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Realization from moments: The linear case

Jin Gyu Lee and Alessandro Astolfi

Abstract— By exploiting the time-domain notion of moments
we recover a time-domain counterpart of the fact that a certain
number of steady-state responses is sufficient to realize a linear
system. This may pave the way to a realization theory for
nonlinear systems based on their steady-state responses.

I. INTRODUCTION

This paper is motivated by the simple observation that
a certain number of steady-state responses is sufficient to
realize a SISO linear system, that is (almost) any 2n 0-
moments [1], i.e., any 2n pairs (si, G(si)) ∈ C2, i =
1, . . . , 2n, with

G(s) =
b1s

n−1 + · · ·+ bn
sn + a1sn−1 + · · ·+ an

,

can be used to “recover” the transfer function itself. In fact,
the parameters ai and bi, i = 1, . . . , n, can be obtained by
solving the 2n linear equations (i = 1, . . . , 2n)

G(si)[s
n
i + a1s

n−1
i + · · ·+ an] = b1s

n−1
i + · · ·+ bn,

which are always solvable provided that si 6= sj , for i 6= j,
and that each si is not a pole of G(·).

The goal of this paper is to recover a time-domain counter-
part of this fact. This yields several advantages, among which
we are interested in the possibility of developing a nonlinear
enhancement, thus possibly paving the way to a realization
theory for nonlinear systems based on their steady-state re-
sponses. For this purpose, we utilize the time-domain notion
of moment, developed in the theory of model reduction by
moment matching [1], [2]. In addition to the aforementioned
advantage, this also provides a good starting point for our
investigation: a simple and direct parameterization of all the
reduced order models (approximations) achieving moment
matching, i.e., the moments (steady-state responses) of the
approximation and the system coincide at the interpolation
points.

To begin with, we identify a necessary and sufficient
condition for sufficiently many other moments of the ap-
proximation and of the original system to match, as this
is necessary for “recovering” the original system. It turns
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out that this condition implies that the approximation is
identical to the original system, possibly after pole-zero
cancellations and a coordinates transformation. Then, to
complete the paper, we provide guidelines to actually find
such an approximation having a stable pole-zero cancellation,
using only moments. By following these guidelines, we
utilize exactly 2n moments to realize the original system:
this recovers the fact that with a certain number of steady-
state responses one can realize a linear system.

This means that among the infinitely many moments, only
a finite (but sufficiently many) of them determine the entire
response, that is any finite (but sufficiently many) number of
steady-state responses can reproduce not only all the steady-
state responses but also all the transient responses.

To make the paper self-contained, in Section II we briefly
review the problem of model reduction by moment matching
for linear systems in a time-domain perspective. Then, the
realization of a linear system using moments is discussed in
Sections III and IV. Conclusions are given in Section V and
some technical results are given in the Appendix.

Notation: Throughout the paper, we use standard notation.
R, Rn, and Rn×m denote the set of real numbers, of n-
dimensional vectors with real components, and of n × m-
dimensional matrices with real entries, respectively. C and
Cn denote the set of complex numbers and of n-dimensional
vectors with complex components, respectively, C0 denotes
the set of complex numbers with zero real part, and C−

denotes the set of complex numbers with negative real
part. σ(A) denotes the spectrum of the matrix A ∈ Rn×n.
∅ denotes the empty set. For vectors or matrices a and
b, col(a, b) :=

[
aT bT

]T
. For matrices A1, . . . , Ak, we

denote by diag(A1, . . . , Ak) the block diagonal matrix with
diagonal blocks A1, . . . , Ak.

II. A BRIEF REVIEW OF MODEL REDUCTION BY MOMENT
MATCHING FOR LINEAR SYSTEMS

A. Notion of moment

Consider a linear, single-input, single-output, system de-
scribed by the equation

ẋ = Ax+Bu ∈ Rn,

y = Cx ∈ R,
(1)

the single-output signal generator

ẇg = Sgwg ∈ RNg ,

u = Lgwg ∈ R,
(2)

and the single-input filter

ẇf = Sfwf + Lfy ∈ RNf . (3)



Let G(s) = C(sI − A)−1B. The signal generator and
the filter capture the requirement that one is interested in
studying the input-output behavior of the system (1) only
in specific circumstances. In what follows we assume that
A, Sg , and Sf do not have common eigenvalues, that is the
following assumption holds.

