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Abstract

This paper examines how weak synaptic coupling can achieve rapid synchronization in heterogeneous networks. The assump-
tions aim at capturing the key mathematical properties that make this possible for biophysical networks. In particular, the
combination of nodal excitability and synaptic coupling are shown to be essential to the phenomenon.
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1 Introduction

Biophysical neuronal networks exhibit rapid transitions
between asynchronous and synchronous modes in spite
of weak coupling and significant heterogeneity in the net-
work. Such properties might be desirable in engineered
networks, but they do not seem immediately aligned
with the mathematical analysis of synchronization. A
standard model of synchronization in physical models is
through diffusive coupling in a network of Van der Pol
nonlinear oscillators, see, e.g., (Wang & Slotine, 2005;
Stan & Sepulchre, 2007; Angeli, 2002; Arcak, 2007). Syn-
chronization in those models is the result of a contraction
property for the error dynamics. The analysis requires
identical oscillators and the coupling strength must be
strong enough to overcome the shortage of contraction in
the decoupled model. The robustness of this mechanism
to the heterogeneity of the network has been studied by
several authors, see, e.g., (Kim, Yang, Shim, Kim, & Seo,
2016; Panteley & Loŕıa, 2017; Lee & Shim, 2018, 2020).
However, the common conclusion of such analysis is that
stronger coupling is required to compensate for stronger
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heterogeneity. This conclusion is consistent with syn-
chronization studies in more abstract phase models such
as the celebrated Kuramoto model (Kuramoto, 1975;
Strogatz, 2000; Dörfler & Bullo, 2012).

The goal of the present paper is to highlight the addi-
tional modeling properties needed to reconcile the appar-
ent discrepancy between biophysical observations and
mathematical analysis. We will analyze synchronization
in a model of excitable neurons under synaptic coupling.
Those two properties are central to biophysical models
of synchronization: a mechanism akin to fast threshold
modulation (Somers & Kopell, 1993). The nonlinear na-
ture of the synaptic coupling makes it possible to bound
the coupling by a given constant and at the same time
make its gain high in a narrow amplitude range. Synaptic
coupling hence reconciles the weak coupling biophysical
assumption with the localized strong coupling property
required for mathematical contraction. Excitable mod-
els have a threshold, that is, a highly localized ampli-
tude range where the spike can be triggered. Thanks to
the threshold, the range of strong coupling can be nar-
rowed down to where it is most beneficial to synchro-
nization. The two properties combined together drasti-
cally simplify the analysis of the overall network because
the neurons are nearly decoupled almost everywhere in
the state-space. As a result, the convergence analysis de-
composes into a sequence of distinct phenomena:

(1) Rapid convergence of each individual neuron to
a neighborhood of its limit cycle attractor, deter-
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mined by the absolute bound on the coupling term
treated as an exogenous disturbance; the weaker the
coupling, the better the bound (Sections 3.1–3.2).

(2) Owing to the fast-slow nature of the oscillations and
to the synaptic nature of the coupling, the limit cy-
cle trajectory of each neuron is rapidly entrained
by the short coupling pulses triggered by each spike
of presynaptic neurons. The rate of entrainment is
independent of the strength of the coupling (Sec-
tion 5.1).

(3) Phase synchronization of the spiking events occurs
because the coupling pulses of the presynaptic neu-
rons only affect the phase of the postsynaptic neu-
ron near the threshold, the narrow range where they
reduce the phase difference (Section 5.3).

Our objective is to show that those three intuitive prop-
erties can be demonstrated in a standard mathematical
model using standard analysis. In particular, the simple
linearization analysis of the differential equation high-
lights how the synaptic coupling provides strong diffu-
sive coupling only near the threshold, making the overall
network nearly decoupled anywhere else.

The specificity of pulse coupling with respect to diffusive
coupling has been thoroughly studied in the dynamical
systems literature, see, e.g., the seminal paper (Mirollo &
Strogatz, 1990a) and the tutorial paper (Mauroy, Sacré,
& Sepulchre, 2012). However, combining the slow-fast
nature of spiking oscillations with a reduction to phase
models has proven challenging (Izhikevich, 2000; Sacré
& Sepulchre, 2014; Sacré & Franci, 2015). Those techni-
cal obstacles have made it difficult to connect the liter-
ature on diffusive coupling in ordinary differential equa-
tions with the literature on abstract phase models. The
analysis in the present paper does not perform any phase
reduction and proceeds straight from linearization anal-
ysis of the full differential equation model: we instead
perform a network-wise singular perturbation analysis.

A strong source of inspiration for the present paper is
the work by Somers and Kopell (Somers & Kopell, 1993,
1995). To the best of our knowledge, they were the first
to observe the rapid synchronization phenomenon in a
model that combines excitability and synaptic coupling
(which yields fast threshold modulation). They provided
a detailed analysis of two identical relaxation oscillators
(two-time scale oscillators characterized by a square-
wave oscillation) under weak excitatory synaptic cou-
pling and provided numerical evidence that a ring of re-
laxation oscillators synchronizes quicker than a ring of si-
nusoidal oscillators, under excitatory synaptic coupling.
This basic but key observation is illustrated in Figure 1
(a) and is a starting point for the analysis in the present
paper.

The phase portrait of Figure 1 (a) illustrates why local-
izing the coupling near the threshold is key to rapid syn-
chronization. In this example, the vertical direction is

Fig. 1. Rapid synchronization of two identical (a) and non-i-
dentical (b) excitable systems under weak excitatory synap-
tic coupling. (c) Poor synchronization of the same non-iden-
tical excitable systems under strong diffusive coupling.

the direction where coupling is exerted. Under uniform
diffusive coupling, most of the coupling force is balanced
by the strong attraction of individuals to their own limit
cycles, hence resulting in a slower convergence rate for
synchronization (Figure 1 (c) illustrates that the strong
diffusive coupling significantly deforms the trajectory of
the oscillation). In contrast, the synaptic coupling is ac-
tive only near the threshold, where it matches the direc-
tion of pulling. This mechanism is quite robust to hetero-
geneity as illustrated by Figure 1 (b). An idea to design
nonlinear coupling to synchronize identical agents effi-
ciently under the same philosophy has been introduced
in (Pavlov, Steur, & van de Wouw, 2022), where the goal
is to make the error dynamics contractive everywhere.

The remainder of the paper is organized as follows. We
motivate the discussions made earlier with a concrete
example in Section 2. Then, we introduce a generalized
model in Section 3. The latter two steps of the con-
vergence analysis are detailed in Section 5 based on a
network-wise reduction illustrated in Section 4 followed
by a discussion in Section 6. The first step of the conver-
gence is straightforward from the definition of the model
(Section 3.2). A simulation result illustrating the robust-
ness of these biophysical assumptions with respect to
heterogeneity is given in Section 7. Finally, we conclude
in Section 8. Additional technical details are given in the
Appendix.

Notation: A (directed) graph is a pair G = (N , E) con-
sisting of a finite nonempty set of nodes N and an edge
set of ordered pairs of nodes E ⊆ N ×N , where (i, i) /∈ E
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for all i ∈ N (i.e., the graph does not contain self-loops).
The set Ni = {j ∈ N : (j, i) ∈ E} denotes the neigh-
bors of the node i. A tuple (i0, i1, ..., il) is called a path
(of length l) from node i0 to node il if ik ∈ Nik+1

for all
k = 0, . . . , l − 1. Given a graph G = (N , E), let N ′ ⊆ N
and E ′ ⊆ E|N ′ := {(j, i) ∈ E : i, j ∈ N ′}. Then the pair
G′ = (N ′, E ′) is called a subgraph of G. If N ′ = N , then
G′ is a spanning subgraph. A graph G is strongly con-
nected if, for any pair of agents i and j, there exists a
path from i to j. A spanning subgraph T of G having
a root i such that there is exactly one path from i to
any other node is called a spanning tree of G. An inde-
pendent strongly connected component (iSCC) of G is a
subgraph G′ = (N ′, E ′) such that it is maximal subject
to being strongly connected and satisfies that (j, i) /∈ E
for any j ∈ N \ N ′ and i ∈ N ′. For vectors or matrices
a and b, col(a, b) := [aT , bT ]T .

2 A motivating example

The simulation in Figure 1 involves the standard Morris-
Lecar excitable model

τ(v)ẋ = −x+ x∞(v),

εv̇ = gL(−0.4− v) + gCam∞(v)(1− v)

+ gKx(−0.7− v) + 0.4 + I

(1)

where the small parameter ε = 0.02 controls the time
scale separation of the model, and

τ(v) =
1

cosh
(
v+0.1
0.29

) , x∞(v) =
1

2
+

1

2
tanh

(
v + 0.1

0.145

)
,

m∞(v) =
1

2
+

1

2
tanh

( v

0.15

)
.

Figure 1 (a) considers two identical neurons, with (volt-
age) states v and v̂. The numerical values of the leak,
Ca++, and K+ maximal conductances are gL = 0.5,
gCa = 1, and gK = 2, respectively. The coupling term
from the (presynaptic) neuron v̂ to the (postsynaptic)
neuron v is the synaptic current

I = gcoup(1− v)m∞(v̂)

called excitatory for v ≤ 1 and weak if the maximal con-
ductance parameter gcoup > 0 is small. The simulation
uses gcoup = 0.67. We note that the weaker gcoup, the
weaker the external input I in (1). We assume that the
coupling is symmetric, just for simplicity.

A simple calculation provides the linearized error dy-
namics along the synchronized solution v(·) = v̂(·). The

linearized error dynamics have the following expression:

˙δx̃ = − 1

τ(v(t))
δx̃+ b(t)δṽ,

ε ˙δṽ = [a(t)− k(t)] δṽ + gK(−0.7− v(t))δx̃,

(2)

with

b(t) =
τ ′(v(t)) [x(t)− x∞(v(t))] + τ(v(t))x′∞(v(t))

τ(v(t))2
,

a(t) = −gL − (gCa + gcoup)m∞(v(t))

+ gCam
′
∞(v(t))(1− v(t))− gKx(t),

k(t) = gcoup(1− v(t))m′∞(v(t)).

System (2) has the familiar form of error dynamics of a
second-order linear system with diffusive coupling. The
coupling gain k(t) is always non-negative and can be
large in the local range of the sigmoidal nonlinearity,
even if the synaptic coupling strength gcoup is small. In
other words, the synaptic coupling can provide a strong
diffusive coupling gain in a localized voltage range. Ac-
cording to the classical theory of diffusive coupling, this
large gain can make the linearized error dynamics con-
tractive, which guarantees the exponential synchroniza-
tion of solutions starting in the vicinity of the limit cycle.
In the rest of the paper, we will see that this results in an
open set of synchronous spiking in the limiting case in
which the spikes take place infinitely fast: that is akin to
fast threshold modulation, yielding rapid convergence.

