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Introduction

Recently it was reported in [START_REF] Kim | Robustness of synchronization of heterogeneous agents by strong coupling and a large number of agents[END_REF][START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF][START_REF] Lee | A tool for analysis and synthesis of heterogeneous multi-agent systems under rank-deficient coupling[END_REF][START_REF] Lee | Design of heterogeneous multi-agent system for distributed computation[END_REF] that a network of heterogeneous agents exhibits an emergent behavior when the node dynamics are diffusively coupled with a high coupling gain. In particular, it turned out that the emergent behavior is governed by a so-called blended dynamics, which is simply the algebraic average of the node dynamics. This finding yielded a methodology for designing heterogeneous agents that collectively perform a particular task or computation. That is, build a dynamic system first (as the blended dynamics) that per-the emergent dynamics; see [START_REF] Lee | Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling[END_REF] for more details). This is a serious drawback, because no explicit expression for the emergent dynamics is available and hence the design of the dynamic system that governs the emergent behavior is no longer a simple task. Inspired by the preliminary studies [START_REF] Trenn | Edge-wise funnel synchronization[END_REF][START_REF] Lee | Utility of edgewise funnel coupling for asymptotically solving distributed consensus optimization[END_REF], this paper presents an alternative to the (node-wise) funnel coupling in [START_REF] Lee | Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling[END_REF], which is edge-wise funnel coupling. The advancement is that the funnel technique is directly applied to the output difference between two nodes connected by an edge. In particular, we prove that edge-wise funnel coupling has the following benefits:

• The design of the edge-wise funnel coupling does not need global information.

• By designing the funnel, the convergence rate and the residual error of the output difference between two nodes can be arbitrarily controlled, which is an inherent advantage of funnel control (that was introduced in [START_REF] Ilchmann | Tracking with prescribed transient behaviour[END_REF]; see [START_REF] Berger | Funnel control for nonlinear systems with known strict relative degree[END_REF][START_REF] Berger | Funnel control of nonlinear systems[END_REF] for recent advances). • The collective emergent behavior is governed by the blended dynamics (i.e., the simple algebraic average of the vector fields of the participating nodes when they have no internal dynamics; when they have internal dynamics, the blended dynamics take the form presented for the case of linear diffusive coupling in [START_REF] Lee | A tool for analysis and synthesis of heterogeneous multi-agent systems under rank-deficient coupling[END_REF]). • During the operation of the multi-agent system, agents can leave and join the network without interrupting the operation of the system, which is called the 'plug-and-play' property [START_REF] Lee | A tool for analysis and synthesis of heterogeneous multi-agent systems under rank-deficient coupling[END_REF]. Edge-wise funnel coupling enables a simple handshaking procedure between two nodes of a newly created edge for the plugand-play operation.

The paper is structured as follows. Section 2 introduces a class of heterogeneous multi-agent systems considered in this paper, and presents the edge-wise funnel coupling. Edge-wise funnel coupling employs the funnel function to every edge with the goal that the output difference of two nodes connected by the edge remains within the funnel. This goal is called 'funnel objective' in this paper, and is achieved in Section 2 under a symmetry assumption on the funnel functions and under an assumption that the blended dynamics has no finite escape time.

When the funnel objective is achieved and the funnel size shrinks to zero or to a small number as time goes by, the (asymptotic or approximate) output synchronization is achieved with a connected graph. The question whether the funnel coupling remains bounded even when the funnel size shrinks to zero is also answered in Section 2. Section 3 shows that, if the output synchronization is achieved and if the blended dynamics is stable in a certain sense, then an emergent behavior arises among the heterogeneous agents and the behavior is described by the solution to the blended dynamics. A simulation result with the plug-and-play operation is illustrated in Section 4, and the conclusion follows in Section 5.

While the analysis for the funnel objective is motivated by [START_REF] Lee | Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling[END_REF], in contrast to that work, our results take into account the internal dynamics of each node and are based on a new graph theoretical lemma, which quantifies the effect of consensus in each edge for arbitrarily given edge weights, and thus, is useful in the analysis of timevarying or state-dependent edge coupling gains like the edge-wise funnel coupling. This lemma is found in the Appendix. Finally, we remark that similar coupling laws have been presented in [START_REF] Bechlioulis | Robust modelfree formation control with prescribed performance and connectivity maintenance for nonlinear multi-agent systems[END_REF][START_REF] Bechlioulis | Robust modelfree formation control with prescribed performance for nonlinear multi-agent systems[END_REF][START_REF] Bechlioulis | Decentralized robust synchronization of unknown high order nonlinear multiagent systems with prescribed transient and steady state performance[END_REF][START_REF] Verginis | Robust formation control in SE (3) for tree-graph structures with prescribed transient and steady state performance[END_REF][START_REF] Macellari | Multi-agent second order average consensus with prescribed transient behavior[END_REF][START_REF] Mehdifar | Prescribed performance distance-based formation control of multi-agent systems[END_REF][START_REF] Stamouli | Robust dynamic average consensus with prescribed performance[END_REF]. However, they either consider a leader-follower formulation [START_REF] Bechlioulis | Robust modelfree formation control with prescribed performance and connectivity maintenance for nonlinear multi-agent systems[END_REF][START_REF] Bechlioulis | Robust modelfree formation control with prescribed performance for nonlinear multi-agent systems[END_REF][START_REF] Bechlioulis | Decentralized robust synchronization of unknown high order nonlinear multiagent systems with prescribed transient and steady state performance[END_REF] (which corresponds to a tracking control problem), a specific graph structure, e.g., a tree graph [START_REF] Verginis | Robust formation control in SE (3) for tree-graph structures with prescribed transient and steady state performance[END_REF] or infinitesimal rigidity [START_REF] Mehdifar | Prescribed performance distance-based formation control of multi-agent systems[END_REF] (which simplifies the analysis), or homogeneous agents [START_REF] Macellari | Multi-agent second order average consensus with prescribed transient behavior[END_REF][START_REF] Mehdifar | Prescribed performance distance-based formation control of multi-agent systems[END_REF] (which again simplifies the analysis). The problem of dynamic average consensus was solved in [START_REF] Stamouli | Robust dynamic average consensus with prescribed performance[END_REF] using a prescribed performance control (which shares some features of funnel control). These works, however, do not consider the emergent behavior which is the focus of the current paper.

Edge-wise funnel coupling law

In the present paper, we consider a heterogeneous multi-agent system given by ẏi

(t) = F i (t, y i (t), z i (t)) + Γ i (t, w i (t)) • u i (t), żi (t) = Z i (t, z i (t), y i (t)), w i (t) = W i (y i (t), z i (t)), i ∈ N . (1) 
Here, N := {1, . . . , N } is the set of agent indices, the number of agents is N , u i (t) ∈ R m is the coupling law to be designed, w i (t) ∈ R mi is the introspective1 output whose dimension m i may vary across the agents, y i (t) ∈ R m is the output with (agent-independent) dimension m which is communicated with other agents and is to be synchronized approximately, and z i (t) ∈ R ni is the internal state with (agent-dependent) dimension n i . The following two assumptions pose the required properties for F i , Z i , W i , and Γ i . Assumption 1 (Open loop dynamics) The functions

F i : [t 0 , ∞) × R m × R ni → R m , Z i : [t 0 , ∞)×R ni ×R m → R ni and Γ i : [t 0 , ∞)×R mi → R m×m
are measurable in t, locally Lipschitz with respect to (y i , z i ) or w i , resp., and bounded on each compact subset of R m+ni or R mi , resp., uniformly in t. The function

W i : R m × R ni → R mi is locally Lipschitz.
Assumption 2 (Gain matrix) The gain matrix Γ i (t, w i ) is known and available for the design of the coupling law u i , and is invertible for all t and w i . Its inverse is uniformly bounded, i.e., there exists

M Γ > 0 such that 2 Γ i (t, w i ) -1 ∞ ≤ M Γ
for all t and w i . Note that Assumption 2 justifies to say that system (1) has relative degree one, because for time-invariant systems the definition given in [START_REF] Byrnes | Asymptotic stabilization of minimum phase nonlinear systems[END_REF] is then satisfied. Under the above assumptions, we propose for each i ∈ N the edge-wise funnel coupling law

u i (t) = u i t, w i , {ν ij } = Γ i (t, w i ) -1 j∈Ni u ij (t, ν ij ), u ij (t, ν ij ) = col µ 1 ij ν 1 ij (t) ψ 1 ij (t) , . . . , µ m ij ν m ij (t) ψ m ij (t)
,

