that H i

ét(U,F ) ̸= 0 for
some i > 0.

→ the set of open subsets of Xx̄ is totally ordered ⇒ a sheaf on Xx̄ is the same as a
contravariant functor

F : {qc non-empty open subsets of Xx̄} → Sets

Then the preceding condition is that if U ⊂ V ⊂ Xx̄ are pullback of qc non-empty open
subsets of Sf(x̄) then

F (V )
∼−−→ F (U)

that is thus identified with F (Xx̄).

We now have the following Lemma.

Lemma 1.1. A is overconvergent along f after any base change/S iff A is overconvergent.

Proof. It suffices to take the base change Xx̄ → S. □

1.2. Second step of finding the classical definition: putting Verdier duality in
the machine.

→ contrary to schemes the preceding condition is not enough to define ULA: involves only
degree 0 cohomology classes

1.2.1. A first remark. Before going further let us remark the following: let

f : X → S

be as before and
A ∈ Dét(X,Λ)

satisfy the ”overconvergence along f“ condition of the preceding section. Let j : U → X
be a separated étale morphism of loc. spatial diamonds such that f ◦ j : U → X is qc qs.
Moreover, A|U is ”overconvergent along f ◦ j“.

Lemma 1.2. For such j : U → X, R(f ◦ j)∗(A|U ) ∈ Dét(S,Λ) is overconvergent.
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Proof. We can use the qc base change Theorem to compute
(
R(f ◦ j)∗(A|U )

)
s̄
. □

We can now come to the main point.

Lemma 1.3. Suppose that after any base change over S to a strictly totally disconnected
perfectoid space, for any B ∈ Dét(S,Λ) one has

DX/S(A)⊗L
Λ f∗B

∼−−→ RH om(A,Rf !B).

Then for any j : U → X separated étale such that f ◦ j is qc,

R(f ◦ j)!(A|U ) ∈ Dét(S,Λ)

is perfect constructible.

Proof. Using the proper base change Theorem we can suppose that S is a s.t.d. perf.
space. Replacing f by f ◦ j and A by A|U we can suppose that j = Id and f is qc and thus
X is qc. We then have for any B,

Hom(Rf!A,B) = H0(X,DX/S(A)⊗L
Λ f∗B).

Since X is qc we deduce that Rf!A is a compact object of Dét(S,Λ) and thus perfect con-
structible. □

Let us now remark that this ”perfect constructible“ property is compatible with the
following Lemma that will play an important role later.

Lemma 1.4 (Key ULA Lemma). Let X be a spatial diamond and A ∈ Dét(X,Λ) perfect
constructible. Then RH omΛ(A,Λ) is overconvergent and its formation is compatible
with base change: for f : X ′ → X a morphism of spatial diamonds,

f∗RH omΛ(A,Λ)
∼−−→ RH omΛ(f

∗A,Λ).

Proof. The complex A has a finite filtration whose graded pieces are of the form

j!L

where j : Z ↪→ X is locally closed constructible and L , defined in a nbd. of Z, is étale locally
constant associated to a perfect complex of Λ-modules. Then,

RH om(j!L ,Λ) = Rj∗L
∨

where L ∨ is étale locally constant associated to a perfect complex of Λ-modules. The result
is then a consequence of the qc base change Theorem that says this is j∗L ∨. □
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1.3. The classical definition of ULA.

f : X −→ S is a morphism of locally spatial diamonds, compactifiable locally of finite
dim.trg..

Definition 1.5 (Classical definition of ULA). A complex A ∈ Dét(X,Λ) is ULA if

(1) It is overconvergent
(2) after any base change over S, i.e. up to replacing S by S′, X by X ×S S′

and A by A|X×SS′ for S′ → S a morphism of loc. spatial diamonds, for any
j : U → X a separated étale morphism of loc. spatial diamonds such that f ◦ j
is qc,

R(f ◦ j)!(A|U ) ∈ Dét(S,Λ)p.c.
in the sense that is is perfect constructible when restricted to any spatial open
subsets.

→ contrary to the scheme case we don’t ask that A itself is p.c. and as a matter of fact,
in the cases we will consider this will almost never be the case. In fact since we ask that A
is overconvergent this would imply that A is étale locally constant and we don’t want to put
such a restriction.
→ there is a definition of LA complexes where we ask that A is only o.c. along f and

property (2) is satisfied only over S, not necessarily after any basce change, but we don’t need
it.
→ it is enough to check property (2) after base change to any s.t.d. perf. space.

1.4. Basic properties. The following is evident and shows that ULA complexes are a
natural generalization of local systems.

Proposition 1.6. The following is statisfied.

(1) If f is separated ℓ-coho. smooth then any complex étale locally constant with
value a perfect complex of Λ-modules is ULA.

(2) Being ULA is ℓ-coho. smooth local on the source and the target.

Proposition 1.7. Let

X
g−−→ Y

f−−→ S.

If A ∈ Dét(X,Λ) is f ◦ g-ULA and g is proper then Rg∗A is f -ULA.

Finally let us remark the following.
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Proposition 1.8. Let A be f -ULA, f : X → S, and B ∈ Dét(X,Λ)pc. Then for any
j : U → X separated étale such that f ◦ j is quasicompact then

R(f ◦ j)!((A⊗L
Λ B)|U )

is perfect constructible.

→ sufficient to do it for j!L , easy reduction.

Definition 1.9. Let X ba an Artin v-stack and A ∈ Dét(X,Λ). We say that A is ULA
(relatively to X→ ∗) if for one (and thus all) morphism

f : U −→ X

separated ℓ-coho. smooth surjective with U a locally spatial diamond, for all S a locally
spatial diamond,

(f∗A)|U×S ∈ Dét(U × S,Λ)

if ULA relatively to U × S → S.

1.5. An example. Let us prove the following as an exercise.

Theorem 1.10 (ULA ⇔ admissible for classifying stacks of locally pro-p groups). Let
G be an affine algebraic group over E. Let X = [∗/G(E)]. Then, via the equivalence

D(G(E),Λ)
∼−−→ Dét(X,Λ),

a complex π• is ULA iff for all compact open pro-p subgroup K of G(E), (π•)K is a
perfect complex of Λ-modules.

Proof. Let Fπ• ∈ Dét(X,Λ) be associated to π•. Chose K ⊂ G(E) compact open pro-p.
Since [∗/K]→ [∗/G(E)] is étale surjective, Fπ• is ULA iff Fπ•

|K
∈ Dét([∗/K],Λ) is ULA.

Let G be a flat model of G that is of finite type over OE , Ĝ be its π-adic completion and Ĝη
be its generic fiber as a finite type adic space over Spa(E). We can suppose that K ⊂ G(OE).

Let X =
(
Ĝη

)⋄
, a spatial diamond separated ℓ-coho. smooth over ∗. Then,

X/K −→ [∗/K]

is a surjective ℓ-coho. smooth morphism. Let G ∈ Dét(X/K,Λ) be the pull-back of Fπ•
|K
.

Let S be a s.t.d perfectoid space and

j : U −→ X/K × S

be a separated étale morphism such that the composite

U −→ X/K × S −→ S
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is quasi-compact. We can form the cartesian diagram

T X × S

U X/K × S

S

K

qc qs smooth

Let f : X/K × S → S be the projection. We have to compute

R(f ◦ j)!(G|U ) ∈ Dét(S,Λ).

Let us note g : T −→ S the is a qc. ℓ-coho. smooth morphism invariant under the action of
K on T . Let us note

f̃ : X/K × S −→ [S/K].

