

Assigning a social status from face adornments: an fMRI study

M Salagnon, F D'errico, S Rigaud, E Mellet

▶ To cite this version:

M Salagnon, F D'errico, S Rigaud, E Mellet. Assigning a social status from face adornments: an fMRI study. Brain Structure and Function, 2024, 229 (5), pp.1103-1120. 10.1007/s00429-024-02786-4 . hal-04234997v2

HAL Id: hal-04234997 https://hal.science/hal-04234997v2

Submitted on 26 May 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Assigning a social status from face adornments: an fMRI study

3	
4	
5	Salagnon M ^{1,2} , d'Errico F ^{2,3} , Rigaud S ² , Mellet E ¹ *
6	
7	¹ CNRS, CEA, IMN, GIN, UMR 5293, Université Bordeaux, Bordeaux, France
8	² Univ. Bordeaux, PACEA UMR 5199, CNRS, Pessac, France
9	³ SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen
10	Norway.
11	
12	* Corresponding author
13	E-mail: <u>emmanuel.mellet@u-bordeaux.fr</u>
14	
15	KEYWORDS: Human evolution, symbols, social cognition, face perception,
16	Neuroarchaelogy, fMRI

18 Abstract

19 For at least 150,000 years, the human body has been culturally modified by the wearing of 20 personal ornaments and probably by painting with red pigment. The present study used 21 functional magnetic resonance imaging to explore the brain networks involved in attributing 22 social status from face decorations. Results showed the fusiform gyrus, orbitofrontal cortex, 23 and salience network were involved in social encoding, categorization, and evaluation. The 24 hippocampus and parahippocampus were activated due to the memory and associative skills 25 required for the task, while the inferior frontal gyrus likely interpreted face ornaments as 26 symbols. Resting-state functional connectivity analysis clarified the interaction between these 27 regions. The study highlights the importance of these neural interactions in the symbolic 28 interpretation of social markers on the human face, which were likely active in early Homo 29 species and intensified with Homo sapiens populations as more complex technologies were 30 developed to culturalize the human face.

31

34 **1. Introduction**

35 The use of technologies to change the appearance of our bodies to communicate information 36 about our identity and social role dates back to at least 140,000 years ago (Sehasseh et al., 37 2021). Body painting, tattooing, scarification, wearing of ornaments, mutilations, hairstyles, 38 and clothing are amongst the best-known practices for performing these functions in 39 traditional societies (Barth, 1969; Dubin, 1999; Hodder, 1991; Klumpp & Kratz, 1993; 40 Sanders, 2002). The ethnographic record shows that personal ornaments, in particular, play a 41 crucial role in communicating ethnic affiliation, reinforcing the sense of belonging to the 42 group and its cohesion, establishing boundaries with neighboring groups, and conveying 43 information on linguistic, ideological, and religious membership (Dubin, 1987; Hatton et al., 44 2022; Kuhn & Stiner, 2007; Kuper, 1973; Nitu et al., 2019; Pitarch Martí et al., 2017; Sciama 45 & Eicher, 1998; Vanhaeren & d'Errico, 2006; Wright et al., 2014). Ornaments can also 46 provide information about social status, gender, marital situation, and the number of children 47 the wearer has had (Meisch, 1998; O'Hear, 1998; Sciama & Eicher, 1998; Wickler & Seibt, 48 1995). Special ornaments and body paints may be put on at rites of passage occurring at the 49 individual birth, during initiation ceremonies, marriage, healing, or death (Beckwith & Fisher, 50 1999; Carey, 1991; Carter & Helmer, 2015; Nowell & Cooke, 2021; Ogundiran, 2002; Twala, 51 1958). The earliest use of red ochre goes back to 500 ka in Africa (Brooks et al., 2018; 52 Dapschauskas et al., 2022; Rosso, 2022; Watts et al., 2016), 380 ka in Europe (de Lumley et 53 al., 2016; Roebroeks et al., 2012; Rosso, 2022), and 73 ka in Asia (d'Errico, 2021; Langley et 54 al., 2019; Rosso, 2022). The wearing of personal ornaments, many of which are deliberately 55 covered with ochre, is attested since at least 142 ka in North Africa, 80 ka in Southern Africa, 56 and 120 ka in the Near East (Bar-Yosef Mayer et al., 2009, 2020; Bouzouggar et al., 2007; 57 d'Errico et al., 2005; d'Errico, Vanhaeren, et al., 2009; Sehasseh et al., 2021; Shipton et al., 58 2018; Steele et al., 2019; Vanhaeren et al., 2006). Because the understanding by others of the 59 meaning attached to ornaments and body paints presupposes the existence of shared codes, 60 archaeological objects which have fulfilled these functions are often considered reliable 61 evidence for the emergence of symbolic material cultures in our genus and possibly language (Davidson & Noble, 1989; d'Errico et al., 2005; d'Errico, Henshilwood, et al., 2009; d'Errico, 62 63 Vanhaeren, et al., 2009; Marshack, 1976; Vanhaeren et al., 2013), although there is no 64 consensus on the ornament-language relationship (Botha, 2008, 2009). In this regard, wearing 65 body adornments can be considered an archaeological indicator of modern social cognition,

66 defined as the entire set of cognitive processes related to social perception, judgement and 67 decision making that shape human interactions (Dunbar, 2003; Fiske & Taylor, 2017). Although body symbols played a key role in all human societies and appeared very early in 68 69 human history, the cerebral regions mobilized by their perception and interpretation remain 70 unknown. Numerous studies have focused on the brain substrates of the emotional aspects of 71 social cognition (Lewis et al., 2011; Rameson et al., 2012; Spreng & Mar, 2012; Yang et al., 72 2015; Zaki & Ochsner, 2012). The role of the medial prefrontal cortex, the temporoparietal 73 junction, and the temporal poles has been highlighted in their contribution to social cognition 74 (Adolphs, 2009; Frith, 2007). However, the neural network of social status judgment may not 75 completely overlap with that of emotion processing in social cognition. For example, one 76 study showed that lesions to the ventromedial prefrontal region only marginally affected 77 social dominance judgment (Karafin et al., 2004). Neuroimaging studies have confirmed that 78 the perception of social hierarchies relies on the intraparietal sulcus, the dorsolateral and 79 orbital frontal cortex, and the lateral occipital and occipitotemporal cortex (Chiao, 2010; 80 Chiao et al., 2009; Marsh et al., 2009; Zink et al., 2008). However, the identification of social 81 markers does not necessarily imply a ranking. One can, for example, recognize the status of 82 married women or men on the basis of the way they dress, without implying a hierarchical 83 judgment.

84 Body ornaments and facial paintings may convey information on social roles disconnected 85 from an enduring social hierarchy and embodied by individuals only on special occasions, 86 such as carnivals, line crossing ceremonies and the like. Although body paintings and the 87 wearing of beads to express social roles are already attested in the earliest African Homo 88 sapiens and, more rarely, in Neanderthals (Jaubert et al., 2022; Vanhaeren et al., 2019; Zilhão 89 et al., 2010), very little is known about the brain networks involved in processing such 90 information, the possible processes that led to a complexification of these behaviors, as well 91 as their timeline. In the broader field of social cognition, fMRI studies have emphasized the 92 role of the orbitofrontal cortex in social cognition and social behavior (Koski et al., 2017; 93 Marsh et al., 2009, see Forbes & Grafman, 2010 for a review), and, more specifically, in 94 explicit processing (Cunningham & Zelazo, 2007). The orbitofrontal cortex is sensitive to 95 non-verbal social signals (Marsh et al., 2009). Recent results indicate that this area is critical 96 in representing social status (Koski et al., 2017). In the anterior part of the ventral visual 97 pathway, the temporal pole is another structure that plays a privileged role in processing 98 social information. Several studies have documented its involvement in social cognition, and

99 this region is considered part of the social brain network (Balgova et al., 2022; Bechara, 2002;

100 Frith & Frith, 2010; Olson et al., 2007; Ross & Olson, 2010).

101 In the present study, participants were asked to assign social roles or statuses to faces adorned 102 with paintings, beads, or both. At the same time, their brain activity was monitored using 103 functional magnetic resonance imaging (fMRI). Participants were given no guidance on the 104 meaning of the face decorations and had to create their arbitrary social code. The attribution of 105 a social status mobilizes implicit and explicit processes. Implicit processes are rapid, require 106 little cognitive effort, and can occur without awareness (for example perceiving an individual 107 as having a high social status by his body language). Explicit processes are cognitively 108 demanding, slow, and deliberative (inferring for example an army officer's career and 109 achievements from the distinctions he wears on the uniform, or identifying an individual's 110 preferred musical style based on the tattoos, piercings, haircut style and studded clothing he wears). In this study, we focused on explicit processes because the behavior that enabled the 111 112 use of body adornments to express a status or social role is based on explicit mechanisms of 113 social cognition, that is, voluntarily and consciously linking types of ornaments to a social role. 114 To isolate explicit processes, we included, using the same stimuli, a perceptual task (1-back) of 115 adorned faces that does not explicitly require a social role attribution. Subtracting it from the 116 status-assignment task removes the activations linked to the perception of ornate faces and to 117 possible implicit social judgments ("first impressions") that would occur automatically without 118 explicitly requesting any social judgment.

In addition, at rest, the functional connectivity of the brain regions involved was analyzed to provide information on the interaction of the brain areas implicated in the social status attribution task. Our results identify, for the first time, the brain networks engaged in attributing social status from different arrangements of paintings and ornaments on the human face, the way they work in synergy, and provide sound bases on which build an evolutionary scenario for the gradual integration of these brain areas during the evolution of our genus.

125

126 **2. Materials and methods**

127 **2.1. Ethics statements**

128 The 'Nord-Ouest III' local Ethics Committee approved the study on 10/14/2021 (N° IDRCB:

129 2021-A01817-34). All the participants signed informed consent before the MRI acquisition.

131 **2.2. Participants**

Thirty-five healthy adults (age range 18–29 years, mean age 22 ± 2 years (SD), 18 women, four left-handed) with no neurological history were included. One participant was excluded from the analysis because of a brain abnormality discovered during MRI acquisition. Of the 34 participants included, 31 were French and had grown up in France, two were of Malagasy origin and one was Syrian. All participants were fluent in French. The vast majority of participants were students from the Bordeaux university campus in various fields (psychology, medicine, engineering, law, finance). Only four of them had a full-time professional activity.

139

140 **2.3. Experimental design**

141 The functional acquisition was organized in a single session consisting of six runs during 142 which participants had to perform a selection task (first three runs), then a 1-back task (last 143 three runs). After receiving instructions for these tasks, participants completed a short training 144 run outside the MRI. Participants were familiarized with the tasks in the half hour before the 145 MRI session. In particular, it was ensured that all proposed social roles (see below) were 146 known to the participants. Clarifications were made if necessary.

147

148 **2.3.1. Stimuli**

149 The set of stimuli included pictures of faces (up to below the shoulders) of 34 unknown people, 150 who have given their written consent for their face to be published, in the same range of age 151 (17 women, 17 men, around 30 years old) wearing ornaments and adopting a neutral expression. 152 Each face was ornamented with either spherical wooden beads, red paintings, or a combination 153 of both (Figure 1). Ornaments included earrings with one or three beads, necklaces with one or 154 two chains of beads, a diadem consisting of a chain of beads, and a single large spherical bead 155 in the middle of the forehead. Red paintings included one or three vertical lines on the chin; a 156 dot or a horizontal line on the forehead; oblique lines on the cheeks; and a large horizontal band 157 including the eyes. Associations of paintings and beads were designed to make both types of 158 ornamentation gradually more invasive on the face. The choice of the types of adornment and 159 paint applied to the participants' faces responded to two requirements. They should be visually 160 perceived as mutually exclusive and establish no obvious link with existing codes used in 161 known human societies to culturalize the human face. In all, twelve types of facial 162 ornamentation have been designed and implemented.