ν ij := y j -y i = col(ν 1 ij , . . . , ν m ij ), (2) 
where N i ⊆ N is the set of agents that send information to agent i. The communication graph and the functions ψ p ij and µ p ij satisfy the following assumptions. Assumption 3 (Communication graph) The communication graph G = (N , E) induced by the neighborhoods N i for i ∈ N (i.e., N is the set of nodes and (j, i) ∈ E if, and only if, j ∈ N i ) is undirected and connected. 3 For the basics of graph theory we refer to [START_REF] Diestel | Graph theory[END_REF]; some specific lemmas required for the proofs of the main results can also be found in Appendix A. Assumption 4 (Design functions) For each edge (j, i) ∈ E and p ∈ M := {1, 2, . . . , m} we have:

• Performance functions ψ p ij : [t 0 , ∞) → R >0
are bounded and continuously differentiable with bounded derivatives. Furthermore, they are symmetric in the sense that ψ p ij (t) = ψ p ji (t), ∀t ≥ t 0 . • Coupling functions µ p ij : (-1, 1) → R are continuous and satisfy lim s→±1 µ p ij (s) = ±∞. Furthermore, they satisfy the symmetry property that µ p ij (-s) = -µ p ji (s), ∀s ∈ (-1, 1). Under the simple coupling law u i as in [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF] and the above assumptions we will prove that the following 'funnel objective' is achieved:

∀ t ≥ t 0 ∀ (j, i) ∈ E ∀ p ∈ M : ν p ij (t) < ψ p ij (t) (3) 
(whose meaning is that the signal ν p ij remains inside the funnel characterized by ψ p ij ). While the choice of ψ p ij is completely up to the designer, it is often chosen as a monotonically decreasing function (so that the funnel shrinks as time goes on). By designing the function ψ p ij , one can control the upper bound of |ν p ij (t)| during the transient and the residual error lim sup t→∞ |ν p ij (t)|. Note that we allow for lim t→∞ ψ p ij (t) = 0. 4

3 Different from the literature [START_REF] Diestel | Graph theory[END_REF], in the present paper edges (j, i) ∈ E always have a direction (from node j to node i), and a graph is undirected, if for any (j, i) ∈ E we also have (i, j) ∈ E. 4 In this case, since limt→∞ ν p ij (t) → 0, the coupling law (2) thus contains the quotient of two "infinitesimally small" terms. Therefore, the case of asymptotic synchronization seems to be of limited practical utility; similar to asymptotic tracking by funnel control, cf. [START_REF] Berger | Funnel control of nonlinear systems[END_REF]Rem. 1.7].

We also note that the design of u i in (2) does neither use the information of the vector fields F i and Z i nor the state z i . When Γ i (t, w i ) does not depend on w i (which is often the case, e.g., when Γ i (t, w i ) = I), the introspective output w i does not need to be measured. Finally, we emphasize that the information of y j and y i themselves is not needed as long as the difference ν ij is available. This is useful in some practical applications. For example, a self-driving car i can easily measure the distance y j -y i from the front car j, but the absolute positions y j and y i are hard to measure. Remark 1 (Symmetry) Note that the symmetry in the functions ψ p ij and µ p ij , stated in Assumption 4, are already assumed in the linear coupling law u i = j∈Ni kν ij , with a constant k > 0, used in [START_REF] Kim | Robustness of synchronization of heterogeneous agents by strong coupling and a large number of agents[END_REF][START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF][START_REF] Lee | A tool for analysis and synthesis of heterogeneous multi-agent systems under rank-deficient coupling[END_REF][START_REF] Lee | Design of heterogeneous multi-agent system for distributed computation[END_REF]. (Indeed, this is the case when µ p ij is the identity function and

ψ p ij ≡ 1.
) Therefore, the edge-wise funnel coupling (2) can be viewed as a generalization of these approaches in that, instead of the constant uniform gain k, each edge has its individual nonlinear time-varying gain function. Remark 2 (Normal form) The proposed coupling law (2) can be easily obtained even when the node dynamics is not in the normal form as in [START_REF] Kim | Robustness of synchronization of heterogeneous agents by strong coupling and a large number of agents[END_REF]. For example, consider the node dynamics given by ẋi = f i (x i ) + g i (x i )u i and

y i = h i (x i ). If L gi h i (x i ) := h i (x i )g i (x i ) depends
only on an introspective output w i and is nonsingular for all w i (i.e., the system has relative degree one [START_REF] Byrnes | Asymptotic stabilization of minimum phase nonlinear systems[END_REF]), then the coupling law (2) can still be constructed with

Γ i (w i ) = L gi h i (x i ).
Solutions to the differential equations of the closedloop system (1) and ( 2) are understood in the sense of Carathéodory, and their existence and uniqueness (local in time) follow from the assumptions. Throughout the paper, when speaking of solutions, we will always mean the unique (maximal) Carathéodory solution. Now, to guarantee (3), we need one more assumption: the blended dynamics (to be defined) has no finite escape time. For this, define s(t

) := (1/N ) N i=1 y i (t). Then ṡ(t) = 1 N N i=1 [F i (t, y i (t), z i (t)) + Γ i (t, w i (t)) • u i (t)] = 1 N N i=1 F i (t, y i (t), z i (t))
where the coupling terms cancel out because of the symmetry in Assumption 4. Denoting the synchronization error by e i (t) := y i (t) -s(t), we have

ṡ(t) = 1 N N i=1 F i (t, s(t) + e i (t), z i (t)), żi (t) = Z i (t, z i (t), s(t) + e i (t)), i ∈ N . (4) 
When e i ≡ 0 for all i ∈ N , the system (4) is called the blended dynamics in [START_REF] Lee | A tool for analysis and synthesis of heterogeneous multi-agent systems under rank-deficient coupling[END_REF]. Here, we call (4) the perturbed blended dynamics when we treat e i , i ∈ N , as independent input signals to the blended dynamics. In particular, we note that, if (3) holds, then from Assumption 3, we get

∀ t ≥ t 0 ∀ i, j ∈ N : y i (t) -y j (t) ∞ ≤ d G Ψ(t), (5) 
where d G is the diameter5 of the communication graph G = (N , E) and Ψ(t) := max p∈M max (j,i)∈E ψ p ij (t), and we find

∀ t ≥ t 0 ∀ i ∈ N : e i (t) ∞ = 1 N N j=1 (y i (t) -y j (t)) ∞ ≤ d G Ψ(t). (6)
Assumption 5 (No finite escape time) For any initial time t 0 , the perturbed blended dynamics (4) with any absolutely continuous inputs e

i : [t 0 , ∞) → R m , i ∈ N , such that e i (t) ∞ ≤ d G Ψ(t) for all t ≥ t 0 , has a global solution for any initial values s(t 0 ) ∈ R m , z i (t 0 ) ∈ R ni , i ∈ N .
We stress that if the functions F i and Z i are globally Lipschitz in their arguments, then Assumption 5 holds. Lemma 1 Under Assumptions 1-5, assume that a solution of system (1) with (2) exists on [t 0 , ω) for some ω > t 0 and satisfies |ν p ij (t)| < ψ p ij (t) for all t ∈ [t 0 , ω), (j, i) ∈ E, and p ∈ M. Then (y i , z i ) is bounded on [t 0 , ω) for all i ∈ N . The proof of Lemma 1 is a direct consequence of the representation (4), Assumption 5,[START_REF] Lee | Distributed algorithm for the network size estimation: Blended dynamics approach[END_REF]; the details are omitted. Theorem 1 (Evolution inside funnel) Consider the system (1) with the edge-wise funnel coupling law (2). Under Assumptions 1-5, if the initial values y i (t 0 ) of (1) and the performance functions

ψ p ij satisfy ∀ (j, i) ∈ E ∀ p ∈ M : |ν p ij (t 0 )| < ψ p ij (t 0 ), (7) 
then the global solution (y 1 , z 1 , . . . , y N , z N ) : [t 0 , ∞) → R N m+n1+...+n N of (1) and (2) exists, which satisfies the funnel objective (3). The proof is relegated to Appendix B. Note that, under the assumptions of Theorem 1, the inequality (5) holds, and thus, approximate (when lim sup t→∞ Ψ(t) > 0 is small) or asymptotic (when lim t→∞ Ψ(t) = 0) output synchronization is achieved. Remark 3 (Plug-and-play) In virtue of Theorem 1, the multi-agent system (1) with the edge-wise funnel coupling (2) is amenable to the plug-and-play operation; that is, agents can leave the network at any time (which, however, may decompose the network into several connected components), and agents can also join the network with no initialization of any agent in the network (see [START_REF] Lee | Design of heterogeneous multi-agent system for distributed computation[END_REF] for more details). In practice, both the required symmetry of ψ p ij and µ p ij in Assumption 4 and the condition (7) can be implemented when a new edge (j, i) between agent i and agent j is created. That is, the first communication between agent i and agent j is a handshake for these properties. For example, under the premise that all the coupling functions are the same as µ p ij = s/(1 -|s|) and the performance function has the form ψ p ij (t) = ψ p ji (t) = (B p -η)e -λ(t-t k ) + η where η and λ are already determined, the undetermined B p and t k are negotiated by the handshake such that t k is set as the time of the handshake and B p is determined as

|y p j (t k ) -y p i (t k )| < B p .
Then, all the conditions of Assumption 4 hold and we have

∀ p ∈ M : ν p ij (t k ) < ψ p ij (t k ) = ψ p ji (t k ) ( 8 
)
so that the condition (7) holds at time t k and Theorem 1 applies afterward.