We have

R(f ◦ j)!(G|U ) =
[
(Rf̃!Λ)⊗L

Λ π•]K
After forgetting the action of K, the image of Rf̃!Λ under Dét([S/K],Λ) −→ Dét(S,Λ) is
Rg!Λ equipped with its action of K. Since g is qc smooth, Rg!Λ is perfect constructible and
thus the action of K on Rg!Λ is smooth. Let K ′ ⊂ K be compact open such that K ′ acts
trivially on Rg!Λ. Then, [

(Rf̃!Λ)⊗L
Λ π•]K ⊂ Rg!Λ⊗L

Λ (π•)K
′

that is a direct factor. Thus, (π•)K
′
is a perfect complex of Λ-modules ⇒ R(f ◦ j)!(G|U ) is

perfect constructible.

The reciprocal is obtained in the following way. If h : X/K → ∗ then

Rh!Λ =
[
RΓc(X,Λ)⊗L

Λ π•]K
with RΓc(X,Λ) ∈ D(Λ) a perfect complex equipped with a smoth action of K. The result
then follows, after taking K smaller so that it acts trivially on RΓc(X,Λ), from the fact that if
M is a non-zero perfect complex of Λ-modules with H i(M) ≃ Λ for some i ∈ Z and N ∈ D(Λ)
then N is perfect iff M ⊗L

Λ N is perfect. □

Remark 1.11. We will give another more conceptual proof later.

2. Behavior with respect to Verdier duality

Let

f : X → S

be a morphism of locally spatial diamonds, compactifiable locally of finite dim.trg..
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Theorem 2.1. Let A be f -ULA.

(1) The formation of the dualizing complex DX/S(A) is compatible with base
change: for any S′ → S,

DX/S(A)|X×SS′ = DX×SS′/S′
(
A|XX×SS′

)
.

(2) For any B ∈ Dét(S,Λ)

DX/S(A)⊗L
Λ f∗B

∼−−→ RH om(A,Rf !B).

Let us give a full proof of point (1). Let us start with a Lemma. Here by Bd
S we mean the

spatial diamond that sends (R,R+) to morphisms Spa(R,R+)→ S together with an element
of (R+)d. Let us moreover recall that cofiltered limits of spatial diamonds as v-sheaves are
again spatial diamonds.

Lemma 2.2. Let X → S be a morphism where X is affinoid perfectoid and S is a spatial
diamond. Then one caw write

X = lim←−
i

Ui,

a colfiltered limit where Ui is a quasi-compact open subset inside a ball Bdi
S for some integer

di.

Proof. For I a set we note

BI
S

for the spatial diamond over S such that BI
S(R,R+) is the set of morphisms Spa(R,R+)→ S

together with an element of (R+)I . When S is perfectoid this is representable by a perfectoid
space, if S = Spa(A,A+) then BI

S = Spa(A⟨Xi⟩i∈I , A+⟨Xi⟩) where A+⟨Xi⟩i∈I is the ϖ-adic

completion of A+[Xi]i∈I and A⟨Xi⟩i∈I is A+⟨Xi⟩i∈I [ 1ϖ ].
Take I = O(X). Then there is an evident monomorphism of v-sheaves over S

X ↪→ BI
S .

We have

BI
S = lim←−

J⊂I
finite

BJ
S .

For any J ⊂ I finite, the image ZJ ⊂ |BJ
S | of X ↪→ BI

S ↠ BJ
S is pro-constructible generalizing

and thus an intersection of quasi-compact open subsets of BJ
S . We thus have

X = lim←−
J⊂I
finite

lim←−
U⊃ZJ
qc open

U.

This proves the result. □

Let us go with another Lemma.

Lemma 2.3. Let X be a spatial diamond satisfying: ∃N such that for any U → X separated
étale qc and any F an étale sheaf of Λ-modules on X, H i

ét(U,F ) = 0 for i > N . A morphism
A → B in Dét(X,Λ) is an isomorphism if and only if for any U → X separated étale qc,

RΓ(U,A)
∼−−→ RΓ(U,B).
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Proof. We haveDét(X,Λ) = D(Xét,Λ). Now, for any geometric point x̄ : Spa(C,C+)→
X and any D ∈ D(Xét,Λ),

lim−→
U

Spa(C,C+) X

sep. étale. qc.

RΓ(U,D) = Dx̄

and the result follows. □

Proof of point (1) of Theorem 2.1. The assertion is local on X and S and we may
assume that X and S are spatial diamonds. There exists a v-cover S′′ → S′ that is a strictly
totally disconnected perfectoid space. Now, a morphism D1 → D2 in Dét(X ×S S′,Λ) is
an isomorphism if and only if it is an isomorphism after restriction to X ×S S′′. This is a
consequence of the fact that Dét ⊂ Dv. The result for S′′ → S and S′′ → S′ thus implies the
result for S′ → S. We can thus suppose that S′ is a strictly totally disconnected perfectoid
space.

Since S′ is strictly totally disconnected and X ×S S′ → S′ is quasicompact of finite
dim.trg., X ×S S′ satisfies the hypothesis of Lemma 2.3 and thus, if g : X ×S S′ → X, we
have to prove that for any U → X ×S S′ separated étale qc,

RΓ(U, g∗DX/S(A))
∼−−→ RΓ(U,DX×SS′/S′(g∗A)).

We can now apply Lemma 2.2 to write

S′ = lim←−
i

S′
i

(cofiltered limit) where S′
i is quasi-compact open inside a finite dimension ball over S. Since

2− lim−→
i

{separated étale qc}/S′
i

∼−−→ {separated étale qc}/S′,

we can find an index i and some separated étale qc morphism V → S′
i such that U → S′ is a

pullback of V → S′
i. We have a diagram

U V

X ×S S′ X ×S S′
i X

S′ S′
i S

The result we want to prove is immediate when S′ → S is ℓ-cohomologically smooth. This is
in particular the case for S′

i → S. We are thus reduce, up to replacing S by S′
i and X by V ,

to proving that for any cartesian diagram of spatial diamonds

X ′ X

S′ S

f ′

g′

f

g



2. BEHAVIOR WITH RESPECT TO VERDIER DUALITY 85

with X → S compactifiable of finite dim.trg., and any A ∈ Dét(X,Λ) that is ULA over S,

RΓ(X ′, g′∗DX/S(A))
∼−−→ RΓ(X ′,DX′/S′(g′∗A)).

For this is suffices to prove the result after applying Rf ′
∗. We have

Rf ′
∗g

′∗RH omΛ(A,Rf !Λ) =︸︷︷︸
qc BC

g∗Rf∗RH omΛ(A,Rf !Λ)

= g∗RH omΛ(Rf!A,Λ).

We have moreover,

Rf ′
∗RH omΛ(g

′∗A,Rf ′!Λ) = RH omΛ(Rf ′
! g

′∗A,Λ)

= RH omΛ(g
∗Rf!A,Λ).

The result is thus a consequence of the fact that Rf!A is perfect constructible and Lemma
1.4. □





CHAPTER 9

9th Lecture: July 28 2023

1. The 2-category of correspondences

Let S be a locally spatial diamond.

Definition 1.1. Define CS for the 2-category whose objects are morphisms X → S
that are compacitfiable of finite dim. trg. and

(1) for X → S and Y → S, the 1-morphisms between X/S and Y/S are given by
an object of Dét(X ×S Y,Λ),

(2) the 2-morphisms from A to B elements of Dét(X ×S Y,Λ)

X Y

A

B

are given by usual morphisms from A to B in Dét(X ×S Y,Λ)

The composition of one morphisms is given by ”convolution“ in the sense that for a

sequence X
A−→ Y

B−−→ Z, in the diagram

X ×S Z

X ×S Y ×S Z

X ×S Y Y ×S Z

X Y Z

π13

π12 π23

we set
B ◦A := π13!