164

Figure 1. Face ornamentations used in the tasks. Top row: paint only. Middle row: beadworks only. Bottom row:a combination of paint and beadworks.

167 **2.3.2. Selection task.**

- 168 In this task, the stimuli corresponded to a triplet of photos of three different persons of the
- 169 same gender (male or female), one wearing ornaments, one with paintings, and one with both
- 170 (Figure 2). The order of presentation of each stimulus was randomized. Within a triplet, the
- 171 richness of the ornaments was comparable between the pictures to avoid biases in the choice.
- 172 There were three levels of richness between the triplets (Figure 2).
- 173

Figure 2. Examples of triplet of photographs used in the selection task. The three columns correspond to threelevels of richness. For each triplet, participants had to choose the ornaments that best matched the social status

177 (social status condition: e.g., who is the shaman?) or that required an ornament check (ornament check

178 condition: e.g., who has painted eyes). Note that in the study, photographs of real people with adorned face were

179 presented but could not be displayed here because of their identifying nature

180 The selection task was implemented as follows (Figure 3): a short question (one or two words) 181 was displayed during 0.75 s. The question could concern either the displayed persons' social 182 role (Social status condition) or the type of ornamentation they displayed (Ornament check 183 condition). Then, a new triplet of pictures was shown for 4 s. The participant had to choose, by 184 pressing the corresponding button of a response box as soon as they made their decision, the 185 person who best fitted the proposed social status, e.g., "Shaman" (Social status condition) or 186 the person who corresponded to the ornament type proposition, e.g., "Painted cheeks" 187 (Ornament check condition). Each question was asked twice for each gender. The list of 188 questions is displayed in Table 1. During the familiarization phase, the participants have been 189 explicitly instructed to use the ornaments as the basis for their social judgment.

190 The Ornament check condition was designed as a control condition, bearing the same pictures

- 191 as the social status condition. It required attention to the ornaments without implementing
- 192 social cognition processes.

- Between each stimulus, a fixation cross was displayed, and a square appeared after a variable delay ($3.5 \text{ s} \pm 1 \text{ s}$). Participants had to click the "1" button on the response box when the square appeared. This allowed the BOLD signal to return to its baseline level between stimuli while maintaining the attentional level. Each event lasted 12.75 s.
- 197

199 Figure 3. Organization of one event of the selection task.

200 Table 1. Questions in the social status and ornament check conditions. The wording of the questions was

201 gendered according to the stimulus.

Questions	Social status attribution	Ornament (control)
1	Chief?	Painted eyes?
2	Healer?	Double necklace?
3	Warrior?	Diadem?
4	Hunter / Huntress?	Painted cheeks?
5	Shaman?	Painted circle?
6	Musician?	No beads?
7	Storyteller?	No necklace?
8	Married?	No earrings?
9	Mother / Father?	No paint?
10	Scout?	No lines?

Over the three runs, participants saw 80 stimuli, 40 in the social status condition (Figure S1 in supplementary material) and 40 in the ornament check condition. Each run lasted 5 min and 51 s each and included 27 events (except run C, which included one less event) for a total duration of 5 min 38 s). Stimuli were presented in random order within each run. Immediately after the MRI acquisition, the experimenter asked the participant the criteria on which they based their social role attribution in the status condition.

208

209 **2.3.3. 1-back task.**

210 In the 1-back task, participants viewed a succession of ornamented faces (displayed for 1 s

each, with an interstimulus interval of 983 ms). The participants had to report the repetition of

212 two faces (Face condition) or two types of ornamentation (Ornament condition, including

three modalities: paintings, beads, or both simultaneously) by pressing the "1" button on the

response box. This repetition criterion was displayed during 750 ms at the beginning of each

- 215 block. Fifteen stimuli belonging to the same category of ornamentation were presented within
- the same block (i.e., within a block, there were no images belonging to different categories).
- 217 There were three repetitions per block. Each of the three runs lasted 4 min and 15 s and
- included six experimental blocks of 30.6 s interspersed with seven fixation blocks of 10.2 s.
- Each run had four blocks of ornament condition and two blocks of face condition. The
- 220 presentation order of the 1-back runs was randomized.
- 221

222 **2.4. MRI acquisition**

- 223 Neuroimaging data acquisition was performed using a Siemens Prisma 3 Tesla MRI scanner.
- 224 Structural images were acquired using a high-resolution T1-weighted 3D sequence (TR =
- 225 2000 ms, TE = 2.03 ms; flip angle = 8° ; 192 slices and isotropic voxel volume of 1 mm³).
- Functional images were obtained using a whole-brain T2*-weighted echo planar image
- 227 acquisition (T2*-EPI Multiband x6, sequence parameters: TR = 850 ms; TE = 35 ms; flip
- angle = 56° ; 66 axial slices and isotropic voxel size of 2.4 mm³). The first sequence lasted 8
- 229 min and recorded participants' brain activity during resting state (i.e., when they let their
- thoughts flow freely, without having a task to perform or falling asleep). This acquisition was
- 231 used to perform a resting-state functional connectivity analysis. Then, functional images were
- acquired when the participants performed tasks based on stimuli perception. This was done
- 233 during six runs (three for each task: selection and 1-back). The presentation of the experiment
- 234 was programmed in E-prime software 3.0 (Psychology Software Tools, Pittsburgh, PA, USA).
- The stimuli were displayed on a 27" screen. Participants saw the stimuli through the back of

the magnet tunnel via a mirror mounted on the head antenna.

237

238 2.5. Data analysis

239 2.5.1. Behavioral analysis

For the selection task, we evaluated the effects of condition (Social status or Ornament check), participant gender, and stimulus gender on reaction time using a linear mixed-effects model, adjusting for random effects at the participant level. A three-factor interaction term between condition, participant gender, and stimulus gender (and their lower-order terms) was defined as fixed-effect predictors and reaction time as the dependent variable. The significance of fixed effects was assessed through ANOVA components.

246

247 **2.5.2.** Functional neuroimaging analysis

T1-weighted scans were normalized via a specific template (T1-80TVS) corresponding to the MNI space using SPM12. The 192 EPI-BOLD scans were realigned in each run using a rigid transformation to correct the participant's motion during the fMRI sessions. Then, the EPI-BOLD scans were rigidly registered structurally to the T1-weighted scan. All registration matrices were combined to warp the EPI-BOLD functional scans to standard space with trilinear interpolation. Once in standard space, a 5-mm-wavelength Gaussian filter was applied.

255 In the first level analysis, a generalized linear model (GLM, statistical parametric 256 mapping (SPM 12), http://www.fil.ion.ucl.ac.uk/spm/) was performed for each participant to 257 process the task-related fMRI data, with the effects of interest (tasks) modeled by boxcar 258 functions corresponding to events or blocks, convolved with the standard hemodynamic SPM 259 temporal response function. We then calculated the effect of individual contrast maps 260 corresponding to each experimental condition. Note that eight non-interest regressors were 261 included in the GLM analysis: time series for white matter, CSF (average time series of 262 voxels belonging to each tissue class), the six motion parameters, and linear temporal drift.

263 Group analysis (second-level analysis) of fMRI data was conducted using JMP® 264 software, version 15. SAS Institute Inc, Cary, NC, 1989-2019. The first step was to select the 265 brain regions activated in the contrasts of interest, namely [Social status minus Ornament 266 check] in the selection task and [Ornament minus Face] in the 1-back task. We extracted 267 signal values from the [Social status minus Ornament check] contrast from each brain region 268 of each participant (hROI, homotopic region of interest) in the AICHA atlas (Joliot et al., 269 2015). The MNI coordinates of the center of mass of each activated hROIs are given in Table 270 3. The hROIs included in the analysis fulfilled the following criteria: significantly activated in 271 the [Social status minus Ornament check] contrast (univariate t-test p < 0.05 FDR corrected); 272 and significantly activated in the [Social status minus baseline] contrast (univariate t-test, p < 273 0.1 uncorrected) to eliminate deactivated hROIs. 32 regions whose BOLD signal occupancy 274 was less than 80% (susceptibility artifacts) were excluded from the analysis. The hROIs 275 excluded are listed in the supplementary material (Table S1).

This procedure led to 95 hROIs being more activated in the social status condition than in the ornament check condition. The same method was applied to the [Ornament minus Face] contrast and [Ornament minus baseline] contrast leading to 81 activated hROIS for the 1-back task. In addition, we applied a univariate t-test (FDR corrected, p < 0.05) to compare the BOLD values in the 95 hROIs activated in the [Social status minus Ornament check] contrast

- to those 81 hROIs elicited by the [Ornament minus Face] contrast of the 1-back task. This
- allowed for refining the specificity of the regions involved in the social status attribution and
- 283 its explicit components. Thirty-seven hROIs were more activated in the [Social status minus
- 284 Ornament check] contrast than in the [Ornament minus Face] contrast.
- 285

286 2.5.3. Resting-state analysis

The task-based functional analysis was complemented with a resting-state functional
connectivity analysis using the CONN v 20.b toolbox software (Whitfield-Gabrieli & NietoCastanon, 2012), which runs under MATLAB 2021a.

290 Functional imaging data were pre-processed using the CONN default pre-processing 291 pipeline for volume-based analyses. The steps for functional data comprise realignment and 292 unwarping for subject motion estimation and correction (12 parameters). Next, centering to 293 (0,0,0) coordinates and ART-based outlier detection identification was applied. Segmentation 294 and normalization to MNI space were applied next. Structural data were translated to (0,0,0)295 center coordinates, segmented (gray/white/CSF), and normalized to MNI space. In the 296 denoising step, we applied band-pass filtering (0.01–0.1 Hz) after regression of realignment 297 parameters (12), white and gray matter, and CSF confounds. Then, we applied linear 298 detrending and despiking after regression. For the ROI to ROI functional connectivity 299 analyses, we used AICHA atlas (Joliot et al., 2015). We considered the 95 hROIs activated in 300 the [Status minus Ornament] contrast. For group-level results, we calculated ROI-to-ROI 301 connectivity correlations, threshold with a unilateral t-test, and FDR-corrected p < 0.05.

302

303 **3. Results**

304 3.1. Behavioral results

305 Participants responded faster in the ornament check condition (mean response time \pm SD: 1.3s 306 \pm 0.5s) than in the social status condition (mean response time \pm SD: 2s \pm 0.8s): $F_{(1,32)} = 227.8$ 307 p < 0.0001. Participant gender and stimulus gender had no significant effects (either main or 308 interactions). To ensure that participants used ornaments rather than face phenotypes to assign 309 social status, we have focused on some models who have been presented twice for the same 310 role with different categories of ornaments (paints, beads, or both). Model W adorned with 311 beads was chosen at 26% as a Healer but only at 6% when adorned with paintings. This was 312 also the case for model I, chosen at 56% as a Healer when wearing beads but at 3% when 313 wearing paintings only. Model F, adorned with beads, was chosen at 73% as married but only at 6% when wearing paintings (see Figure S1 in supplementary material). These results
demonstrate that ornamentation was more critical than facial characteristics, as identical
phenotypes adorned differently led to different social status attributions.

