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Fast Prediction for Criminal Suspects through Neighbor Mutual Information-Based Latent Network

One of the interesting characteristics of crime data is that criminal cases are often interrelated. Criminal acts may be similar, and similar incidents may occur consecutively by the same ofender or by the same criminal group. Among many machine learning algorithms, network-based approaches are well-suited to refect these associative characteristics. Applying machine learning to criminal networks composed of cases and their associates can predict potential suspects. Tis narrows the scope of an investigation, saving time and cost. However, inference from criminal networks is not straightforward as it requires being able to process complex information entangled with case-to-case, person-to-person, and case-to-person connections. Besides, being useful at a crime scene requires urgency. However, predictions from network-based machine learning algorithms are generally slow when the data is large and complex in structure. Tese limitations are an immediate barrier to any practical use of the criminal network geared by machine learning. In this study, we propose a criminal network-based suspect prediction framework. Te network we designed has a unique structure, such as a sandwich panel, in which one side is a network of crime cases and the other side is a network of people such as victims, criminals, and witnesses. Te two networks are connected by relationships between the case and the persons involved in the case. Te proposed method is then further developed into a fast inference algorithm for large-scale criminal networks. Experiments on benchmark data showed that the fast inference algorithm signifcantly reduced execution time while still being competitive in performance comparisons of the original algorithm and other existing approaches. Based on actual crime data provided by the Korean National Police, several examples of how the proposed method is applied are shown.

Introduction

As the number of criminal cases continues to rise, there has been a notable increase in the utilization of machine learning (ML) for criminal investigation support. Various areas, including crime pattern analysis [START_REF] Ullah | An intelligent system for complex violence pattern analysis and detection[END_REF][START_REF] Sardana | Supervised and unsupervised machine learning methodologies for crime pattern analysis[END_REF][START_REF] Yan | Research on prediction of multi-class theft crimes by an optimized decomposition and fusion method based on XGBoost[END_REF], fraud detection, trafc violation monitoring, sexual assault investigations, and cybercrime analysis [START_REF] Prabakaran | Survey of analysis of crime detection techniques using data mining and machine learning[END_REF][START_REF] Mcclendon | Using machine learning algorithms to analyze crime data[END_REF][START_REF] Vijayarani | A comprehensive analysis of crime analysis using data mining techniques[END_REF], have seen the application of ML techniques. While challenges related to data confdentiality still exist, the potential of machine learning in aiding case investigations is widely recognized. Te valuable insights derived from accumulated criminal cases play a crucial role in providing clues and assisting law enforcement agencies in their investigative eforts.