(
π∗
12A⊗L

Λ π∗
23B

)
: X −→ Z.

Here the identity 1-morphism from X to X is given by ∆!Λ where ∆ : X ↪→ X ×S X.

Remark 1.2. Any correspondence of locally spatial diamonds

C

X Y

87



88 9. 9TH LECTURE: JULY 28 2023

over S (where both morphisms are compactifiable of finite dim.trg.) together with A ∈
Dét(C,Λ) give rise to a morphism from X to Y in CS: if π : C → X ×S Y this is

X
Rπ!A−−−−→ Y.

We could have defined the 2-category CS by fixing a support like C for our correspondences
but this is unnecessary and up to replacing (C,A) by (X ×S Y,Rπ!A) this does not change
anything.

Remark 1.3. Given A ∈ Dét(X,Λ), B ∈ Dét(Y,Λ) and π : C → X ×S Y as before,
a cohomological correspondence from A to B with support in C is nothing else than a 2-
morphism

X Y

S

A

Rπ!Λ

B◦Rπ!Λ

B

B ◦Rπ!Λ =⇒ A︸ ︷︷ ︸
coho. corr. from B to A

supported on C

There is a morphism of 2-categories

CS −→ {2-category of triangulated categories}(1)

X/S 7−→ Dét(X,Λ)(2)

that sends X/S to Dét(X,Λ), the 1-morphism X
A−−→ Y to the 1-morphism, i.e. the

functor, given by the kernel A

Dét(X,Λ) −→ Dét(Y,Λ)

F 7−→ p2!(A⊗L
Λ p∗1F )

where p1 : X ×S Y → X and p2 : X ×S Y → Y .

In a 2-category like CS there is a notion for a 1-morphism to be a left adjoint (or if you

want to have a right adjoint). More precisely, a 1-morphism X
A−−→ Y is a left adjoint if there

exists Y
B−−→ X and 2-morphisms ®

η : Id⇒ BA

ε : AB ⇒ Id

satisfying ®
Bε ◦ ηB = IdB

εA ◦Aη = IdA .
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When this is the case such a B is unique up to a 2-isomorphism. In fact, suppose that

Y
B′
−−−→ X is equipped with 2-morphisms®

η′ : Id⇒ B′A

ε′ : AB′ ⇒ Id

satisfying ®
B′ε′ ◦ η′B′ = IdB′

ε′A ◦Aη′ = IdA .

Consider

u = B′ε ◦ η′B : B ⇒ B′

and

v = Bε′ ◦ ηB′ : B′ ⇒ B.

One then has

v ◦ u = Bε′ ◦ ηB′ ◦B′ε︸ ︷︷ ︸
BAB′ε ◦ ηB′AB

◦ η′B

= Bε′ ◦BAB′ε︸ ︷︷ ︸
Bε ◦Bε′AB

◦ ηB′AB ◦ η′B︸ ︷︷ ︸
BAη′B ◦ ηB

= Bε ◦Bε′AB ◦BAη′B ◦ ηB

= Bε′AB ◦ BAη′B

= Id

2. Relation to the ULA condition

Theorem 2.1. The following are equivalent:

(1) A is f -ULA,
(2) The natural morphism

DX/S(A)⊠
L
Λ A −→ RH omΛ(p

∗
1A,Rp!2A)

is an isomorphism in Dét(X ×S X,Λ),

(3) The 1-morphism X
A−−→ S is a left adjoint in CS, in which case its right

adjoint is given by S
DX/S(A)
−−−−−−−→ X.

Proof. (1)⇒(2) is a consequence of Theorem 2.1.

(2)⇒(3): One computes

DX/S(A) ◦A = A⊠L
Λ DX/S(A)

A ◦ DX/S(A) = Rf!(DX/S(A)⊗L
Λ A)

Then to give oneself η is the same a morphism

η : ∆!Λ −→ A⊠L
Λ DX/S(A)

∼−−→ RH omΛ(p
∗
1A,Rp!2A)
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By adjunction this is the same a morphism

Λ −→ R∆!RH omΛ(p
∗
1A,Rp!2A) = RH omΛ(A,A)

and we can take the Identity of A.
For ε, this is a morphism

ε : Rf!(DX/S(A)⊗L
Λ A) −→ Λ

that is to say by adjunction a morphism

DX/S(A)⊗L
Λ A −→ Rf !Λ

and we can take the evident morphism.
One verifies easily those satisfy the adjunction properties.

(3)⇒(1) We use the morphism of 2-categories (1). If S
B−−→ X is a right adjoint of

X
A−−→ S then by a application of our morphism of 2-categories, then the functor

Rf!(A⊗L
Λ −) : Dét(X,Λ) −→ Dét(S,Λ)

has

f∗(−)⊗L
Λ B : Dét(S,Λ) −→ Dét(X,Λ)

as a right adjoint. To prove that A is f -ULA we can suppose that S is a strictly totally
disconnected perfectoid space. But since the right adjoint commutes with all colimits, it
sends compact objects to compact objects and we can conclude that for any A′ ∈ Dét(X,Λ)p.c.,
Rf!(A⊗L

Λ A′) is perfect constructible.

It remains to prove the overconvergence of A, see the article. □

Let us look at two applications of this that may be very difficult without this 2-categorical
point of view.

Proposition 2.2. (1) Any A ∈ Dét(X,Λ) that is f -ULA is bidual with respect to
the Verdier duality,

A
∼−−→ DX/S(DX/S(A)).

(2) For X
f−−→ S and Y

g−−→ S, and A ∈ Dét(X,Λ) that is f -ULA, and B ∈
Dét(Y,Λ) that is g-ULA, A⊠L

Λ B is ULA relatively to X ×S Y → S and

DX/S(A)⊠
L
Λ DY/S(B)

∼−−→ DX×SY/S(A⊠L
Λ B).

Proof. Point (1) is a consequence of the isomorphism of 2-categories

CS ≃ CopS .

In fact, the 1-morphisms between X and Y are exactly the same as the 1-morphisms between
Y and X. Thus, if A is f -ULA then DX/S(A) is a right adjoint of A and thus A is a right
adjoint of DX/S(A) that is thus f -ULA. From this we deduce point (1) via the identification
of the right adjoint of DX/S(A) with DX/S(DX/S(A)).

Point (2) is a consequence of the fact that B ◦ A is a left adjoint and its right adjoint is
the composite of the right adjoint of A with the one of B and is thus DX/S(A)◦DX/S(B). □
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3. An application

Theorem 3.1. Let X = [∗/H] with H a locally pro-p group. Suppose that X is ℓ-
cohomologically smooth of dimension 0, for example H is a closed sub-group of G(E)
where G is an affine algebraic group over E. Then, via the identification

D(H,Λ)
∼−−→ D(X)

we have π corresponds to an ULA complex iff for all K ⊂ H compact open pro-p, πK

is a perfect complex of Λ-modules.

Proof. We use the identification

D(H ×H,Λ)
∼−−→ D(X× X).

If π corresponds to an ULA complex then for any π′,

π̃ ⊠L
Λ π′ ∼−−→ RH omΛ(π ⊠ 1, 1⊠ π′)

in D(H ×H,Λ) (derived smooth dual and derived smooth Hom’s). In particular, taking for
π′ a complex of Λ-modules with trivial H-action, M

π̃ ⊗L
Λ M

∼−−→ RH omΛ(π,M).