- 317 Regarding the one-back task, the average of correct hits was $76.2\% \pm 18.8\%$ ($81.1 \pm 16.7\%$,
- 318 79.2 \pm 18.4, %, 68.4 \pm 19.0% for paints, beads, and, beads + paints respectively).
- 319

320 **3.2.** Post-MRI debriefing of the selection task and analysis of status attribution

321 Twenty-two participants reported that they considered ornamentation a more important 322 criterion than phenotype in assigning a social role/status. A few reported they sometimes paid 323 attention to facial features, for example, in cases of indecision or for specific roles such as 324 father/mother. Ten participants reported paying more attention to facial characteristics than to 325 ornamentation. Two participants stated that the most important criterion for them (facial 326 features or ornamentation) varied according to the questions. All participants reported that they 327 never answered randomly, except in rare exceptions. Participants generally reported having an 328 attribution strategy in place that they maintained throughout the experiment. Table 2 shows that 329 across all trials, "Hunter/Huntress" and "Warrior" demonstrate a predominant association with 330 paintings (79.8% and 81.1%, respectively) compared to other adornments, while "Married" and 331 "Musician" exhibited a preference for beads (62.6% and 61.6%, respectively) over other 332 adornments. "Shaman" and "Healer" were preferentially attributed to models adorned with both 333 paintings and bead 60.5% and 61.1%, respectively). Low standard deviations show a relative 334 consistency between identic social status trials. However, there was not necessarily a consensus 335 among participants for the same role. For example, some participants attributed chief status to 336 faces wearing only beads, while others attributed this status to faces bearing paintings and beads 337 (see Table 2).

Table 2 - Average percentage of attribution choices for each social status based on adornment (mean percentages
 of the total responses for the considered status, standard deviation in parentheses).

	Beads	Paintings	Both
Shaman	36.5% (6.6)	3.7% (2.0)	60.5% (6.5)
Hunter / Huntress	3.6% (1.0)	79.8% (7.9)	16.5% (6.9)
Chief	40.9% (2.8)	13.1% (6.3)	46.0% (5.7)
Storyteller	51.9% (6.9)	8.3% (7.5)	39.8% (10.1)
Scout	14.9% (1.8)	52.2% (3.2)	32.9% (5.0)
Warrior	4.3% (2.9)	81.1% (6.5)	16.7% (7.5)
Healer	34.3% (9.4)	4.5% (0.2)	61.1% (9.3)

Married	62.6% (11.2)	7.0% (3.7)	30.3% (7.5)
Musician	61.6% (5.0)	8.2% (1.9)	32.5% (2.8)
Mother / Father	49.5% (22.9)	12.2% (8.8)	38.3% (18.7)

341 **3.3. Neuroimaging results**

342 **3.3.1.** Social status minus Ornament check (event-related paradigm)

343 The [Social status minus Ornament check] contrast revealed a set of 95 cortical and subcortical

344 regions that were more activated when participants assigned social status to adorned faces than

- 345 when they assessed the type of ornamentation (
- 346 Table 3, Figure 4).

347 In the occipital lobe, these regions included the lateral occipital cortex and the fusiform gyrus

348 (including the Fusiform Face Area, FFA). We used the Neurosynth platform (Yarkoni et al.,

349 2011) to synthesize the activations reported in the literature during face perception and ensure

their consistency with our results. We conducted a meta-analysis including 125 studies that

351 contained the term "neutral face" in their abstracts, i.e., pictures of faces adopting a neutral

352 expression. It evidenced the involvement of a right fusiform region (MNI coordinates of the

activation peak: 38, -42, -16). This matched the location of the G_Fusiform-4-R in our

AICHA atlas (MNI coordinates of the center of mass: 44, -46, -18). The FFA occupied a large

355 portion of this functional region of the AICHA atlas.

356 The activations extended to the parahippocampal gyrus on the medial side of the 357 temporal lobe. In the parietal lobe, the intraparietal sulcus was activated bilaterally. In the 358 frontal lobe, activations included the middle and inferior frontal gyri on the lateral side and 359 the anterior part of the supplementary motor area medially. Activations also concerned 360 several paralimbic and limbic cortex regions, such as the anterior insula, the anterior 361 cingulate, the posterior cingulate and adjacent precuneus, the orbitofrontal cortex, the 362 temporal poles, and the hippocampus. The subcortical structures, the head of the caudate 363 nucleus, and the thalamus, especially in its mediodorsal part, were also involved.

We compared the activations of the 24 participants who primarily considered ornaments in their judgment to the 10 subjects who relied more on facial phenotype. No significant difference could be found in any of the 95 regions revealed by the contrast [status attribution-ornaments check]. That means that in the activated regions, the 10 subjects were indiscernible from the 24 participants, probably because, as they reported, they also relied on the ornaments to assign a social role. For those subjects who occasionally paid attention to facial features, this involved 370 very few of the 40 stimuli they had to evaluate. It is, therefore, unlikely that this impacted the

371 observed activations on average.

372

- 373 374
- 375

Figure 4. Activated regions in [Social status minus Ornament check] contrast superimposed on an MRI template. Numbers indicate the z value of the axial slice in MNI space.

376 **3.3.2.** Ornament minus Face (1-back paradigm)

377 The [Ornament minus Face] contrast revealed a set of 81 cortical and subcortical regions,

378 which were more activated when participants checked the repetition of ornamentation than

379 when they looked for the repetition of faces. These regions were mostly located in the lateral

380 and inferior occipital cortices and the fusiform gyrus, extending to the inferior temporal

381 gyrus. Participants also activated the intraparietal sulcus, the anterior insula, and some frontal

382 regions, such as the superior frontal sulcus, inferior frontal sulcus, the supplementary area,

and the middle frontal gyrus.

Among these regions, 37 hROIs were significantly less activated in the [Ornament minus Face] contrast than in the [Social status minus Ornament check] contrast (Table 3).

Table 3. Coordinates, mean and standard deviation of BOLD variations, and p-value of the activated regions inthe [Social status minus Ornament check] contrast.

hROI Social status - Ornament check (* Specific to Social status – Ornament check, i.e., less or not activated in Ornament block – faces)	MNI coordinates of the center of mass	Mean (BOLD)	Standard deviation (BOLD)	p (FDR corrected)
G_Cingulum_Ant-2-L*	-7 34 22	0.12	0.16	0.0005
G_Cingulum_Ant-2-R	7 33 23	0.08	0.16	0.0173
G_Cingulum_Mid-2-L	-4 3 30	0.15	0.16	<.0001
G_Cingulum_Mid-2-R	4 4 30	0.11	0.18	0.0045
S_Cingulate-1-L*	-7 27 30	0.23	0.20	<.0001
S_Cingulate-1-R	7 27 31	0.20	0.19	<.0001
S_Cingulate-2-L	-7 16 41	0.22	0.22	<.0001
S_Cingulate-2-R	8 14 46	0.14	0.20	0.0011
G_Cingulum_Post-1-L	-4 -26 29	0.12	0.22	0.0072
G_Cingulum_Post-2-L	-4 -39 27	0.11	0.23	0.0121
G_Cingulum_Post-3-L	-5 -43 10	0.13	0.24	0.0071
G_Cingulum_Post-3-R	6 -42 10	0.10	0.22	0.0253
G_Frontal_Inf_Orb-1-L*	-42 31 -17	0,21	0.22	<.0001

G_Frontal_Inf_Orb-1-R*	44 33 -14	0.13	0.16	0.0001
G_Frontal_Mid_Orb-2-L*	-41 49 -5	0.23	0.30	0.0005
S_Orbital-1-R	25 41 -15	0.07	0.11	0.0023
S_Orbital-2-L*	-31 34 -13	0.26	0.21	<.0001
S_Orbital-2-R*	29 34 -13	0.18	0.17	<.0001
G_Frontal_Mid-1-R	41 44 13	0.09	0.16	0.0075
G_Frontal_Mid-5-L	-43 20 37	0.21	0.35	0.0038
G_Frontal_Mid-5-R	42 17 41	0.09	0.17	0.0132
S_Inf_Frontal-1-L*	-44 38 12	0.37	0.31	<.0001
S_Inf_Frontal-1-R*	46 40 10	0.24	0.21	<.0001
S_Inf_Frontal-2-L	-43 15 29	0.38	0.34	<.0001
S_Inf_Frontal-2-R*	44 19 28	0.28	0.21	<.0001
G_Frontal_Inf_Tri-1-L*	-49 26 5	0.15	0.22	0.0011
G_Frontal_Inf_Tri-1-R*	50 29 5	0.07	0.17	0.0434
S_Precentral-1-R	50 10 24	0.11	0.24	0.0178
G_Frontal_Sup_Medial-3-L*	-5 35 43	0.19	0.23	0.0002
G_Frontal_Sup_Medial-3-R	6 33 44	0.14	0.19	0.0006
G_Supp_Motor_Area-1-L*	-6 22 46	0.39	0.23	<.0001
G_Supp_Motor_Area-1-R*	6 21 48	0.37	0.26	<.0001
G_Supp_Motor_Area-2-L	-11 18 61	0.08	0.16	0.0134
G_Insula-anterior-1-L*	-20 5 -19	0.12	0.18	0.0013
G_Insula-anterior-1-R*	19 7 -19	0.07	0.17	0.0329
G_Insula-anterior-2-L*	-34 17 -13	0.17	0.24	0.0009
G_Insula-anterior-2-R	35 18 -13	0.10	0.18	0.0054
G_Insula-anterior-3-L*	-34 24 1	0.31	0.22	<.0001
G_Insula-anterior-3-R	37 24 0	0.20	0.15	<.0001
G_Insula-anterior-4-L	-41 15 3	0.08	0.21	0.0457
G_Occipital_Inf-1-R	50 -60 -9	0.22	0.19	<.0001
G_Occipital_Inf-2-L	-45 -71 -7	0.13	0.17	0.0003
G_Occipital_Inf-2-R	47 -65 -7	0.19	0.18	<.0001
G_Occipital_Lat-2-L	-26 -94 -1	0.06	0.15	0.0253
G_Occipital_Lat-3-L	-40 -84 -12	0.10	0.16	0.0041
G_Occipital_Lat-3-R	43 -81 -10	0.11	0.20	0.0078
G_Occipital_Lat-4-L	-31 -89 8	0.08	0.15	0.0078
G_Occipital_Lat-4-R	34 -85 9	0.09	0.15	0.0054
G_Occipital_Lat-5-L	-35 -79 -1	0.07	0.15	0.0132
G_Occipital_Lat-5-R	36-76 2	0.07	0.14	0.0116
G_Fusiform-2-L*	-35 -26 -23	0.09	0.10	<.0001
G_Fusiform-4-L	-43 -50 -17	0.19	0.18	<,0001
G_Fusiform-4-R*	44 -46 -18	0.22	0.15	<.0001
G_Fusitorm-5-L	-31 -50 -12	0.09	0.12	0.0006
G_Fusitorm-5-R	32 - 47 - 41	0.09	0.12	0.0006
G_Fusitorm-6-R	29 -62 -9	0.05	0.12	0.0489
S_Intraoccipital-1-L	-24 -72 32	0.09	0.23	0.0455
S_INTRAOCCIPITAI-1-K	28 - 69 33	0.15	0.21	0.0007
G_Precuneus-2-R*	5 -56 20	0.27	0.29	<.0001
G_Precuneus-7-L*	-6-65-35	0.16	0.31	0.009/
G_Precuneus-7-K*	/ -63 36	0.21	0.29	0.0006
S_INTRAPARIETAI-2-L	-34 -58 45	0.22	0.29	0.0005
S_INTRAPARIETAI-2-R	37 -52 48	0.14	0.20	0.0010
S_INTraparietal-3-L	-27 -60 43	0.16	0.27	0.0051
S_INTRAPARIETAI-3-K	27-6146	0.13	0.19	0.0012
G_Iemporal_Int-4-R	54 -58 -11	0.10	0.19	0.0086
G_Temporal_Pole_Sup-1-L*	-35 11 -24	0.09	0.13	0.0019
G_Temporal_Pole_Sup-1-R*	36 16 -24	0.10	0.16	0.0044
G_Iemporal_Pole_Mid-2-L*	-35 9 -33	0.05	0.10	0.0097
G_Temporal_Pole_Mid-2-R*	35 12 -34	0.04	0.09	0.0121