Assumption 1: σ(A)∩σ(Sg) = σ(A)∩σ(Sf ) = σ(Sg)∩
σ(Sf ) = ∅. �

Definition 1: The forward moment of the system (1) is
the matrix

Mg := CΠg,

where Πg is the unique solution of the Sylvester equation

AΠg +BLg = ΠgSg. (4)

Correspondingly, the backward moment of the system (1) is
the matrix

Mf := ΠfB,

where Πf is the unique solution of the Sylvester equation

ΠfA+ LfC = SfΠf . (5)

�
Note that moments are associated with the input-output
behavior of the system (1), the signal generator (2), and
the filter (3), hence in what follows we make the following
standing assumption.

Assumption 2: The system (1) is controllable and ob-
servable, the signal generator (2) is observable, and the
filter (3) is controllable. �

Definition 1 provides a generalized time-domain notion of
moments. As regarding to the frequency-domain notion of
moments we have the following result.

Definition 2 ([1]): The 0-moment of the system (1) at
s∗ ∈ C is the complex number

η0(s∗) = C(s∗I −A)−1B.

The k-moment of the system (1) at s∗ ∈ C is the complex
number

ηk(s∗) =
(−1)k

k!

[
dk

dsk
(C(sI −A)−1B)

]
s=s∗

= C(s∗I −A)−(k+1)B.

�
Lemma 1 ([2]): Consider the system (1) and s∗ ∈ R.

Suppose s∗ /∈ σ(A). Then the moments η0(s∗), . . . , ηk(s∗)
are in one-to-one relationship with the forward moment
Mg = CΠg of the signal generator (2) with Sg any non-
derogatory1 real matrix such that

det(sI − Sg) = (s− s∗)k+1, (6)

and Lg such that the pair (Lg, Sg) is observable. �
Lemma 2 ([2]): Consider the system (1) and

s∗ ∈ C \ R. Suppose s∗ /∈ σ(A). Then the moments
η0(s∗), η0(s∗), . . . , ηk(s∗), and ηk(s∗) are in one-to-one

1A matrix is non-derogatory if its characteristic and minimal polynomials
coincide.

relationship with the forward moment Mg = CΠg of the
signal generator (2) with Sg any non-derogatory real matrix
such that

det(sI − Sg) = ((s− s∗)(s− s∗))k+1, (7)

and Lg such that the pair (Lg, Sg) is observable. �
Remark 1: One can easily derive similar results for the

backward moments. �
The concept of moments has a tight relation with the

concept of steady-state responses as illustrated in what
follows.

Proposition 1 ([2]): Consider the system (1), s∗ ∈ C,
and k ≥ 0. Assume σ(A) ⊂ C− and s∗ ∈ C0. Let

Ng =

{
k + 1 if s∗ ∈ R,

2(k + 1) if s∗ ∈ C \ R,

and Sg ∈ RNg×Ng be any non-derogatory matrix with
characteristic polynomial as in (6), if s∗ ∈ R, or as in (7), if
s∗ ∈ C \ R.

Consider the interconnection of systems (1) and (2), and
Lg such that the pair (Lg, Sg) is observable.

Then the moments η0(s∗), . . . , ηk(s∗) are in one-to-one
relationship with the (well-defined) steady-state response of
the output of the interconnected system. �

B. Moment matching

We are now in a position to define, precisely, the notion
of approximating system.

Definition 3: The system

˙̂x = Âx̂+ B̂u ∈ Rn̂

y = Ĉx̂ ∈ R
(8)

is an approximation of the system (1) with regards to the
signal generator (2) (to the filter (3)) if for a minimal
realization (C̄, Ā, B̄) of (8) with dimension n̄, we have

σ(Ā) ∩ σ(Sg) = ∅ (σ(Ā) ∩ σ(Sf ) = ∅) (9)

and

CΠg = C̄Π̄g (ΠfB = Π̄f B̄), (10)

where Πg (Πf ) is the unique solution of the Sylvester
equation (4) ((5)), with Lg (Lf ) such that the pair (Lg, Sg)
is observable ((Sf , Lf ) is controllable), and Π̄g (Π̄f ) is the
unique solution of the Sylvester equation