It will be also apparent that owing to the spiky nature of
the oscillation, the coupling will almost vanish along the
slow branch of the limit cycle attractor, only contribut-
ing to the contraction during a synchronous spiking with
the help of the sufficiently steep synaptic coupling and
the sufficient time scale separation, which gives nodal
excitability.

This will be not so different for heterogeneous systems as
illustrated in Figure 1 (b). Here, we consider the hetero-
geneous network where the second neuron has the max-
imal conductance parameters gL = 0.25, gCa = 0.5, and
gK = 4. According to the blended dynamics theory (Kim
et al., 2016; Panteley & Loŕıa, 2017; Lee & Shim, 2020),
a sufficiently large gain k(t) can also make the error dy-
namics of heterogeneous networks contractive.

For the numerical example shown in this section, the
value

a(t)− k(t) = −0.5− (1 + gcoup)m∞(v(t))

+ (1− gcoup)m′∞(v(t))(1− v(t))− 2x(t)
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becomes uniformly negative when (since x ∈ [0, 1])

gcoup = 0.67

> max
v∈[−0.7,1]

−0.5−m∞(v) +m′∞(v)(1− v)

m∞(v) +m′∞(v)(1− v)
.

Meanwhile, further simulation with a smaller gcoup sug-
gests an example where the periodic linear system is con-
tracting over one period, but not point-wise in time. In
the general model treated in this paper, this mechanism
will lead to synchronization of the spiking times, rather
than arbitrary precision approximate synchronization to
a common limit cycle trajectory, especially for hetero-
geneous networks. The spiking time refers to the timing
of the fast time scale behavior. This timing shrinks to
a single instant of time in the singular limit where the
spikes occur infinitely fast. See Section 3 for more de-
tail. This weaker form of synchronization (called phase
synchronization) is the one considered in this paper.

3 Model assumptions

3.1 Spiking model for individual neurons

We considerN heterogeneous neurons individually mod-
eled by the second-order ultrafast-fast-slow system

τi,ε(vi)ẋi = −xi + xi,∞(vi)

εv̇i = fi(xi, vi) + (Ei − vi)Gi
(3)

with i ∈ N := {1, . . . , N}, andGi is the external input of
neuron i. Here, τi,ε(v) > 0 is a state-dependent fast-slow
time constant. In the absence of coupling, the external
input is Gi = 0. The phase portrait is then the classical
Morris-Lecar phase portrait.

Fig. 2. An illustration of Assumptions E1–E3 and S2 (see
text for notations).

Assumption E1 (Spiking phase portrait) The
nullcline x = xi,∞(v) has a monotonic shape and the
nullcline fi(x, v) = 0 is N -shaped, as illustrated in Fig-
ure 2. The nullcline x = xi,∞(v) is on the left (right) to

the lower (upper) branch of the nullcline fi(x, v) = 0,
hence there is only one intersection between the two,
which is located in the middle. We have fi(x, v) > 0 (< 0)
in the left (right) region of the nullcline fi(x, v) = 0. �

Under Assumption E1, the Poincare-Bendixson theorem
ensures that all solutions (except the single unstable
equilibrium) converge to a limit cycle. One easily deter-
mines a positively invariant compact setDi that includes
the limit cycle (the grey box in Figure 2). The external
input (Ei−vi)Gi is called ‘excitatory,’ as the input gain
(Ei−vi) is positive inside the positively invariant setDi.

The spiking nature of the limit cycle is ensured by the ad-
ditional assumption that the time constant τi,ε(·) isO(1)
in the lower branch, while O(εq) with some q ∈ (0, 1) in
the upper branch of the nullcline fi(x, v) = 0. Indeed, as
ε > 0 becomes small, this ensures that the limit cycle ex-
hibits a slow-fast-ultrafast behavior of spiking: the slow
part of the limit cycle oscillation is a slow slide along
the slow (lower) branch, whereas the ultrafast part is a
switch between the lower branch and the upper branch,
and finally the fast part is a fast slide along the fast (up-
per) branch. Such assumptions are standard in biophys-
ical models of neuronal models: significant time scale
separation between the voltage dynamics and the ion
channel kinetics is only pronounced in the subthreshold
region.

Assumption E2 (Biophysical nature of spiking)
We assume that

τ̄i(v) := lim
ε→0

τi,ε(v) ≥ 0 and λ̄i(v) := lim
ε→0

εq

τi,ε(v)
<∞

are well-defined in the set Di, and satisfy

τ̄i(v)

{
= 0, if v ≥ Eth

i

> 0, if v < Eth
i

and

λ̄i(v)

{
> 0, if v > Eth

i

= 0, if v ≤ Eth
i

with some Eth
i that is located between the upper branch

and the lower branch, as illustrated in Figure 2. �

The spiking behavior described above for an isolated
neuron (Gi = 0) is robust to the perturbations induced
by synaptic coupling. This is formalized in the following
assumption.

Assumption E3 (Robustness margin) We assume
that there exists Mi > 0, such that for any m ∈ [0,Mi],
the perturbed system of (3) represented as

τi,ε(vi)ẋi = −xi + xi,∞(vi),

εv̇i = fi(xi, vi) + (Ei − vi)m =: fmi (xi, vi),
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has the same Di as its positively invariant set,
and satisfies Assumptions E1 and E2 with the same
Eth
i . In particular, we assume maxm∈[0,Mi] vi(m) <

Eth
i < minm∈[0,Mi] vi(m), where (xi(m), vi(m))

((xi(m), vi(m))) denotes the left (right) knee (that is, the
extreme left (right) point of the nullcline fmi (x, v) = 0)
of the perturbed system. We also assume xi(Mi) < xi(0),
as illustrated in Figure 2. �

Lemma 1 Under Assumptions E1 and E3, the nullcline
fmi (x, v) = 0 moves to the right as m increases, i.e.,
for each v < Ei, we have (∂xmi /∂m)(v) > 0 for all
m ∈ (0,Mi), where xmi (v) denotes the unique root of
fmi (x, v) = 0. In particular, the left knee, the right knee,
and the intersection move to the right as m increases. �

PROOF. Since Assumption E1 is satisfied for all m ∈
[0,Mi], for each v < Ei, there exists a unique root xmi (v)
of fmi (x, v) = 0. Moreover, since fmi (x, v) < 0 (> 0) for
x > xmi (v) (< xmi (v)), we have (∂fi/∂x)(xmi (v), v) =
(∂fmi /∂x)(xmi (v), v) < 0. Now, this implies from

∂fi
∂x

(xmi (v), v)
∂xmi
∂m

(v)+(Ei−v) =
∂

∂m
fmi (xmi (v), v) = 0

that (∂xmi /∂m)(v) > 0 for v < Ei. �

Assumption E3 also illustrates the nature of the excita-
tory coupling: a weak pulse Gi creates an open set near
the left knee of the isolated system (3), advancing the
timing of the next spike.

3.2 Synaptic coupling

A standard model of excitatory synaptic coupling has
the form

Gi(t) = gi
∑
j∈Ni

αijSij(vj(t)) (4)

where Ni is the index set of presynaptic neurons, αij >
0 is the adjacency weight, and Sij(·) : R → [0, 1]
is the coupling function of sigmoidal type (Sij(·) is
non-decreasing). The constant gi controls the coupling
strength:

Assumption S1 (Weak coupling) The constant
gi > 0 is chosen small enough to satisfy

gi
∑
j∈Ni

αij =: gidi ≤Mi,

where Mi is the robustness margin in Assumption E3. �

Our next assumption highlights the essential character-
istics of excitatory synaptic coupling in the rapid and
robust synchronization phenomenon: the coupling gain
(determined by the derivative of the synaptic current) is
high only near the threshold.

Assumption S2 (Localized coupling) For j ∈ Ni,

Sij(v) =

{
1, if v ≥ Eth

j ,

0, if v ≤ maxm∈[0,Mj ] vj(m),

where vj(m) is defined in Assumption E3. �

As illustrated in the Introduction, under Assump-
tions E1–E3 and S1–S2, rapid convergence of each neu-
ron to a neighborhood of its limit cycle attractor is guar-
anteed by treating the synaptic coupling as a weak ex-
ogenous disturbance (the first step of the convergence):
every trajectory converges toD := D1×· · ·×DN . Hence,
individual neurons persistently spike regardless of the
coupling. Next, we turn our attention to the network be-
havior of those spiking oscillators.

Recall that any directed graph G consists of multiple iS-
CCs and their followers. The behavior of each iSCC is
independent of the other iSCCs, due to the local interac-
tion described in (4). Therefore, we focus our attention
on a single iSCC. In particular, we assume the following.
The behavior of the followers corresponds to the phe-
nomenon of entrainment, rather than synchronization.

Assumption G1 (Connectivity) The communica-
tion graph G = (N , E) determined by the neighborhoods
Ni for i ∈ N is strongly connected. �

3.3 A network-wise phase reduction

The analysis of the network relies on its three-time
scale structure. Our biophysical assumptions (Assump-
tions E1–E3 and S1–S2) illustrated in the previous sub-
sections ensure that, for the ε = 0 limit, a trajectory
that starts from the slow region

S := {col(x1, v
sm
1 (x1), . . . , xN , v

sm
N (xN )) :

xi ∈ [xi(0), xi(Mi)], i ∈ N} ,
(5)

where vsmi (x) denotes the smallest root of fi(x, v) = 0
(i.e., min{v : x0i (v) = x}), returns back to the slow
region S after an ultrafast-fast transition of spiking.

Note that the network is completely decoupled in the
slow region S:

ẋi =
−xi + xi,∞(vsmi (xi))

τ̄i(vsmi (xi))
=: hi(xi),

vi = vsmi (xi), i ∈ N ,
(6)
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each neuron independently travels to the left along the
lower branch according to (6), until one of them reaches
the left knee (xi(0), vi(0)). The set of all such endpoints
is

Psp := {col(x1, v1, . . . , xN , vN ) ∈ S : ∃i s.t. xi = xi(0)} .
(7)

Any point in the set Psp is a jump point where the flow
must be continued as a solution of the ultrafast-fast be-
havior. Assumptions E1–E3 and S1–S2 ensure that the
ultrafast-fast behavior that starts from a jump point in
Psp eventually returns to the region S, and hence further
back to another jump point of Psp via another round of
slow travel. The spiking map from Psp to S is denoted by

X+(x1, . . . , xN ) := col(x+1 , . . . , x
+
N ) : Psp → S. (8)

Note that the mapping x+i (x1, . . . , xN ) only uses xj , j ∈
N as their argument for simplicity of notation, as vi is
entirely determined by the relation vsmi (xi), in the slow
region S.

Singular perturbation analysis (see Appendix A for de-
tails of the argument) rests on the slow behavior in the
singular limit ε = 0. This behavior is a pulse-coupled
integrate-and-fire model of the type studied in (Mirollo
& Strogatz, 1990b): the neurons follow the decoupled in-
tegrating flow (6) between instantaneous spikes that de-
fine the spiking times. This singular behavior is studied
in the next section.