G_Hippocampus-1-L*	-30 -7 -19	0.06	0.11	0.0115
G_Hippocampus-1-R*	30 -5 -18	0.08	0.11	0.0005
G_Hippocampus-2-L	-25 -32 -3	0.04	0.09	0.0430
G_Hippocampus-2-R	25 -31 -2	0.06	0.09	0.0041
G_ParaHippocampal-1-L*	-16 -4 -18	0.24	0.23	<.0001
G_ParaHippocampal-1-R*	14 -4 -18	0.17	0.20	0.0001
G_ParaHippocampal-2-L*	-28 -27 -19	0.07	0.17	0.0253
G_ParaHippocampal-2-R	29 -25 -19	0.07	0.14	0.0169
G_ParaHippocampal-4-L*	-17 -27 -13	0.12	0.21	0.0071
G_ParaHippocampal-4-R*	17 -27 -10	0.15	0.18	0.0002
N_Caudate-4-R	14 20 8	0.06	0.13	0.0237
N_Caudate-5-L	-13 10 8	0.17	0.21	0.0003
N_Caudate-5-R	12 10 9	0.16	0.22	0.0006
N_Thalamus-1-L	-4 0 1	0.18	0.29	0.0032
N_Thalamus-1-R	401	0.16	0.24	0.0012
N_Thalamus-2-R	9 -7 13	0.09	0.18	0.0120
N_Thalamus-3-L	-3 -7 -1	0.15	0.22	0.0017
N_Thalamus-4-L*	-3 -14 8	0.20	0.27	0.0005
N_Thalamus-4-R	3-14 9	0.17	0.25	0.0017
N_Thalamus-5-L	-12 -19 7	0.09	0.14	0.0026
N_Thalamus-5-R	13 -17 6	0.07	0.14	0.0148
N_Thalamus-6-R	15 -27 13	0.05	0.12	0.0455
N_Thalamus-7-L	-9 -28 11	0.09	0.15	0.0054
N_Thalamus-9-L	-5 -11 -7	0.12	0.13	<.0001
N_Thalamus-9-R	5 -10 -6	0.11	0.16	0.0007

389

390 **3.3.3. Resting-state functional connectivity**

391

392 Figure 5. Resting-state connectivity matrix of 37 hROIs specific to the social status assignment (i.e., positive in

393 the contrast [Social status minus Ornament check] and less or not activated in contrast [Ornament (1-back)

394 minus Faces]. The color scale (green to red) reflects the t-value on each connection averaged across subjects.

395 The resting-state functional connectivity analysis revealed 348 positive connections 396 significant across subjects (p < 0.05 FDR, univariate t-test) between the 37 hROIs. T-values 397 varied from 2 to 25 (Figure 5). These 37 hROIs can be divided into two groups based on their 398 resting-state functional connectivity. A network connected the precuneus and temporal lobe 399 regions, including the hippocampus, the parahippocampal cortex, the temporal pole, and a 400 part of the fusiform gyrus. A second network connected mainly frontal regions, including the 401 inferior frontal sulcus and gyrus, the orbitofrontal cortex, the dorsal anterior cingulate cortex, 402 the supplementary motor area, and the anterior insula.

The G-Fusiform-4-R and the Temporal_Pole_Sup-1-R regions were connected to 22 and 27 hROIS, respectively. The G-Fusiform-4-R and the Temporal_Pole_Sup-1-R regions were strongly connected to their group and many regions of the other group (see Table S2 in the supplementary material for detailed results). The S_Orbital-2 was connected to 26 hROIs.

408 **4. Discussion**

409 This study aimed to identify the brain regions involved in attributing social status from 410 the visual analysis of adorned faces. These regions can be categorized into four groups: 1. 411 occipitotemporal regions of the ventral visual pathway, including lateral occipital regions, 412 fusiform gyrus, parahippocampal gyrus extending to the hippocampus, and the temporal 413 poles; 2. regions belonging to the salience network such as the anterior insula and the anterior 414 cingulate cortex; 3. the intraparietal sulcus; and 4. the ventral and dorsal regions of the lateral 415 prefrontal cortex and the orbitofrontal cortex. The act of adorning one's body has originated at 416 least 140,000 years ago, supported by the discovery of shell beads from this period (Sehasseh 417 et al., 2021) and a contemporary increased use of mineral pigments in Africa (Dapschauskas 418 et al., 2022). Around 45,000 BP, certain Paleolithic societies surpassed the number of 419 adornment objects produced by many ethnographically studied societies. Therefore, we can 420 assume that the networks revealed in the present study were fully functional 45,000 BP and, 421 at least to a degree, also functional in the earliest *Homo sapiens* and contemporary or earlier 422 hominins displaying such behaviors. 423 Some of these regions were also activated in the 1-back task, indicating that they are not

424 specific to an explicit social attribution but may be involved in an implicit social appraisal.

425 This is the case for most visual regions (except Fusiform-4-R and Fusiform-2-L), the

426 intraparietal sulcus, and most of the thalamus and retrosplenial regions. In contrast, activity in

427 the inferior and orbital frontal areas, hippocampal and parahippocampal regions, the temporal

428 poles, and the salience network, including the anterior cingulate and parts of the anterior

429 insula, remained significant when activity in these regions during the 1-back task was

- 430 subtracted.
- 431

432 **4.1. Visual Ventral pathway and medial temporal regions**

433 Lateral and ventral occipital regions were more activated by the social status attribution than 434 by the assessment of decoration type. This suggests that deeper visual processing is required 435 to attribute a social status. Most of these occipitotemporal regions were also activated during 436 the 1-back task and were thus not specifically involved in assigning a social status to adorned 437 faces. However, two hROIs were significantly more activated during social status attribution 438 than in the 1-back task, namely G_Fusiform-2-L and G_Fusiform-4-R. The latter is 439 particularly interesting since it includes the so-called fusiform face area (FFA), which is 440 sensitive to face perception (Kanwisher et al., 1997; Kanwisher & Yovel, 2006; McCarthy et 441 al., 1997) and lateralized in the right hemisphere (Rossion et al., 2012). Thus, although all 442 conditions included face perception and none required specific attention to faces, FFA 443 appeared more solicited by social status assignment. It has been shown that FFA is sensitive 444 to physical characteristics and their possible social correlates(Contreras et al., 2013; Freeman 445 et al., 2010). More recently, a study showed that FFA processes characteristics such as social 446 traits, gender, and high-level visual features of faces (Tsantani et al., 2021) and might thus 447 initiate the social processing of faces. The results of the present study suggest that, in the 448 context of social role attribution, FFA can process non-physiognomic features. This is 449 consistent with the fact that the FFA promotes holistic rather than local processing (Andrews 450 et al., 2010; Kok et al., 2021; Zhang et al., 2012). Ornamented faces may have been perceived 451 as a whole in the social attribution task, while attention was focused on details during the 452 assessment of decoration type and the 1-back task. In other words, attributing social status 453 involves a more complex process relying on a set of components, such as the types of 454 decoration, their association, their location on the face, and the face itself.

In summary, the activation of FFA in our social status assignment task could reflect the implementation of preliminary social categorization processes based on a holistic analysis of ornamented faces, which is further achieved in other regions of the brain, particularly the orbitofrontal cortex.

In the anterior extension of the ventral visual pathway, we found that the hippocampus and parahippocampal gyrus were more activated by the social status attribution than by the ornament type assignment and significantly more activated when compared to the 1-back

462 task, reflecting their specificity to social status attribution. The hippocampus reflects episodic 463 memorization processes strongly involved in social cognition (Laurita & Nathan Spreng, 464 2017; Montagrin et al., 2018). The parahippocampus appears to play, among others, a pivotal 465 role in contextual associative processing (Aminoff et al., 2007; Li et al., 2016), i.e., in binding 466 elements composing stimuli. It provides a unified context for further processing (see 467 (Aminoff et al., 2013) for a review). In the framework of the present study, participants 468 arbitrarily associated face decorations with social status. After the fMRI sessions, they 469 reported that once they had established an ornament/status association strategy, they stuck to 470 it throughout the sessions, with exceptional random responses. Contextual associations were 471 thus an essential aspect of the processes involved in the status assignment task. The activation 472 of the parahippocampal cortex reasonably reflects the implementation of these processes. It 473 has been suggested that the anterior part of the parahippocampus preferentially processes non-474 spatial contextual associations, and the posterior part, comprising the parahippocampal Place 475 Area (PPA), spatial associations (Aminoff et al., 2007; Bar & Aminoff, 2003). In the present 476 study, the activation of the anterior parahippocampus is consistent with the non-spatial nature 477 of the associations.

478 The activation of the medial temporal gyrus might be linked to one of the temporal poles. 479 Although the role of temporal poles is still under discussion, it has been proposed that this 480 brain area is involved in encoding and retrieving social knowledge (Olson et al., 2013). As 481 was the case in this study, assigning social status mobilizes stereotypical social knowledge 482 (e.g., the chief must have the most ornaments) and entails encoding: The participants 483 associated a type of ornamentation with a social role and created an arbitrary social code that 484 they reused throughout the task. Thus, we propose that the parahippocampus and the temporal 485 pole, which are strongly functionally connected, work in synergy to facilitate the association 486 of a type of ornamentation with a specific social status and then to encode and restore this 487 association.

488

489 **4.2. Inferior and orbitofrontal cortex**

490 Assigning a social status involved many frontal regions not solicited during the ornament type 491 attribution condition. However, the specific areas for explicit processes, i.e., activated in the 492 social attribution task compared to the 1-back task, were mainly in the lateral part of the 493 inferior frontal gyrus and the orbitofrontal cortex as defined by Rudebeck and Rich 494 (Rudebeck & Rich, 2018). The resting-state connectivity analysis showed that these regions 495 were highly functionally linked. Previous studies have emphasized the role of the

- 496 orbitofrontal cortex in social cognition in non-human primates and humans. It has been
- 497 argued that this cortical area contains neurons sensitive to representing social categories
- 498 (Barat et al., 2018) and evaluating social information (Azzi et al., 2012) in non-human
- 499 primates. In humans, a deficit in social perception after orbitofrontal cortex lesions (Mah et
- 500 al., 2004), an inability to judge social traits in a decision-making task (Xia et al., 2015), or
- 501 acquired sociopathy have been reported (Blair, 2000).