In the meantime, one of the characteristics of crime data is that criminal cases are related. Criminal behaviors may be similar, and similar incidents may occur consecutively by the same ofender or by the same criminal group. To study crime cases, social network approaches have emerged that refect the associations between people, and these network-based (or graph-based) methods are expected to become one of the standard tools in criminology research [START_REF] Sparrow | Te application of network analysis to criminal intelligence: an assessment of the prospects[END_REF][START_REF] Bright | Using social network analysis to study crime: navigating the challenges of criminal justice records[END_REF][START_REF] Faust | Social networks and crime: pitfalls and promises for advancing the feld[END_REF]. Tere are early works applied to criminal investigations using networkbased ML algorithms. Weber et al. [START_REF] Weber | Scalable graph learning for anti-money laundering: a frst look[END_REF] applied a graph convolutional network algorithm to fnancial data for antimoney laundering forensic analysis. Te task was to predict the suspiciousness of a given target, and Das et al. [START_REF] Das | A graph based clustering approach for relation extraction from crime data[END_REF] used graph-based clustering to extract relational information from crime data of India. Te named entities were extracted from the text corpus of crimes and converted into vectors using the word2vec algorithm [START_REF] Faust | Social networks and crime: pitfalls and promises for advancing the feld[END_REF]. Te network was then constructed by measuring the similarity between these vectors. Clusters found in the network represent incidents or ofenders with similar patterns. Meanwhile, social networks of online auction users are used for fraud detection. By labeling known scammers and legitimate users, a label propagation algorithm is used to predict potential scammers [START_REF] Bangcharoensap | Two step graph-based semi-supervised learning for online auction fraud detection[END_REF]. Also, in [START_REF] Alvari | Semi-supervised learning for detecting human trafcking[END_REF], an online advertising network was constructed and analyzed using Laplacian SVM to detect human trafcking advertisements. Khan et al. [START_REF] Khan | Predicting and preventing crime: a crime prediction model using san francisco crime data by classifcation techniques[END_REF] proposed a crime prediction model by comparing three known algorithms, Naïve Bayes, random forest, and gradient boosting decision tree, and classifed the top ten crimes from the San Francisco crime data. A combined framework of graph representation learning and machine learning methods is introduced to predict the amount of money exchanged among criminal agents and to recover the missing criminal partnerships [START_REF] Lopes | Machine learning partners in criminal networks[END_REF]. Meanwhile, one of the important parts in criminal network analysis is the link prediction problem. In many cases, there is a possibility of acquiring missing or incomplete information by the crime investigation, and one might want to recover missing links or connections among individuals or resources in the information. In that sense, Berlusconi et al. [START_REF] Berlusconi | Link prediction in criminal networks: a tool for criminal intelligence analysis[END_REF] proposed a method to identify missing links in a criminal network by classifying links based on the topological analysis and applied it to the Italian criminal case data against a mafa group. Also, to make the link prediction robust to varying relations in a criminal network, Calderoni et al. [START_REF] Calderoni | Robust link prediction in criminal networks: a case study of the Sicilian Mafa[END_REF] applied various link prediction algorithms and observed the algorithm that leverages the full graph topology.

Of the many network-based ML algorithms, the graphbased semisupervised learning (GSSL) algorithm is one of the most popular because it is easy to use, can handle situations where data have few labels, and its inference is intuitive along the network structure [START_REF] Zhou | Learning with local and global consistency[END_REF][START_REF] Zhou | A regularization framework for learning from graph data[END_REF][START_REF] Hofmann | Consistency of semi-supervised learning algorithms on graphs: probit and one-hot methods[END_REF][START_REF] Belkin | Manifold regularization: a geometric framework for learning from labeled and unlabeled examples[END_REF][START_REF] Xu | Discriminative semi-supervised feature selection via manifold regularization[END_REF][START_REF] Zhou | Learning from labeled and unlabeled data on a directed graph[END_REF][START_REF] Zhu | Semi-supervised learning using Gaussian felds and harmonic functions[END_REF]. Terefore, the scope of application is wide where relational information is important, such as fnding key genes using disease and gene networks [START_REF] Nguyen | Detecting disease genes based on semi-supervised learning and protein-protein interaction networks[END_REF], predicting protein functions using multiple biological networks [START_REF] Shin | Protein functional class prediction with a combined graph[END_REF], and classifying historical fgures to political parties using many relationships such as blood ties, academic ties, and geographic proximity [START_REF] Lee | Historical inference based on semi-supervised learning[END_REF][START_REF] Kim | Inference on historical factions based on multi-layered network of historical fgures[END_REF]. In the domain of social networks, GSSL is used to create relevant links to the concept referred in Wikipedia for all tweet mentions [START_REF] Huang | Collective tweet wikifcation based on semi-supervised graph regularization[END_REF], and in other applications, it is used to detect fake users from a large volume of Twitter networks [START_REF] Balaanand | An enhanced graphbased semi-supervised learning algorithm to detect fake users on Twitter[END_REF]. In the computer vision domain, GSSL is employed for hyperspectral image classifcation based on image networks [START_REF] Shao | Spatial and class structure regularized sparse representation graph for semisupervised hyperspectral image classifcation[END_REF], and in the natural language processing domain, part-of-speech tagging was performed by applying GSSL on a random feld network [START_REF] Subramanya | Efcient graphbased semi-supervised learning of structured tagging models[END_REF].