ĀΠ̄g + B̄Lg = Π̄gSg (Π̄f Ā+ Lf C̄ = Sf Π̄f ). (11)

�
Remark 2: In Definition 3 we have implicitly extended

our definition of moments, given in Definition 1, to systems
that are not minimal. We emphasize that when σ(Â) ∩
σ(Sg) = ∅ (σ(Â) ∩ σ(Sf ) = ∅), the Sylvester equation

ÂΠ̂g + B̂Lg = Π̂gSg (Π̂f Â+ Lf Ĉ = Sf Π̂f )

has a unique solution and it satisfies the condition

CΠg = C̄Π̄g = ĈΠ̂g (ΠfB = Π̄f B̄ = Π̂f B̂),



regardless of the minimality (see Proposition 3 and
Lemma 5). This justifies the extension. �

According to [2], a parameterized family of approxima-
tions of the system (1) with regards to the signal generator (2)
(to the filter (3)) described by equations of the form (8) with

Â = Sg −KgLg, B̂ = Kg, Ĉ = CΠg

(Â = Sf − LfHf , B̂ = ΠfB, Ĉ = Hf )

namely

χ̇g = (Sg −KgLg)χg +Kgu ∈ RNg ,

y = Mgχg ∈ R,
(12)(

χ̇f = (Sf − LfHf )χf +Mfu ∈ RNf ,
y = Hfχf ∈ R,

)
(13)

with the matrix parameter Kg (Hf ) is complete, i.e., the
family (12) ((13)) contains all approximations of dimension
Ng (Nf ) achieving moment matching.

Proposition 2 ([2]): Consider an approximation of the
system (1) with regards to the signal generator (2) of dimen-
sion Ng ≤ n, and let Ĝ(s) be its transfer function. Then,
there exists a unique Kg such that Ĝ(s) = Mg(sI − (Sg −
KgLg))−1Kg , i.e., the family of systems (12) contains all
approximations of the system (1) with regards to the signal
generator (2) of dimension Ng . �

Remark 3: One can easily derive a similar result for the
backward moments. �

III. A NECESSARY AND SUFFICIENT CONDITION FOR AN
APPROXIMATION TO MATCH OTHER MOMENTS

In [2], special emphasis has been devoted to the pa-
rameterization of approximations (which is briefly reviewed
in Section II-B), and to the selection of parameters under
additional constraints, such as to preserve the properties of
the original system (e.g., stability or passivity) [3]. On the
contrary to other solutions in the linear framework, e.g.,
projection methods and interpolation theory, the parameter-
ization as in Section II-B provides a unifying perspective,
i.e., the selection of parameters does have a simple and
direct interpretation [2]. Motivated by this, to recover a time-
domain counterpart of the fact introduced at the beginning
of this paper, we consider the selection of parameters with
the additional property of matching (sufficiently many) other
moments, as this is necessary for “recovering” the original
system.

To begin with, we find a necessary and sufficient condition
for the forward moments M̄k

g := CΠ̄k
g , k = 1, . . . , og of the

system (1) with regards to (sufficiently many) other signal
generators

˙̄wk
g = S̄k

g w̄
k
g ∈ RN̄k

g ,

u = L̄k
gw̄

k
g ∈ R, k = 1, . . . , og,

(14)

to match each forward moment M̂k
g := ĈΠ̂k

g , k = 1, . . . , og
of the approximation (12) with regards to the signal gen-
erator (14), where (Ĉ, Â, B̂) is a minimal realization (with

dimension n̂) of the approximation (12) and Π̄k
g and Π̂k

g are
the unique solution of the Sylvester equations

AΠ̄k
g +BL̄k

g = Π̄k
g S̄

k
g (15)

and

ÂΠ̂k
g + B̂L̄k

g = Π̂k
g S̄

k
g , (16)

respectively.
Theorem 1: Consider the system (1), the signal genera-

tor (2), and the approximation (12). Let Assumptions 1 and 2
hold. Then, the condition

CΠ̄k
g = M̄k

g = M̂k
g = ĈΠ̂k

g , k = 1, . . . , og

hold for a set of signal generators (14) such that (L̄k
g , S̄

k
g ) is

observable, σ(A) ∩ σ(S̄k
g ) = ∅ and σ(Â) ∩ σ(S̄k

g ) = ∅, and∣∣∣∣∣∣
⋃

k=1,...,og

σ(S̄k
g )