(smooth duals and hom’s) Taking the K-invariants with K open pro-p we obtain

RHomΛ(π
K ,Λ)⊗L

Λ M
∼−−→ RHomΛ(π

K ,M).

It is then immediate that πK is a perfect complex of Λ-modules.
In the other direction, let π be such that for all K open pro-p, πK is perfect. We have to

verify that
π̃ ⊠L

Λ π
∼−−→ RH omΛ(π, π).

It suffices to prove this is the case after applying D(H ×H,Λ)→ D(Λ). Then the morphism
is written as

lim−→
K

RHomΛ(π
K ,Λ)⊗L

Λ πK −→ lim−→
K

RHomΛ(π
K , πK)

and the result follows. □

4. A criterion of smoothness

Proposition 4.1. Let f : X → S be a compactifiable of finite dim.trg. morphism
of locally spatial diamonds. Then, f is ℓ-cohomologically smooth if and only if Fℓ is
f -ULA and Rf !Fℓ is invertible.
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→ the ULA property is used at two places in the article:

• for the geometric Satake correspondence, in fact the BdR-affine Grassmanian that
shows up in the geometric Satake correspondence should be though of as being a
Beilinson-Drinfeld type affine Grassmanian i.e. something relative ”sitting over the
curve“ (more precisely over Div1 = Spa(Ĕ)⋄/φZ), and we thus need to speak about
”families of perverse sheaves“ i.e. ULA perverse sheaves,
• for the proof of the Jacobian criterion via Proposition 4.1.

We deal here with the proof of the Jacobian criterion.

1. A key remark: stability under retracts of the ULA property

Let us begin with a lemma whose proof is a simple computation.

Lemma 1.1. (1) Let

X Y

S
f

h

g

be a diagram of compactifiable of finite dim. trg. morphisms of locally spatial dia-
monds. Let Γh : X → X ×S Y be the graph of h. Let A ∈ Dét(Y,Λ). The following
diagram in CS

X Y

S
h∗A

(Γh)!Λ

A

commutes i.e. there is a canonical (in A) isomorphism

A ◦ (Γh)!Λ
∼

=⇒ h∗A.

(2) Let DS be the category of locally spatial diamonds compactifiable of finite dim. trg.
over S. We upgrade it to a 2-category by setting 2− Hom(f, g) = {Id} if f = g and
∅ if f ̸= g. Then the correspondence

DS −→ CS

that sends X/S to X/S and f : X → Y an S-morphism to X
R(Γf )!Λ−−−−−−→ Y is a

morphism of 2-categories.

93
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Proposition 1.2. Let f : X → S and g : Y → S be morphisms of locally spatial
diamonds that are compactifiable of finite dim. trg.. Suppose that f is a retract of g
i.e. there exists morphisms

X Y

S
f

i

g

r

satisfying
r ◦ i = IdX .

Then, if A ∈ Dét(Y,Λ) is g-ULA, i∗A is f -ULA.

Proof. Point (1) of the preceding lemma says that is suffices to verify that X
Γi,!Γ−−−−→ Y

is a left adjoint. Point (2) shows that the composite X
Γi,!Γ−−−−→ Y

R(Γr)!Λ−−−−−−→ X is canonically
isomorphic to IdX . This gives us a unit

η : IdX
∼

=⇒ R(Γr)!Λ ◦ Γi,!Λ.

We moreover have

R(Γr)!Λ ◦ Γi,!Λ = R(Γr◦i)!Λ.

Since f is separated, IdX = ∆X/S!Λ = ∆X/S∗Λ. To give a 2-morphism

R(Γr◦i)!Λ =⇒ IdX

is thus the same as a morphism in Dét(X,Λ)

∆∗
X/SR(Γr◦i)! −→ Λ.

Proper base change says that the left term is Λ. We thus have a counit

ε : R(Γr)!Λ ◦ Γi,!Λ =⇒ IdX .

One verifies that η and ε define an adjunction. □

Here is the corollary that we will use.

Corollary 1.3. Let f : X → S and g : Y → S be morphisms of locally spatial
diamonds that are compactifiable of finite dim. trg.. Suppose that f is a retract of g
i.e. there exists morphisms

X Y

S
f

i

g

r

satisfying
r ◦ i = IdX .

Then if g is ℓ-cohomologically smooth, Fℓ is f -ULA.

→ contrary to the cohomological smoothness condition, the ULA property is stable under
retracts.
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2. Formal smoothness

The notion of formal smoothness we introduce is a tool we use to prove that Fℓ is ULA
for Msm

Z → Z in the proof of the Jacobian criterion of smoothness. It is complementary to
the notion of ℓ-coho. sm.. All ”natural” morphisms that show up that are ℓ-coho. sm. are
formally smooth too. If there exists a ”good” notion of smooth morphisms in our context it
has to imply ℓ-coho. sm. for all ℓ ̸= p and formally smooth.

2.1. Background on Zariski closed immersions. Recall the following basic result.

Proposition 2.1. Let S = Spa(A,A+) be affinoid perfectoid and I an ideal of A. The
closed subset V (I) = {s ∈ S | ∀f ∈ I, |f(s)| = 0} ⊂ |S| is representable by an affinoid
perfectoid space pro-étale inside S.

→ V (I) = lim←−
n≥1

f1,...,fn∈I

{|f1| ≤ 1, . . . , |fn| ≤ 1} that is thus a cofiltered limit of affinoid

perfectoid spaces.

Definition 2.2. For S affinoid perfectoid the immersion S0 ↪→ S defined by an ideal
I of O(S) as before is called a Zariski closed immersion.

→ one has to be careful that, contrary to the case of schemes, this is not a local condition:
if S = ∪iUi is a finite rational cover of S and a closed subset Z ⊂ |S| is such that for all i,
Z ∩ Ui is Zariski closed in Ui then Z may not be Zariski closed in S in general).

Recall moreover the following basic result that is easy for Fp-perfectoid spaces but more
difficult in general.

Theorem 2.3. Let S0 ⊂ S be a Zariksi closed immersion of affinoid perfectoid spaces.

(1) S0 ⊂ S is strongly Zariski closed in the sense that the morphism

O(S)+ → O(S0)
+

is almost surjective.
(2) S♭

0 → S♭ is a Zariksi closed immersion and thus if Z ⊂ |S| is Zariski closed

then it is Zariski closed in |S♭| via the equality |S| = |S♭|.

2.2. Formally smooth morphisms. We can now come to our definition. This is related
to the topological notion of retracts in the sense of Borsuk.
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Definition 2.4. A morphism f : X → Y of v-stacks is formally smooth if for all
diagrams

S0 X

S Y

f

where S0 ↪→ S is a Zariski closed immersion of affinoid perfectoid spaces, up to replac-
ing S0 ↪→ S by S′ ×S S0 ↪→ S′ where S′ → S is an étale neighborhood of S0, we can
complete the diagram with the dashed arrow:

S′ ×S S0 S0 X

S′ S Y

f

étale nbd.
of S0

commutes up to a 2-isomorphism i.e. the composite S′ → X
f−−→ Y is isomorphic to

S′ → S → Y in the groupoid Y(S′).

→ some evident examples

Example 2.5. (1) Any separated étale morphism of v-stacks is formally smooth.
(2) The composite of two f.s. morphisms is f.s..
(3) The base change of a f.s. morphism is f.s..
(4) The f.s. property is étale local on the source

Let us give more non-trivial examples.

Lemma 2.6. Let B → Spd(Zp) be the diamond of the morphism sending a Zp-perfectoid
space S to O(S)+. This is formally smooth.