We note that, similar to [9, Rems. 1 & 2], the edge-wise funnel coupling law ( 2) is also able to achieve finite-time synchronization. Moreover, the coupling law ( 2) is guaranteed to remain bounded (even when the performance functions ψ p ij converge to zero), under mild additional assumptions. Theorem 2 (Boundedness of coupling law) In addition to the assumptions of Theorem 1, assume that at least one of the following holds.

(a) F i (t, y, z) ≡ F(t, y) + F i (t, y, z), where F(t, y) is globally Lipschitz with respect to y uniformly in t and there exists M F such that

F i (t, y, z) ∞ ≤ M F for all i ∈ N , t ≥ t 0 , y ∈ R m , and z ∈ R ni . (b) There exists M y,z such that col(y i (t), z i (t)) ∞ ≤
M y,z for all i ∈ N and t ≥ t 0 . Then the input u i of (2) for (1) is bounded on [t 0 , ∞), i.e., there exists M u > 0 such that for all t ≥ t 0 and i ∈ N , we have

u i (t) ∞ ≤ M u .
The proof is similar to that of [START_REF] Lee | Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling[END_REF]Thm. 3], when we additionally invoke the boundedness of Γ -1 i from Assumption 2; hence it is omitted.

Blended dynamics as emergent behavior

Theorem 1 in the previous section provides sufficient conditions for the funnel objective (3) to be achieved. In this section, we show that, if the funnel shrinks (i.e., Ψ(t) gets small) as time goes by, then an emergent behavior arises which is described by the solution to the blended dynamics. In fact, this emergence is based on a certain stability of the blended dynamics, and, in this section, we utilize ISS (input-to-state stability) and δ-ISS (incremental ISS) of the perturbed blended dynamics (4), which are briefly reviewed in the following subsection.

ISS and δ-ISS

Consider a system ẋ(t) = F(t, x(t), u(t)) whose solution exists globally in time for any initial condition x(t 0 ) and for any locally essentially bounded measurable input u. The system is ISS with (β, γ) for a closed set A, if there exist β ∈ KL and γ ∈ K ∞ , such that, for all t ≥ t 0 , 6

x(t) A ≤ β( x(t 0 ) A , t -t 0 ) + γ(sup s∈[t0,t) u(s) ∞ ).
(9) On the other hand, the system is δ-ISS with (β, γ) if there exist β ∈ KL and γ ∈ K ∞ such that, for any x(t 0 ) and x(t 0 ) and for any locally essentially bounded measurable inputs û and u, the corresponding solutions x and x, respectively, satisfy, for all t ≥ t 0 ,

x(t) -x(t) ∞ ≤ β( x(t 0 ) -x(t 0 ) ∞ , t -t 0 ) + γ sup s∈[t0,t) û(s) -u(s) ∞ . (10)
From ( 9) and ( 10), it follows from causality that, if the input u (or, the input difference ûu, resp.) converges to zero, then the state x (or, the state difference xx, resp.) tends to zero. However, to quantify an explicit rate of convergence for decaying inputs, we present a lemma whose proof is in Appendix C. Lemma 2 If the system is ISS with (β, γ) for a closed set A, then, for any M x0 > 0, M u > 0 and for any decreasing function w : R ≥0 → (0, 1] such that lim t→∞ w(t) = 0, there exists γ ∈ K ∞ 7 such that

x(t) A ≤ β( x(t 0 ) A , t -t 0 ) + γ(δ t ), t > t 0 (11)
where

δ t := sup s∈[t0,t) u(s) ∞ w(t -s),
for any solution x with an initial condition x(t 0 ) and a locally essentially bounded measurable input u such that

x(t 0 ) A ≤ M x0 and sup s∈[t0,t) u(s) ∞ ≤ M u . ( 12 
)
We note that, for the system considered in this subsection, δ-ISS with (β, γ) of the system is equivalent to ISS with (β, γ) for the closed set A = R n × {0} of the extended dynamics

ẋ(t) = F(t, x(t), û(t)), ėx (t) = F(t, e x (t) + x(t), e u (t) + û(t)) -F(t, x(t), û(t))
with e x := x-x, input e u := u-û and for any signal û. Therefore, Lemma 2 also applies to the δ-ISS case.

Emergent Behavior

Theorem 3 (Emergent behavior) Let the assumptions of Theorem 1 hold and assume that the perturbed blended dynamics (4) is ISS with (β, γ) for a closed set A. Then, for any M x0 > 0 and any decreasing function 6 For a set Ξ ⊆ R n , x Ξ denotes the distance between the point x ∈ R n and Ξ, i.e., x Ξ := infy∈Ξ xy ∞. 7 An example of γ in the explicit form is given in the proof of Lemma 2.

w : [0, ∞) → (0, 1] such that lim t→∞ w(t) = 0, there exists γ ∈ K ∞ such that

max i∈N        y i (t) z 1 (t) . . . z N (t)        A ≤ β               1 N N i=1 y i (t 0 ) z 1 (t 0 ) . . . z N (t 0 )        A , t -t 0        + γ(sup s∈[t0,t) d G Ψ(s)w(t -s)) + d G Ψ(t), ∀t ≥ t 0 for any solution col(y 1 , z 1 , . . . , y N , z N ) of (1) and (2) such that col((1/N ) N i=1 y i (t 0 ), z 1 (t 0 ), . . . , z N (t 0 )) A ≤ M x0 .

PROOF. Define y z

i := col(y i , z 1 , . . . , z N ), for convenience, where y i and z i , i ∈ N , are the solutions to (1) with (2) such that (1/N ) N i=1 y z i (t 0 ) A ≤ M x0 . Now let s z := col(s, z1 , . . . , zN ) be the solution to the perturbed blended dynamics (4) with the particular input e i = y i -s, i ∈ N and the initial condition 4) that zi (t) = z i (t) for all t ≥ t 0 with this particular input, and (6) holds from Theorem 1. Then, for each i ∈ N ,

s(t 0 ) = (1/N ) N i=1 y i (t 0 ) and zi (t 0 ) = z i (t 0 ), i ∈ N . It is seen from (
y z i (t) A ≤ s z (t) A + y i (t) -s(t) ∞ ≤ β( s z (t 0 ) A , t -t 0 ) + γ(sup s∈[t0,t) d G Ψ(s)) + d G Ψ(t). Applying Lemma 2 with M u = d G sup t∈[t0,∞) Ψ(t), the proof is complete.
When the perturbed blended dynamics (4) is ISS for a closed set A, the behavior of the blended dynamics (which is (4) with e i (t) ≡ 0, i ∈ N ):

ṡ(t) = 1 N N i=1 F i (t, ŝ(t), ẑi (t)), żi (t) = Z i (t, ẑi (t), ŝ(t)), i ∈ N , (13) 
is that all the solutions converge to the set A. This is an emergent behavior because individual node dynamics do not necessarily have such a property. With the edge-wise funnel coupling whose funnel shrinks such that lim sup t→∞ Ψ(t) is sufficiently small or even zero, it is seen from Theorem 3 that the behavior of ( 1) with (2) mimics that of the blended dynamics.

On the other hand, even when the perturbed blended dynamics (4) do not have such an attractive set A, a similar phenomenon is observed if (4) is δ-ISS. Corollary 1 (Emergent behavior) Let the assumptions of Theorem 1 hold and assume that (4) is δ-ISS with (β, γ). Then, for any decreasing function w : R ≥0 → (0, 1] such that lim t→∞ w(t) = 0, there exists γ ∈ K ∞ such that, for each i ∈ N ,

y i (t) z i (t) - ŝ(t) ẑi (t) ∞ ≤ γ(sup s∈[t0,t) d G Ψ(s)w(t -s)) + d G Ψ(t), ( 14 
)
where y i and z i , i ∈ N , are a solution to (1) with (2), and ŝ and ẑi are a solution to the blended dynamics [START_REF] Berger | Funnel control for nonlinear systems with known strict relative degree[END_REF] with

ŝ(t 0 ) = (1/N ) N i=1 y i (t 0 ) and ẑi (t 0 ) = z i (t 0 ), i ∈ N .
PROOF. As in the proof of Theorem 3, let s z := col(s, z1 , . . . , zN ) be the solution to the perturbed blended dynamics (4) with the particular input e i = y i -s, i ∈ N and the initial condition s(t 0 ) = (1/N ) N i=1 y i (t 0 ) and zi (t 0 ) = z i (t 0 ), i ∈ N , so that zi (t) = z i (t) for all t ≥ t 0 , and (6) holds. Then, for each i ∈ N ,

y i (t) z i (t) - ŝ(t) ẑi (t) ∞ ≤ y i (t) z i (t) - s(t) zi (t) ∞ + s(t) zi (t) - ŝ(t) ẑi (t) ∞ ≤ d G Ψ(t) + γ sup s∈[t0,t) d G Ψ(s)
which follows from δ-ISS of the perturbed blended dynamics, and the fact that s(t 0 ) = ŝ(t 0 ) and zi (t 0 ) = ẑi (t 0 ), i ∈ N . Finally, applying Lemma 2 with any M x0 > 0 and M u = d G sup t∈[t0,∞) Ψ(t), the proof is complete.