∣∣∣∣∣∣ ≥ n+ n̂ (i.e., sufficiently many), (17)

where Πg , Π̄k
g , and Π̂k

g are the unique solution of the
Sylvester equations (4), (15), and (16), respectively, if and
only if

Ng ≥ n and ΠgKg = B. (18)

In particular, if (18) is satisfied, then (C,A,B) is a minimal
realization of the approximation (12), hence the forward
moments of the system (1) and of the approximation (12)
of any other signal generators ˙̄wg = S̄gw̄g , u = L̄gw̄g , such
that (L̄g, S̄g) is observable and σ(A)∩σ(S̄g) = ∅, exist and
match. �

Proof:
(⇐) As Mg = CΠg , ΠgKg = B, and

Πg(Sg −KgLg) = ΠgSg −BLg = AΠg,

(C,A,B) is a minimal realization of the approximation (12),
by (18).

(⇒) By collecting the Sylvester equations (15) and (16),
for k = 1, . . . , og , we have that

APg + BL̄g

:=

[
A 0

0 Â

] [
Π̄g

Π̂g

]
+

[
B

B̂

]
L̄g =

[
Π̄g

Π̂g

]
S̄g = PgS̄g,

(19)

where L̄g =
[
L̄1
g · · · L̄

og
g

]
, S̄g = diag(S̄1

g , . . . , S̄
og
g ),

Π̄g =
[
Π̄1

g · · · Π̄
og
g

]
, and Π̂g =

[
Π̂1

g · · · Π̂
og
g

]
.

The moment matching condition is now represented as
M̄g := CΠ̄g = ĈΠ̂g =: M̂g .

Now, perform a “controllable” decomposition and an “ob-
servable” decomposition of the pair (A,B) and (L̄g, S̄g),
respectively. Then, we have coordinates transformation ma-
trices T = col(T̄ , T̃ ) and P = col(P̄ , P̃ ) such that[

T̄

T̃

]
A
[
T̄ † T̃ †

]
=

[
Ā Ǎ
0 Ã

]
,

[
T̄

T̃

]
B =

[
B̄
0

]
,



and the pair (Ā, B̄) ∈ RN̄×N̄ × RN̄×1 is controllable and[
P̄

P̃

]
S̄g

[
P̄ † P̃ †

]
=

[
Ŝg 0

Šg S̃g

]
, L̄g

[
P̄ † P̃ †

]
=
[
L̂g 0

]
,

and the pair (L̂g, Ŝg) ∈ R1×N̂g × RN̂g×N̂g is observable,
respectively, where

T−1 =:
[
T̄ † T̃ †

]
and P−1 =:

[
P̄ † P̃ †

]
.

Note that, by (17) and by the observability of the pairs
(L̄k

g , S̄
k
g ), k = 1, . . . , og , we have that N̂g ≥ n+ n̂.

By our assumptions, we have σ(A) ∩ σ(S̄g) = ∅, and
thus, from Proposition 3 and Lemma 5, the unique solution
Pg of the Sylvester equation (19) satisfies the condition
rank(Pg) = min{N̄ , N̂g} = N̄ ≤ n+ n̂ ≤ N̂g and[

Π̄g

Π̂g

]
= Pg = T̄ †P̄gP̄ ,

where P̄g is the unique solution of the Sylvester equation

ĀP̄g + B̄L̂g = P̄gŜg. (20)

Now, P̄g has full row rank as N̂g ≥ n + n̂ ≥ N̄ , and this
implies that there exists Kg such that

B̄ = P̄gKg.

This further implies that[
B

B̂

]
= B = T̄ †B̄ = T̄ †P̄gKg = PgP̄

†Kg =:

[
Π̄g

Π̂g

]
K̄g.

Therefore, we have that

AΠ̄g = Π̄g(S̄g − K̄gL̄g),

ÂΠ̂g = Π̂g(S̄g − K̄gL̄g),

and this further provides the conditions:

CAiB = CAiΠ̄gK̄g = CΠ̄g(S̄g − K̄gL̄g)iK̄g

= ĈΠ̂g(S̄g − K̄gL̄g)iK̄g

= ĈÂiΠ̂gK̄g = ĈÂiB̂, ∀i ≥ 0.