Proof. Let S0 ↪→ S be a Zariski closed immersion of affinoid perfectoid spaces and
f ∈ O(S0)

+. Since O(S) → O(S0) is surjective we can lift it to some f̃ ∈ O(S). Now, if
U = {|f | ≤ 1} then f|U ∈ O(U)+ and U is a nbd. of S0. □

Lemma 2.7. The morphism Spd(Zp)→ Spd(Fp) is formally smooth.

Proof. Let ξ =
∑

n≥0[an]p
n be a degree one primitive element in W (R+), (R,R+) a

Fp-affinoid perfectoid algebra. Up to multiplying ξ by a unit in W (R+)× we can suppose
that ξ ∈ p + [ϖ]W (R+) where ϖ is a p.u. in R. Now, if (A,A+) → (R,R+) is a morphism
of affinoid rings such that A+ → R+ is almost surjective then A◦◦ → R◦◦ is surjective.
We deduce that, up to multiplying ξ by a unit it lifts to a degree one primitive element in
W (A+). □
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Corollary 2.8. If f : X → Y is a smooth morphism of Noetherian analytic adic
spaces over Zp then f⋄ : X⋄ → Y ⋄ is formally smooth.

Proof. Since the notion of f.s. is local for the analytic topology on the source we are
reduce to proving that if f is the composite of an étale morphism toward Bd

Y , a ball/Y , with
the projection to Y then f⋄ is f.s.. Since the diamond of an étale morphism is étale we are
reduced to proving that (Bd

Y → Y )⋄ is f.s.. But (Bd
Y )

⋄ = Bd ×Spd(Zp) Y
⋄ and the result is

deduced from lemma 2.6. □

3. Formal smoothness and the ULA property

→ the following says that, up to some technical ”finiteness property of f“,

f formally smooth =⇒ Fℓ is f -ULA.

Proposition 3.1. Let f : X → S be a (compactifiable of finite dim. trg.) morphism of
locally spatial diamonds satisfying: there exists a v-cover (Ti → X)i such that for all i

(1) Ti is affinoid perfectoid Zariski closed in an ℓ-cohomologically smooth affinoid
perfectoid S-space

(2) Ti → X is formally smooth and ℓ-cohomologically smooth

Then, if f is formally smooth, Fℓ is f -ULA.

Proof. Since Ti → X is ℓ-cohomologically smooth, the ULA notion being ℓ-coho. smooth
local, it is enough to prove that Fℓ is ULA relatively to Ti → S. This morphism is formally
smooth as a composite of two formally smooth morphisms and thus, up to replacing Ti by an
étale cover, Ti → S is a retract of an ℓ-cohomologically smooth affinoid perfectoid space. We
can now apply Corollary 1.3. □

4. The main result about formal smoothness

Theorem 4.1. The morphismMsm
Z → S is formally smooth.

→ we refer to the article; the proof is technical but natural.

5. Application of the formal smoothness: first step in the proof of the Jacobian
criterion

Proposition 5.1. There exists a v-cover (Ti →MZ)i where for all i,

(1) Ti is affinoid perfectoid and Ti → S is Zariski closed in an affinoid perfectoid

space that is étale over a perfectoid ball Bdi,1/p
∞

S ,
(2) Ti →MZ is ℓ-coho. sm. and f.s..

→ using the ”quasi-projectivity assumption” for Z → XS this is reduced to proving the
result for Z = Pn

XS
in which case this is an exercise about BC spaces using the explicit formula
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forMPn
XS

.

We can now prove our Theorem.

Theorem 5.2 (First step in the proof of the Jacobian criterion). The étale sheaf Fℓ

onMsm
Z is ULA relatively to the morphismMsm

Z → S.

→ Apply Propositions 3.1 and 5.1 together with, of course, Theorem 4.1.
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We now switch to the deformation to the normal cone argument to finish the proof of the
Jacobian criterion.

1. Background on the deformation to the normal cone (see Fulton’s book)

1.1. Normal cones. Let

i : Y ↪→ X

be a closed immersion of schemes defined by the ideal I. Recall that the normal cone to i is

CY X = Spec
(⊕

k≥0

Ik/Ik+1
)
−→ Y.

When i is a regular immersion the associated normal bundle is associated to the vector bundle
(I/I2)∨ on Y and one has

CY X = V
(
(I/I2)∨

)
the geometric realization of this vector bundle.

→ the notion of normal cone generalized thus the notion of the normal vector bundle
associated to a regular embedding.

→ it is called a cone because it is the spectrum of a graded quasi-coherent algebra and is
thus equipped with a Gm-action

CY X

Y

Gm

0

where 0 is the zero section of this cone given by (CY X)Gm
∼−−→ Y .

→ thus although in general, when i is not a regular immersion, CY X → Y is not (the
geometric realization of) a vector bundle, it is still a cone like any vector bundle.

We will use later the following construction. Let S be a scheme and

C = Spec
(
A
)
−→ S

be a cone, that is to say A is a graded quasi-coherent OS-algebra, A =
⊕

k≥0Ak with
A0 = OS . We define its projective completion as

99



100 11. 11TH LECTURE: AUGUST 4 2023

C = Proj
(
A• ⊗OS︸︷︷︸

graded
tensor product

OS [T ]
)
−→ S

= (C × A1)∖ {0}/Gm

where the action of Gm is the diagonal one and {0} = (C × A1)Gm is the origin of the cone
C × A1.

There is then a diagram

C C C ∖ C = (C ∖ {0})/Gm

S

open

that is to say C is Gm-equivariant a compactification of C obtained by adding

(C ∖ {0})/Gm = Proj(A•)

at ∞ where {0} ↪→ C is the origin of the cone, Spec(A0) ↪→ Spec(A).

If our cone is the geometric realization of a vector bundle E ,

C = V(E ),

then

C = P(E ⊕OS) ⊃ C ∖ C = P(E ).

Example 1.1. When we have a closed immersion of smooth S-schemes

Y X

S

i

there is an exact sequence of vector bundles on Y

0 −→ TY/S −→ i∗TX/S −→ (I/I2)∨ −→ 0.

Remark 1.2. The terminology normal bundle comes from the fact that if (M, g) is a
Riemannian manifold and i : N ↪→ M a closed submanifold then the metric g allows us to
identify the normal bundle with the orthogonal of TN inside i∗TM with respect to the metric
g, giving a splitting of the sequence of C∞-vector bundles 0→ TN → i∗TN → NN/M → 0. At
the end, for n ∈ N , the normal bundle at n is the set of tangents vectors in (TM)n that are
orthogonal to (TN)n.

Remark 1.3. In the context of the preceding remark, let

exp : TM −→M



1. BACKGROUND ON THE DEFORMATION TO THE NORMAL CONE (SEE FULTON’S BOOK) 101

(that is well defined only in a nbd. of the zero section in general if (M, g) is not complete)
be the map that sends the tangent vector X ∈ (TM)m to γ(1) where γ is the unique geodesic
satisfying γ(0) = m and γ′(0) = X.

One can find a neighborhood U of the zero section of NN/M = (TN)⊥ ⊂ i∗TM such that
the map

exp|U : U −→M

is an isomorphism onto an open neighborhood of N inside M . This is what’s called a tubular
neighborhood of N inside M . The deformation to the normal cone is an algebraic analog of
this construction.

1.2. The deformation to the normal cone.
1.2.1. What we want. The deformation to the normal cone is a Gm-equivariant family of

closed immersions parametrized by A1

Y × A1 W

X × A1

A1

Gm Gm

Gm

Gm

satisfying:

(1) The following diagram

Y × A1 W

X × A1

i×IdA1

commutes.