4 Integrate-and-fire model

The integrate-and-fire model is represented as

ẋi = hi(xi) < 0, xi ∈ [xi, xi],

x+i = x+i (x1, . . . , xN ) ∈ [xi, xi], ∃j s.t. xj = xj ,

i ∈ N := {1, . . . , N}.
(9)

The state-space of this behavior is the set S:

S := {col(x1, . . . , xN ) : xi ∈ [xi, xi], i ∈ N}.

The integrate-and-fire model has the following proper-
ties with xmid

i , xmid
i ∈ (xi, xi) such that xmid

i < xmid
i ,

i ∈ N .

This integrate-and-fire model corresponds to the singu-
lar limit ε = 0 of the network dynamics. The goal of
the two following sections is to establish that this model
possesses a hyperbolic fixed point that corresponds to
synchronous firing.

Property 1 (A network-wise lower threshold)
When neuron j ∈ N reaches a lower threshold xj,

the network spikes: there exists a nonempty index set
NF (x1, . . . , xN ) ⊆ N of synchronously firing neurons.
In particular, j ∈ NF (x1, . . . , xN ). �

Let us denote the set of all points where a network-wise
spiking happens (uniformly) as Psp:

Psp := {col(x1, . . . , xN ) ∈ S : ∃j s.t. xj = xj}.

Then, the return map is well-defined as

X++(X+(p)) : Psp → Psp,

where X++(p+) := col(x++
1 (p+), · · · , x++

N (p+)),

x++
i (x+1 , . . . , x

+
N ) := τ−1i

(
τi(x

+
i )−min

j∈N
τj(x

+
j )

)
,

τi(xi) :=

∫ xi

xi

1

hi(x)
dx ≥ 0, xi ∈ [xi, xi],

for i ∈ N , and X+(p) := col(x+1 (p), . . . , x+N (p)). Note
that τi(xi) represents the time of travel of neuron i from
xi to the lower threshold xi.

Property 2 (Local interaction) Neuron i with xi >
xi spikes only when a presynaptic neuron spikes and xi ≤
xmid
i . In particular, i ∈ NF (x1, . . . , xN ) only if there

exists a set of neurons i0, . . . , il−1 ∈ NF (x1, . . . , xN )
such that xi0 = xi0 and ik−1 ∈ Nik for all k = 1, . . . , l
with il = i (chain reaction), where Ni ⊂ N is the index
set of presynaptic neurons.

On the other hand, whenever a presynaptic neuron
spikes, neuron i with xi > xi synchronously spikes pro-
vided that it is sufficiently near the threshold xi. �

We define the set of network synchrony as

Psyn := {p ∈ Psp : NF (p) = N}.

The connectivity of the graph determined by the neigh-
borhoods Ni for i ∈ N (Assumption G1) ensures by
Property 2 that for each j ∈ N , there exists a point
col(x1, . . . , xN ) inside the closure Psyn of Psyn such that
xj = xj and xi > xi for all i 6= j.

Property 3 (Convexity) For any two points p =
col(x1, . . . , xN ), p′ = col(x′1, . . . , x

′
N ) ∈ Psp such that

xi ≤ x′i, ∀i ∈ N ,

we have

NF (x1, . . . , xN ) ⊇ NF (x′1, . . . , x
′
N ).

In particular, for any monotonically increasing (i.e., at
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least one is strictly increasing) path that connects p and
p′, the points p′′ where NF (p′′) changes are isolated. �

By Property 3, with a finite subset B of Bsyn, Psyn can
be approximated as⋃

p=col(x1,...,xN )∈B

{
xj(p) ≡ xj(p)

}
×
∏
i 6=j(p)

[xi, xi)

⊆
⋃

p=col(x1,...,xN )∈Bsyn

{xj(p)} ×
∏
i 6=j(p)

[xi, xi) = Psyn,

(10)

where Bsyn is the set of all points p = col(x1, . . . , xN ) on
the boundary ofPsyn such that there exists an index j(p)
such that xi = xi if and only if i = j(p). The equality
holds except for a measure zero set. Note that for (10)
to be a good approximation, for each j ∈ N , there exists
at least one point p ∈ B such that j(p) = j.

Finally, regarding the spiking map x+i (·, . . . , ·), i ∈ N ,
we have the following properties.

Property 4 (Localized coupling) If neuron i spikes,
then

x+i (x1, . . . , xN ) ∈ [xmid
i , xi].

On the other hand, if neuron i does not spike, then (η ≥ 0)

x+i (x1, . . . , xN ) ∈ [max{xi − η, xi}, xi].

If, in addition, Ni ∩NF (x1, . . . , xN ) = ∅, then

x+i (x1, . . . , xN ) = xi.

�

Property 4 illustrates that the network dynamics is al-
most decoupled away from the synchronous spike times.

Property 5 (Stable spiking) The spiking map is con-
tinuous and differentiable almost everywhere in each re-
gion whereNF (x1, . . . , xN ) is invariant. A network-wise
spiking is stable: there exist functions Hi : [xi, xi] →
R>0, i ∈ N and r ≥ 1 such that when the spiking
map is differentiable, for any infinitesimal perturbation
col(δx1, . . . , δxN ) that preservesNF (x1, . . . , xN ) and an
index j such that xj = xj (so to remain in Psp), we have

max
i∈NF (p)

1

Hi(x
+
i (p))

δx+i − min
i∈NF (p)

1

Hi(x
+
i (p))

δx+i

≤ r
[

max
i∈NF (p)

1

Hi(xi)
δxi − min

i∈NF (p)

1

Hi(xi)
δxi

] (11)

and δx+i = δxi, i /∈ NF (p), where p := col(x1, . . . , xN ).

�

Properties 1–5 are the key properties enabling synchrony
in earlier integrate-and-fire models of the literature such
as those studied in (Mirollo & Strogatz, 1990b; Mauroy
& Sepulchre, 2008; Mauroy, 2011). In the rest of the
section, we will show that they also hold for the spiking
map X+(·, . . . , ·) defined in (8), where xi, xi, x

mid
i , and

xmid
i are xi(0), xi(Mi), xi(Mi), and xi(0), respectively.

4.1 Absorption: synchronous spiking

Property 1 has already been established in Section 3.3.
So, let us detail more on what happens after when the
trajectory leaves the slow region S from Psp. This cor-
responds to the ultrafast-fast behavior as explained in
Section 3.3. In detail, a trajectory that leaves from Psp

follows the ultrafast behavior

x′i = 0,

v′i = fi(xi, vi) + gi(Ei − vi)
∑
j∈Ni

αijSij(vj), i ∈ N ,

(12)

in the ultrafast region UF ⊂ D \ S (where the ultrafast
time scale ε dominates), which is defined as the region
where the vector field of the network (12) is non-zero.

This corresponds to the phenomenon of absorption: fir-
ing neurons absorb neighboring neurons that are suffi-
ciently near the threshold, resulting in synchronous fir-
ing (Mirollo & Strogatz, 1990b; Mauroy & Sepulchre,
2008). More precisely, a set N rt of neurons i at their left
knee (xi(0), vi(0)) spike, i.e., go over the threshold Eth

i

(because v′i > 0 for all vi ∈ (vi(0), Eth
i ]), resulting in

S∗i(vi) = 1, which yields a shift of the nullcline of other
neurons (neuron j such that i ∈ Nj) into the right, yield-
ing another spike, all in the same ultrafast time scale.

In particular, for each synchronous spiking, there exists
a unique subgraph T = (N T , ET ) of G with the hier-
archical structure, such that a spike of the 0-th layer
N T0 = N rt (i.e., set of all roots) yields a spike of the
next layerN T1 , and so on to all the neurons inN T ⊆ N ,
where

N Tl+1 :=
⋃

i∈NT
l

{j : i ∈ Nj,T } \ N
T
l , l ≥ 0,

Nj,T is the set of neighbors associated with the subgraph

T , and N Tl := ∪lm=0N Tm . For point col(x1, . . . , xN ) ∈
Psp, the corresponding subgraph can be found as follows.

1) Let l = 1 and N T0 = {j : xj = xj(0)}.
2) Let N Tl = {j : xj < xj(gjd

T
j )} \ N Tl−1 and

ETl = ∪k∈NT
l

((Nk ∩ N Tl−1) × {k}), where d
T
j :=∑

k∈Nj∩N
T
l−1

αjk.
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3) IfN Tl 6= ∅, then let l = l+1 and repeat 2). Otherwise,
let l∗ = l−1 and define T as (N T , ET ), whereN T :=

N Tl∗ and ET := ∪l∗l=1ETl .

Note that this means

xj ∈ XTj :=


[
xj

(
gjd
T
j

)
, xj

(
gjd
T
j

)]
, if j ∈ N T0 ,[

xj

(
gjd
T
j

)
, xj

(
gjd
T
j

))
, otherwise,

where dTj :=
∑
k∈Nj∩N

T
l−1

αjk for neuron j in the (l+1)-

th layer and N T−1 = N T−2 = ∅.

Property 2′ (Fast threshold modulation)
Neuron i with xi > xi spikes if and only if there exists a
subgraph T = (N T , ET ) of G such that i ∈ N T and

xk ∈ XTk ⊂ [xk, x
mid
k ], ∀k ∈ N T .

In particular, for each p ∈ Psp, there exists such a sub-
graph T satisfying N T = NF (p). �

This stronger property ensures that a collection B of
explicit points indexed by a spanning tree T of G as

pBT := col(x1(g1d
T
1 ), . . . , xN (gNd

T
N )) ∈ Bsyn,

exactly characterizes Psyn, according to (10). In partic-
ular,⋃
T of G

{
xj(pBT )

}
×

∏
i6=j(pBT )

[
xi, xi(gid

T
i )
)

= Psyn

(13)

holds except for a measure zero set.

We emphasize that the nodal excitability (as illustrated
at the end of Section 3.1) and the weak localized synap-
tic coupling (as emphasized in Section 3.2) are essential
to provide this open set of synchronous spiking: a strong
contraction for synchronous spiking behavior, which pro-
vides both the rapid convergence and the robustness
with respect to heterogeneity (see Sections 5 and 6). This
is akin to the mechanism of fast threshold modulation:
the coupling acts mainly to create an open transitional
region.

Remark 1 If we linearize the ultrafast behavior (12),
which corresponds to a synchronous spiking, then we ob-
serve diffusive coupling with a time-varying edge-wise

coupling gain kij(·) that is temporarily strong:

δv′i =
∂fi
∂x

(xi(t), vi(t))δxi + ai(t)δvi

+
∑
j∈Ni

kij(t)[δvj − δvi],

where kij(t) := gi(Ei − vi(t))αijS′ij(vj(t)) and ai(t) :=
∂fi
∂v (xi(t), vi(t))−gi

∑
j∈Ni

αijSij(vj(t))+
∑
j∈Ni

kij(t).
This strong pulling in the ultrafast time scale is what
provides a synchronous spiking of the next layer. �

Property 3 follows from the construction of the subgraph

T for point p ∈ Psp. In particular, N Tl ⊇ N
T ′
l for all

l ≥ 0, where the subgraph T ′ corresponds to the point
p′ ∈ Psp. In particular, NF (x1, . . . , xN ) changes only

when xj = xj(gjd
T
j ) > xj(0) or xj = xj(gjd

T
j ) for some

j /∈ N T0 .