In this study, we propose a framework for predicting suspect candidates by applying GSSL to criminal networks. Te network is designed to be layered, like a sandwich panel, with a network of crime cases on one side and a network of people, such as victims, ofenders, and witnesses, on the other side. Nodes or entities in each network are connected through similarities. It is also connected to nodes belonging to the other network refecting the relationships between the case and the person who is involved in the case. Meanwhile, applying GSSL to the crime scene requires agility to achieve immediate results. However, when the data size is large, the time complexity of network-based algorithms increases exponentially according to the size of the network, so the inference speed by GSSL is inevitably slowed down. Given that crime scenes always demand a sense of urgency, the slow inference is fatal indeed to solving cases. Terefore, we propose a fast GSSL algorithm for large-scale criminal networks to mitigate the limitation. Te idea is to insert a latent network of cluster centroids and link cases or persons to the corresponding centroids. Exhaustive searches are avoided by inserting a network between the network of cases and the network of persons. Te scope of the search is reduced to only a small set of nodes (cases or people) belonging to the same cluster in the latent network. On the other hand, high-dimensional data are newly represented as low-dimensional vectors by using the clusters in the latent network. Te proposed method is called neighbor mutual information semisupervised learning (MISSL) because it uses the mutual information between the clusters and the neighbors of the nodes. MISSL is robust to nonspherical clusters of various sizes and shapes. Te number of clusters does not increase linearly with the number of cases or people, which is advantageous in terms of memory efciency, especially for networks that require frequent updates and are constantly growing.

Te remaining sections of the paper are organized as follows. Section 2 describes the method of building the criminal network and explains the prediction procedure using GSSL. Section 3 describes how to insert the latent network and details the fast prediction algorithm, MISSL. Section 4 demonstrates the comparative experiments on benchmarking datasets, and Section 5 presents a practical application of criminal network analysis. Finally, conclusions are drawn in Section 6.

Criminal Network and Suspect Scoring

2.1. Network Construction. Criminal acts often exhibit similarities, and it is not uncommon for similar incidents to occur consecutively, either by the same ofender or by a particular criminal group. In addition, in some cases, the patterns of crimes may bear resemblance, even if the offenders involved are diferent, resembling a copycat scenario seen in serial murder cases. Considering these factors, a network serves as an efective tool for illustrating connections between crimes and people. Te criminal network we have developed captures associations between cases, individuals, and interactions between cases and individuals. Tis network follows a two-layered structure, with one layer representing the network of crime cases and the other layer representing the network of people. Tese two layers are interconnected through relationships that link specifc cases with the corresponding individuals involved.

Let the criminal network be denoted as G � (G p × G c ) where G p stands for the people network and G c stands for the case network. Each network is represented as

G � (V, W) where V � x i 􏼈 􏼉 n i�1 , x i ∈ R d is a set of nodes, and W � w ij 􏽮 􏽯 n i,j�1
is a set of weighted edges. Te weight w ij is determined by the similarity between nodes x i and x j . Generally, the Gaussian kernels are widely used for similarity calculation and are represented as follows:

w ij � exp - x i -x j � � � � � � � � � � 2 2σ 2 ⎛ ⎜ ⎜ ⎝ ⎞ ⎟ ⎟ ⎠ , ( 1 
)
where σ is a bandwidth parameter. To calculate the similarity w p ij in the people network G p , the demographic information, such as age, gender, address, occupation, and criminal information, such as the history of criminal records, are considered as input features. For the w c ij of the case network G c , crime reports including the location of an incident are used to measure the similarity between crime cases. In particular, to calculate the similarity between text-type crime reports, each report was converted into a term vector through term frequency-inverse document frequency (TF-IDF) [START_REF] Sanderson | prabhakar raghavan, hinrich schütze, introduction to information retrieval[END_REF] (more details are explained in Section 3). Te similarity between a person and a case is denoted as w pc ij where x i ∈ V p and x j ∈ V c . If a person is involved in a certain criminal case, then the person is connected to the case. Unlike other similarity weights in the network, the edge weight w pc ij is set to "1" (connected) if the person is involved in the case as a suspect, a victim, or a witness and "0" (disconnected) if the person is not involved in the case. Te left side of Figure 1 shows the schematic picture of the criminal network.

Crime Data.