(2) The morphism

W

A1

is flat i.e. we have a flat family parametrized by A1.

(3) Its restriction to Gm = A1 ∖ {0} is identified with

Y ×Gm W|Gm

X ×Gm

≃
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and thus the family of immersions Y ↪→ Wt for t ∈ A1 ∖ {0} is the trivial family
associated to i : Y ↪→ X.

(4) Its fiber at 0 ∈ A1 is identified with

Y W0 = CY X

X

zero section
of the normal cone

projection to Y
composed wt. i

and thus the immersion Y ↪→ W0 is identified with the inclusion of the zero section
of the normal cone.

1.2.2. The construction. This is defined in the following way. Let Z be the blow-up of
Y × {0} inside X × A1,

Z

Y × {0} X × A1.

blow-up

We have

Z = Proj
(⊕

k≥0

k∑
i=0

Ik−iT iOX [T ]
)
.

The closed immersion Y × A1 ↪→ Z is defined by the universal property of the blow-up: via
the morphism Y ×A1 → X ×A1 the pull-back of Y × {0} inside X ×A1 is a Cartier divisor.

It is evident that overGm, the immersion Y ×A1 ↪→ Z is identified with Y ×Gm ↪→ X×Gm.

The fiber over {0} is

Proj
(
OX

⊕(
I⊕OX/I.t

)⊕
· · ·

⊕(
Ik ⊕ Ik−1/Ik.t⊕ · · · ⊕ I/I2.tk−1⊕OX/I.tk

)⊕
· · ·

)
.

Here we use the bigraded ring

A =
⊕
k,l∈N

Ak,l

where

• A0,l = Il,

• Ak,l = Il/Il+1 if k > 0.

Then, if TotA is the graded ring such that

(TotA)d =
⊕

k+l=d

Ak,l,

the fiber over {0} is
Proj

(
TotA

)
.
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There are two graded ideals in TotA,

a =
⊕

k>0,l≥0

Ak,l

and

b =
⊕
l≥0

IA0,0

contained in the augmentation ideal (TotA)+. One has

ab = (0)

and thus

Proj
(
TotA

)
= V +(a) ∪ V +(b).

From this formula we see that the fiber of Z over {0} is a union of BY X the blow-up
of Y inside X and CY X the projective completion of the normal cone CY X. There is an
identification

CY X ∖ CY X = (CY X ∖ {0})/Gm.

This is identified with the exceptional Cartier divisor EY X ⊂ BY X of the blow-up of Y inside
X and our fiber at {0} is then

Z0 = BY X
∐

EY X=CY X∖CY X

CY X.

One then sets

W = Z ∖ BY X︸ ︷︷ ︸
closed subset

of the fiber at {0}

.

as an open subscheme of Z.

1.2.3. An explicit formula. One can show the following.

Proposition 1.4. Let

A =
⊕
n<0

I−ntn
⊕
OX [t] = OX

[
I
t , t

]
⊂ OX [t, t−1]

as a quasi-coherent OX-algebra. The morphism OX [t]→ A identifies

Spec(A) −→ X × A1

with
W −→ X × A1.

In particular, the morphism W → X × A1 is affine.

1.3. Some classical applications.
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1.3.1. Verdier’s specialization to the normal cone. Let k be an algebraically closed field
and

i : Y ↪→ X

be a closed immersion of finite type k-schemes. Let Λ be a finite ring killed by a power of ℓ
invertible in k. Recall that an étale constructible sheaf F of Λ-modules on the cone CY X is
said to be monodromic if for all λ ∈ Gm(k), if mλ : CY X → XY X is the action of λ, then

m∗
λF ≃ F .

This is equivalent to say that for all x ∈ CY X, if wx : Gm → CY X is the morphism λ 7→ λ.x
then w∗

xF is a moderate étale local system of Λ-modules.

Let

Db
c(CY X,Λ)mon

be the category of bounded étale complexes of Λ-modules on CY X with constructible mon-
odromic cohomology.

Verdier defines a factorization

Db
c(X,Λ) Db

c(Y,Λ)

Db
c(CY X,Λ)mon

i∗

SpY X 0∗

where 0 : Y ↪→ CY X is the zero section of the cone. This is called the specialization to the
normal cone.

This is defined in the following way. If pr : X × Gm −→ X is the projection we use the
diagram

CY X W X ×Gm

{0} A1
k Gm,k

Then, for A ∈ Db
c(X,Λ),

SpY X(A) := RΨη̄

(
pr∗A

)
where η̄ is any geometric point over the generic point of A1

k.

The fact that 0∗ SpY X(A) = i∗A and that SpY X(A) is monodromic is a theorem of
Verdier.

1.3.2. Microlocalization. When i : Y ↪→ X is a regular immersion, the cone CY X is a
vector bundle

NY X = V
(
(I/I2)∨

)
−→ Y,

the normal bundle. We can look at the dual vector bundle

N∗
Y X = V

(
I/I2

)
−→ Y.
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There is then a microlocalization functor

µ = F︸︷︷︸
Fourier

transform

◦ SpY X : Db
c(X,Λ) −→ Db

c(N
∗
Y X,Λ).

For example, if X is smooth over Spec(k), applying this to Y the diagonal of X ×X, we can
define

µH om(A,B) = µ(RH om(p∗1A, p
!
2B)) ∈ Db

c(T
∗X,Λ).

1.3.3. Gysin maps. See Fulton’s book.

2. Proof of the Jacobian criterion of smoothness

Recall: we have proven that if

Msm
Z

S

f

then Fℓ is f -ULA. It remains to prove that

Rf !Fℓ

is invertible.

2.1. First reduction. It suffices to prove that for any morphism

g : S′ −→Msm
Z

with S′ a strictly totally disconnected perfectoid space,

g∗Rf !Fℓ

is invertible. For this, recall that Fℓ f -ULA implies that the formation of Rf !Fℓ is compatible
with base change/S. In particular, in the diagram

Msm
Z×XS

XS′ Msm
Z ×S S′ Msm

Z

S′ S,

f ′ fs

f◦g

where the section s is (g, IdS′), we have

g∗Rf !Fℓ = s∗Rf ′!Fℓ.

We thus have to prove that

s∗Rf ′!Fℓ

is invertible. Up to replacing S by S′ we are thus reduced to proving that for any section s
of f :Msm

Z → S,

s∗Rf !Fℓ

is invertible when S is a strictly totally disconnected perfectoid space.
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2.2. Construction of the deformation: 1st step. The section s corresponds to a
section

Z

XS

Let us suppose, to simplify (and this case is sufficient for the application in the article where
Z = (G/P )ad ×XS), that, if S = Spa(R,R+), via the GAGA morphism of ringed spaces

XS −→ XR,R+

one has
Z = Zad

where Z → XR,R+ is quasi-projective and smooth as a morphism of schemes. The section
XS ↪→ Z then corresponds to a section of Z → XR,R+ and we can perform a deformation to
the normal cone for this schematical section and then adify it.

At the end we obtain a Gm-equivariant embedding

XS × A1 W

Z × A1

where

(1) when restricted to Z ×Gm this is

XS ×Gm Z ×Gm

Z ×Gm

Id

(2) The fiber at {0} is
XS CXS

Z

Z

Recall that
MA1×XS

= ES

and we have the formula MZ1×Z2 =MZ1 ×SMZ2 .