Again, inequality [START_REF] Berger | Funnel control of nonlinear systems[END_REF] shows how the individual solution y i and z i is approximated by the solution to the blended dynamics (13) when the funnel shrinks as time goes by. In particular, if asymptotic output consensus is achieved with lim t→∞ Ψ(t) = 0, then [START_REF] Berger | Funnel control of nonlinear systems[END_REF] implies that the behavior of the network (1) with (2) asymptotically tends to the behavior of the blended dynamics [START_REF] Berger | Funnel control for nonlinear systems with known strict relative degree[END_REF]. Remark 4 Let the assumptions of Corollary 1 hold. Now, assume that there exists at least one bounded solution col(s, z 1 , . . . , z N ) of the perturbed blended dynamics (4) with some bounded input e i , i ∈ N . Then, δ-ISS of (4) implies that any solution of (4) with bounded input is bounded. In particular, any solution col(ŝ, ẑ1 , . . . , ẑN ) of the blended dynamics (13) is bounded (since e i ≡ 0, i ∈ N ). This further implies by ( 14) that any solution col(y 1 , z 1 , . . . , y N , z N ) of (1) with (2) is bounded, which gives that the corresponding inputs u i , i ∈ N , are bounded by Theorem 2.

Identical internal dynamics

In the remainder of this section we consider the special case when all the internal dynamics (the differential equation for z i ) share the same vector field, i.e., Z i = Z for all i ∈ N , but not necessarily the same initial condition. In this case, it may be convenient to consider a reduced order blended dynamics:

ṡ(t) = 1 N N i=1 F i (t, s(t), z(t)), (15a) 
ż(t) = Z(t, z(t), s(t)). ( 15b 
)
This is motivated by the observation that, under the assumption that Z i = Z, i ∈ N , if the perturbed blended dynamics ( 4) is δ-ISS with (β, γ), then the set

S z := { col(ŝ, ẑ1 , . . . , ẑN ) | ∀ i, j ∈ N : ẑi = ẑj }
is globally asymptotically stable for (13) (i.e., (4) with zero inputs) hence S z is an invariant set of [START_REF] Berger | Funnel control for nonlinear systems with known strict relative degree[END_REF]. Indeed, let col(ŝ, ẑ1 , . . . , ẑN ) be a solution of [START_REF] Berger | Funnel control for nonlinear systems with known strict relative degree[END_REF], then it also solves ( 4) with e i ≡ 0, i ∈ N . Now, let (s, z) be any solution of (15) such that s(t 0 ) = ŝ(t 0 ), then col(s, z, . . . , z) also solves ( 4) with e i ≡ 0, i ∈ N . Therefore, for all i ∈ N and for all t ≥ t 0 ,

ŝ(t) ẑi (t) - s(t) z(t) ∞ ≤ β(max j ẑj (t 0 )-z(t 0 ) ∞ , t-t 0 ).
(16) Corollary 2 (Emergent behavior) Let the assumptions of Theorem 1 hold and assume that (4) is δ-ISS with (β, γ). Then, for any decreasing function w : R ≥0 → (0, 1] such that lim t→∞ w(t) = 0, there exists γ ∈ K ∞ such that, for each i ∈ N ,

y i (t) z i (t) - s(t) z(t) ∞ ≤ β(max j z j (t 0 ) -z(t 0 ) ∞ , t -t 0 ) + γ(sup s∈[t0,t) d G Ψ(s)w(t -s)) + d G Ψ(t)
where y i and z i , i ∈ N , are a solution to (1) with (2), and s and z are a solution to the reduced order blended dynamics [START_REF] Bechlioulis | Robust modelfree formation control with prescribed performance and connectivity maintenance for nonlinear multi-agent systems[END_REF] with s(t 0 ) = (1/N ) N i=1 y i (t 0 ).

PROOF. The claim follows from

y i (t) z i (t) - s(t) z(t) ∞ ≤ y i (t) z i (t) - ŝ(t) ẑi (t) ∞ + ŝ(t) ẑi (t) - s(t) z(t)
∞ combined with ( 14) and ( 16) and with ŝ(t 0 ) = s(t 0 ) and ẑi (t 0 ) = z i (t 0 ), i ∈ N .

While the solutions y i and z i are compared to the solution to the blended dynamics [START_REF] Berger | Funnel control for nonlinear systems with known strict relative degree[END_REF] in Corollary 1, they are compared to the solution to the reduced order blended dynamics [START_REF] Bechlioulis | Robust modelfree formation control with prescribed performance and connectivity maintenance for nonlinear multi-agent systems[END_REF] in Corollary 2, which is simpler to compute. However, the drawback is the addition of the transient term β, which is caused by the difference in the initial values z i (t 0 ) and z j (t 0 ), i, j ∈ N . Now, to best utilize the benefit of low dimensionality of the reduced order blended dynamics [START_REF] Bechlioulis | Robust modelfree formation control with prescribed performance and connectivity maintenance for nonlinear multi-agent systems[END_REF], it is desired that the stability condition is imposed on the reduced order blended dynamics (15) rather than [START_REF] Lee | Design of heterogeneous multi-agent system for distributed computation[END_REF]. For this, let us introduce the perturbed reduced order blended dynamics with input col(e 0 , e 1 , . . . , e N , d 1 , . . . , d N ):

ṡ(t) = 1 N N i=1 F i (t, s(t) + e i (t), z(t) + d i (t)), ż(t) = Z(t, z(t), s(t) + e 0 (t)). (17) 
And, instead of δ-ISS of (4), we will assume δ-ISS of ( 17) with the additional assumption that the internal dynamics (15b) is also δ-ISS with ( β, γ) when s is viewed as an input. Indeed, in this case, the solutions z i and y i , i ∈ N , of (1) with ( 2) have the property that z j (t)

-z i (t) ∞ ≤ β( z j (t 0 ) -z i (t 0 ) ∞ , t - t 0 ) + γ(sup s∈[t0,t) y j (s) -y i (s) ∞ ) for all j, i ∈ N .
If the funnel objective is achieved, then by ( 5) and Lemma 2, for any M x0 > 0 and any decreasing function w : [0, ∞) → (0, 1] such that lim t→∞ w(t) = 0, there is γ ∈ K ∞ such that, for any j, i ∈ N ,

z j (t) -z i (t) ∞ ≤ max j,i β( z j (t 0 ) -z i (t 0 ) ∞ , t -t 0 ) + γ(sup s∈[t0,t) d G Ψ(s) w(t -s)) =: D(t),
for the solutions such that max j,i z j (t 0 ) -z i (t 0 ) ∞ ≤ M x0 . It is clear that D(t) has similar properties as Ψ(t); i.e., lim sup t→∞ D(t) is small or zero if lim sup t→∞ Ψ(t) is small or zero, resp. Corollary 3 (Emergent behavior) Let the assumptions of Theorem 1 hold and assume that the internal dynamics (15b) with input s is δ-ISS. If the perturbed reduced order blended dynamics (17) is δ-ISS with (β, γ), then for any decreasing function w : [0, ∞) → (0, 1] such that lim t→∞ w(t) = 0, there exists γ ∈ K ∞ such that, for each i ∈ N ,

y i (t) z i (t) - s(t) z(t) ∞ ≤ β( z i (t 0 ) -z(t 0 ) ∞ , t -t 0 ) + γ(sup s∈[t0,t) max{ d G Ψ(s), D(s)}w(t -s)) + d G Ψ(t)
where z i and y i are solutions to (1) with (2) such that max j,i z j (t 0 ) -z i (t 0 ) ∞ ≤ M x0 , and col(s, z) is the solution of the reduced order blended dynamics (15) with initial condition s(t

0 ) = (1/N ) N i=1 y i (t 0 ) and z(t 0 ) = (1/N ) N i=1 z i (t 0 ).
PROOF. Pick any i ∈ N . Then, any solution col(y 1 , z 1 , . . . , y N , z N ) of ( 1) and (2) satisfies

ṡ(t) = 1 N N j=1 F j t, s(t) + (y j (t) -s(t)), z i (t) + (z j (t) -z i (t)) żi (t) = Z(t, z i (t), s(t) + (y i (t) -s(t))) (18) 
where s = (1/N ) N j=1 y j . Comparing ( 18) and ( 15) under δ-ISS of ( 17) with e 0 = y i -s, e j = y j -s, and

d j = z j -z i , y i (t) z i (t) - s(t) z(t) ∞ ≤ e i (t) ∞ + s(t) z i (t) - s(t) z(t) ∞ ≤ e i (t) ∞ + β( z i (t 0 ) -z(t 0 ) ∞ , t -t 0 ) + γ     sup s∈[t0,t)     e 0 (s) ∞ max j e j (s) ∞ max j d j (s) ∞     ∞     .
The proof concludes by applying Lemma 2 and by [START_REF] Lee | Distributed algorithm for the network size estimation: Blended dynamics approach[END_REF].