502 fMRI studies have stressed the role of the orbitofrontal cortex in social cognition and 503 social behavior (see (Forbes & Grafman, 2010) for a review). A recent fMRI study showed 504 that the OFC represented the stereotypic social traits of others and that its pattern of activity 505 was predictive of individual choices, highlighting its critical role in social decision-making 506 (Kobayashi et al., 2022). In these studies, participants had to behave according to the facial 507 expression, attitude, or social category of the individuals presented in the experiment. Our 508 results extend these findings. Unlike previous studies, participants based their decision on 509 symbolic features (the type and arrangement of ornamentations), to which they arbitrarily 510 attributed social meaning. This implies that the role of the orbitofrontal cortex in social 511 decision-making is not restricted to processing stereotypical attitudes or social groups, a 512 capacity shared with non-human primates. Social evaluation based on symbolic external 513 attributes also involves this region in humans.

514 The social status attribution task heavily relies on high-order executive functions such 515 as attentional control, selection, and flexibility. The activation of the pars triangularis of the 516 inferior frontal gyrus extending to the inferior frontal sulcus reflects these aspects (Koechlin 517 & Summerfield, 2007). Although the activation was bilateral, the right and left inferior frontal 518 gyrus probably played a different role in the task. The right inferior frontal gyrus is explicitly 519 associated with high-level social cognition (Hartwigsen et al., 2019). The left inferior frontal 520 gyrus is involved in selecting some aspects or subsets of available information among 521 competing alternatives (Thompson-Schill et al., 1997; J. X. Zhang et al., 2004). This region 522 also plays a role in processing non-linguistic symbolic information (Muayqil et al., 2015; Xu 523 et al., 2009), consistent with the symbolic value attributed by the participants to face 524 adornments.

525 Overall, the prefrontal cortex's involvement in the present study underlines its role in 526 social decision-making. Our results extend their contribution to symbolic social 527 communication, here materialized by face ornamentations.

529 **4.3. Salience network**

530 Social status attribution elicited activation in the anterior insula, the dorsal anterior cingulate 531 cortex (dACC)/pre-SMA, and subcortical structures, such as the thalamus and the caudate 532 nuclei. These regions constitute the so-called salience network, whose key components are the 533 insula anterior and the dACC/pre-SMA (Menon, 2015; Seeley et al., 2007; Zhou et al., 2021). 534 This network is involved in selecting relevant elements of the environment for perceptual 535 decision-making (Chand & Dhamala, 2016; Lamichhane et al., 2016; Uddin, 2015). In our 536 case, participants had to extract salient information from the ornamented faces to associate the 537 proposed social status with one of the three faces presented to them. The salience network 538 was also activated in the 1-back task by the need to detect the repetition of ornamental 539 patterns. However, the greater uncertainty in decision-making during the attribution task can 540 explain why activation of the salience network was more extensive during status attribution 541 than the 1-back task (White et al., 2014). To attribute a social status, participants had to make 542 a forced choice among three possibilities, with several plausible answers and had to compare 543 the different options and arbitrate to choose only one. These aspects of the task have probably 544 triggered the activation of the dACC/pre-SMA, belonging to the salience network. The 545 dACC/pre-SMA has been reported as involved in conflict and performance monitoring 546 (Botvinick et al., 2004; Dosenbach et al., 2006; Neta et al., 2014), and more recently in social 547 categorization domain (Stolier & Freeman, 2017).

548

549 **4.4. Resting-state functional connectivity**

550 Resting-state functional connectivity provides insight into the potential interactions between 551 neural assemblies activated by the social status assignment task. The G_Fusiform-4-R and the 552 G_Temporal_Pole_Sup-1-R were characterized by many connections with other activated 553 regions (Figure 5). These two regions were connected with 22 and 27 hROIs, respectively. 554 The G_Fusiform-4-R included the FFA (see results) and is likely involved in the initial 555 processing phase. The functional relationships between the medial temporal lobe, the fusiform 556 gyrus, and the temporal pole reflected the association of the perceptive, social, mnemonic, 557 and associative aspects of the task. In addition, the G_Temporal_Pole_Sup-1-R was 558 connected with frontal regions and could act as a hub, allowing communication between 559 visual areas and executive frontal regions. The connection between the temporal pole and the 560 salience network enables the exchange of information necessary for evaluating and selecting 561 inputs relevant to social decision-making. The temporal pole and the salience network were 562 related to the inferior frontal gyrus, contributing to the evaluation of subjective confidence

- about a perceptual decision(Sherman et al., 2016). The orbitofrontal cortex was functionally
- 564 connected to the G_Temporal_Pole_Sup-1-R and the G_Fusiform-4-R. These regions, whose
- sesential role in social status evaluation has been discussed above, could constitute the core
- 566 network in the social attribution task (

568 Figure 6). They must have allowed the integration of information leading to the assignment of

569 social status based on the perception of symbolic cues.

- 570
- 571 Figure 6. Schematic resting-state functional connectivity network between regions activated during a social
- 572 status attribution task based on symbolic culturalized faces. Black arrows indicate the reciprocal resting-state
- 573 functional connectivity between brain regions (univariate t-test, p < 0.05, FDR corrected).

574 Notably, none of the regions involved in assigning social status exclusively dealt with social 575 information. Most of these regions are involved in many cognitive functions. The functional

- 576 connection of structures whose processing properties are beneficial for the execution of the
- 577 task allows the social judgment function to emerge. Human connections exceed those of
- animals, including primates, at both the structural and functional levels (Mars et al., 2018;

579 Thiebaut de Schotten & Forkel, 2022; Xu et al., 2020). Thanks to creating functional

580 connections (linking social cognition, memory, and executive functions), humans could use

581 symbolic items and markings to signify social status.

582 The complexity of this neural network raises questions about when it became fully functional

- 583 in our ancestors and whether it resulted from a gradual process of integration and
- 584 complexification or was already fully functional when the first archaeological evidence of
- 585 culturalization of the human face was recorded.

586 The gradual complexification and patchy emergence of face adornment technologies over the 587 last 500,000 years suggest a scenario of increasing but asynchronous integration of brain areas 588 involved in social status recognition based on facial culturalization. This growing integration 589 allowed the decoding of increasingly complex symbolic codes, supported by more demanding 590 technologies for face adornment.

The interplay between cultural and biological mechanisms likely drove this process, with individuals gifted in acquiring, decoding, and creating these symbolic messages having selective advantages that favored the permanent inscription of a more integrated connectivity in the brain (Colagè & d'Errico, 2018, 2023; d'Errico & Colagè, 2018). A progressive cooption of brain regions has also been suggested for the evolution of tool-making (Hecht et al., 2015; Putt et al., 2019; Stout et al., 2015). It would have enabled the development of increasingly complex tools.

598 The period between 140,000 and 70,000 years ago may have represented a key moment in 599 this integration process, as this was when red pigments use became almost ubiquitous at 600 African Middle Stone Age sites and marine shell beads were used for the first time in North 601 Africa, the Near East, and Southern Africa. This diversification of colors, shapes, and 602 technologies indicates a complexification of practices allowing wearers to use their faces to 603 communicate information about their social role using more complex shared symbolic codes. 604 It is reasonable to think that the human brain had largely equipped itself with the necessary 605 connections to process and interpret these stimuli 120,000-70,000 years ago. 606

607 **5. Conclusion**

608 This study delved into the neural mechanisms involved in the social interpretation of facial 609 adornments and found that various brain regions, including the FFA, temporal poles, salience 610 network, and orbitofrontal cortex, were involved in this process. Furthermore, assigning a 611 social status from symbolic cues also activated the medial temporal regions and the inferior 612 frontal gyrus, reflecting the role of episodic memory, contextual association, and executive 613 functions. Reconciling these results with archaeological data suggests a gradual organization 614 of the connectivity of these networks, leading to the possibility of social processing of 615 symbolic information.

616

617 6. Acknowledgments

618 We thank the Ginesis Lab (GIN, Fealinks, Labcom Programme 2016, ANR 16LCV2-0006-

619 01) for their help with data management and processing. We are also indebted to Violaine

620 Verrecchia and Marc Joliot for their help in data analysis. Our thanks also go to Marie

621 Guerlain, Annie Bardon-Lay, and her team members for their help with the face painting.

622 Warm thanks also go to all those who agreed to participate in our experiments.

623

624 7. Authors' contributions

- 625 MS, FdE, SR, EM designed the study
- 626 MS, EM acquired the data

627 MS, EM analyzed the data

- 628 MS, FdE, SR, EM wrote the article
- 629

630 8. Fundings

This work was supported by the CNRS project 80 Prime Neurobeads and a grant from the

- 632 IdEx Bordeaux/CNRS (PEPS 2015). Francesco d'Errico's work is supported by the European
- 633 Research Council through a Synergy Grant for the project Evolution of Cognitive Tools for
- 634 Quantification (QUANTA), No. 951388; the Research Council of Norway through its Centres
- 635 of Excellence funding scheme, SFF Centre for Early Sapiens Behaviour (SapienCE), project
- number 262618, the Talents Program of the Bordeaux University [grant number:
- 637 191022_001] and the Grand Programme de Recherche 'Human Past' of
- 638 the *Initiative d'Excellence* (IdEx) of the Bordeaux University.

639	9. Data Availability
640 641	BOLD values for each participant, hROI, and contrast are available as supplementary material.
642	10.References
643	Adolphs, R. (2009). The Social Brain : Neural Basis of Social Knowledge. Annual Review of
644	Psychology, 60(1), 693-716.
645	https://doi.org/10.1146/annurev.psych.60.110707.163514
646	Aminoff, E., Gronau, N., & Bar, M. (2007). The Parahippocampal Cortex Mediates Spatial and
647	Nonspatial Associations. Cerebral Cortex, 17(7), 1493-1503.
648	https://doi.org/10.1093/cercor/bhl078
649	Aminoff, E., Kveraga, K., & Bar, M. (2013). The role of the parahippocampal cortex in
650	cognition. Trends in Cognitive Sciences, 17(8), 379-390.
651	https://doi.org/10.1016/j.tics.2013.06.009
652	Andrews, T. J., Davies-Thompson, J., Kingstone, A., & Young, A. W. (2010). Internal and
653	External Features of the Face Are Represented Holistically in Face-Selective Regions of
654	Visual Cortex. Journal of Neuroscience, 30(9), 3544-3552.
655	https://doi.org/10.1523/JNEUROSCI.4863-09.2010
656	Azzi, J. C. B., Sirigu, A., & Duhamel, JR. (2012). Modulation of value representation by social
657	context in the primate orbitofrontal cortex. Proceedings of the National Academy of
658	Sciences of the United States of America, 109(6), 2126-2131.
659	https://doi.org/10.1073/pnas.1111715109
660	Balgova, E., Diveica, V., Walbrin, J., & Binney, R. J. (2022). The role of the ventrolateral
661	anterior temporal lobes in social cognition. Human Brain Mapping, 43(15),
662	4589-4608. https://doi.org/10.1002/hbm.25976

- Bar, M., & Aminoff, E. (2003). Cortical analysis of visual context. *Neuron*, *38*(2), 347-358.
- 664 https://doi.org/10.1016/s0896-6273(03)00167-3
- Barat, E., Wirth, S., & Duhamel, J.-R. (2018). Face cells in orbitofrontal cortex represent social
 categories. *Proceedings of the National Academy of Sciences*, *115*(47).
- 667 https://doi.org/10.1073/pnas.1806165115
- Barth, F. (1969). *Ethnic Groups and Boundaries. The Social organization of culture difference*.
 George Allen and Uwin.
- 670 Bar-Yosef Mayer, D. E., Groman-Yaroslavski, I., Bar-Yosef, O., Hershkovitz, I., Kampen-Hasday,
- A., Vandermeersch, B., Zaidner, Y., & Weinstein-Evron, M. (2020). On holes and
- 672 strings : Earliest displays of human adornment in the Middle Palaeolithic. *PLOS ONE*,