We can now consider the associated diagram

MW

S × E

g σ

This is equivariant with respect to the action of E×.
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At the end one has an E×-equivariant diagram with cartesian squares

BC(s∗TZ/XS
) Msm

W Msm
Z × E ∖ {0}

S S × E S × E ∖ {0}

g f

IdS ×{0}

zero section σ s×IdE∖{0}

2.3. Construction of the deformation: 2nd step. Up to replacing W by a quasi-
compact open nbd. of the section XS × B1 ↪→ W we can suppose we have an OE ∖ {0}-
equivariant diagram

U MW ∆

S S ×OE S ×OE ∖ {0}

g f

IdS ×{0}

zero section σ s×IdOE∖{0}

with MW = Msm
W that is quasi-compact and U an open nbd. of the zero section of

BC(s∗TZ/XS
). Pulling-back the situation to πN∪{+∞} ⊂ OE we obtain a πN-equivariant

diagram

U MW ∆

S S × πN∪{+∞} S × πN

g f

IdS ×{0}

zero section σ
s×Id

πN

2.4. Proof of the Jacobian criterion. Let

A = Rg!Fℓ ∈ Dét(MW ,Fℓ)

that is πN-equivariant. If i : U ↪→Msm
W , since Fℓ is g-ULA,

i∗A ∈ Dét(U,Fℓ)

is étale locally on S isomorphic to Fℓ[2d] with the trivial πN-equivariant structure, where
d = deg(s∗TZ/XS

). Since S is strictly totally disconnected we can fix an E×-equivariant
isomorphism

Fℓ[2d]
∼−−→ i∗A.

Now, we have

lim−→
N≥0

H−2d(g−1(S × πN≥N∪{+∞})︸ ︷︷ ︸
M≥N

W

, A)
∼−−→ H−2d(U, i∗A).
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We can thus find an integer N ≥ 0 and a πN-equivariant morphism

Fℓ[2d] −→ A|M≥N
W

inducing the given equivariant isomorphism Fℓ[2d]
∼−−→ i∗A. Let

B ∈ Dét(M≥N
W ,Fℓ)

be a cone of this morphism ans an πN-equivariant object

Fℓ[2d] −→ A|M≥N
W
−→ B

+1−−−→ .

Since Fℓ[2d] and A (as the Verdier dual of Fℓ, see the stability property of the ULA property
under Verdier duality) are g-ULA, B is g-ULA. In particular its Verdier dual is g-ULA and

Rg!D(B)

is constructible, where D = DM≥N
W /S×π

N≥N∪{+∞} . Since its fiber at S = S × π+∞ is zero we

deduce that, up to replacing N by a bigger integer, we can suppose that

Rg!D(B) = 0.

Applying Verdier duality and using the biduality of B we obtain

Rg∗B = 0.

We not note ∆(n) for n ∈ N≥N the fiber of g over S × πn. The πN-equivariance property
implies that we have

∆(n+1) ⊂ ∆(n)

with ⋂
n≥N

∆(n) = s(S).

We thus have if f (n) : ∆(n) → S, and C is the fiber of B at S × πN: for all n ≥ N

Rf
(n)
∗ C|M(n)

Z

= 0.

We deduce that
s∗C = lim−→

n≥N

Rf
(n)
∗ C = 0

and thus
Fℓ[2d]

∼−−→ s∗Rf !Fℓ.

This finishes the proof.



CHAPTER 12

12th Lecture: August 15 2023

1. Local Shimura varieties

1.1. Definition.
1.1.1. The tower over the reflex field. Let G over E be as before. Let [b] ∈ B(G) and {µ}

be a conjugacy class cocharacters of GE where we have fixed E an algebraic closure of E.

Let Eµ|E be the field of definition of {µ}, Eµ ⊂ E, and Ĕµ the completion of the maximal
unramified extension of Eµ. For K ⊂ G(Qp) compact open let

MK(G, b, µ) −→ Spa(Ĕµ)
⋄

be the associated local Shimura variety. If

M(G, b, µ) = lim←−
K

MK(G, b, µ),

The v-sheafM(G, b, µ) sends S an Fq-perf. space to an untilt S♯ over Ĕµ and an isomorphism

E1|XS∖S♯
∼−−→ Eb|XS∖S♯

that is meromorphic along the Cartier divisor S♯ ↪→ XS and is of type ≤ µ geometrically
fiberwise over S.

This is representable by a locally spatial diamond compactifiable of finite dim. trg. over
Spa(Ĕµ). There are two morphisms

M(G, b, µ)

Gr≤µ,a
G Gr≤µ−1,a

G

G(E)×‹Gb

πdR πHT

G(E) ‹Gb

where

(1) MK(G, b, µ) = K\M(G, b, µ),
(2) GrG is the BdR-affine Grassmanian and Gr≤µ the closed Schubert cell defined by µ,

a spatial diamond proper over Spa(Ĕµ)
⋄,

109



110 12. 12TH LECTURE: AUGUST 15 2023

(3) ‹Gb → ∗ is the group of automorphisms of Eb that sends S → ∗ to Aut(Eb|XS
), this is

a semi-direct product ‹Gb = Gb(E)⋉ ‹G◦
b ,

(4) πdR is ‹Gb-equivariant and a G(E)-torsor onto its image, an open subset, the so-called
admissible open subset

(5) πHT is G(E)-equivariant and a ‹Gb-torsor over its image, the sub-locally spatial dia-

mond of Gr≤µ−1

G defined by a locally closed generalizing subset of |Gr≤µ−1

G |. We still
call it the admissible subset.

1.1.2. The Frobenius action. The preceding picture descends from Spa(Ĕµ) to

Div1Eµ
= Spa(Ĕµ)

⋄/φZ
Eµ

.

In fact, given any degree 1 effective divisor D on XS,Eµ its norm D′ = NEµ/E is a degree 1
Cartier divisor on XS := XS,E and we can speak about modifications

E1|XS∖D′
∼−−→ Eb|XS∖D′ .

The moduli spaceMK(G, b, µ) thus descends via Spa(Ĕµ)
⋄ → Div1Eµ

to a moduli space

ShtK(G, b, µ) −→ Div1Eµ

and more generally
Sht(G, b, µ) −→ Div1Eµ

.

1.1.3. Coefficients. The composite

M(G, b, µ)
πdR−−−→ Gr≤µ

G −→ [L+G\Gr≤µ
G ] ↪→ [L+G\Gr≤µ

G ] = [L+G\LG/L+G]

and

M(G, b, µ) Gr≤µ−1

G [L+G\Gr≤µ−1

G ] [L+G\GrG ]

[L+G\LG/L+G]

[L+G\LG/L+G]

πHT

g 7→g−1≃

coincide. This descends to a morphism over Div1Eµ

Sht(G, b, µ) −→ Hck≤µ
G

where Hck≤µ
G → Div1Eµ

is the closed Schubert strata in the local Hecke stack. This
descends to a morphism [

G(E)× ‹Gb\ Sht(G, b, µ)
]
−→ Hck≤µ

G .
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The geometric Satake correspondence allows us to define a perverse ULA (relative to the
morphism toward Div1Eµ

) sheaf

j!∗Λ ∈ Dét(Hck≤µ,Λ)

where j is the inclusion of the open Schubert cell. This corresponds to the representation of“G⋊WEµ with weight µ.

By pull-back we obtain a on object

Sµ ∈ Dét

([
G(E)× ‹Gb\Sht(G, b, µ)

]
,Λ

)
1.2. Cohomology.
1.2.1. The equivariant cohomology complex. One has

Div1Eµ
= Spa(Ĕµ)

⋄/φZ
Eµ

= [Spa(C♭
p)/WEµ ].