Remark 5 If (17) is δ-ISS with (β, γ) and the function s -γ(2s) is of class K ∞ , then it can be shown that (4) is δ-ISS (whose proof is in the extended arXiv version of this paper). Then, Corollary 2 can be employed instead of Corollary 3.

An example

In this section, we illustrate that different emergent behaviors can arise when some heterogeneous agents join or leave the network (plug-and-play operation). Consider a system of four heterogeneous agents: ẏi (t) = F i (t, y i (t), z i (t)) + 100 u i (t), żi (t) = Z(t, z i (t), y i (t)), i ∈ N = {1, . . . , 4}, where z i (t) := col(z i,1 (t), z i,2 (t), z i,3 (t)), Z(t, z i , y i ) := col(Z 1 (t, z i,1 , y i ), Z 2 (t, z i,2 , y i ), Z 3 (t, z i,3 , y i )), and Z 1 (t, z, y) := -100z + 100y, Z 2 (t, z, y) := -z + 0.4(y + 0.5), if y + 0.5 < 0, -z + 7(y + 0.5), if y + 0.5 ≥ 0,

Z 3 (t, z, y) := 1 20 -z, if y + 1 < 0, -z + 50(y + 1), if y + 1 ≥ 0.
The heterogeneous vector fields F i are given by

F 1 (t, y 1 , z 1 ) := -100 3 y 3 1 + 400z 1,1 + 1100, F 2 (t, y 2 , z 2 ) := -100 3 y 3 2 -1600z 2,2 -5500 3 , F 3 (t, y 3 , z 3 ) := -100 3 y 3 3 +1600z 3,2 -(20z 3,2 -22) 2 + 1100 3 , F 4 (t, y 4 , z 4 ) := -100 3 y 3 4 -400z 4,3 + 5500 3 .
Each agent represents a neuromorphic circuit with one positive/negative feedback inspired by [START_REF] Ribar | Neuromodulation of neuromorphic circuits[END_REF]. Since Γ i ≡ 100 for all agents, they satisfy Assumptions 1 and 2. The coupling functions are all chosen initially as µ ij (s) = tan((π/2)s) and the performance functions are all chosen as ψ ij (t) = (π/2)(0.9 exp(-t)+0.1) for (j, i) ∈ E. Then, upon the joining of agent 1 at t = 100, we set ψ 14 (t) = (π/2)(8.9 exp(-(t -100)) + 0.1). When agent 2 joins at t = 170, we set ψ 24 (t) = (π/2)(0.9 exp(-(t -170)) + 0.1). When agent 3 joins at t = 220, we set ψ 32 (t) = (π/2)(4.9 exp(-(t -220)) + 0.1). These choices ensure that condition [START_REF] Kim | Completely decentralized design of distributed observer for linear systems[END_REF] in Theorem 1 (and Assumptions 3 and 4 for each connected component) is satisfied at each starting instance by handshake as illustrated in Remark 3. The simulation in Fig. 2 is performed in Matlab/Simulink software package with initial conditions y i (0) = 1 and z i (0) = col(0, 0, 0), i ∈ N . Without coupling, each agent can only converge to an equilibrium, but with coupling they exhibit various emergent behaviors such as spiking pulses and bursting as seen in Fig. 2. In fact, when all agents are connected, the system is an extension of the FitzHugh-Nagumo model which exhibits the bursting behavior. Such behavior is utilized in neuromorphic engineering, for instance, to emulate PWM (Pulse Width Modulation) [START_REF] Sepulchre | Spiking control systems[END_REF]. The variety in these periodic behaviors comes from a different limit cycle (hence Assumption 5 is satisfied) associated to a different blended dynamics that appears by a different set of agents being connected at each instance (Theorem 3).

Fig. 3 shows that the corresponding inputs are bounded, which in turn implies that the fractions |ν ij (t)|/ψ ij (t) are uniformly smaller than 1 and all output differences corresponding to an edge evolve inside the respective funnel (Theorem 1). 

Conclusion

In this paper, we introduced the edge-wise funnel coupling law, which retains all the benign properties of the node-wise funnel coupling law in [START_REF] Lee | Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling[END_REF], and exhibits a more straightforward design of the emergent behavior, which is given by the blended dynamics. The new coupling law is also better suitable for plug-and-play operation. Future research will focus on the extension of the results to systems with arbitrary relative degree. and E ↓ := { (j, i) ∈ E | i ∈ N ↓ }, which are the outgoing edges from the sources, and the incoming edges to the sinks, respectively. Lemma A.2 Consider a graph G = (N , E) with nonempty E. If G has no loop, then there exist constants ξ ij > 0 associated with each edge (j, i) ∈ E such that, for all vectors σ ∈ R N , we have

(j,i)∈E ξ ij (σ j -σ i ) ≡ (j,i)∈E ↑ ξ ij σ j - (j,i)∈E ↓ ξ ij σ i . (A.1)
PROOF. The graph theoretic interpretation of (A.1) is the existence of edge weights ξ ij , such that for all nodes which are not sinks or sources the sum of the weights of the incoming edges is equal to the sum of the outgoing edges. We show that, by choosing appropriate edge weights starting from the sources the proof can be concluded.

In the following, we sequentially pick a node j ∈ N and determine ξ ij for all outgoing edges from node j. To this end, let d j be the out-degree of node j ∈ N (i.e., the number of all outgoing edges), and let E k := {(j, i) ∈ E | j ∈ Ñk } be the set of all outgoing edges from the nodes in Ñk , where Ñk is as in the proof of Lemma A.1. It is clear that {E k } K k=0 is a partition of E. As the first step, for each (j, i) ∈ E 0 , assign ξ ij := 1/d j . Regarding ξ ij as the amount of flow through the edge (j, i), this is interpreted as assigning the equally divided outgoing flow from the source. By this, the incoming flows for all nodes j ∈ Ñ1 are determined, and thus, we can assign the outgoing flow ξ ij for all (j, i) ∈ E 1 as the amount of incoming flow divided by its out-degree:

ξ ij := 1 d j l∈Nj ξ jl > 0. (A.2)
In this way, we sequentially assign all the outgoing flow for the nodes in Ñk , k = 0, . . . , K, in the increasing order of k. Recalling that {E k } K k=0 is a partition of E, this procedure determines the flow ξ ij > 0 for all edges in E. Then, by construction, (A.1) holds.

B Proof of Theorem 1

The proof technique is similar to that of the node-wise funnel coupling case, given in [START_REF] Lee | Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling[END_REF], hence we will keep the proof brief. In this section, we explain the main differences. For this purpose, we will cite equations from [START_REF] Lee | Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling[END_REF] as, for example, (3) in [START_REF] Lee | Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling[END_REF] as (N3). The full proof is available in the extended version of the paper on arXiv.

First, we show the existence of a unique (local) solution. Let q := N m + n 1 + . . . + n N and define the relatively open set

Ω := (t, y 1 , z 1 , . . . , y N , z N ) ∈ R ≥0 × R q ∀ (j, i) ∈ E ∀ p ∈ M : |ν p ij | < ψ p ij (t) and R : Ω → R q , (t, y 1 , z 1 , . . . , y N , z N ) → col R 1 , . . . , R N with R i = F i (t, y i , z i ) + j∈Ni u ij (t, ν ij ) Z i (t, y i , z i )
, i ∈ N . Then the system (1), ( 2) is equivalent to

ẋ(t) = R(t, x(t)), x(t 0 ) = col y 1 (t 0 ), z 1 (t 0 ), . . . , y N (t 0 ), z N (t 0 ) .
By assumption we have x(t 0 ) ∈ Ω and R is measurable and locally integrable in t and locally Lipschitz continuous in x. Therefore, by the theory of ordinary differential equations (see e.g. [27, § 10, Thm. XX]) there exists a unique maximal solution x : [t 0 , ω) → R q , ω ∈ (0, ∞], of (1) and (2) which satisfies (t, x(t)) ∈ Ω for all t ∈ [t 0 , ω). Furthermore, the closure of the graph of this solution is not a compact subset of Ω.