Te crime data from January 2000 to December 2019 are collected from the Korea Information System of Criminal Justice Services (KICS) with the help of the Police Science Institute, Asan, Korea [START_REF] Kics | Korea information system of criminal justice Services (KICS)[END_REF]. Te types of crimes include a battery, assault, drug, theft, trafc violation, disorderly conduct, and fnancial crime. Te data can be categorized into people data and crime case data. Te data of people contain personal information about the suspects, victims, and witnesses. In addition, the information of past criminal history and possession of frearms appears if they exist. Te crime case data contains the date, location, type of crime, and the case summary report written by the ofcer in charge. Usually, a suspect, a victim, and a witness are related to a single case. Some cases have multiple victims or witnesses and also there are cases where a suspect from one case appears in another.

Among the crime case data variables, the summary report is unstructured data in text format. Since most of the information about the incident is included in this report, preprocessing of the text is vital. In order to process text data, nouns and verbs were extracted using the Korean morphology analyzer KoNLPy [START_REF] Park | KoNLPy: Korean natural language processing in Python[END_REF]. It is known as one of the best analyzers among open-source Korean morphology analyzers. Extracted words from the reports are converted into vectors through TF-IDF [START_REF] Sanderson | prabhakar raghavan, hinrich schütze, introduction to information retrieval[END_REF]. By using TF-IDF, the infuence of unnecessarily repeated words can be reduced to some extent, and important information can be highlighted. Figure 1 shows an example of a part of the case report, and more details are described in Table 1.

We built a criminal network with a network of 43,603 people and 20,500 cases. Both networks are sparsely connected, that is, the network densities are 2.49% and 2.90%, respectively. To overcome spare connections, the aforementioned link prediction algorithms can be used to infer missing links among suspects, victims, or witnesses to reinforce the criminal network [START_REF] Berlusconi | Link prediction in criminal networks: a tool for criminal intelligence analysis[END_REF][START_REF] Calderoni | Robust link prediction in criminal networks: a case study of the Sicilian Mafa[END_REF].

Suspect Scoring from the Criminal Network.

Te primary objective of a criminal network is to predict potential suspect candidates when a new crime case emerges, that is, identifying individuals who are likely to be involved. Suspect scores are calculated for each node in the network of people, and those with the highest scores are recommended as potential candidates. However, in the immediate aftermath of a criminal case, it is often the case where only a few individuals, such as the victim or a small number of people are directly involved, have the knowledge of the incident. Consequently, the available labeled data for training the predictive model is extremely limited, resulting in a sparse dataset. Terefore, GSSL [START_REF] Zhou | Learning with local and global consistency[END_REF] was adopted since it can learn even with just one label and further developed to ft the hierarchical structure of the criminal network.

Given a weight matrix

W � w ij 􏽮 􏽯 n i,j�1 of a plain (not layered) network G, the Laplacian is defned as L � D -W where diagonal matrix D � diag(d i ) and d i � 􏽐 n j�1 w ij .
Ten, simple GSSL works by optimizing the objective function are defned as

min f (f -y) T (f -y) + μf T Lf. (2) 
Equation ( 2) minimizes the loss between predicted labels f � (f 1 , . . . , f l , f l+1 , . . . , f l+u ) T and node labels y � (y 1 , . . . , y l , 0, . . . , 0) T , while smoothing the neighbor nodes' labels to be similar, i.e., GSSL propagates the node labels to unlabeled nodes through weighted edges in the network. Te solution of (2) can be obtained as