There is thus a morphism

Div1Eµ
−→ [∗/WEµ ].

Lemma 1.1 (Drinfeld lemma; particular case). Pull-back induces an equivalence

D(Gb(E)×WEµ ,Λ)
∼−−→ Dét([∗/‹Gb]× [∗/WEµ ],Λ)

∼−−→ Dét([∗/‹Gb]×Div1Eµ
],Λ).

1.2.2. The theorem. Here is the theorem we want to prove. Let

fK :
[‹Gb\ ShtK(G, b, µ)

]
−→ [∗/‹Gb]×Div1Eµ

Theorem 1.2. For all compact open subset K of G(E)

RfK!Sµ ∈ D(Gb(E),Λ)BWEµ

is a compact object in D
(
Gb(E),Λ

)
i.e. an object in the thick triangulated sub-category

of D
(
Gb(E),Λ

)
generated by the c -Ind

Gb(E)
K′ Λ when K ′ goes through the set of compact

open pro-p subgroups of Gb(E).

2. Local charts using the Jacobian criterion

2.1. Construction of the local charts. Let [b] ∈ B(G). Suppose, to simplify that G is
quasi-split (if not everytuing works since G×XS is a quasi-split group scheme over XS). Let
[νb] ∈ X∗(A)

+
Q, Mb its centralizer, a standard Levi, and Pb the standard parabolic subgroup

associated. We note bMb
for the canonical reduction of b to Mb.
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Definition 2.1. We noteMb the small v-stack associating to S a Pb-bundle E on XS

such that geometrically fiberwise on S, E
Pb

×Mb is isomorphic to EbMb
.

There is a cartesian square

Mb BunPb

[ ∗ /Gb(E)] BunMb

where the right down map sends a Pb-torsor E on XS to E
Pb

×Mb. Let

Bun◦Pb
⊂ BunPb

be the open sub-stack such that Bun◦Pb
(S) is the groupoid of Pb-bundles E on XS such that

the vector bundle E
Pb,Ad
× LieG/LiePb has geometrically fiberwise on S > 0 HN slopes. The

weights of [νb] ∈ X∗a(A)+Q on Lie gG/LiePb are < 0. FRom this we deduce that

Mb ⊂ Bun◦Pb
.

Now, the Jacobian criterion of smoothness implies that the morphism

Bun◦Pb
−→ BunG

is cohomologically smooth. We deduce a diagram

M̃b Mb BunG

∗
[
∗ /Gb(E)]

Gb(E)

ℓ-coho.
smooth

where the square is cartesian and defines M̃b. The left vertical section if given by the
inclusion Mp ⊂ Pb. Let K ⊂ Gb(E) be compact open pro-p. We obtain an ℓ-coho. sm.
morphism

f b
K : K\M̃b Mb BunG

separated
étale

ℓ-coho.
smooth

2.2. Properties of M̃b. The following are two key points of the local charts constructed.
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Theorem 2.2. The v-sheaf M̃b satisfies

(1) M̃b ∖ {∗} is a spatial diamond

(2) If i : {∗} ↪→ M̃b, for any A ∈ Dét(M̃b,Λ) one has

RΓ(M̃b, A)
∼−−→ i∗A.

3. Some compact generators of Dét(BunG,Λ)

Definition 3.1. For [b] ∈ B(G) and K a compact open pro-p subgroup of Gb(E) define

Ab
K = Rf b

K!Rf b!
K Λ ∈ Dét(BunG,Λ).

Example 3.2. If b is basic then

Ab
K = ib!

(
c− Ind

Gb(E)
K Λ

)
and thus Ab

K corresponds in this case to the standard generator c−IndGb(E)
K Λ of D(Gb(E),Λ).

Proposition 3.3. The following is satisfied

(1) For any B ∈ Dét(BunG,Λ) one has

Hom(Ab
K , B) = (ib)∗B.

(2) The collection
(
Ab

K

)
[b],K

is a set of compact generators of Dét(BunG,Λ).

→ In particular,

Dét(BunG,Λ)
ω = thick triangulated sub-cat. generated by

(
Ab

K

)
[b],K

.

4. The compactness criterion

Here is the main theorem.

Theorem 4.1 (Compacity criterion). An object A ∈ Dét(BunG,Λ) is compact iff
{|b] | (ib)∗A ̸= 0} is finite (i.e. A is supported on a qc. open subset of BunG) and
for all [b] ∈ B(G),

(ib)∗A ∈ D(Gb(E),Λ)

is compact (i.e. lies in the thick triangulated sub-category generated by the collection(
c− Ind

Gb(E)
K Λ

)
K⊂Gb(E)
open pro-p

).
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Proof. Its is evident that A compact implies it is supported on a qc open subset. Let
U ⊂ BunG be such a qc open subset and A ∈ Dét(U,Λ). Choose [b] ∈ |U | a closed point. Let
j : U ∖ {[b]} ↪→ U . There is an exact triangle

ib∗i
b∗A −→ A −→ j!j

∗A
+1−−−→ .

The functors ib∗ and j! have right adjoints that commute with arbitrary direct sums (in fact

R(ib)! is isomorphic to a shift of (ib)∗ since U and [∗/‹Gb] are ℓ-cohomologically smooth).
Thus, at the end we just need to prove, by induction on the cardinality of |U |, that if A is
compact then j∗A is compact in Dét(U ∖ {[b]},Λ). Since Dét(U,Λ)

ω is the thick triangulated

sub-category generated by the Ab′
K′ with [b′] ∈ |U | is suffices to prove that for [b′] ∈ |U | and

K ′ ⊂ Gb′(E) open pro-p,

j∗Ab′
K′

is compact. If [b′] ̸= [b] one has j∗A
[b′]
K′ = A

[b′]
K′ and the result is evident. If [b′] = [b] one has

j∗A
[b]
K = Rf b,◦

K! R(f b,◦
K )!Λ

that is compact since M̃◦
b := M̃b ∖ {∗} is spatial and thus quasi-compact. □

→ the key point of this proof is to prove that j∗ sends compact objects to compact
objects. This is absolutely not evident since Rj∗ does not commute with arbitrary direct
sums in general since, as said before, BunG being not quasi-separated, j is not quasi-compact
in general.

5. Stability of compact objects under the action of Hecke correspondences

5.1. Hecke correspondences. Let us consider the 2-category with one object whose

1-morphisms are RepΛ(“G) with composition given by ⊗Λ and whose 2-morphisms are the

usual morphisms in RepΛ(“G). There is a morphism of 2-categories from this 2-category to C∗
the category of correspondences over ∗. This is given by the geometric Satake correspondence.

5.2. Stability of compact objects. The following result is formal.

Proposition 5.1. For any W ∈ Rep(“G), TW ∈ End(Dét(BunG,Λ)) sends compact
objects to compact objects;

TW : Dét(BunG,Λ)
ω −→ Dét(BunG,Λ)

ω.

Proof. This is a consequence of the fact that

T : Rep(“G) −→ End(Dét(BunG,Λ))

is a monoidal functor, TW1⊗W2 = TW1 ◦ TW2 . Thus, by application of T to 1→ W̌ ⊗W and
W̌ ⊗W → 1 on obtains that TW̌ is a right adjoint to TW . Since TW̌ commutes with arbitrary
direct sums we deduce the result. □
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6. Proof of the finitess result

It suffices to verify that
RfK!Sµ ∈ D(Gb(E),Λ)

is identified with

(ib)∗Tµ

(
i1! c -Ind

G(E)
K Λ

)
.
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