This means that the transfer functions C(sI − A)−1B and
Ĉ(sI − Â)−1B̂ are identical, hence n = n̂ ≤ Ng .

Finally, the fact that (Ĉ, Â, B̂) is a minimal realization
of the approximation (12) ensures that there exists a matrix
Π ∈ Rn×Ng such that rank(Π) = n and

Mg = CΠ, ΠKg = B, Π(Sg −KgLg) = AΠ.

This implies that

ΠSg = AΠ +BLg,

hence by the uniqueness of the solution of the Sylvester
equation (4), we have that Π = Πg , and thus, ΠgKg = B.

Theorem 1 can be interpreted as follows: the necessary and
sufficient condition (18) is such that the approximation (12)
is identical to the system (1) after pole-zero cancellation

and a coordinates transformation. In particular, selecting the
variables2 x̂g = Πgχg and x̃g = Π̃gχg we have that

˙̂xg = Πg(Sg −KgLg)Π†gx̂g + Πg(Sg −KgLg)Π̃†gx̃g +Bu

= Ax̂g +Bu,

˙̃xg = Π̃g(Sg −KgLg)Π̃†gx̃g + Π̃g(Sg −KgLg)Π†gx̂g

+ Π̃gKgu

=: Ãgx̃g + D̃gx̂g + B̃gu,

y = Cx̂g,
(21)

where Π̃g is such that the matrix

Og :=

[
(ΠgΠT

g )−1/2Πg

Π̃g

]
is orthogonal (that is OT

g Og = I), so that

T−1
g :=

[
Πg

Π̃g

]−1

=
[
ΠT

g (ΠgΠT
g )−1 Π̃T

g

]
=:
[
Π†g Π̃†g

]
,

(22)

and we have utilized the fact that

Πg(Sg −KgLg)Π†g = (ΠgSg −BLg)Π†g = AΠgΠ†g = A,

Πg(Sg −KgLg)Π̃†g = (ΠgSg −BLg)Π̃†g = AΠgΠ̃†g = 0.

This implies that a necessary and sufficient condition to
match sufficiently many other moments of the system (1)
is that the approximation (12) contains the system (1) as
an internal model. It also implies that n forward moments
(the forward moment with regards to a signal generator with
dimension n) are sufficient to build the basic structure (12)
for the realization.

In the next section, we provide guidelines on the selection
of the design parameter Kg that satisfies (18) (hence to
realize the system (1) by constructing an approximation (12)
that contains the system (1) as an internal model), using
only the knowledge of the signal generator, the filter, and
the corresponding moments. We note that in the selection
process of Kg , we should also guarantee that

Ãg = Π̃g(Sg −KgLg)Π̃†g (23)

is Hurwitz for a stable pole-zero cancellation.
Remark 4: One can easily derive similar results for the

backward moments. �

IV. GUIDELINES ON THE SELECTION OF THE PARAMETER

Note first that for any parameter K̂g that satisfies (18),
i.e., ΠgK̂g = B, all Kg can be parameterized as

Kg = K̂g + K̃g,

with the additional parameter K̃g which is such that ΠgK̃g =
0. Since Ng ≥ n and rank(Πg) = n (see Lemma 4), at least
one such K̂g exists, e.g., Π†gB.

2By Assumptions 1 and 2, we have that rank(Πg) = n (see Lemma 4).



Therefore, in the first part of this section we provide
guidelines to find K̂g using only the knowledge of the signal
generator, the filter, and the corresponding moments.

For this purpose, recall that the backward moment of the
system (1) has the form: Mf = ΠfB, where Πf is the
unique solution of the Sylvester equation (5). This implies
that the backward moment contains indirect information of
B (rank(Πf ) = n), and thus, can be used to find K̂g or even
can be a suitable candidate for K̂g .

However, for the backward moment to be a suitable can-
didate, it must satisfy the condition ΠgMf = ΠgΠfB = B,
and this significantly restricts the choice of the filter (3).

In this regard, we suggest an additional step, which is
to find an appropriate matrix D such that K̂g = DMf

satisfies the condition ΠgK̂g = B. Among the infinitely
many possible choices, we select

D = ΠT
g (ΠgΠT

g )−1(ΠT
f Πf )−1ΠT

f ,

which is the Moore-Penrose inverse of Πm := ΠfΠg ,
denoted as Π†m. It satisfies the condition ΠgK̂g = B since

ΠgK̂g = ΠgΠ†mMf = ΠgΠ†mΠfB

= ΠgΠT
g (ΠgΠT

g )−1(ΠT
f Πf )−1ΠT

f ΠfB = B.