f � (I + μL) -1 y, ( 3 
)
where the parameter μ ≥ 0 controls the tradeof between loss and smoothness. Tis learning framework for a plain network is straightforward to extend to a layered network. Suppose the layered network has a total of N � n p + n c nodes and a weight matrix of W consisting of W p , W c , and W pc as shown on the right side of Figure 1, then by simply substituting the Laplacian of (2) for the plain network to that of the layered network, the solution is obtained by (3) for the layered network. If there are many layers, i.e., more than two layers are structured hierarchically, then calculating (3) is computationally highly demanding because the weight matrix is huge. In this case, approximation methods such as the Woodbury formula or the Nystrom method can be used to speed up the algorithm [START_REF] Kim | Semi-supervised learning for hierarchically structured networks[END_REF]. Te algorithm is applied to predict the suspect candidates from a small set of criminal networks [START_REF] Jhee | Fast prediction for suspect candidates from criminal networks[END_REF]. Now if case i is known, we can calculate the suspect scores. By setting the label of the i th case node as y � (0, . . . , 0, y i � 1, 0, . . . , 0) T , the label infuence propagates to both the case network and the people network, eventually computing (3). People with high f scores are regarded as the suspect candidates. Te process of suspect scoring is shown in Figure 2. First, when a new case marked in red in Figure 2(a) comes in, it is connected to the most similar existing cases. Assigning the label "1" to the new case (zeros to the remaining nodes) propagates the label to similar cases in the vicinity, and it spreads to people involved in these similar cases through the blue edge that bridges the case with people in the upper layer (Figure 2(b)). Finally, people are ranked in descending order of score (Figure 2(c)). Te questionable suspects appear as those with the highest scores (circled in red).

Fast Criminal Network-Based Suspect Prediction

Scoring suspect candidates using GSSL works well if the network is reasonably sized. However, it slows down as the number of crimes and the number of people increases, making it more likely to be lethal at a crime scene where urgent predictions are needed to solve the case. Te slowdown is mainly attributed to memory and time-consuming computations when retrieving similar cases. When a new case comes in, an exhaustive search of existing cases is conducted to fnd the most similar case. To make matters worse, every case is a high-dimensional text vector extracted from criminal case reports. For reference, the number of cases is over 20,000, the number of related people is over 100,000, and the dimensionality of a text vector is over 2,000. Ten, the search is narrowed down to only a small set of case nodes that belong to the same cluster to which the new case belongs by referencing the latent network. Te process is depicted in Figure 3(a). Terefore, the role of the latent network is important. In other words, clustering results matter. However, real data are not uniformly distributed or spherically shaped such as a normal distribution, as most well-known clustering techniques assume. Figure 3(b) illustrates clusters with diferent shapes and varying densities.

As a way to overcome this limitation, we suggest measuring the relative location of a data point by looking around its neighbors and their cluster memberships. Tat is, if the cluster memberships of its neighbors are homogeneous (belong to the same cluster), then the data point is likely to be at the core of the cluster. Conversely, if the cluster memberships of its neighbors are heterogeneous (some belong to one cluster and others belong to another cluster), then the data point is likely to be located on the boundaries of clusters. Figure 3(b) exemplifes the estimation of the relative location of data points. For x 1 , the neighbors are homogeneous in terms of cluster membership, so it is estimated to be located close to the core of cluster 1, whereas x 2 or x 3 is heterogeneous in cluster membership of its neighbors, so they are estimated to be near the cluster boundaries. Tis concept allows the cluster regions to be well-defned even when the data distribution is not spherical and the densities change.

Latent Dimension via Neighbor Mutual Information.

Te clusters are reused to reduce a higher dimension to a lower dimension. Hereafter, the resulting dimension is denoted as a latent dimension. Te size of the latent dimension is determined by the number of clusters, and the value of each dimension is determined by the degree to which the data point belongs to each cluster. Terefore, d-dimensional vectors are reduced to m-dimensional vectors that are much smaller than the original dimension (d ≫ m), and the latent values are measured by neighbor mutual information (NMI), which has been proposed here.

Te NMI of a data point (node) is the amount of mutual information between the clusters and the neighbors of the data point. Generally, for a pair of discrete random variables X and Y, mutual information is defned as 􏽐 x∈X 􏽐 y∈Y p(x, y)logp(x, y)/p(x)p(y), where p(x, y) is the joint probability [START_REF] Kraskov | Estimating mutual information[END_REF][START_REF] Bachman | Learning representations by maximizing mutual information across views[END_REF]. If p(x, y) � p(x)p(y), then the logarithm becomes zero and thus mutual information becomes zero, which means X and Y are independent. Analogously, the NMI of node x i is defned between the cluster C m ∈ C 1 , . . . , C M 􏼈 􏼉 and the set of its neighbors Ne(x i ) as 