Now, since the ultrafast behavior (12) preserves the
value xi during its entire transition, a trajectory that
starts from Psp ends up (via ultrafast behavior) in the
fast region F (that is S → UF → F), which is the set
of all points col(x1, v1, . . . , xN , vN ) ∈ D \ (S ∪UF) such
that there exists a nonempty index set NF ⊆ N satis-
fying

xi ∈

{
[xi(0), xi(mi)] ⊃ [xi(gid

T
i ), xi(gid

T
i )], if i ∈ NF ,

[xi(mi), xi(Mi)], if i /∈ NF ,

vi =

{
vlgi (mi, xi), if i ∈ NF ,
vsmi (mi, xi), if i /∈ NF ,

mi = gi
∑

j∈Ni∩NF
αij , i ∈ N ,

where vlgi (m,x) (vsmi (m,x)) denotes the largest (small-
est) root of fmi (x, v) = 0 (i.e., max{v : xmi (v) = x}
(min{v : xmi (v) = x})) for x ≤ xi(m) (x ≥ xi(m)). Note
that vsmi (·) = vsmi (0, ·). In the next subsection, we will
detail on the fast behavior in the fast region F , where
the fast time scale εq dominates. In doing so, we will
more detail on the exact spiking map x+i (·, . . . , ·), i ∈ N
defined in (8), and its properties.

4.2 Spiking map

To establish Property 4, we first note that the network
is again completely decoupled in the fast region F :

x′i = λ̄i(v
lg
i (mi, xi))

[
−xi + xi,∞(vlgi (mi, xi))

]
=: Hmi

i (xi), (vi = vlgi (mi, xi)), i ∈ NF ,
x′i = 0, (vi = vsmi (mi, xi)), i /∈ NF ,

(14)
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each neuron i ∈ NF independently travels to the right
along the upper branch according to (14), until one of
them reaches the right knee (xi(mi), vi(mi)). Any such
point is again a jump point where the flow must be con-
tinued as a solution of the ultrafast behavior (12).

Similar to the mechanism of synchronous spiking il-
lustrated in the previous subsection, this yields that
a subset NF ′ ⊆ NF of neurons jumps to their lower
branch while preserving their xi value, hence xi ∈
[xi(0), xi(mi)]. If there are still some neurons remaining

in the upper branch, i.e., NF \ NF ′ 6= ∅, then it means
that we again enter the fast region F , but with a differ-
ent index setNF \NF ′ . This will change mi, hence neu-
rons remaining in the upper branch have a small jump
before it moves again along the fast upper branch ac-
cording to (14).

After possibly a few of these iterations (F → UF → F),
all the neurons in the upper branch will eventually jump
to their lower branch (F → UF → S), which completes
the mechanism of spiking. Note that the xi value of the
neurons that previously jumped to their lower branch is
preserved. The number of these iterations (F → UF →
F) is bounded by |NF | − 1 ≤ N − 1.

Property 4′ (Localized coupling) If neuron i
spikes, then

x+i (x1, . . . , xN ) ∈ [xi(0), xi(gidi)] ⊂ [xmid
i , xi].

If neuron i does not spike, then x+i (x1, . . . , xN ) = xi. �

Next, consider the propagation of an infinitesi-
mal perturbation col(δx1, . . . , δxN ) (that preserves
NF (x1, . . . , xN ) and an index j such that xj = xj)
through one iteration of F → UF → F or S. For this
purpose, assume that a subset NF ′ ⊆ NF of neurons
jumps to their lower branch after this iteration. Note
that this iteration is differentiable if NF ′ is preserved
in an open neighborhood, and is continuous even if NF ′

changes.

Since the fast behavior just corresponds to the shift of
time spent on the fast upper branch, our infinitesimal
perturbation can be redefined as

δTi := δxi/H
mi
i (xi), i ∈ NF

and accordingly

δT+
i := δx+i /H

mi
i (x+i ), i ∈ NF ,

for simplicity of representation, where x+i and δx+i are
the corresponding values after the iteration. Then, we

have

δT+
k − δTk = δT+

i − δTi, ∀i, k ∈ NF ,

because∫ x+
k

xk

1

Hmk

k (x)
dx =

∫ x+
i

xi

1

Hmi
i (x)

dx, ∀i, k ∈ NF .

Note that there exists an index k ∈ NF ′ such that δx+k =

0, as x+k = xk(mk) (neuron k reaches the right knee),
hence

max
i∈NF

δT+
i − min

i∈NF
δT+

i ≤ max
i∈NF

δTi − min
i∈NF

δTi.

Note that between two iterations, we have to multiply

Hmi
i (x+i )/H

m+
i

i (x+i )

to δT+
i for neurons remaining in the upper branch,

i ∈ NF \ NF ′ , as they experience a small jump before
flowing again along the fast upper branch. This estab-
lishes Property 5.

Property 5′ (Stable spiking) Property 5 holds with

r := (rF→F )
N+1 ≥ 1,

rF→F := max
i∈N

max
m,m′∈[0,Mi]

max
x∈[xi,xi(min{m,m′})]

Hm
i (x)

Hm′
i (x)

,

and Hi(·) := HMi
i (·). �

Almost any trajectory that starts from the rest of the
region D \ (S ∪ UF ∪ F) moves to S in a finite time,
hence never going back to the rest of the region (see
Appendix B).

Remark 2 This subsection shows the importance of
a network-wise reduction for nonstandard singularly
perturbed systems (nonstandard as in (Wechselberger,
2020)) that represent networks of neurons, instead of
a neuron-wise reduction. In particular, all the impor-
tant interaction via weak localized synaptic coupling takes
place in the ultrafast-fast time scale, making it difficult
to characterize the network-wise spiking map X+(·) via
phase response curves. �

5 Main result: integrate-and-fire model

It is known that synchronous spiking is not necessarily
persistent in the presence of heterogeneity and a general
network topology (Mirollo & Strogatz, 1990b; Mauroy
& Sepulchre, 2008). A synchronous spike of the entire
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network does not necessarily lead to a synchronous spike
of the entire network after a return.

The goal of the present section is to detail the conditions
that make perfect network synchrony stable and robust.

5.1 Condition for the local stability of network syn-
chrony

Assume for a moment that there exists a fixed point p∗ of
the return map, i.e., X++(X+(p∗)) = p∗, in the interior
of Psyn so that a synchronous spiking that starts from p∗

returns back to p∗. Then, the local stability of the fixed
point can be guaranteed by a contraction property, that
is, the existence of cS→F > 0 and cF→S > 0 such that

|hi(x∗i )| ≤ cS→FHi(x
∗
i ),

Hi(x
+
i (p∗)) ≤ cF→S |hi(x+i (p∗))|, ∀i ∈ N ,

cS→FcF→S < 1/r ≤ 1,

(15)

where col(x∗1, . . . , x
∗
N ) := p∗ ∈ Psyn, and the constant

r ≥ 1 and the function Hi(·) are given in Property 5.
Given that x∗i ≤ xmid

i < xmid
i ≤ x+i (p∗), this is merely

equivalent to |hi(·)|/Hi(·) being monotone increasing in
the mean:

|hi(x+i (p∗))|
Hi(x

+
i (p∗))

− |hi(x
∗
i )|

Hi(x∗i )
≥ 1

cF→S
− cS→F > 0.

Theorem 1 (Local stability) Given the integrate-
and-fire model (9) with Properties 1–5, in addition to
Assumption G1 assume that there is a fixed point p∗

of the return map X++(X+(·)) in the interior of Psyn

that satisfies (15) with some cS→F , cF→S . Then, it is
locally exponentially stable with the convergence rate
cS→FrcF→S < 1. �

Remark 3 For this fixed point to have an open neighbor-
hood of persistent synchronous spiking, there must exist
a point p ∈ Psyn such that xi > xi for all neurons except
one say 1, i.e., x1 = x1. Then, by Property 2, this implies
that there exists a spanning tree having a root 1. So, as
illustrated in Section 3.2, we need connectivity of G. �

PROOF. Since there is an open neighborhood of the
fixed point p∗ =: col(x∗1, . . . , x

∗
N ), its local exponential

stability can be determined by the linearization of the
return map. In particular, since by Property 5, the spik-
ing map is differentiable almost everywhere in Psyn, and
for any infinitesimal perturbation col(δx1, . . . , δxN ) that
preservesNF (p∗) = N and an index j such that xj = xj
(hence δxj = 0), we have (11) withNF = N and p = p∗.

Now, analogously as in Section 4.2, X++(·) just corre-
sponds to the shift of time spent, hence let us redefine

our infinitesimal perturbation as

δτ+i :=
1

hi(x
+
i (p∗))

δx+i

and accordingly

δτ++
i :=

1

hi(x
++
i (X+(p∗)))

δx++
i and δτi :=

1

hi(x∗i )
δxi,

for simplicity of representation. Then, we have

δτ++
k − δτ+k = δτ++

i − δτ+i , ∀i, k ∈ N ,

because∫ x++
k

x+
k

1

hk(x)
dx =

∫ x++
i

x+
i

1

hi(x)
dx, ∀i, k ∈ N .

Since p∗ is a fixed point, the infinitesimal perturbation
col(δx+1 , . . . , δx

+
N ) again preserves the index j such that

x++
j (X+(p∗)) = x∗j = xj , hence δτ++

j = δx++
j = 0,

hence

max
i∈N

δτ++
i −min

i∈N
δτ++
i ≤ max

i∈N
δτ+i −min

i∈N
τ+i ,

and thus, by the stability of the spiking (Property 5),

max
i∈N

δτ++
i −min

i∈N
δτ++
i

≤ cF→S
[
max
i∈N

1

Hi(x
+
i (p∗))

δx+i −min
i∈N

1

Hi(x
+
i (p∗))

δx+i

]
≤ cF→Sr

[
max
i∈N

1

Hi(x∗i )
δxi −min

i∈N

1

Hi(x∗i )
δxi

]
≤ cF→SrcS→F

[
max
i∈N

δτi −min
i∈N

δτi

]
. (16)

This concludes the proof. �

The local stability of a fixed point p∗, which is in the in-
terior of Psyn, ensures the existence of a neighborhood
Ppos which is stable, that is Ppos is a positively invari-
ant set in Psyn: any synchronous spiking that starts from
Ppos returns back to Ppos. In particular, there exists
Ppos ⊆ Psyn, cS→F > 0, and cF→S > 0 that satis-
fies (15) for all p ∈ Ppos instead of just p∗. Note that
by Properties 2 and 4, the region that corresponds to xi
and the region that corresponds to x+i (p) are separated,
hence (15) is well justified. In particular, we have

xi ≤ xi ≤ xmid
i < xmid

i ≤ x+i (x1, . . . , xN ) ≤ xi,

for any col(x1, . . . , xN ) ∈ Psyn. In this sense, (15) for all
p ∈ Ppos can be guaranteed by the following assumption.
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Assumption M1 (Monotonicity in the mean)
There exists cS→F , cF→S > 0 such that

max
x∈[xi,x

mid
i

]

|hi(x)|
Hi(x)

≤ cS→F ,

max
x∈[xmid

i ,xi]

Hi(x)

|hi(x)|
≤ cF→S , ∀i ∈ N ,

and cS→FcF→S < 1/r, where the constant r ≥ 1 and the
function Hi(·) are given in Property 5. �

A simple sufficient condition for Assumption M1 is the
positivity of the derivative: that there exists a sufficiently
large λ > 0 such that

d

dx

|hi(x)|
Hi(x)

≥ λ > 0, ∀x ∈ (xi, xi), ∀i ∈ N .