Assume that ω < ∞. Then, different from [START_REF] Lee | Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling[END_REF], we find that

E p + ({τ k }) := (j, i) ∈ E lim k→∞ ν p ij (τ k ) ψ p ij (τ k ) = 1 is non-empty for some p ∈ M, or E p -({τ k }) := (j, i) ∈ E lim k→∞ ν p ij (τ k ) ψ p ij (τ k ) = -1 is non-empty for some p ∈ M, instead of that I + ({τ k }) is non-empty or I -({τ k }) is non-empty. Assuming that E p + ({τ k }
) is non-empty, we will instead show that a contradiction occurs, if the graph (N , E p + ({τ k })) has a loop. If (N , E p + ({τ k })) has no loop, then we will show that it is possible to construct another time sequence {τ k } (based on {τ k }), such that

|E p + ({τ k })| < |E p + ({τ k })|, similar to (N9)
. By repeating the argument, we arrive at a graph (N , E p + ({τ k })), for some time sequence {τ k }, that has a loop, which yields a contradiction as we will show. Therefore, we conclude that ω = ∞ and (3) is achieved.

For convenience, we write E p instead of E p + ({τ k }) in the following. Note first that, by the definition of E p , there exists k * ∈ N such that for all k ≥ k * and all (j, i) ∈ E p we have

y p j (τ k )-y p i (τ k ) = ν p ij (τ k ) > 0, because ψ p ij (t) > 0 for all t ∈ [t 0 , ω). Hence, by Lemma A.1 the graph (N , E p ) cannot have a loop.
The remainder of the proof follows as in [START_REF] Lee | Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling[END_REF], where we instead use the absolutely continuous function

W (t) := (j,i)∈E p ξ ij ν p ij (t) = (j,i)∈E p ξ ij • (y p j (t) -y p i (t))
where ξ ij is given by Lemma A.2 in terms of the graph (N , E p ). The sequences {ε q } q∈N , {τ kq } q∈N and {s q } q∈N are similarly defined as in [START_REF] Lee | Synchronization with prescribed transient behavior: Heterogeneous multi-agent systems under funnel coupling[END_REF], and similar to (N14) we may conclude that, for some ξ > 0, ∀ q ∈ N : Ẇ (s q ) ≥ -ξθ ψ := -ξ sup t≥t0,(j,i)∈E,p∈M ψp ij (t) .

(B.1) The main difference appears when we arrive at the derivation of (N16). We have to instead invoke Lemma 1 together with Lemma A.2 in Appendix A for the graph (N , E p ) to obtain, for almost all t ∈ [t 0 , ω),

Ẇ (t) ≤ M 0 + (j,i)∈E p ↑ ξ ij (l,j)∈E µ p jl (t) - (j,i)∈E p ↓ ξ ij (l,i)∈E µ p il (t), (B.2)
where µ p kl (t) = µ p kl (ν p kl (t)/ψ p kl (t)) for (l, k) ∈ E. Define the edge sets

E p large := (l, i) ∈ E p ∃ j ∈ N : (j, i) ∈ E p ↓ = E p ↓ , E p small := (l, j) ∈ E ∃ i ∈ N : (j, i) ∈ E p ↑ ∪ (i, l) ∈ E (l, i) ∈ E \ E p , ∃ j ∈ N : (j, i) ∈ E p ↓ . By definition of E p ↑ and E p ↓ in Appendix A, we have ∅ = E p ↓ = E p large ⊆ E p and ∅ = {(i, j)|(j, i) ∈ E p ↑ } ⊆ E p small ⊆ E \ E p . The latter holds because from (j, i) ∈ E p ↓ , node i is a sink of the graph (N , E p ), hence (i, l) / ∈ E p for all l ∈ N . Similarly, if (j, i) ∈ E p
↑ , then j is a source of the graph (N , E p ), hence (l, j) / ∈ E p for all l ∈ N . Now, since -µ p il (t) = µ p li (t) for any (l, i) ∈ E by Assumption 4, we can rewrite (B.2) as

Ẇ (t) ≤ M 0 + (l,j)∈E p small ζ jl µ p jl (t) - (l,i)∈E p large ζ il µ p il (t) (B.3)
with positive constants

ζ jl = (j,k)∈E p ↑ ξ kj + (k,l)∈E p ↓ ξ lk , (l, j) ∈ E p small , (k,j)∈E p ↓ ξ jk , (l, j) ∈ E p large .
Then, from (B.1) and (B.3), we may similarly conclude that (l,j)∈E p small max{µ p jl (s q ), 0} → ∞ as q → ∞. Therefore, invoking that E \E p is finite, there exist a subsequence {τ k } = {s q k } and an edge (j

* , i * ) ∈ E p small ⊆ E \ E p such that ν p i * j * (τ k )/ψ p i * j * (τ k ) → 1 as k → ∞. Consequently, E p + ({τ k }) ⊆ E p + ({s q }) ⊆ E p + ({τ k }). Since (j * , i * ) ∈ E p + ({τ k }) \ E p + ({τ k }), the proof concludes. C Proof of Lemma 2
Construct the function γ as follows:

(i) set M x := β(M x0 , 0) + γ(M u ) > 0, (ii) define β Mx (•) := β(M x , •), which is a strictly decreasing function from [0, ∞) onto (0, β Mx (0)], (iii) for ε ∈ (0, 2β Mx (0)] define γ via its inverse

γ-1 (ε) := w β -1 Mx ε 2 γ-1 ε 2 (C.1)
which is a strictly increasing function from (0, 2β Mx (0)] onto (0, w(0)γ -1 (β Mx (0))] such that lim ε→0 γ-1 (ε) = 0, (iv) choose any γ ∈ K ∞ such that γ(s) = γ(s) for s ∈ (0, w(0)γ -1 (β Mx (0))]. The function γ defined above has the following property:

γ(s) = 2γ s w(T * (s)) (C.2)
for all s ∈ (0, w(0)γ -1 (β Mx (0))], where T * (s) := β -1 Mx (γ(s)/2) is a strictly decreasing function from (0, w(0)γ -1 (β Mx (0))] onto [0, ∞). (This property is easily proved with s = γ -1 (ε).) We now prove the statement of Lemma 2. Pick t > t 0 . Then, either (i) t 0 + T * (δ t ) ≤ t or (ii) t < t 0 + T * (δ t ) holds. If (i), then for all s such that t 0 ≤ t -T * (δ t ) ≤ s ≤ t, we have w(T * (δ t )) ≤ w(t -s). Therefore,

γ sup s∈[t-T * (δt),t) u(s) ∞ ≤ γ sup s∈[t-T * (δt),t) u(s) ∞ w(t-s) w(T * (δt)) ≤ γ 1 w(T * (δt)) sup s∈[t0,t) u(s) ∞ w(t -s) = γ δt w(T * (δt)) = 1 2 γ(δ t ).
Then, [START_REF] Lee | Utility of edgewise funnel coupling for asymptotically solving distributed consensus optimization[END_REF] follows since

x(t) A ≤ β ( x(t -T * (δ t )) A , t -(t -T * (δ t ))) + γ sup s∈[t-T * (δt),t) u(s) ∞ ≤ β (M x , T * (δ t )) + 1 2 γ(δ t ) = γ(δ t ).
If (ii), then for all s such that t 0 ≤ s ≤ t, we have w(T * (δ t )) ≤ w(t -s). Thus, we obtain

x(t) A ≤ β ( x(t 0 ) A , t -t 0 ) + γ sup s∈[t0,t) u(s) ∞ ≤ β ( x(t 0 ) A , t -t 0 ) + γ sup s∈[t0,t) u(s) ∞ w(t-s) w(T * (δt)) = β ( x(t 0 ) A , t -t 0 ) + γ δt w(T * (δt)) = β ( x(t 0 ) A , t -t 0 ) + 1 2 γ (δ t )
which warrants [START_REF] Lee | Utility of edgewise funnel coupling for asymptotically solving distributed consensus optimization[END_REF]. 

D
s(s) z(s) ∞ ≤ β   s(t 0 ) z(t 0 ) ∞ , 0   + γ   2γ   s(t 0 ) z(t 0 ) ∞     + γ 2γ sup s∈[t0,t) ẽ(s) + γ sup s∈[t0,t) ẽ(s) ≤ γ   s(t 0 ) z(t 0 ) ∞   + γ sup s∈[t0,t) ẽ(s) (D.2)
where for the last inequality we utilized the fact that β(s, 0) + γ(2γ(s)) ≤ γ(s) and γ(s) + γ(2γ(s)) ≤ γ(s) for all s ≥ 0. 

ẽ(s) ≤ γ sup s∈[t0,∞) ẽ(s) (D.3)
where we utilized the fact that γ(s) = γ(2γ(s)) + γ(s) for all s ≥ 0. Then, as in [28, Theorem 1 ((j) ⇒ (a))], δ-ISS of (4) follows from (D.2) and (D.3).