This additional step allows selecting any filter (3) that
satisfies Assumptions 1 and 2.

Note that Πm = ΠfΠg satisfies the Sylvester equation

ΠmSg + (LfMg −MfLg) = SfΠm, (24)

which contains only the knowledge of (Sg, Lg,Mg) and
(Sf , Lf ,Mf ). This means that if the signal generator (2) and
the filter (3) satisfy the condition σ(Sg) ∩ σ(Sf ) = ∅, then
Πm = ΠfΠg becomes the unique solution of the Sylvester
equation (24), hence can be found using only the knowledge
of the signal generator (Sg, Lg), of the filter (Sf , Lf ), and
of the corresponding moments Mg and Mf .

Lemma 3: Under Assumptions 1 and 2, the matrix Πm =
ΠfΠg satisfies the equation (24), where Πg and Πf are
the unique solution of the Sylvester equations (4) and (5),
respectively. �

Proof: By multiplying Πf to the left of the Sylvester
equation (4) we have that

ΠfAΠg + ΠfBLg = ΠfΠgSg,

and by multiplying Πg to the right of the Sylvester equa-
tion (5) we have that

ΠfAΠg + LfCΠg = SfΠfΠg,

from which we obtain

ΠfΠgSf + (LfCΠg −ΠfBLg) = SfΠfΠg.

This implies that one can find an approximation of the
system (1) having stable pole-zero cancellation as

χ̇g = (Sg−(Π†mMf +K̃g)Lg)χg+(Π†mMf +K̃g)u ∈ RNg ,

y = Mgχg ∈ R,
(25)

where K̃g is a free design parameter to be selected so that
Ãg in (23) is Hurwitz and such that ΠgK̃g = 0.

Here, the constraint ΠgK̃g = 0 can be rephrased as
ΠmK̃g = ΠfΠgK̃g = 0 (rank(Πf ) = n), to be described by
only the given knowledge of the signal generator, the filter,
and the corresponding moments. Accordingly, the constraint
to make Ãg Hurwitz can be rephrased as to make the matrix

S̃g(q) := Sg −Π†mΠm(Sg + qI)− K̃gLg, q ≥ 0 (26)

Hurwitz. This is because

TgS̃g(q)T−1
g =

[
−qI 0

∗ Π̃g(Sg − K̃gLg)Π̃†g

]
and

Π̃g(Sg − K̃gLg)Π̃†g = Π̃g(Sg − (Π†mMf + K̃g)Lg)Π̃†g

= Π̃g(Sg −KgLg)Π̃†g = Ãg,

where Tg is defined as in (22) and we have utilized the fact
that ΠgΠ†mΠm = Πg , ΠgK̃g = 0, and Π̃gΠ†m = 0.

Since (LgΠ̃†g, Π̃gSgΠ̃†g) is observable3 there exists at least
one Ǩg ∈ RNg−n that makes Π̃gSgΠ̃†g − ǨgLgΠ̃†g Hurwitz.
As a result, there exists at least one K̃g = Π̃†gǨg that
satisfies the constraint ΠgK̃g = 0 and that makes Ãg Hurwitz
(Π̃gK̃g = Ǩg).

In this regard, we provide guidelines on the realization of a
linear system using Ng +Nf moments (the forward moment
with regards to the signal generator (2) with dimension Ng

and the backward moment with regards to the filter (3) with
dimension Nf ) as illustrated in what follows.

1) Find K̂g from Πm, which is the solution of the Sylvester
equation (24) that requires only the knowledge of the
signal generator, the filter, and the corresponding mo-
ments.

2) Find K̃g so that S̃g(q) in (26) is Hurwitz and ΠmK̃g =0.
Remark 5: Given the knowledge of the system dimen-

sion n, the guideline given in this section simplifies to
1) let Ng = Nf = n and find the solution Πm of (24).