Under this stability condition (Assumption M1), in par-
ticular, we can show contraction inside Psyn: the con-
traction of the metric defined for any two points p =
col(x1, . . . , xN ) and p′ = col(x′1, . . . , x

′
N ) in Psp:

d(p, p′) := max
i∈N

[τi(xi)− τi(x′i)]−min
i∈N

[τi(xi)− τi(x′i)].

As in (Somers & Kopell, 1993), the notion of phase dif-
ference depends on time difference along the trajectory,
not differences in position in phase space.

Theorem 2 (Contraction inside Psyn) Given the
integrate-and-fire model (9) with Properties 1–5, let
Assumptions G1 and M1 holds. Then, we have

d(X++(X+(p)), X++(X+(p′))) ≤ cS→FrcF→Sd(p, p′),
(17)

for all p, p′ ∈ Psyn. �

PROOF. From the argument in the proof of The-
orem 1, we can analogously conclude (16) for any
point along the path that connects p and p′ in-
side Psyn for any eligible infinitesimal perturbation
col(δx1, . . . , δxN ). Note that such a path exists, as Psyn

is convex, from Property 3. Then, by integrating this
along the path, we can conclude (17). In particular,
we can construct a path p(s) = col(x1(s), . . . , xN (s)) :
[0, 2]→ Psyn as follows.

(1) Let p(0) = p.
(2) Let N ′ ⊆ N be the set of all the indices i such

that τi(x
′
i) ≤ τi(xi) and let τ := maxi∈N ′ [τi(xi) −

τi(x
′
i)] ≥ 0. Then, for each s ∈ [0, 1], we define p(s)

as

xi(s) =



xi, if i /∈ N ′,
τ−1i (τi(xi)− sτ),

if i ∈ N ′ and τi(xi)− τi(x′i) > sτ,

x′i,

if i ∈ N ′ and τi(xi)− τi(x′i) ≤ sτ .

(3) Finally, let τ := −mini/∈N ′ [τi(xi)−τi(x′i)] ≥ 0, and
for each s ∈ [1, 2], define p(s) as

xi(s) =



x′i, if i ∈ N ′,
τ−1i (τi(xi) + (s− 1)τ),

if i /∈ N ′ and τi(x
′
i)− τi(xi) > (s− 1)τ ,

x′i,

if i /∈ N ′ and τi(x
′
i)− τi(xi) ≤ (s− 1)τ .

By its construction, for s ∈ [0, 1], δτi(s) ∈ {0, τ}, i ∈ N .
Similarly, we have for s ∈ [1, 2], δτi(s) ∈ {0,−τ}, i ∈ N .
This now implies from (16) that

max
i∈N

δτ++
i (s)−min

i∈N
δτ++
i (s)

≤
{
cS→FrcF→Sτ , if s ∈ [0, 1],

cS→FrcF→Sτ , if s ∈ [1, 2].

Therefore, we can conclude that

d(X++(X+(p)), X++(X+(p′)))

= max
i∈N

[τi(x
++
i (X+(p(0))))− τi(x++

i (X+(p(2))))]

−min
i∈N

[τi(x
++
i (X+(p(0))))− τi(x++

i (X+(p(2))))]

≤
∫ 2

0

D+ max
i∈N

[τi(x
++
i (X+(p(0))))− τi(x++

i (X+(p(s))))]ds

−
∫ 2

0

D+ min
i∈N

[τi(x
++
i (X+(p(0))))− τi(x++

i (X+(p(s))))]ds

≤
∫ 2

0

max
i∈N

δτ++
i (s)−min

i∈N
δτ++
i (s)ds

≤ cS→FrcF→S [τ + τ ] = cS→FrcF→Sd(p, p′),

where D+ (D+) denotes the upper (lower) right-hand
Dini derivative. �

Theorem 2 removes the possibility of periodic solutions
that reside inside Psyn, and therefore, we will continu-
ously focus our attention on a fixed point. In this respect,
Theorem 2 further implies that under Assumption M1,
the existence of a fixed point in the interior of Psyn is
equivalent to the existence of an open positively invari-
ant set in Psyn. This positively invariant set becomes
the domain of attraction due again to Theorem 2. An
explicit sufficient condition for the existence of a fixed
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point in this context is given in the next subsection.

5.2 Existence of a fixed point p∗ in the interior of Psyn

According to the illustration of the integrate-and-fire
model (9) in Section 4, the only explicit knowledge that
we have on the point after synchronous spiking of the
entire network is that it is inside the set

∏
i∈N [xmid

i , xi].

Therefore, the only explicit sufficient condition for the
existence of a fixed point p∗ ∈ Psyn, or equivalently,
the existence of a positively invariant set Ppos ⊆ Psyn

that we can conclude based on Properties 1–5 should be
X++(p) ∈ Ppos for all p ∈

∏
i∈N [xmid

i , xi] with some
Ppos ⊆ Psyn. Thus, the condition will be most relaxed
for Ppos = Psyn.

In this regard, the most relaxed explicit sufficient con-
dition for the existence of a fixed point p∗ ∈ Psyn that
we can conclude based on Properties 1–5 is

X++(p) ∈
⋃

p′=col(x′1,...,x
′
N
)∈B

{xj(p′)} ×
∏

i6=j(p′)

[xi, x
′
i),

∀p ∈
∏
i∈N

[xmid
i , xi],

(18)

which is based on the approximation of Psyn given
in (10). In particular, under this sufficient condition,
there exists a unique fixed point p∗ in the interior ofPsyn.

Now, (18) means that for each p ∈
∏
i∈N [xmid

i , xi],

if x++
j (p) = xj , then there exists a point p′ =

col(x′1, . . . , x
′
N ) ∈ B such that j(p′) = j and

xi ≤ x++
i (p) < x′i, ∀i 6= j.

In other words, τj(xj) = mini∈N τi(xi) and

0 = τi(xi) ≤ τi(xi)− τj(xj) < τi(x
′
i), ∀i 6= j, (19)

where p =: col(x1, . . . , xN ). Now, when xj becomes

smaller as xmid
j and xi become larger as xi for all i 6= j,

we still have x++
j (p) = xj , and this implies

∃p′′ = col(x′′1 , . . . , x
′′
N ) ∈ B s.t. j(p′′) = j and

τi(xi)− τi(x′′i ) < τj(x
mid
j ), ∀i 6= j,

(20)

and τj(x
mid
j ) ≤ τi(xi) for all i 6= j. Therefore, (18) is

equivalent to (20) for all j ∈ N fast ⊆ N , where

N fast := {j ∈ N : τj(x
mid
j ) ≤ min

i∈N
τi(xi)}, (21)

because then for any p = col(x1, . . . , xN ) ∈

∏
i∈N [xmid

i , xi] there exists j ∈ N fast satisfying

x++
j (p) = xj , and thus,

τi(xi)− τi(x′′i ) ≤ τi(xi)− τi(x′′i )

< τj(x
mid
j ) ≤ τj(xj) ≤ τi(xi), ∀i 6= j.

A simple sufficient condition is (20) for all j ∈ N . In
particular, under this sufficient condition, there exists a
fixed point p∗ inside⋃

j∈N
{xj} ×

∏
i 6=j

[xi, x
F
i (j)) =: Ppos ⊆ Psyn (22)

with some xFi (j) > xi for i 6= j.

Note that this condition is robust to heterogeneity in the
sense that one can preserve (20) under a slight perturba-
tion on the values x′′i , xmid

i , xi, and the function hi. More-
over, note that this robustness becomes stronger with
respect to the monotonicity (Assumption M1), as when
Hi(·) is fixed, by decreasing cS→F or cF→S , the speed
of travel right after the spike, |hi(x)| at x ∈ [xmid

i , xi],
becomes faster relative to the speed of travel right be-
fore the spike, |hi(x)| at x ∈ [xi, x

′′
i ) ⊂ [xi, x

mid
i ]. In-

deed, if individual neurons are identical, in particu-
lar, h(·) ≡ hi(·), x ≡ xi, x ≡ xi, x

mid ≡ xmid
i , and

xmid ≡ xmid
i for all i ∈ N , then the sufficient condi-

tion (20) simply becomes

τ(x)− τ(xF ) < τ(xmid),

where xF := minj∈N maxp′′∈B s.t. j(p′′)=j mini 6=j x
′′
i .

This is equivalent to τ(x)− τ(xmid) < τ(xF ), or further
to ∫ xmid

x

1

h(x)
dx <

∫ x

xF

1

h(x)
dx.

So, if the function h(·) is monotone in the mean:

max
x∈[x,xF ]

|h(x)| ≤ max
x∈[x,xmid]

|h(x)| ≤ c min
x∈[xmid,x]

|h(x)|,

then we only need the monotonicity to be strong enough:

c <
xF − x
x− xmid

.

Now, in the next subsection, we emphasize the important
role of the existence of an open neighborhood around
the fixed point in leading to rapid global convergence.

5.3 Rapid global convergence

We first emphasize that under the sufficient condition
given in the previous subsection, Psyn also corresponds
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to a network behavior of persistent synchronous spik-
ing. Now, this network behavior becomes globally sta-
ble if there is strong monotonicity: the speed of travel
is sufficiently fast outside the neighborhood of the lower
threshold. This is intuitive as the neurons that have not
spiked yet ‘wait’ (by moving very slowly) for the neurons
that have spiked, which significantly reduces the phase
difference, eventually ending up synchronously firing.