E Detailed proof of Theorem 1 (only contained in arXiv-version)

First, we show the existence of a unique (local) solution. Let q := N m + n 1 + . . . + n N and define the rela-tively open set

Ω := (t, y 1 , z 1 , . . . , y N , z N ) ∈ R ≥0 × R q ∀ (j, i) ∈ E ∀ p ∈ M : |ν p ij | < ψ p ij (t) and R : Ω → R q , (t, y 1 , z 1 , . . . , y N , z N ) → col R 1 , . . . , R N with R i = F i (t, y i , z i ) + j∈Ni u ij (t, ν ij ) Z i (t, y i , z i ) , i ∈ N . Then the system (1), (2) is equivalent to ẋ(t) = R(t, x(t)), x(t 0 ) = col y 1 (t 0 ), z 1 (t 0 ), . . . , y N (t 0 ), z N (t 0 ) .
By assumption we have x(t 0 ) ∈ Ω and R is measurable and locally integrable in t and locally Lipschitz continuous in x. Therefore, by the theory of ordinary differential equations (see e.g. [27, § 10, Thm. XX]) there exists a unique maximal solution x : [t 0 , ω) → R q , ω ∈ (0, ∞], of (1) and (2) which satisfies (t, x(t)) ∈ Ω for all t ∈ [t 0 , ω). Furthermore, the closure of the graph of this solution is not a compact subset of Ω.

The proof is done by a contradiction. Assume that ω < ∞. This implies that there is a time sequence {τ k } such that τ k is strictly increasing and lim k→∞ τ k = ω, and

E p + ({τ k }) := (j, i) ∈ E : lim k→∞ ν p ij (τ k ) ψ p ij (τ k ) = 1
is non-empty for some p ∈ M, or

E p -({τ k }) := (j, i) ∈ E : lim k→∞ ν p ij (τ k ) ψ p ij (τ k ) = -1
is non-empty for some p ∈ M.

Let us first assume that E p + ({τ k }) is non-empty for some p ∈ M. Then, we will first show that a contradiction occurs if graph (N , E p + ({τ k })) has a loop. If graph (N , E p + ({τ k })) has no loop, we will then show that it is possible to construct another time sequence {τ k } (based on {τ k }), such that

|E p + ({τ k })| < |E p + ({τ k })| (E.1)
where the notation | • | implies the cardinality of the set. By repeating this argument (i.e., by replacing the role of {τ k } with {τ k }), we arrive after finitely many steps at the condition that graph (N , E p + ({τ k })) has a loop (because E p + ({τ k }) ⊆ E and the original graph (N , E) has a trivial loop represented by an undirected edge), which yields a contradiction. This means that there is no such sequence {τ k } that makes E p + ({τ k }) non-empty for each p ∈ M. Similarly, it can be seen that there is no sequence that makes E p -({τ k }) non-empty for each p ∈ M. Therefore, we conclude that there is no such finite time ω, and the control objective (3) is achieved.

Let us carry out the above described proof steps. For convenience, we write E p instead of E p + ({τ k }) in the following. Note first that, by the definition of E p , there exists k * ∈ N such that for all k ≥ k * and all (j, i) ∈ E p we have y p j (τ k ) -y p i (τ k ) = ν p ij (τ k ) > 0, because ψ p ij (t) > 0 for all t ∈ [t 0 , ω). Hence, by Lemma A.1 the graph (N , E p ) cannot have a loop. Now, we continue the proof for the case when the graph (N , E p ) has no loop, hence becomes a directed subgraph of the original graph (N , E). For this purpose, let

W (t) := (j,i)∈E p ξ ij ν p ij (t) = (j,i)∈E p ξ ij • (y p j (t) -y p i (t))
where ξ ij is given by Lemma A. Let us now consider a strictly decreasing sequence {ε q } ⊆ (0, 1) such that lim q→∞ ε q = 0 and W (t 0 ) < (1ε 0 ) (j,i)∈E p ξ ij ψ p ij (t 0 ). Choose a subsequence {τ kq } q∈N of {τ k } such that ∀ q ∈ N : W (τ kq ) ≥ 1 -ε q 2

(j,i)∈E p ξ ij ψ p ij (τ kq ). (E.2)

Based on this subsequence, we now construct a sequence {s q } q∈N such that

s q := max    s ∈ [t 0 , τ kq ] W (s) = (1 -ε q ) (j,i)∈E p ξ ij ψ p ij (s)    . (E.3)
By (E.2) and (E.3), the sequence {s q } is strictly increasing and lim q→∞ s q = ω. Moreover, since lim q→∞ W (s q )/ (j,i)∈E p ξ ij ψ p ij (s q ) = 1, ∀ (j, i) ∈ E p : lim q→∞ ν p ij (s q ) ψ p ij (s q ) = 1. (E.4)

In addition, from Assumption 4 and from (E.2) and (E.3), it follows that s q < τ kq and Ẇ (s q ) ≥ (1 -ε q )

(j,i)∈E p ξ ij ψp ij (s q ) ≥ -ξθ ψ (E.5) for all q ∈ N, 9 where ξ := (j,i)∈E p ξ ij and θ ψ := sup t≥t0,(j,i)∈E,p∈M ψp ij (t) .

On the other hand, if we compute Ẇ , then we have Note that, by the definition of E p ↑ and E p ↓ in Appendix A, we have ∅ = {(i, j)|(j, i) ∈ E p ↑ } ⊆ E p small ⊆ E \ E p . This is because from (j, i) ∈ E p ↓ , node i is a sink of the graph (N , E p ), hence (i, l) / ∈ E p for all l ∈ N . Similarly, if (j, i) ∈ E p ↑ , then j is a source of the graph (N , E p ), hence (l, j) / ∈ E p for all l ∈ N . Now, (E.5) and (E.8) yield (l,j)∈E p small ζ jl µ p jl (s q ) ≥ (l,i)∈E p large ζ il µ p il (s q )-M 0 -ξθ ψ =: M q .

Ẇ (t
Thus, it follows from (E.4) that M q → ∞ as q → ∞. Since (l,j)∈E p small ζ jl µ p jl (s q ) ≤ ζ (l,j)∈E p small max{µ p jl (s q ), 0}

where ζ := max (l,j)∈E p small ζ jl > 0, we have (l,j)∈E p small max{µ p jl (s q ), 0} ≥ M q ζ . (E.9)

Therefore, for each sufficiently large q, there is an edge (j q , i q ) ∈ E p small ⊆ E \ E p such that µ p iqjq (s q ) ≥ M q /(|E p small |ζ); hence µ p iqjq ν p iqjq (s q ) ψ p iqjq (s q ) → ∞, i.e. ν p iqjq (s q ) ψ p iqjq (s q ) → 1.

Since E \ E p is a finite set, there is a subsequence {τ k } = {s q k } such that (j * , i * ) = (j q k , i q k ) ∈ E p small ⊆ E \ E p and ν p i * j * (τ k )/ψ p i * j * (τ k ) → 1 as k → ∞. Consequently,

E p + ({τ k }) (E.4) ⊆ E p + ({s q }) ⊆ E p + ({τ k }).
By construction, (j * , i * ) ∈ E p + ({τ k }) \ E p + ({τ k }) and we can conclude (E.1) as desired.

Fig. 1 .

 1 Fig. 1. Switched graph G(t) and time intervals used for simulation. Red dots are agents leaving the network. Green dots are agents newly joined.

Fig. 1

 1 Fig.1illustrates the switched graph G(t) with the corresponding time intervals for the demonstration.The coupling functions are all chosen initially as µ ij (s) = tan((π/2)s) and the performance functions are all chosen as ψ ij (t) = (π/2)(0.9 exp(-t)+0.1) for (j, i) ∈ E. Then, upon the joining of agent 1 at t = 100, we set ψ 14 (t) = (π/2)(8.9 exp(-(t -100)) + 0.1). When agent 2 joins at t = 170, we set ψ 24 (t) = (π/2)(0.9 exp(-(t -170)) + 0.1). When agent 3 joins at t = 220, we set ψ 32 (t) = (π/2)(4.9 exp(-(t -220)) + 0.1). These choices ensure that condition[START_REF] Kim | Completely decentralized design of distributed observer for linear systems[END_REF] in Theorem 1 (and Assumptions 3 and 4 for each connected component) is satisfied at each starting instance by handshake as illustrated in Remark 3. The simulation in Fig.2is performed in Matlab/Simulink software package with initial conditions y i (0) = 1 and z i (0) = col(0, 0, 0), i ∈ N .

Fig. 2 .

 2 Fig. 2. Various emergent behaviors depending on the participating agents according to Figure 1. Agents 1, 2, 3, and 4 have the colors magenta, green, red, and blue, respectively.

Fig. 3 .