673 15(7), e0234924. https://doi.org/10.1371/journal.pone.0234924

- Bar-Yosef Mayer, D. E., Vandermeersch, B., & Bar-Yosef, O. (2009). Shells and ochre in Middle
- 675 Paleolithic Qafzeh Cave, Israel : Indications for modern behavior. *Journal of Human*

676 *Evolution*, 56(3), 307-314. https://doi.org/10.1016/j.jhevol.2008.10.005

- 677 Bechara, A. (2002). The neurology of social cognition. *Brain*, *125*(8), 1673-1675.
- 678 https://doi.org/10.1093/brain/awf169
- 679 Beckwith, C., & Fisher, A. (1999). *African ceremonies* (Concise ed). Harry N. Abrams.
- 680 Blair, R. J. R. (2000). Impaired social response reversal : A case of `acquired sociopathy'. Brain,

681 *123*(6), 1122-1141. https://doi.org/10.1093/brain/123.6.1122

- Botha, R. (2008). Prehistoric shell beads as a window on language evolution. Language &
- 683 *Communication, 28*(3), 197-212. https://doi.org/10.1016/j.langcom.2007.05.002
- Botha, R. (2009). Theoretical underpinnings of inferences about language evolution : The
- 685 syntax used at Blombos Cave. In R. Botha & C. Knight (Éds.), *The cradle of language*
- 686 (Vol. 12, p. 93-111). Oxford University Press.

- Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior
 cingulate cortex : An update. *Trends in Cognitive Sciences*, 8(12), 539-546.
- 689 https://doi.org/10.1016/j.tics.2004.10.003
- 690 Bouzouggar, A., Barton, N., Vanhaeren, M., d'Errico, F., Collcutt, S., Higham, T., Hodge, E.,
- 691 Parfitt, S., Rhodes, E., Schwenninger, J.-L., Stringer, C., Turner, E., Ward, S., Moutmir,
- A., & Stambouli, A. (2007). 82,000-year-old shell beads from North Africa and
- 693 implications for the origins of modern human behavior. *Proceedings of the National*
- 694 *Academy of Sciences, 104*(24), 9964-9969. https://doi.org/10.1073/pnas.0703877104
- Brooks, A. S., Yellen, J. E., Potts, R., Behrensmeyer, A. K., Deino, A. L., Leslie, D. E., Ambrose, S.
- 696 H., Ferguson, J. R., d'Errico, F., Zipkin, A. M., Whittaker, S., Post, J., Veatch, E. G.,
- Foecke, K., & Clark, J. B. (2018). Long-distance stone transport and pigment use in the
 earliest Middle Stone Age. *Science*, *360*(6384), 90-94.
- 699 https://doi.org/10.1126/science.aao2646
- 700 Carey, M. (1991). Beads and Beadwork of West and Central Africa. Shrire.
- 701 Carter, B., & Helmer, M. (2015). Elite Dress and Regional Identity : Chimú-Inka Perforated
- 702 Ornaments from Samanco, Nepeña Valley, Coastal Peru. *BEADS: Journal of the Society*
- 703 *of Bead Researchers, 20, 46-74.*
- 704 Chand, G. B., & Dhamala, M. (2016). The salience network dynamics in perceptual decision-
- 705 making. *NeuroImage*, *134*, 85-93. https://doi.org/10.1016/j.neuroimage.2016.04.018
- 706 Chiao, J. Y. (2010). Neural basis of social status hierarchy across species. *Current Opinion in*
- 707 *Neurobiology*, *20*(6), 803-809. https://doi.org/10.1016/j.conb.2010.08.006
- 708 Chiao, J. Y., Harada, T., Oby, E. R., Li, Z., Parrish, T., & Bridge, D. J. (2009). Neural
- 709 representations of social status hierarchy in human inferior parietal cortex.

- 710 *Neuropsychologia*, *47*(2), 354-363.
- 711 https://doi.org/10.1016/j.neuropsychologia.2008.09.023
- 712 Colagè, I., & d'Errico, F. (2018). Culture : The Driving Force of Human Cognition. *Topics in*
- 713 *Cognitive Science*. https://doi.org/10.1111/tops.12372
- 714 Colagè, I., & d'Errico, F. (2023). The Roots of Creativity : Investing in Cultural Transmission.
- 715 *Acta Philosophica*, *32*(1), 95-116.
- 716 Contreras, J. M., Banaji, M. R., & Mitchell, J. P. (2013). Multivoxel Patterns in Fusiform Face
- 717 Area Differentiate Faces by Sex and Race. *PLoS ONE*, *8*(7), e69684.
- 718 https://doi.org/10.1371/journal.pone.0069684
- 719 Cunningham, W. A., & Zelazo, P. D. (2007). Attitudes and evaluations : A social cognitive
- neuroscience perspective. *Trends in Cognitive Sciences*, *11*(3), 97-104.
- 721 https://doi.org/10.1016/j.tics.2006.12.005
- 722 Dapschauskas, R., Göden, M. B., Sommer, C., & Kandel, A. W. (2022). The Emergence of
- 723 Habitual Ochre Use in Africa and its Significance for The Development of Ritual
- 724 Behavior During The Middle Stone Age. *Journal of World Prehistory*, *35*(3-4), 233-319.
- 725 https://doi.org/10.1007/s10963-022-09170-2
- Davidson, I., & Noble, W. (1989). The Archaeology of Perception : Traces of depiction and
 language. *Current Anthropology*, *30*(2), 125-154.
- de Lumley, H., Audubert, F., Khatib, S., Perrenoud, C., Roussel, B., Saos, T., & Szelewa, A.
- 729 (2016). *Les crayons d'ocre du site acheuléen de Terra Amata.* CNRS Editions.
- 730 d'Errico, F. (2021). L'émergence des comportements symboliques en Afrique et en Asie. In T.
- 731 Aubry, A. T. Santos, & A. Martins (Éds.), *Atas do Côa Symposium : Novos olhares sobre*
- 732 a arte paleolítica : Museu do Côa : 4 a 6 dezembro 2018 (p. 22-51). Associação dos
- 733 Arqueólogos Portugueses ; Fundação Côa Parque.

- d'Errico, F., & Colagè, I. (2018). Cultural Exaptation and Cultural Neural Reuse : A Mechanism
- for the Emergence of Modern Culture and Behavior. *Biological Theory*, 13(4),
- 736 213-227. https://doi.org/10.1007/s13752-018-0306-x
- d'Errico, F., Henshilwood, C., Vanhaeren, M., & van Niekerk, K. (2005). Nassarius kraussianus
- shell beads from Blombos Cave : Evidence for symbolic behaviour in the Middle Stone
- Age. Journal of Human Evolution, 48(1), 3-24.
- 740 https://doi.org/10.1016/j.jhevol.2004.09.002
- d'Errico, F., Henshilwood, M. C., Maureille, G. B., Gambier, D., & Tillier, A. M. (2009). From the
- origin of language to the diversification of languages. *Becoming eloquent: advances in*

the emergence of language, human cognition, and modern cultures.

- d'Errico, F., Vanhaeren, M., Barton, N., Bouzouggar, A., Mienis, H., Richter, D., Hublin, J.-J.,
- 745 McPherron, S. P., & Lozouet, P. (2009). Additional evidence on the use of personal
- 746 ornaments in the Middle Paleolithic of North Africa. *Proceedings of the National*
- 747 *Academy of Sciences, 106*(38), 16051-16056.
- 748 https://doi.org/10.1073/pnas.0903532106
- 749 Dosenbach, N. U. F., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger, K. K., Kang, H. C.,
- 750 Burgund, E. D., Grimes, A. L., Schlaggar, B. L., & Petersen, S. E. (2006). A Core System
- for the Implementation of Task Sets. *Neuron*, *50*(5), 799-812.
- 752 https://doi.org/10.1016/j.neuron.2006.04.031
- Dubin, L. S. (1987). *The history of beads : From 30,000 B.C. to the present*. Thames and
 Hudson.
- Dubin, L. S. (1999). North American Indian Jewelry and Adornment. From Prehistory to the
 Present. Harry N. Abrams Inc.

- 757 Dunbar, R. I. M. (2003). The Social Brain : Mind, Language, and Society in Evolutionary
- 758 Perspective. *Annual Review of Anthropology*, 32(1), 163-181.
- 759 https://doi.org/10.1146/annurev.anthro.32.061002.093158
- 760 Fiske, S. T., & Taylor, S. E. (2017). *Social cognition : From brains to culture* (Third edition).
- 761 SAGE.
- 762 Forbes, C. E., & Grafman, J. (2010). The Role of the Human Prefrontal Cortex in Social
- 763 Cognition and Moral Judgment. *Annual Review of Neuroscience*, 33(1), 299-324.
- 764 https://doi.org/10.1146/annurev-neuro-060909-153230
- 765 Freeman, J. B., Rule, N. O., Adams, R. B., & Ambady, N. (2010). The Neural Basis of
- 766 Categorical Face Perception : Graded Representations of Face Gender in Fusiform and
- 767 Orbitofrontal Cortices. *Cerebral Cortex*, 20(6), 1314-1322.
- 768 https://doi.org/10.1093/cercor/bhp195
- 769 Frith, C. D. (2007). The social brain? *Philosophical Transactions of the Royal Society B:*
- 770 Biological Sciences, 362(1480), 671-678. https://doi.org/10.1098/rstb.2006.2003
- 771 Frith, U., & Frith, C. (2010). The social brain : Allowing humans to boldly go where no other
- species has been. *Philosophical Transactions of the Royal Society B: Biological*
- 773 *Sciences*, *365*(1537), 165-176. https://doi.org/10.1098/rstb.2009.0160
- Hartwigsen, G., Neef, N. E., Camilleri, J. A., Margulies, D. S., & Eickhoff, S. B. (2019).
- 775 Functional Segregation of the Right Inferior Frontal Gyrus : Evidence From
- 776 Coactivation-Based Parcellation. *Cerebral Cortex*, 29(4), 1532-1546.
- 777 https://doi.org/10.1093/cercor/bhy049
- Hatton, A., Collins, B., Schoville, B. J., & Wilkins, J. (2022). Ostrich eggshell beads from Ga-
- 779 Mohana Hill North Rockshelter, southern Kalahari, and the implications for

780	understanding social networks during Marine Isotope Stage 2. PLOS ONE, 17(6),
781	e0268943. https://doi.org/10.1371/journal.pone.0268943
782	Hecht, E. E., Gutman, D. A., Khreisheh, N., Taylor, S. V., Kilner, J., Faisal, A. A., Bradley, B. A.,
783	Chaminade, T., & Stout, D. (2015). Acquisition of Paleolithic toolmaking abilities
784	involves structural remodeling to inferior frontoparietal regions. Brain Structure and
785	<i>Function, 220</i> (4), 2315-2331. https://doi.org/10.1007/s00429-014-0789-6
786	Hodder, I. (1991). The Meanings of Things. Material Culture and Symbolic Expression. Harper
787	Collins.
788	Jaubert, J., Maureille, B., & Peresani, M. (2022). Spiritual and symbolic activities of
789	Neanderthals. In Updating Neanderthals (p. 261-274). Elsevier.
790	https://doi.org/10.1016/B978-0-12-821428-2.00005-6
791	Joliot, M., Jobard, G., Naveau, M., Delcroix, N., Petit, L., Zago, L., Crivello, F., Mellet, E.,
792	Mazoyer, B., & Tzourio-Mazoyer, N. (2015). AICHA : An atlas of intrinsic connectivity of
793	homotopic areas. Journal of Neuroscience Methods, 254, 46-59.
794	https://doi.org/10.1016/j.jneumeth.2015.07.013
795	Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area : A module in
796	human extrastriate cortex specialized for face perception. The Journal of
797	neuroscience, 17(11), 4302-4311.
798	Kanwisher, N., & Yovel, G. (2006). The fusiform face area : A cortical region specialized for the
799	perception of faces. Philosophical Transactions of the Royal Society B: Biological
800	Sciences, 361(1476), 2109-2128. https://doi.org/10.1098/rstb.2006.1934
801	Karafin, M. S., Tranel, D., & Adolphs, R. (2004). Dominance Attributions Following Damage to
802	the Ventromedial Prefrontal Cortex. Journal of Cognitive Neuroscience, 16(10),
803	1796-1804. https://doi.org/10.1162/0898929042947856

- 804 Klumpp, D., & Kratz, C. (1993). Aesthetics, expertise, and ethnicity : Okiek and Maasai
- 805 perspectives on personal ornament. In T. Speart & R. Waller (Éds.), *Being Maasai* :

806 *Ethnicity and Identity in East Africa* (James Currey Publishers, p. 195-221).