Theorem 3 (Stability inside Psp) Given the
integrate-and-fire model (9) with Properties 1–5, in ad-
dition to Assumptions G1 and M1 assume that there ex-
ists a positively invariant set Ppos of the form (22) with
xFi (j) > xi, i 6= j (e.g., by assuming (20) for all j), and

• (Sufficient monotonicity) there is ri ∈ (0, 1) so that

τi(xi)− τi((1− ri)xi + rix
F
i ) < τj(x

mid
j ), ∀i 6= j,

where xFi := minj 6=i x
F
i (j), hence the fixed point p∗ =

col(x∗1, . . . , x
∗
N ) satisfies x∗i − xi < ri(x

F
i − xi) for all

i ∈ N , and there exists rη ≥ 0 and η∗ ∈ [0,mini∈N (1−
ri)[x

F
i − xi]) so that

(N − 1)DPsp

< (1− cS→FrcF→S)dPsyn − rη(dPsp − dPsyn),

whereDPsp := 2 maxi∈N [τi(xi)−τi(xFi −η∗)], dPsyn :=
mini∈N [τi(x

F
i −η∗)−τi((1−ri)xi+rixFi )], and dPsp :=

maxi∈N [τi(xi)− τi(xi)]. 1

Then, for sufficiently small η: η ∈ [0, η∗] that satisfies 2

max
i∈N

max
xi∈[xi

,xi]
max

x+
i
∈[max{xi−η,xi

},xi]

hi(xi)

hi(x
+
i )
≤ 1 + rη,

(23)

any trajectory that starts from Psp enters the posi-
tively invariant set Psyn of persistent synchronous spik-
ing within a couple of cycles (rapid convergence). �

PROOF. By (23), analogous to the argument in the
proof of Theorem 1, we can still conclude

max
i∈N

δτ++
i −min

i∈N
δτ++
i ≤ (1 + rη)

[
max
i∈N

δτi −min
i∈N

δτi

]
at point p = col(x1, . . . , xN ) in Psp \ Psyn, for any

1 Note that DPsp/dPsyn can be made arbitrarily small if the
monotonicity is further extended so that there is a sufficient
difference in the speed in the region [(1−ri)xi+rix

F
i , x

F
i −η

∗)

and (xFi − η
∗, xi].

2 Note that the left-hand side of the inequality can be made
arbitrarily close to 1 by decreasing η.

infinitesimal perturbation col(δx1, . . . , δxN ) that pre-
serves NF (p) and an index j such that xj = xj .

This means that if there is a path that connects p and
p′ inside Psp such that on the path, we preserve NF (p)
and an index j such that xj = xj , then we can conclude

d(X++(X+(p)), X++(X+(p′))) ≤ (1 + rη)d(p, p′),

analogous to Theorem 2.

Now, when this does not apply is when the path passes
a point p′′ where the index set of synchronously firing
neurons changes. However, we still know that

lim
p+→p′′+

lim
p−→p′′−

d(X++(X+(p+)), X++(X+(p−)))

is bounded by a positive constant DPsp . In particular,

lim
p+→p′′+

lim
p−→p′′−

d(X++(X+(p+)), X++(X+(p−)))

= lim
p+→p′′+

lim
p−→p′′−

max
i∈N

[τi(x
+
i (p+))− τi(x+i (p−))]

− lim
p+→p′′+

lim
p−→p′′−

min
i∈N

[τi(x
+
i (p+))− τi(x+i (p−))]

≤ 2 max
i∈NF (p+)4NF (p−)

[τi(xi)− τi(xFi − η)] ≤ DPsp ,

where N+4N− denotes the symmetric difference be-
tween N+ and N−, i.e., (N+ \ N−) ∪ (N− \ N+).

This finally implies that on the path that connects p∗ and
p′ ∈ Psp\Psyn, as in the proof of Theorem 2, for any η′ >
0, there exists p̂ ∈ Psyn such that d(p̂, p′) ≤ d(p∗, p′) −
d(p∗, p̂) + η′ and d(p∗, p̂) ≥ dPsyn , which satisfies

d(p∗, X++(X+(p′))) = d(X++(X+(p∗)), X++(X+(p′)))

≤ d(X++(X+(p∗)), X++(X+(p̂)))

+ d(X++(X+(p̂)), X++(X+(p′)))

≤ cS→FrcF→Sd(p∗, p̂) + (N − 1)DPsp + (1 + rη)d(p̂, p′).

This is because, by Property 3, for a monotonically in-
creasing (decreasing) path, the points where the index
set of synchronously firing neurons changes are isolated,
hence there are at most N − 1 of them. By (Sufficient
monotonicity), there exists a sufficiently small c ∈ (0, 1)
such that

(N − 1)DPsp < (1 + rη − cS→FrcF→S)dPsyn

− (c+ rη)dPsp
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and this implies with the former argument that

d(p∗, X++(X+(p′))) ≤ −(1 + rη − cS→FrcF→S)dPsyn

+ (N − 1)DPsp

+ (1 + rη)d(p∗, p′) + (1 + rη)η′

< (1− c)d(p∗, p′) + (1 + rη)η′.

As this holds for any η′ > 0, we can conclude the proof.

�

A significant difference from previous studies is our fo-
cus on the spiking map from Psyn (local), contrary to the
usual focus on the spiking map from Psp \Psyn (global).
In particular, by departing from the assumptions of iden-
tical neurons and all-to-all coupling, we focused our at-
tention on the behavior of persistent synchronous spik-
ing itself, more precisely the existence of a hyperbolic
fixed point. It is the robustness of this attractor in the
singular limit that allows us to conclude from singular
perturbation analysis away from the singular limit. As
in previous studies (Mauroy, 2011), the monotonicity (in
the mean) is found essential. In this subsection, we fur-
ther remarked that global convergence property can be
recovered by strong monotonicity.

The biophysical model illustrated in Section 3 is stan-
dard, and thus, the integrate-and-fire model that we pro-
posed in Section 4 is well suited for the study of net-
work behaviors in a neuronal network. For instance, it
provides robustness to the phenomenon of absorptions,
motivated by the biophysical model.

6 Main result: biophysical model

6.1 Discussion

(1) In the first part of Section 5, the assumption on
the monotonicity in the mean (Assumption M1)
has been shown to be sufficient for the local sta-
bility of the fixed point and the contraction in-
side Psyn, which also gives uniqueness and the ex-
istence of a fixed point (given the positive invari-
ance of Psyn). For the biophysical model of Sec-
tion 3, hi(·) (Hi(·)) in Assumption M1 is deter-
mined by the slow (fast) behavior on the lower (up-
per) branch. Thus, as first observed in (Somers &
Kopell, 1993), the key property is the “rate of com-
pression,” which measures relative velocities of the
slow variable just before and just after an ultrafast-
fast jump of the neuron, the parameters cS→F and
cF→S in Assumption M1. In particular, Assump-
tion M1 is the exact counterpart of the stability con-
dition given in (Somers & Kopell, 1993), especially
the weaker one mentioned in its Remark 2.5, while

in (Somers & Kopell, 1993) systems with a two-
time scale (slow=fast-ultrafast) are considered in-
stead. In the proof of Theorem 1, we have explained
how such a compression condition arises in an an-
alytical treatment of simple linearization, even for
heterogeneous networks. This property is shared by
biophysical conductance-based models of neuronal
systems (Somers & Kopell, 1993).

(2) We emphasize that, for the biophysical model of
Section 3, Assumption M1 is completely deter-
mined by the individual behavior of neurons: the
shape of the individual nullcline, the time constant,
and the robustness margin. In particular, a suffi-
cient condition for Assumption M1 is that their
slow trajectory has a “scalloped” shape (Somers &
Kopell, 1993): that there exists a sufficiently small
λ < 0 such that

h′i(x) ≤ λ < 0, ∀x ∈ (xi(0), xi(Mi)), ∀i ∈ N .

This means that the properties of the individual
neurons determine the rate of convergence to syn-
chrony, independent of the coupling strength and
the network topology (however, they may affect the
size or the positive invariance of Psyn, see the next
item).

(3) In Section 5.2, an explicit sufficient condition (20)
for the existence of a fixed point has been found
based on the approximation (10). According to Sec-
tion 4.1, for the biophysical model illustrated in
Section 3, especially by Property 2′, Psyn can be ex-
actly characterized with the collection B of points
pBT indexed by a spanning tree T of G. Also, by
Property 4′, xi can be relaxed as xi(gidi), and thus,
the explicit sufficient condition (20) becomes

∃ spanning tree T of G having a root j s.t.

τi(xi(gidi))− τi(xi(gid
T
i )) < τj(xj(0)), ∀i 6= j,

(24)

for all j ∈ N such that τj(xj(0)) ≤
mini∈N τi(xi(gidi)). In particular, this is equivalent
to whether for each j ∈ N the resulting set N T of
the following algorithm is equal to the entire setN .
(a) Let l = 1 and N T0 = {j}.
(b) Let N Tl = {i : τi(xi(gidi)) − τj(xj(0)) <

τi(xi(gid
T
i ))} \ N Tl−1, where d

T
i :=∑

k∈Ni∩N
T
l−1

αik.

(c) If N Tl 6= ∅, then let l = l + 1 and repeat (b).

Otherwise, let l∗ = l−1 and defineN T := N Tl∗ .
As noted in Section 5.2, this is easier to satisfy if
the rate of compression is small.

Note that this can even be satisfied for arbitrarily
weak coupling strength (when gi → 0), under the
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assumption that there exists T > 0 such that

T = τi(xi(0))− τi(xi(0)) = τi(xi(0)), ∀i ∈ N ,

meaning that all neurons should have an identical
period for their decoupled limit cycle. This is also
necessary. Under this additional condition, our suf-
ficient condition (24) can be guaranteed for suffi-
ciently small gcoup (where gi = gcoupgi) if and only
if

∃ spanning tree T of G having a root j s.t.

τ ′i(xi(0))x′i(0)gidi < τ ′i(xi(0))x′i(0)gid
T
i

(25)

for all i 6= j and j ∈ N . Again this is easier to
satisfy if the rate of compression is small. In fact,
this is always satisfied for biophysical conductance-
based models if the graph is sufficiently balanced,

i.e., di = minj 6=i minT ,root=j d
T
i =: di, because, by

monotonicity in the mean, we have

τ ′i(xi(0)) = − 1

hi(xi(0))
< − 1

hi(xi(0))
= τ ′i(xi(0))

and biophysical conductance-based models sat-
isfy 3

x′i(0) =
Ei − vi(0)

−∂fi∂x (xi(0), vi(0))

≤ Ei − vi(0)

−∂fi∂x (xi(0), vi(0))
= x′i(0),

e.g., for conductance-based models as in Sections 2
and 7, we have (−∂fi/∂x)(x, v) = gi,K(0.7+v) > 0.
A similar argument shows that if the conditions
on monotonicity and conductance-based models are
extended for g ∈ (0, gcoup), then (24) is satisfied.

An example of a sufficiently balanced graph with
unitary weights, i.e., αij = 1 for all (j, i) ∈ E , is
the directed ring network, where Ni = {i + 1} for
all i 6= N and NN = {1} (di = di = 1). This con-
clusion supports the numerical observation at the
end of Section 3.1 of (Somers & Kopell, 1993). In-
deed, sparsity in connection reduces the difference
between di and di, which further favors our suffi-
cient condition (25).