Then, the unique Kg can be found as Π−1
m Mf : this gives

the realization of the original system utilizing exactly 2n
moments. �

Remark 6: One can easily derive similar results for the
backward moments. �

V. CONCLUSION

The existence condition of the forward moment is equiv-
alent to the observability condition of the auxiliary system
having the forward moment as a state variable, which can be
derived from the interconnection of the signal generator (2)
and the system (1). This gives the intuition that the provided
guidelines to realize a linear system using moments can be
translated into guidelines utilizing only the input-output data
given by the corresponding interconnection. In addition to
this, an extension to the nonlinear case is of future interest.

3This is because, from the observability of (Lg , Sg), we have the
observability of (Lg , Sg − K̂gLg), which implies the observability of
(LgΠ̃†

g , Π̃g(Sg − K̂gLg)Π̃†
g) since we have Πg(Sg − K̂gLg)Π̃†

g = 0
according to (21).
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APPENDIX

In the Appendix, we study the existence, uniqueness, and
rank of the solutions Π ∈ Rn×N of the Sylvester equation:

ΠS = AΠ +BL, (27)

where S ∈ RN×N , L ∈ R1×N , A ∈ Rn×n, and B ∈ Rn×1.
For this purpose, we perform a “controllable” decomposi-
tion and an “observable” decomposition of the pair (A,B)
and (L, S), respectively, from which we have coordinates
transformation matrices T = col(T̄ , T̃ ) ∈ R[n̄+(n−n̄)]×n and
P = col(P̄ , P̃ ) ∈ R[N̄+(N−N̄)]×N such that[

T̄

T̃

]
A
[
T̄ † T̃ †

]
=

[
Ā Ã12

0 Ã22

]
,

[
T̄

T̃

]
B =

[
B̄
0

]
,

and the pair (Ā, B̄) is controllable and[
P̄

P̃

]
S
[
P̄ † P̃ †

]
=

[
S̄ 0

S̃21 S̃22

]
, L

[
P̄ † P̃ †

]
=
[
L̄ 0

]
,

and the pair (L̄, S̄) is observable, respectively, where

T−1 =:
[
T̄ † T̃ †

]
and P−1 =:

[
P̄ † P̃ †

]
.

Proposition 3 ([4]): If σ(A) ∩ σ(S) = ∅, then for any
C ∈ Rn×N , the Sylvester equation ΠS = AΠ + C has a
unique solution. On the other hand, if there exists C ∈ Rn×N

such that the Sylvester equation ΠS = AΠ+C has a unique
solution Π, then σ(A) ∩ σ(S) = ∅. �

Lemma 4: There exists a matrix Π̄ ∈ Rn̄×N̄ such that

Π̄S̄ = ĀΠ̄ + B̄L̄ (28)

only if σ(Ā) ∩ σ(S̄) = ∅. If it exists, then it is unique and
rank(Π̄) = min{n̄, N̄}. �

Proof: Assume that there exists Π̄ such that (28) is
satisfied and σ(Ā) ∩ σ(S̄) 6= ∅, i.e., there exists λ ∈
σ(Ā) ∩ σ(S̄) ⊂ C. Then, there exist non-zero vectors
v ∈ Cn̄ and w ∈ CN̄ such that S̄w = λw and v†Ā =
λv†. This implies that λv†Π̄w = v†Π̄S̄w = v†ĀΠ̄w +
v†B̄L̄w = λv†Π̄w + v†B̄L̄w, from which we obtain that
v†B̄L̄w = 0. This implies that either v†B̄ = 0 or L̄w = 0.
Without loss of generality assume that v†B̄ = 0 then,
we obtain that v†ĀiB̄ = λiv†B̄ = 0, which implies that
v†
[
B̄ ĀB̄ · · · Ān̄−1B̄

]
= 0, hence v = 0, which is a

contradiction.
Now, if rank(Π̄) = r̄ < min{n̄, N̄}, then there exist

orthonormal matrices Ū ∈ Rn̄×r̄, V̄ ∈ RN̄×r̄, and a non-
singular diagonal matrix Λ̄ ∈ Rr̄×r̄, such that Π̄ = Ū Λ̄V̄ T .
Let Ũ ∈ Rn̄×(n̄−r̄) and Ṽ ∈ RN̄×(N̄−r̄) be such that

[
Ū Ũ

]

and
[
V̄ Ṽ

]
are orthogonal. Then, we have ŨT B̄L̄Ṽ = 0.