- 807 Kobayashi, K., Kable, J. W., Hsu, M., & Jenkins, A. C. (2022). Neural representations of others'
- 808 traits predict social decisions. *Proceedings of the National Academy of Sciences*,
- 809 *119*(22), e2116944119. https://doi.org/10.1073/pnas.2116944119
- 810 Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal
- 811 executive function. *Trends in Cognitive Sciences*, 11(6), 229-235.
- 812 https://doi.org/10.1016/j.tics.2007.04.005
- 813 Kok, E. M., Sorger, B., van Geel, K., Gegenfurtner, A., van Merriënboer, J. J. G., Robben, S. G.
- 814 F., & de Bruin, A. B. H. (2021). Holistic processing only? The role of the right fusiform
- 815 face area in radiological expertise. *PLOS ONE*, *16*(9), e0256849.
- 816 https://doi.org/10.1371/journal.pone.0256849
- 817 Koski, J. E., Collins, J. A., & Olson, I. R. (2017). The neural representation of social status in the
- 818 extended face-processing network. *The European Journal of Neuroscience*, 46(12),
- 819 2795-2806. https://doi.org/10.1111/ejn.13770
- 820 Kuhn, S. L., & Stiner, M. C. (2007). Paleolithic Ornaments : Implications for Cognition,
- 821 Demography and Identity. *Diogenes*, 54(2), 40-48.
- 822 https://doi.org/10.1177/0392192107076870
- 823 Kuper, H. (1973). Costume and Identity. *Comparative Studies in Society and History*, 15(3),
- 824 348-367. https://doi.org/10.1017/S0010417500007143
- Lamichhane, B., Adhikari, B. M., & Dhamala, M. (2016). Salience Network Activity in
- 826 Perceptual Decisions. *Brain Connectivity*, *6*(7), 558-571.
- 827 https://doi.org/10.1089/brain.2015.0392

- Langley, M. C., Clarkson, C., & Ulm, S. (2019). Symbolic expression in Pleistocene Sahul,
- 829 Sunda, and Wallacea. *Quaternary Science Reviews*, 221, 105883.
- 830 https://doi.org/10.1016/j.quascirev.2019.105883
- Laurita, A. C., & Nathan Spreng, R. (2017). The Hippocampus and Social Cognition. In D. E.
- 832 Hannula & M. C. Duff (Éds.), *The Hippocampus from Cells to Systems* (p. 537-558).
- 833 Springer International Publishing. https://doi.org/10.1007/978-3-319-50406-3_17
- Lewis, P. A., Rezaie, R., Brown, R., Roberts, N., & Dunbar, R. I. M. (2011). Ventromedial
- 835 prefrontal volume predicts understanding of others and social network size.
- 836 *NeuroImage*, *57*(4), 1624-1629. https://doi.org/10.1016/j.neuroimage.2011.05.030
- Li, M., Lu, S., & Zhong, N. (2016). The Parahippocampal Cortex Mediates Contextual
- 838 Associative Memory : Evidence from an fMRI Study. *BioMed Research International*,
- 839 2016, 1-11. https://doi.org/10.1155/2016/9860604
- 840 Mah, L., Arnold, M. C., & Grafman, J. (2004). Impairment of Social Perception Associated
- 841 With Lesions of the Prefrontal Cortex. *American Journal of Psychiatry*, 161(7),
- 842 1247-1255. https://doi.org/10.1176/appi.ajp.161.7.1247
- 843 Mars, R. B., Sotiropoulos, S. N., Passingham, R. E., Sallet, J., Verhagen, L., Khrapitchev, A. A.,
- 844 Sibson, N., & Jbabdi, S. (2018). Whole brain comparative anatomy using connectivity
- 845 blueprints. *eLife*, 7, e35237. https://doi.org/10.7554/eLife.35237
- Marsh, A. A., Blair, K. S., Jones, M. M., Soliman, N., & Blair, R. J. R. (2009). Dominance and
- 847 Submission : The Ventrolateral Prefrontal Cortex and Responses to Status Cues.
- 848 Journal of Cognitive Neuroscience, 21(4), 713-724.
- 849 https://doi.org/10.1162/jocn.2009.21052
- 850 Marshack, A. (1976). Some Implications of the Paleolithic Symbolic Evidence For the Origin of
- Language. *Current Anthropology*, *17*(2), 274-282.

- 852 McCarthy, G., Puce, A., Gore, J. C., & Allison, T. (1997). Face-Specific Processing in the Human
- 853 Fusiform Gyrus. *Journal of Cognitive Neuroscience*, *9*(5), 605-610.
- 854 https://doi.org/10.1162/jocn.1997.9.5.605
- 855 Meisch, L. A. (1998). Why Do they Like Red ? Beads, Ethnicity and Gender in Ecuador. In L. D.
- 856 Sciama & J. B. Eicher (Éds.), *Beads and Bead Makers : Gender, Material Culture and*
- 857 *Meaning* (p. 147-171). Oxford International Publishers Ltd.
- 858 https://doi.org/10.2752/9780857854025
- 859 Menon, V. (2015). Salience Network. In *Brain Mapping* (p. 597-611). Elsevier.
- 860 https://doi.org/10.1016/B978-0-12-397025-1.00052-X
- 861 Montagrin, A., Saiote, C., & Schiller, D. (2018). The social hippocampus : M ONTAGRIN ET AL.
- 862 *Hippocampus, 28*(9), 672-679. https://doi.org/10.1002/hipo.22797
- 863 Muayqil, T., Davies-Thompson, J., & Barton, J. J. S. (2015). Representation of visual symbols in
- the visual word processing network. *Neuropsychologia*, 69, 232-241.
- 865 https://doi.org/10.1016/j.neuropsychologia.2015.01.045
- 866 Neta, M., Schlaggar, B. L., & Petersen, S. E. (2014). Separable responses to error, ambiguity,
- and reaction time in cingulo-opercular task control regions. *NeuroImage*, *99*, 59-68.
- 868 https://doi.org/10.1016/j.neuroimage.2014.05.053
- 869 Nițu, E.-C., Cârciumaru, M., Nicolae, A., Cîrstina, O., Lupu, F. I., & Leu, M. (2019). Mobility and
- 870 social identity in the Mid Upper Paleolithic : New personal ornaments from Poiana
- 871 Cireșului (Piatra Neamț, Romania). *PLOS ONE*, *14*(4), e0214932.
- 872 https://doi.org/10.1371/journal.pone.0214932
- 873 Nowell, A., & Cooke, A. (2021). Culturing the Paleolithic body : Archaeological signatures of
- adornment and body modification. In N. Gontier, A. Lock, & C. Sinha (Éds.), *The*

- 875 *Oxford Handbook of Human Symbolic Evolution* (1^{re} éd.). Oxford University Press.
- 876 https://doi.org/10.1093/oxfordhb/9780198813781.013.20
- 877 Ogundiran, A. (2002). Of Small Things Remembered : Beads, Cowries, and Cultural
- 878 Translations of the Atlantic Experience in Yorubaland. *The International Journal of*
- 879 African Historical Studies, 35(2/3), 427-457. https://doi.org/10.2307/3097620
- 880 O'Hear, A. (1998). Lantana Beads : Gender Issues in their Production and Use. In L. D. Sciama
- 881 & J. B. Eicher (Éds.), *Beads and Bead Makers : Gender, Material Culture and Meaning*
- 882 (p. 117-128). Oxford International Publishers Ltd.
- 883 https://doi.org/10.2752/9780857854025
- Olson, I. R., McCoy, D., Klobusicky, E., & Ross, L. A. (2013). Social cognition and the anterior
- temporal lobes : A review and theoretical framework. *Social Cognitive and Affective Neuroscience*, 8(2), 123-133. https://doi.org/10.1093/scan/nss119
- 887 Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The Enigmatic temporal pole : A review of
- findings on social and emotional processing. *Brain*, *130*(7), 1718-1731.
- https://doi.org/10.1093/brain/awm052
- 890 Pitarch Martí, A., Wei, Y., Gao, X., Chen, F., & d'Errico, F. (2017). The earliest evidence of
- 891 coloured ornaments in China : The ochred ostrich eggshell beads from Shuidonggou
- 892 Locality 2. Journal of Anthropological Archaeology, 48, 102-113.
- 893 https://doi.org/10.1016/j.jaa.2017.07.002
- 894 Putt, S., Wijeakumar, S., & Spencer, J. P. (2019). Prefrontal cortex activation supports the
- 895 emergence of early stone age toolmaking skill. *NeuroImage*, *199*, 57-69.
- 896 https://doi.org/10.1016/j.neuroimage.2019.05.056

- 897 Rameson, L. T., Morelli, S. A., & Lieberman, M. D. (2012). The Neural Correlates of Empathy :
- 898 Experience, Automaticity, and Prosocial Behavior. *Journal of Cognitive Neuroscience*,
- 899 24(1), 235-245. https://doi.org/10.1162/jocn_a_00130
- 900 Roebroeks, W., Sier, M. J., Nielsen, T. K., De Loecker, D., Parés, J. M., Arps, C. E. S., & Mücher,
- 901 H. J. (2012). Use of red ochre by early Neandertals. *Proceedings of the National*
- 902 Academy of Sciences, 109(6), 1889-1894. https://doi.org/10.1073/pnas.1112261109
- 903 Ross, L. A., & Olson, I. R. (2010). Social cognition and the anterior temporal lobes.
- 904 *NeuroImage*, *49*(4), 3452-3462. https://doi.org/10.1016/j.neuroimage.2009.11.012
- 905 Rossion, B., Hanseeuw, B., & Dricot, L. (2012). Defining face perception areas in the human
- 906 brain : A large-scale factorial fMRI face localizer analysis. *Brain and Cognition*, 79(2),
- 907 138-157. https://doi.org/10.1016/j.bandc.2012.01.001
- Rosso, D. E. (2022). The first uses of colour : What do we know? *Journal of Anthropological Sciences*, *100*, 45-69. https://doi.org/10.4436/JASS.10005
- 910 Rudebeck, P. H., & Rich, E. L. (2018). Orbitofrontal cortex. *Current Biology*, 28(18),
- 911 R1083-R1088. https://doi.org/10.1016/j.cub.2018.07.018
- Sanders, J. M. (2002). Ethnic Boundaries and Identity in Plural Societies. *Annual Review of Sociology*, *28*, 327-357.
- Sciama, L. D., & Eicher, J. B. (Éds.). (1998). Beads and bead makers : Gender, material culture,
 and meaning. Berg.
- 916 Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., &
- 917 Greicius, M. D. (2007). Dissociable Intrinsic Connectivity Networks for Salience
- 918 Processing and Executive Control. *Journal of Neuroscience*, 27(9), 2349-2356.
- 919 https://doi.org/10.1523/JNEUROSCI.5587-06.2007