(4) We emphasize again that the strong contraction
provided by the nodal excitability (given by As-
sumptions E1–E3) and the weak localized synap-
tic coupling (defined by Assumptions S1 and S2)
is what gives rapid convergence by constructing

3 The equalities can be derived from the identities
(d/dm)fm

i (xi(m), vi(m)) = (d/dm)fm
i (xi(m), vi(m)) = 0

and (∂fm
i /∂v)(xi(m), vi(m)) = (∂fm

i /∂v)(xi(m), vi(m)) =
0.

an open set Psyn of persistent synchronous spiking
around the fixed point p∗, and thus, maintains the
convergence rate cS→FrcF→S even when the weak
coupling strength gi is further reduced. These as-
sumptions are robust to heterogeneity.

(5) Theorem 3 in Section 5.3, underlines the impor-
tant role of the domain of attraction Psyn having
a volume in leading to rapid global convergence. In
particular, the global convergence property is re-
covered by sufficient compression: the speed of slow
travel is sufficiently fast outside the neighborhood
of the left knee. This is consistent with the numer-
ical observation in item 1 of Section 3.3 of (Somers
& Kopell, 1993).

(6) Now, the conclusion of Theorem 3 results in an al-
most global convergence towards the fixed point p∗

with the help of the first step of the convergence
illustrated in the Introduction: rapid convergence
(finite-time convergence for the ε = 0 limit) to Psp,
which is obtained by preserving the biophysical na-
ture of each individual neuron by weak coupling.
See Appendix B for the complete argument. This
leads to our main theorem illustrated in the next
subsection.

6.2 Main theorem

Theorem 4 (Rapid and robust synchronization)
In addition to Assumptions E1–E3, S1–S2, G1, and M1,
assume (24) for all j ∈ N , and

• (Sufficient compression) there is ri ∈ (0, 1) so that

τi(xi(gidi))− τi(xi(rigidi)) < τj(xj(0)), ∀i 6= j,

hence the fixed point p∗ = col(x∗1, . . . , x
∗
N ) satisfies

x∗i ∈ [xi(0), xi(rigidi)) for all i ∈ N , and

(N − 1)DPsp < (1− cS→FrcF→S)dPsyn ,

where DPsp := 2 maxi∈N [τi(xi(gidi)) − τi(xi(gidi))]
and dPsyn := mini∈N [τi(xi(gidi))− τi(xi(rigidi))].

Then, there exists ε∗ > 0 such that for each ε ∈ (0, ε∗), the
network (3) with (4) has an almost semi-globally stable
limit cycle, that corresponds to a persistent synchronous
spiking network behavior, which has rapid convergence.
In particular,

(1) by preserving the biophysical nature of individual
neurons by weak coupling (Assumption S1), the net-
work rapidly converges to a neighborhood of S, i.e.,
each neuron rapidly converges to a neighbor of its
limit cycle attractor. Then, after less than a cycle,
it converges into a neighborhood of Psp.

(2) After a couple of cycles, this results in a neighbor-
hood of Psyn, a positively invariant set that cor-
responds to a persistent synchronous spiking net-
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work behavior, as presynaptic neurons only affect
the postsynaptic neuron when synchronously spik-
ing (the third step of the convergence).

(3) Finally, these network behaviors of persistent syn-
chronous spiking converge to the unique limit cycle
with a convergence rate that is independent of the
coupling strength and the network topology (the sec-
ond step of the convergence). �

Theorem 4 follows from Theorems 2–3 and from the ar-
guments in Sections 4.1, 4.2, 6.1, and Appendices A–B.
This emphasizes that the network under study achieves
rapid convergence to a persistent synchronous spiking
network behavior that is robust to heterogeneity via weak
synaptic coupling.

Remark 4 Theorem 4 proves the conjecture of Somers
and Kopell in Section 3.4 of (Somers & Kopell, 1993). �

7 Simulation

To illustrate Assumptions E1–E3, S1–S2, G1, M1, and
especially the robustness of the existence of p∗ with re-
spect to heterogeneity, we simulate a network consisting
of the type of systems given as

τε(vi)ẋi = −xi + x∞(vi)

εv̇i = gi,L(−0.4− vi) + gi,Cam∞(vi)(1− vi)
+ gi,Kxi(−0.7− vi) + 0.4

+ gcoup(1− vi)
∑
j∈Ni

S(vj)

where ε = 0.0004 and m∞(·) is given in Section 2,
which resembles the standard Morris-Lecar excitable
model in Section 2. Here, heterogeneous parameters are
the maximal conductances gi,L, gi,Ca, and gi,K, as in
the neuronal network. We take the parameters random
with uniform distribution from the intervals [0.3, 0.75],
[1.75, 2.25], and [2.75, 3.25], respectively. If x∞(·) is a
sigmoidal function ranging in [0, 1], then we see that
Di = [0, 1] × [−0.7, 1] is positively invariant for any
m ≥ 0, as

fmi (x, v) = gi,L(−0.4− v) + gi,Cam∞(v)(1− v)

+ gi,Kx(−0.7− v) + 0.4 + (1− v)m

< −1.4gi,L + 0.4 ≤ −0.02 < 0

for all x ≥ 0 and v > 1, while fmi (x, v) > 0.4 > 0 for all
x ≥ 0 and v < −0.7.

The nullcline fmi (x, v) = 0 has N -shape if

[0.3gi,L + 1.7m+ 0.4]/gi,Ca

< 0.71 ∗ 0.99 ∗m′∞(0.01)− 1.7m∞(0.01) = 1.4260,

< 0.7 ∗ 1 ∗m′∞(0)− 1.7m∞(0) = 1.4833.

This can be deduced by calculating the existence
condition of two zero roots for the partial deriva-
tive of the nullcline fmi (x, v) = 0 with respect
to v. In fact, this is the condition that guarantees
(∂xmi /∂v)(0.01), (∂xmi /∂v)(0) > 0, where xmi (v) is given
in Lemma 1. Thus, we take our robustness margin as

Mi := 0.36 < 1.1003 =
1.4260 ∗ 1.75− 0.3 ∗ 0.75− 0.4

1.7

≤ 1.4260 ∗ gi,Ca − 0.3 ∗ gi,L − 0.4

1.7
.

Note that (∂xmi /∂v)(0.01), (∂xmi /∂v)(0) > 0 also tells us
that the horizontal lines v = 0.01 and v = 0 are always
located between the left knee and the right knee. Then,
Assumptions E1 and E3 are satisfied if x∞(·) is 0 in the
lower branch and 1 in the upper branch. This is because,
we have

xi(Mi) < xMi
i (v′ := −0.1460)

≤ x0i (v′′ := 0.0930) < xi(0),

where the second inequality holds if and only if

Mi(1− v′)(0.7 + v′′) ≤ −(0.3gi,L + 0.4)(v′′ − v′)
− gi,Cam∞(v′)(1− v′)(0.7 + v′′)

+ gi,Cam∞(v′′)(1− v′′)(0.7 + v′).

Moreover, 0 < xi(m) < xi(m) < 1 because

fmi (0, v) ≥ min{0.3(−0.4− v), 0.75(−0.4− v)}
+ 1.75m∞(v)(1− v) + 0.4 > 0,

v ∈ [−0.7, 0],

fmi (1, v) ≤ 0.3(−0.4− v) + (2.25m∞(v) + 0.36)(1− v)

+ 2.75(−0.7− v) + 0.4 < 0, v ∈ [0.01, 1].

To satisfy the rest of the conditions in Assump-
tions E2, E3, and S2, we model τε(·), x∞(·), and S(·) as

x∞(v) = S(v) =

{
1, if v ≥ 0,

0, if v < 0,

τε(v) =


εq, if v ≥ Eth,

εq + τ , if v ∈ [−0.258, Eth),

εq + τ , if v < −0.258,

with q = 1/2, Eth = 0.01, and τ = 5 � εq. Note
that the horizontal line v = −0.258 always has an
intersection with the lower branch (we always have
(∂xmi /∂v)(−0.258) < 0), hence the rate of compression
can be approximated as

supx∈[x
i
,xm

i
(−0.258)) |hi(x)|

infx∈(xm
i
(−0.258),xi] |hi(x)|

=
τ

τ
=

5

τ
.
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We utilize a graph satisfying Assumption G1, where
we selected 36 neighbors for each i as i + 1, . . . , i + 36
mod N , where the total number of neurons is N = 100.
By selecting adjacency elements in {0, 1}, we get di = 36
for all i ∈ N . Hence, we take our weak coupling strength
as gcoup = 0.01 to satisfy Assumption S1 with the ro-
bustness margin Mi = 0.36. Then, we can see from the
following simulation results that as the rate of compres-
sion c gets smaller: as τ > 0 gets larger, the conditions
for the existence of p∗ and for the global convergence are
further satisfied for the varying parameters gi,L, gi,Ca,
and gi,K in a broad range.

Fig. 3. A simulation result of 100 neurons modeled in the
manner explained in Section 7 is shown as a raster plot of
spike times (i.e., times of the extreme peak for each cycle) of
individual neurons, where the initial condition is also taken
randomly with uniform distribution from Di. The top, mid-
dle, and bottom figures correspond to τ = 0.5, 5, and 30,
respectively. For illustration, decoupled heterogeneous neu-
rons are shown until t = 100 and the synaptic coupling be-
comes active at the red line.

8 Conclusion

We have illustrated how weak localized synaptic cou-
pling combined with spiking oscillators can result in
rapid spike synchronization in heterogeneous networks.
Traditionally, the analysis of synchronization in the
vicinity of a limit cycle is achieved via a reduction to
phase models (neuron-wise reductions). This reduction
however fails in the singular limit of slow-fast attrac-
tors. We propose instead that direct linearization of a
network-wise reduction of a state-space conductance-
based model provides an elucidating connection to the
classical linear theory of network synchronization by dif-
fusive coupling. We showed the essential role of the “rate
of compression” (monotonicity) for stability and robust-
ness, which connects our analysis to the theory of syn-
chronization in integrate-and-fire networks (Mirollo &
Strogatz, 1990b; Mauroy & Sepulchre, 2008; Mauroy,
2011). The mechanism analyzed in the present paper is
of general nature in excitable models. It would be of in-
terest to extend the analysis to other types of synchro-
nization, for instance, synchronization mechanisms in
heterogeneous ensembles of bursting neurons.
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A A network-wise singular perturbation analy-
sis

We first introduce a method to approximate singularly
perturbed systems, in which the fast system is not uni-
formly stable, as in our network (3) with (4). The method
is to first normalize the entire dynamics and then con-
sider the ε = 0 limit. In particular, for our network (3)
with (4), we get the parametrized normalized network as

˙̂xi =
hi,ε(x̂i, v̂i)

nε(x̂1, v̂1, . . . , x̂N , v̂N )

˙̂vi =
f̂i(x̂i, v̂i, {v̂j}Ni

)/ε

nε(x̂1, v̂1, . . . , x̂N , v̂N )
, ∀i ∈ N

(A.1)

where

hi,ε :=
−x̂i + xi,∞(v̂i)

τi,ε(v̂i)
,

f̂i := fi(x̂i, v̂i) + gi
(
Ei − v̂i

) ∑
j∈Ni

αijSij(v̂j),

nε :=

√√√√ N∑
i=1

(
hi,ε(x̂i, v̂i)2 + (f̂i(x̂i, v̂i, {v̂j}Ni

)/ε)2
)
.