This implies that either ŨT B̄ = 0 or L̄Ṽ = 0. Without loss
of generality assume that ŨT B̄ = 0 then, since (Ā, B̄) is
controllable, we also have that the pair([

ŪT

ŨT

]
(Ā+ B̄L̄V̄ Λ̄−1ŪT )

[
Ū Ũ

]
,

[
ŪT B̄

ŨT B̄

])
=

([
ŪT (Ā+ B̄L̄V̄ Λ̄−1ŪT )Ū ŪT ĀŨ

0 ŨT ĀŨ

]
,

[
ŪT B̄

0

])
is controllable, which is a contradiction. Here, we have
utilized the fact that ŨT ĀŪ Λ̄V̄ T + ŨT B̄L̄ = ŨT (ĀΠ̄ +
B̄L̄) = ŨT Π̄S̄ = 0, hence ŨT (ĀŪ + B̄L̄V̄ Λ̄−1)Λ̄V̄ T =
ŨT ĀŪ Λ̄V̄ T + ŨT B̄L̄ − ŨT B̄L̄Ṽ Ṽ T = 0. Therefore,
rank(Π̄) = min{n̄, N̄}.

Lemma 5: Any solution Π ∈ Rn×N of the Sylvester
equation (27) satisfies

rank(Π) ≥ min{n̄, N̄}.

Moreover, there exists a solution Π ∈ Rn×N of the Sylvester
equation (27) such that rank(Π) = min{n̄, N̄} if and only
if σ(Ā) ∩ σ(S̄) = ∅. If it exists, then it satisfies

Π = T̄ †Π̄P̄ ,

where Π̄ ∈ Rn̄×N̄ is the unique solution of the Sylvester
equation (28), hence Π is also unique. �

Proof: Let Π be a solution of the Sylvester equa-
tion (27). Then, we have r := rank(Π) ≥ min{n̄, N̄}.
This is because there exist orthonormal matrices U ∈ Rn×r,
V ∈ RN×r, and a nonsingular diagonal matrix Λ ∈ Rr×r,
such that Π = UΛV T . In particular, let Ũ ∈ Rn×(n−r)

and Ṽ ∈ RN×(N−r) be such that
[
U Ũ

]
and

[
V Ṽ

]
are orthogonal. Then, we have that ŨTBLṼ = ŨT (ΠS −
AΠ)Ṽ = ŨTUΛV TS − AUΛV T Ṽ = 0. This implies that
either ŨTB = 0 or LṼ = 0. Without loss of generality
assume that ŨTB = 0 then, we obtain that ŨTAU =
ŨTAΠV Λ−1 = ŨT (ΠS − BL)V Λ−1 = 0. Therefore,
r ≥ n̄ ≥ min{n̄, N̄}.

(⇐) If σ(Ā) ∩ σ(S̄) = ∅, then, by Proposition 3, there
exists a unique solution Π̄ of the Sylvester equation (28).
Then, Π = T̄ †Π̄P̄ (rank(Π) = min{n̄, N̄}) satisfies the
equation

ΠS = T̄ †Π̄P̄S = T̄ †Π̄S̄P̄ = T̄ †ĀΠ̄P̄ + T̄ †B̄L̄P̄

= T̄ †T̄AT̄ †Π̄P̄ + T̄ †T̄BLP̄ †P̄

= AΠ +BL− T̃ †T̃AT̄ †Π̄P̄ − T̃ †T̃BLP̄ †P̄ −BLP̃ †P̃
= AΠ +BL,

hence is a solution of the Sylvester equation (27).
(⇒) If there exists a solution Π of the Sylvester equa-

tion (27) such that rank(Π) = min{n̄, N̄}, then by the
former argument, there exists U and V . Note that we have
T̃U = 0 and V T P̃ † = 0. This implies T̃Π = 0 and
ΠP̃ † = 0. Now, from TΠP−1PSP−1 = TAT−1TΠP−1 +
TBLP−1, we obtain that

(
T̄ΠP̄ †

)
S̄ = Ā

(
T̄ΠP̄ †

)
+ B̄L̄,

and thus, by Lemma 4, we obtain that σ(Ā) ∩ σ(S̄) = ∅
and T̄ΠP̄ † = Π̄. Together with T̃Π = 0 and ΠP̃ † = 0, this
implies Π = T̄ †Π̄P̄ .