NMI x i , C m 􏼁 � Ne x i 􏼁 ∩ C m 􏼌 􏼌
| � N), then NMI(x i , C m ) � N • |Ne(x i )|/|Ne(x i )| • |C m | � 1,
whereas when none of the neighbor nodes belong to the cluster, then, NMI(x i , C m ) � 0. Finally, z ij represents the normalized version of NMI(x i , C m ), which satisfes the nonnegativity and sum to one constraint. Tere are tradeofs between the number of clusters and the latent dimension. If the number of clusters increases, the number of centroids in the latent network increases, and it leads to a reduction in the scope of local search because the data are split into more clusters and thus fewer data in each cluster. However, the latent dimension increases, that is, increasing the number of clusters afects both increasing and decreasing computation time and vice versa. Terefore, it is necessary to adjust the number of clusters according to the situation at hand, so as to fgure out whether search coverage or dimensionality reduction is more important.

z im � NMI x i , C m 􏼁 􏽐 m NMI x i , C m 􏼁 . ( 5 
)

Scoring via the Latent Network. Te latent network makes the computation of node scoring for the case network much lighter. Given a weight matrix 􏽢

W � 􏽢 w ij 􏽮 􏽯 M i,j�1 between M centroids, a score vector 􏽢 f � ( 􏽢 f 1 , . . . , 􏽢 f M )
T can be calculated similarly to [START_REF] Yan | Research on prediction of multi-class theft crimes by an optimized decomposition and fusion method based on XGBoost[END_REF]. It is now straightforward to derive a score vector f i � z T i 􏽢 f, which is the sum of the centroid scores 􏽢 f weighted by the latent vector z i . Terefore, the scoring problems (2) and (3) turn into fnding the optimal centroid scores on the latent network. Te objective function is represented as follows:

min 􏽢 f (Z 􏽢 f -y) T (Z 􏽢 f -y) + μ 􏽢 f T 􏽢 L 􏽢 f, ( 6 
)
where 􏽢 L � Z T LZ ∈ R M×M , i.e., the graph Laplacian of the latent network. Te only diference from ( 2) is that the loss is computed using the weighted sum of centroid scores and the smoothness is optimized on the latent network. It is thus trivial to derive the solution to [START_REF] Vijayarani | A comprehensive analysis of crime analysis using data mining techniques[END_REF].

􏽢 f � Z T Z + μ 􏽢 L 􏼐 􏼑 -1 Z T y. ( 7 
)
Finally, the score vector f is predicted using the centroid scores 􏽢 f and the latent representation, Z, that is,

f � Z 􏽢 f 1 T Z 􏽢 f , ( 8 
)
where 1 T Z 􏽢 f is the normalization. From now on, the proposed method is named as MISSL, that is, the abbreviation of neighborhood information-based semisupervised learning. Constructing the latent network takes an extra O(NM 2 ), but since M is small, it is not a huge burden. However, once the latent network is constructed, it provides signifcant advantages for computing the inverse matrix of the solution. For the latent network in [START_REF] Sparrow | Te application of network analysis to criminal intelligence: an assessment of the prospects[END_REF], it has O(M 3 ) complexity, whereas the original network in (3) has O(N 3 ) complexity (N ≫ M). Also, MISSL was originally designed to work on undirected networks. However, it can be extended to directed networks by converting asymmetric matrices to the symmetric graph Laplacian [START_REF] Zhou | Semi-supervised learning on directed graphs[END_REF].

Application to Criminal Network.