Now, by considering the ε = 0 limit, we obtain a discon-
tinuous dynamical system given as

˙̂xi =
hi(x̂i)

nS(x̂1, . . . , x̂N )
and ˙̂vi = 0, ∀i ∈ N ,

nS(x̂1, . . . , x̂N ) :=

√√√√ N∑
i=1

hi(x̂i)2,

(A.2)

when col(x̂1, v̂1, . . . , x̂N , v̂N ) ∈ S,

˙̂xi = 0 and ˙̂vi =
f̂i(x̂i, v̂i, {v̂j}Ni

)

n̂UF (x̂1, v̂1, . . . , x̂N , v̂N )
, ∀i ∈ N ,

n̂UF :=

√√√√ N∑
i=1

f̂i(x̂i, v̂i, {v̂j}Ni
)2,

(A.3)

when col(x̂1, v̂1, . . . , x̂N , v̂N ) ∈ UF , and

˙̂xi =
Hmi
i (x̂i)

nF (x̂1, . . . , x̂N )
and ˙̂vi = 0, ∀i ∈ NF ,

˙̂xi = 0 and ˙̂vi = 0, ∀i /∈ NF ,

nF (x̂1, . . . , x̂N ) :=

√∑
i∈NF

Hmi
i (x̂i)2,

(A.4)

when col(x̂1, v̂1, . . . , x̂N , v̂N ) ∈ F . Then, the Filippov
solution of this network can be obtained by the corre-
sponding differential inclusion (Filippov, 1988), which
results in the sliding trajectory on S following the dy-
namics

˙̂xi =
hi(x̂i)

n̂S(x̂1, v̂1, . . . , x̂N , v̂N )
,

˙̂vi = − (∂fi/∂x)(x̂i, v̂i)

(∂fi/∂v)(x̂i, v̂i)

hi(x̂i)

n̂S(x̂1, v̂1, . . . , x̂N , v̂N )

=: Ri(x̂i, v̂i)
hi(x̂i)

n̂S(x̂1, v̂1, . . . , x̂N , v̂N )
, ∀i ∈ N ,

n̂S :=

√√√√ N∑
i=1

(1 +Ri(x̂i, v̂i)2)hi(x̂i)2.

(A.5)

Note that at jump points, i.e., points on Psp introduced
in (7), if neuron i approaches the left knee, i.e, x̂i →
xi(0), then we have Ri(x̂i, v̂i)→ −∞, hence

Ri(x̂i, v̂i)
hi(x̂i)

n̂S(x̂1, v̂1, . . . , x̂N , v̂N )
= ˙̂vi → 1

while ˙̂xj , ˙̂vj → 0 for j 6= i and ˙̂xi → 0. This implies
that we smoothly transit to the region UF , which fol-
lows (A.3). Similarly, the Filippov solution results in the
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sliding trajectory on F following the dynamics

˙̂xi =
Hmi
i (x̂i)

n̂F (x̂1, v̂1, . . . , x̂N , v̂N )
,

˙̂vi = − (∂fmi
i /∂x)(x̂i, v̂i)

(∂fmi
i /∂v)(x̂i, v̂i)

Hmi
i (x̂i)

n̂F (x̂1, v̂1, . . . , x̂N , v̂N )

=: Rmi
i (x̂i, v̂i)

Hmi
i (x̂i)

n̂F (x̂1, v̂1, . . . , x̂N , v̂N )
, i ∈ NF ,

˙̂xi = 0 and ˙̂vi = 0, i /∈ NF ,

n̂F :=

√∑
i∈NF

(1 +Rmi
i (x̂i, v̂i)2)Hmi

i (x̂i)2.

(A.6)

If neuron i ∈ NF approaches the right knee, i.e., x̂i →
xi(mi), then we have Rmi

i (x̂i, v̂i)→ −∞, hence

Rmi
i (x̂i, v̂i)

Hmi
i (x̂i)

n̂F (x̂1, v̂1, . . . , x̂N , v̂N )
= ˙̂vi → −1.

This again implies that we smoothly transit to UF .

Notice that the obtained solution trajectory is a bit
different from that of the network introduced in Sec-
tions 3.3, 4.1, and 4.2. In particular, (12) in Section 4.1
requires an infinite time of travel for a jump. However,
what we only care about for this dynamics is the shape
of the trajectory; the resulting point after a jump, and
its effect on infinitesimal perturbation. In this respect,
we could identify two networks, the one introduced in
Sections 3.3, 4.1, and 4.2 and the one introduced in this
subsection. This is because, the point before and after
a jump is on the N -dimensional manifolds S and F ,
which is completely determined by xi’s. Note that xi’s
and δxi’s do not change during this period of travel.

On the other hand, (6) (or (14)) is also different
from (A.5) (or (A.6)), since (6) (or (14)) becomes in-
finitely faster than (A.5) (or (A.6)) as it approaches
the knee (for some xi). However, again we are only in-
terested in its trajectory; the resulting point after slow
(fast) travel, and its effect on infinitesimal perturbation.
In this respect, we could identify two networks, since we
preserve the identity

∫ x̂+
i

x̂−
i

1

hi(x)
dx

=

∫ τ+

τ−

1

n̂S(x̂1(τ), v̂1(τ), . . . , x̂N (τ), v̂N (τ))
dτ

=

∫ x̂+
j

x̂−
j

1

hj(x)
dx

and similarly, the identity

∫ x̂+
i

x̂−
i

1

Hmi
i (x)

dx =

∫ x̂+
j

x̂−
j

1

H
mj

j (x)
dx,

which preserves both the argument in Sections 4.2
and 5.1 and the resulting point.

In particular, analysis performed in Sections 3.3–5.1 all
applies to the network defined here.

Now, therefore, from Theorems 1–3, we can conclude
that the discontinuous dynamical system obtained in
this subsection, also has a unique almost globally stable
limit cycle, which is contained in a positively invariant
set representing the behavior of persistent synchronous
spiking, which has the convergence rate independent of
the weak coupling strength and the network topology.

For sufficiently small ε, then we can find a slightly
smaller (but extended in the direction of ultrafast con-
vergence) positively invariant set containing the unique
stable limit cycle, which has rapid convergence. Now, the
semi-global convergence follows from the continuous de-
pendence for any trajectory that has a finite length (Fil-
ippov, 1988). The exception is made around the measure
zero set ∪N ′⊂NX (N ′) defined in Appendix B, which can
be made arbitrarily small by reducing ε.

Therefore, we can prove the existence of the almost semi-
globally rapidly stable limit cycle for the normalized net-
work with a sufficiently small ε. Since, for fixed ε, we
have finite velocity in the entire region, the shape and
the rapid stability of the limit cycle are preserved.

B Fast-slow behavior in the rest of the region
D \ (S ∪ UF ∪ F)

To complete the illustration on the network that we ob-
tain by the time scale separation for the ε = 0 limit, we
will detail the fast-slow behavior in the rest of the re-
gion D \ (S ∪ UF ∪ F). Recall that any trajectory that
starts from the slow region S moves to the fast region F
passing through the ultrafast region UF , and any trajec-
tory that starts from the fast region F moves to the slow
region S passing through the ultrafast region UF after
possibly a finite number of iteration F → UF → F .

Now, assume without loss of generality that

Di = [xi(0), xi(Mi)]×[vsmi (0, xi(Mi)), v
lg
i (Mi, xi(0))], ∀i.

Then, the remaining region can be partitioned as⋃
N ′⊂N

M(N ′),
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where M(N ′) is the set of all points
col(x1, v1, . . . , xN , vN ) such that

0 = fi(xi, vi) + gi(Ei − vi)
∑
j∈Ni

αijSij(vj)

=: fi(xi, vi) + gi(Ei − vi)di(v1, . . . , vN ), i ∈ N ,

and vi = vmd
i (gidi(v1, . . . , vN ), xi) if and only if

i /∈ N ′, i.e., vi = vsmi (gidi(v1, . . . , vN ), xi) or vi =

vlgi (gidi(v1, . . . , vN ), xi) for i ∈ N ′, where vmd
i (m,x)

denotes the middle root of fmi (x, v) = 0 for x ∈
(xi(m), xi(m)) so that vsmi (m,x) < vmd

i (m,x) <

vlgi (m,x).

A similar argument as earlier shows that neurons i in the
lower branch or the upper branch, i.e., i ∈ N ′, does not
move towards the middle branch, hence any trajectory
that starts fromM(N ′) can only move to either S ∪ F
orM(N ′′) withN ′′ ⊇ N ′, passing through the ultrafast
region UF . In particular, note that any trajectory that
starts from the setM(N ′) ends up in either S or

MS(N ′′) := {col(x1, v1, . . . , xN , vN ) ∈M(N ′′) :

vi = vsmi (gidi(v1, . . . , vN ), xi), i ∈ N ′′}

with some N ′′ ⊇ N ′, via the ultrafast-fast behavior.

Therefore, in the remaining part of this section, we will
show that MS(N ′) is partitioned into a measure zero
set X (N ′) and the restMS(N ′)\X (N ′) where a trajec-
tory that starts from it moves to either S or MS(N ′′)
with some N ′′ ) N ′, via the ultrafast-fast behavior. In
particular, let

X (N ′) := {col(x1, v1, . . . , xN , vN ) ∈MS(N ′) :

∃i /∈ N ′ s.t. xi = xi,∞(vi)},
SM(N ′) := {col(x1, v1, . . . , xN , vN ) ∈MS(N ′) :

vi ≤ Eth
i ,∀i /∈ N ′},

MS,left(N ′) := {col(x1, v1, . . . , xN , vN ) ∈MS(N ′) :

vi ≤ Eth
i or xi < xi,∞(vi),∀i /∈ N ′},

MS,right(N ′) :=MS(N ′) \ (X (N ′) ∪MS,left(N ′)).

Then, X (N ′) is a measure zero set and any trajec-
tory that starts from MS,left(N ′) \ SM(N ′) moves ei-
ther to SM(N ′) via the fast behavior or to MS(N ′′)
via the ultrafast-fast behavior with some N ′′ ) N ′.
On the other hand, any trajectory that starts from
MS,right(N ′) moves to MS(N ′′) via the ultrafast-fast
behavior with some N ′′ ) N ′. Finally, any trajectory
that starts from SM(N ′) moves either toMS,right(N ′)
via the slow behavior or to MS(N ′′) via the slow-
ultrafast behavior with some N ′′ ) N .
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