 3 Fig. 3. u1 (magenta), u2 (green), u3 (red), and u4 (blue).

ξ

  kj + (k,l)∈E p ↓ ξ lk , (l, j) ∈ E p small , (k,j)∈E p ↓ ξ jk , (l, j) ∈ E p large ,whereE p small := (l, j) ∈ E ∃ i ∈ N : (j, i) ∈ E p ↑ ∪ (i, l) ∈ E (l, i) ∈ E \ E p , ∃ j ∈ N : (j, i) ∈ E p ↓ .

  If the system[START_REF] Bechlioulis | Decentralized robust synchronization of unknown high order nonlinear multiagent systems with prescribed transient and steady state performance[END_REF] with input (e 0 , . . . , d N ) is δ-ISS with (β, γ) and if additionally, α(s) := s -γ(2s) is also a class-K ∞ function, then the system (4) with input (e 1 , . . . , e N ) is δ-ISS.PROOF. Consider any two solutions of (4) denoted as (ŝ, ẑ1 , . . . , ẑN ) and (s, z 1 , . . . , z N ) with inputs (ê 1 , . . . , êN ) and (e 1 , . . . , e N ), respectively. Fix i ∈ N . Then (ŝ, ẑi ) is a solution of (17) with input col(ê i , ê1 , . . . , êN , ẑ1 -ẑi , . . . , ẑNẑi ), and (s, z i ) is a solution of (17) with input col(e i , e 1 , . . . , e N , z 1z i , . . . , z N -z i ). Since (17) is δ-ISS with (β, γ), we get

	Alternative condition on the reduced	tion, γ ∈ K ∞ . We further have
	blended dynamics (only contained in arXiv-
	version)					
	ẑi (t)-z i (t) Lemma D.1 ŝ(t)-s(t)	∞ ≤ β	 	ŝ(t 0 )-s(t 0 ) ẑi (t 0 )-z i (t 0 )	∞ , t -t 0  	sup s∈[t0,t)
					+	γ   sup s∈[t0,t)	ẽ(s) 2z(s)	∞	 
								(D.1)
	where ẽ(t) := max j∈N êj (t) -e j (t) ∞ and z(t) :=
	max j∈N ẑj (t) -z j (t) ∞ . Thus, we can conclude that
	sup s∈[t0,t)	s(s) z(s)	∞ ≤ β	 		s(t 0 ) z(t 0 )	∞ , 0	 
				+ γ 2 sup	z(s) + γ	sup	ẽ(s)
							s∈[t0,t)	s∈[t0,t)
	where s(t) := ŝ(t) -s(t) ∞ . Now, let
	ζ := max s(t 0 ), z(t 0 ), sup	ẽ(s) ,
								s∈[t0,t)
	γ(s) := α -1 (2 max{β(s, 0), γ(s)}),	∀s ≥ 0,
	then we have					
	sup	z(s) ≤ 2 max{β(ζ, 0), γ(ζ)} + γ 2 sup	z(s)
	s∈[t0,t)						s∈[t0,t)
		= α(γ(ζ)) + sup	z(s) -α	sup	z(s) ,
							s∈[t0,t)	s∈[t0,t)
	and thus, sup s∈[t0,t) z(s) ≤ γ(ζ). Note that by its defini-
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  On the other hand, we can conclude from (D.1) applied to some initial time T ≥ t 0 (but for the same trajectories), that we have

	lim sup t→∞	s(t) z(t)	∞ ≤	γ   sup s∈[T,∞)	ẽ(s) 2z(s)
			s∈[T,∞) γ 2 sup T →∞ z(s) + γ	s∈[t0,∞) sup ẽ(s)
		= γ 2 lim sup	z(t) + γ	sup	ẽ(s) ,
				t→∞	s∈[t0,∞)
	hence lim sup t→∞ z(t) ≤ γ(sup s∈[t0,∞) ẽ(s)), where
	γ(•) := α -1 γ(•) is a class-K ∞ function. Now, this fur-
	ther implies that		
	lim sup	s(t)		≤ γ 2 lim sup	z(t) + γ	sup
	t→∞	z(t)	∞			t→∞	s∈[t0,∞)

∞   . Since the initial time T was arbitrary, we further get lim sup t→∞ z(t) ≤ lim

  ) = (j,i)∈E p ξ ij (f p j (t, y j , z j ) -f p i (t, y i , z i )) ∈ [t 0 , ω), where F i (t, y i , z i ) = col(f 1 i (t, y i , z i ), . . . , f m i (t, y i , z i )) and µ p kl (t) = µ p kl (ν p kl (t)/ψ p kl (t)), k ∈ N , (l, k) ∈ E, for simplicity. We can bound the first sum by M 0 := ξM f , where the constant M f is such that∀ t ∈ [t 0 , ω) : |f p j (t, y j (t), z j (t)) -f p i (t, y i (t), z i (t))| ≤ M f , (E.6)whose existence follows from Lemma 1 and Assumption 1, because ω is finite. Invoking Lemma A.2 for the edge set E p , we therefore have that Ẇ (t) ≤ M 0 + ∈ [t 0 , ω). Let E p large be the set of all edges (l, i) ∈ E in (E.7) such that (l, i) ∈ E p , hence lim q→∞ µ p il (s q ) = ∞; E p large := (l, i) ∈ E p ∃ j ∈ N : (j, i) ∈ E p Without loss of generality, we may choose εq such that W is differentiable at sq, as W is differentiable almost everywhere.

	+	ξ ij	µ p jl (t) -	ξ ij	µ p il (t)
	(j,i)∈E p	(l,j)∈E			(j,i)∈E p	(l,i)∈E
	for almost all t (j,i)∈E p ↑ -ξ ij	ξ ij	µ p jl (t) il (t) (l,j)∈E µ p	(E.7)
		(j,i)∈E p ↓	(l,i)∈E
	for almost all t ↓	= E p ↓ .
	By its construction, ∅ = E p ↓ = E p large ⊆ E p . Now, since -µ p il (t) = µ p li (t) for any (l, i) ∈ E by Assumption 4, we can rewrite (E.7) as
	Ẇ (t) ≤ M 0 +	ζ jl µ p jl (t) -	ζ il µ p il (t)
	(l,j)∈E p small			(l,i)∈E p large
						(E.8)
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This terminology was used in, e.g.,[START_REF] Grip | Output synchronization for heterogeneous networks of nonintrospective agents[END_REF], whose meaning is that the variable can be measured within the agent. We will use the value of wi when we compose the coupling law ui.

The symbol • ∞ denotes the maximum norm for a vector and the induced maximum norm for a matrix.

The diameter of a graph G is the maximum length among the shortest paths between any two nodes.

This is because, γ(s) -γ(2γ(s)) = α(γ(s)) ≥ β(s, 0), γ(s).

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(Ministry of Science and ICT) (No. NRF-2017R1E1A1A03070342). This work was done while Jin Gyu Lee was with Seoul National University.

A Graph theoretical lemmas

For technical reasons, regardless of our assumption being that the underlying graph is undirected and connected (Assumption 3), in this section, we present two graph theoretical lemmas, that are essential for our proof of Theorem 1 outlined in Appendix B. The lemmas are concerned with directed graphs that have no loops. In Appendix B we will consider directed subgraphs of the original graph that have this property.

Recall that a tuple (i

has no incoming/outgoing edges. A source (sink ) is a node that has no incoming (outgoing) edge. An isolated node is regarded as a source. If a graph has no loop and E = ∅, then there exist both a source and a sink. Note that if {(i, j), (j, i)} ∈ E, then this "undirected edge" constitutes a loop (i, j, i) in G. Lemma A.1 Consider a graph G = (N , E) with nonempty E. Then G has no loop if, and only if, there exists a vector χ ∈ R N such that χ j -χ i > 0 for all (j, i) ∈ E.

PROOF. (Sufficiency):

If there is a loop (i 0 , i 1 , . . . , i l ) in G where i 0 = i l , then we have

by the assumption, which is a contradiction. (Necessity): Since there is no loop, every path in the graph is elementary and has a finite length. Thus, we can define Ñk as the set of nodes to which a path of maximal length k from a source leads. Obviously, Ñ0 is the set of the sources, and there is a maximal length K for all paths in G. Then, { Ñk } K k=0 is a partition of N . Now, for each k = 0, . . . , K, let χ i := -k for all i ∈ Ñk . Then, for all (j, i) ∈ E, if j ∈ Ñk for some k ∈ {0, ..., K -1} (note that k = K is not possible), then clearly i ∈ Ñl for some l ∈ {k+1, ..., K}, thus χ j = -k and χ i = -l ≤ -(k+1), thus χ j -χ i ≥ 1 > 0.

Let N ↑ and N ↓ be the sets of the sources and the sinks, respectively. Further, let E ↑ := { (j, i) ∈ E | j ∈ N ↑ }