920	Sehasseh, E. M., Fernandez, P., Kuhn, S., Stiner, M., Mentzer, S., Colarossi, D., Clark, A., Lanoe,
921	F., Pailes, M., Hoffmann, D., Benson, A., Rhodes, E., Benmansour, M., Laissaoui, A.,
922	Ziani, I., Vidal-Matutano, P., Morales, J., Djellal, Y., Longet, B., Bouzouggar, A.
923	(2021). Early Middle Stone Age personal ornaments from Bizmoune Cave, Essaouira,
924	Morocco. Science Advances, 7(39), eabi8620. https://doi.org/10.1126/sciadv.abi8620
925	Sherman, M. T., Seth, A. K., & Kanai, R. (2016). Predictions Shape Confidence in Right Inferior
926	Frontal Gyrus. The Journal of Neuroscience, 36(40), 10323-10336.
927	https://doi.org/10.1523/JNEUROSCI.1092-16.2016
928	Shipton, C., Roberts, P., Archer, W., Armitage, S. J., Bita, C., Blinkhorn, J., Courtney-Mustaphi,
929	C., Crowther, A., Curtis, R., Errico, F. d', Douka, K., Faulkner, P., Groucutt, H. S., Helm,
930	R., Herries, A. I. R., Jembe, S., Kourampas, N., Lee-Thorp, J., Marchant, R., Boivin, N.
931	(2018). 78,000-year-old record of Middle and Later Stone Age innovation in an East
932	African tropical forest. Nature Communications, 9(1), 1832.
933	https://doi.org/10.1038/s41467-018-04057-3
934	Spreng, R. N., & Mar, R. A. (2012). I remember you : A role for memory in social cognition
935	and the functional neuroanatomy of their interaction. Brain Research, 1428, 43-50.
936	https://doi.org/10.1016/j.brainres.2010.12.024
937	Steele, T. E., Álvarez-Fernández, E., & Hallet-Desguez, E. (2019). Personal ornaments in early
938	prehistory a review of shells as personal ornamentation during the African Middle

- 939 Stone Age. *PaleoAnthropology*, 24, 24-51.
- 940 Stolier, R. M., & Freeman, J. B. (2017). A Neural Mechanism of Social Categorization. *The*
- 941 Journal of Neuroscience, 37(23), 5711-5721.
- 942 https://doi.org/10.1523/JNEUROSCI.3334-16.2017

- 943 Stout, D., Hecht, E., Khreisheh, N., Bradley, B., & Chaminade, T. (2015). Cognitive Demands of
- 944 Lower Paleolithic Toolmaking. *PLOS ONE, 10*(4), e0121804.
- 945 https://doi.org/10.1371/journal.pone.0121804
- 946 Thiebaut de Schotten, M., & Forkel, S. J. (2022). The emergent properties of the connected
- 947 brain. *Science*, *378*(6619), 505-510. https://doi.org/10.1126/science.abq2591
- 948 Thompson-Schill, S. L., D'Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left
- 949 inferior prefrontal cortex in retrieval of semantic knowledge : A reevaluation.
- 950 Proceedings of the National Academy of Sciences, 94(26), 14792-14797.
- 951 https://doi.org/10.1073/pnas.94.26.14792
- 952 Tsantani, M., Kriegeskorte, N., Storrs, K., Williams, A. L., McGettigan, C., & Garrido, L. (2021).
- 953 FFA and OFA Encode Distinct Types of Face Identity Information. *The Journal of*
- 954 *Neuroscience*, *41*(9), 1952-1969. https://doi.org/10.1523/JNEUROSCI.1449-20.2020
- 955 Twala, R. G. (1958). Beads as regulating the social life of the Zulu and Swazi. *African Studies*,
- 956 *10*(3), 113-123.
- Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. *Nature Reviews Neuroscience*, *16*(1), 55-61. https://doi.org/10.1038/nrn3857
- 959 Vanhaeren, M., & d'Errico, F. (2006). Aurignacian ethno-linguistic geography of Europe
- 960 revealed by personal ornaments. *Journal of Archaeological Science*, *33*(8), 1105-1128.
 961 https://doi.org/10.1016/j.jas.2005.11.017
- 962 Vanhaeren, M., d'Errico, F., Stringer, C., James, S. L., Todd, J. A., & Mienis, H. K. (2006). Middle
- 963 Paleolithic Shell Beads in Israel and Algeria. *Science*, *312*(5781), 1785-1788.
- 964 https://doi.org/10.1126/science.1128139
- 965 Vanhaeren, M., d'Errico, F., van Niekerk, K. L., Henshilwood, C. S., & Erasmus, R. M. (2013).
- 966 Thinking strings : Additional evidence for personal ornament use in the Middle Stone

- 967 Age at Blombos Cave, South Africa. *Journal of Human Evolution*, 64(6), 500-517.
- 968 https://doi.org/10.1016/j.jhevol.2013.02.001
- Vanhaeren, M., Julien, M., d'Errico, F., Mourer-Chauviré, C., & Lozouet, P. (2019). Les objets
 de parure. In M. Julien (Éd.), *Le Châtelperronien de la Grotte du Renne (Arcy-Sur-*
- 971 *Cure).* (p. 259-285).
- 972 Watts, I., Chazan, M., & Wilkins, J. (2016). Early Evidence for Brilliant Ritualized Display :
- 973 Specularite Use in the Northern Cape (South Africa) between ~500 and ~300 Ka.
 974 *Current Anthropology*, *57*(3), 287-310. https://doi.org/10.1086/686484
- 975 White, T. P., Engen, N. H., Sørensen, S., Overgaard, M., & Shergill, S. S. (2014). Uncertainty
- 976 and confidence from the triple-network perspective : Voxel-based meta-analyses.

977 Brain and Cognition, 85, 191-200. https://doi.org/10.1016/j.bandc.2013.12.002

- 978 Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). *Conn* : A Functional Connectivity Toolbox
- 979 for Correlated and Anticorrelated Brain Networks. *Brain Connectivity*, *2*(3), 125-141.
- 980 https://doi.org/10.1089/brain.2012.0073
- Wickler, W., & Seibt, U. (1995). Syntax and Semantics in a Zulu Bead Colour Communication
 System. Anthropos, 90(4/6), 391-405. JSTOR.
- Wright, D., Nejman, L., d'Errico, F., Králík, M., Wood, R., Ivanov, M., & Hladilová, Š. (2014). An
 Early Upper Palaeolithic decorated bone tubular rod from Pod Hradem Cave, Czech
- 985 Republic. *Antiquity*, *88*(339), 30-46. https://doi.org/10.1017/S0003598X00050201
- 986 Xia, C., Stolle, D., Gidengil, E., & Fellows, L. K. (2015). Lateral Orbitofrontal Cortex Links Social
- 987 Impressions to Political Choices. *The Journal of Neuroscience*, *35*(22), 8507-8514.
- 988 https://doi.org/10.1523/JNEUROSCI.0526-15.2015
- Xu, J., Gannon, P. J., Emmorey, K., Smith, J. F., & Braun, A. R. (2009). Symbolic gestures and
 spoken language are processed by a common neural system. *Proceedings of the*

- 991 National Academy of Sciences, 106(49), 20664-20669.
- 992 https://doi.org/10.1073/pnas.0909197106
- 993 Xu, T., Nenning, K.-H., Schwartz, E., Hong, S.-J., Vogelstein, J. T., Goulas, A., Fair, D. A.,
- 994 Schroeder, C. E., Margulies, D. S., Smallwood, J., Milham, M. P., & Langs, G. (2020).
- 995 Cross-species functional alignment reveals evolutionary hierarchy within the
- 996 connectome. *NeuroImage*, 223, 117346.
- 997 https://doi.org/10.1016/j.neuroimage.2020.117346
- 998 Yang, D. Y.-J., Rosenblau, G., Keifer, C., & Pelphrey, K. A. (2015). An integrative neural model
- 999 of social perception, action observation, and theory of mind. *Neuroscience* &
- 1000 Biobehavioral Reviews, 51, 263-275.
- 1001 https://doi.org/10.1016/j.neubiorev.2015.01.020
- 1002 Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale
- 1003 automated synthesis of human functional neuroimaging data. *Nature Methods*, 8(8),
- 1004 665-670. https://doi.org/10.1038/nmeth.1635
- 1005 Zaki, J., & Ochsner, K. N. (2012). The neuroscience of empathy : Progress, pitfalls and
- 1006 promise. *Nature Neuroscience*, *15*(5), 675-680. https://doi.org/10.1038/nn.3085
- 1007 Zhang, J., Li, X., Song, Y., & Liu, J. (2012). The Fusiform Face Area Is Engaged in Holistic, Not
- 1008 Parts-Based, Representation of Faces. *PLoS ONE*, 7(7), e40390.
- 1009 https://doi.org/10.1371/journal.pone.0040390
- 1010 Zhang, J. X., Feng, C.-M., Fox, P. T., Gao, J.-H., & Tan, L. H. (2004). Is left inferior frontal gyrus a
- 1011 general mechanism for selection? *NeuroImage*, *23*(2), 596-603.
- 1012 https://doi.org/10.1016/j.neuroimage.2004.06.006

- 1013 Zhou, K., Zhu, L., Hou, G., Chen, X., Chen, B., Yang, C., & Zhu, Y. (2021). The Contribution of
- 1014 Thalamic Nuclei in Salience Processing. Frontiers in Behavioral Neuroscience, 15,
- 1015 634618. https://doi.org/10.3389/fnbeh.2021.634618
- 1016 Zilhão, J., Angelucci, D. E., Badal-García, E., d'Errico, F., Daniel, F., Dayet, L., Douka, K.,
- 1017 Higham, T. F. G., Martínez-Sánchez, M. J., Montes-Bernárdez, R., Murcia-Mascarós, S.,
- 1018 Pérez-Sirvent, C., Roldán-García, C., Vanhaeren, M., Villaverde, V., Wood, R., & Zapata,
- 1019 J. (2010). Symbolic use of marine shells and mineral pigments by Iberian Neandertals.
- 1020 Proceedings of the National Academy of Sciences, 107(3), 1023-1028.
- 1021 https://doi.org/10.1073/pnas.0914088107
- 1022 Zink, C. F., Tong, Y., Chen, Q., Bassett, D. S., Stein, J. L., & Meyer-Lindenberg, A. (2008). Know
- 1023 Your Place : Neural Processing of Social Hierarchy in Humans. *Neuron*, *58*(2), 273-283.
- 1024 https://doi.org/10.1016/j.neuron.2008.01.025
- 1025