Applying MISSL to criminal networks is simple. Conceptually, a latent network of centroids lies between the people network and the case network, connecting the two networks. Edges from a centroid node to case nodes are connected via the latent vector, as explained in the previous section. When a new case comes in, MISSL fnds the centroid of the nearest cluster C m , and converts node x new into a new latent vector using only the representation matrix for that cluster. More precisely, we frst calculate the similarity between centroids and the node x 1 is estimated to be near the core of cluster 1 because all three of its neighbors belong to cluster 1 (homogeneous in terms of cluster membership), whereas x 2 or x 3 is estimated to be near the boundaries of clusters because the neighbors difer in cluster membership (heterogeneous). (c) Te cluster memberships of x 1 , x 2, and x 3 , NMI calculation result, and their latent vector Z.

x 1 x 2 x 3 C 1 C 2 C 3 |Ne (x i )| 3 2 1 0 1 1 0 0 1 x 1 x 2 x 3 C 1 C 2 C 3 (c)
x new to fnd the nearest cluster. Within the cluster C m , mixing weight ω is optimized to transform x new to z new and the latent vector Z is updated. Ten, we applied MISSL for the new case using the updated latent vector. Conversion from x new to z new is performed by fnding a mixing weight ω ∈ R M×d which is obtained by solving the following problem:

min ω Z m ω -X m 􏼁 T Z m ω -X m 􏼁, (9) 
where X m ∈ R N m ×d and Z m ∈ R N m ×M are the matrices of the data points belonging to cluster C m . From this, the optimal weight for conversion is calculated as ω � (Z T m Z m ) -1 Z T m X m . So, the latent vector for the new case is

z new � ωx new � Z T m Z m 􏼐 􏼑 -1 Z T m X m 􏼔 􏼕x new . ( 10 
)
Te new latent vector is connected to the case network by fnding the closest cases. MISSL then scores suspect candidates in the people network according to [START_REF] Sparrow | Te application of network analysis to criminal intelligence: an assessment of the prospects[END_REF]. By using MISSL, a much faster prediction is possible than the naïve SSL in Section 2. Tis allows ofcial crime investigators to quickly weed out suspect candidates at a crime scene.

Experiments on Benchmark Data

Experimental results in the following section show that the proposed algorithm has a fast inference time and competitive performance compared to the existing approaches.

4.1. Data. We evaluated the proposed method, MISSL, on benchmark datasets. Te datasets are g241c, g241n, MNIST, and CIFAR-10. g241c and g241n datasets were artifcially generated to hold the cluster assumption. Te data points of g241c were drawn from each of the two unit-variance isotropic Gaussians. Te label of a data point represents the Gaussian it was drawn from. Te data points of g241n were drawn from each of the two unit-variance isotropic Gaussians which have a potentially misleading cluster structure and no manifold structure. Te centers for the positive class have a distance of six in a random direction and the centers for the negative class were fxed by moving from the former centers to a distance of 2.5 in a random direction. All dimensions were standardized to zero mean and unit variance. Te number of dimensions and data points are 241 and 1,500, respectively [START_REF] Chapelle | Semi-supervised learning[END_REF]. MNIST is a handwritten digit dataset of 28 by 28 grayscale normalized and centered images. Te labels of the dataset contain the number from zero to nine and the number of data points is 70,000 [START_REF]MNIST handwritten digit database, yann LeCun, corinna cortes and chris burges[END_REF]. Te CIFAR-10 dataset (Canadian Institute for Advanced Research) is a subset of the 80 million tiny images. Te CIFAR-10 dataset contains 60,000 32 × 32 color images in 10 diferent classes. Te 10 diferent classes represent airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks. Tere are 6,000 images of each class [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF]. Table 2 summarizes the datasets.

Experimental Setup.

We compared the performance and scalability of MISSL with another scalable method called anchor graph regularization (AGR) [START_REF] Liu | Large graph construction for scalable semi-supervised learning[END_REF]. Here, an anchor of AGR that employs RBF kernel or local linear embedding corresponds to a centroid of our method [START_REF] Roweis | Nonlinear dimensionality reduction by locally linear embedding[END_REF]. Te two network-based methods use anchors or centroids to reduce the heavy computation of GSSL. Te performance of Naïve GSSL was used as a reference. Tis indicates that both methods, MISSL and AGR, cannot overwhelm the baseline performance. Te dataset was divided into the 20-cross validation (20-cv) format. However, unlike the supervised learning setting, SSL assumes a few labeled data, so a single set is the training set, and the remaining 19 sets are confgured as the validation sets; that is, the labeled data is 5% (positive: 2.5% and negative: 2.5%) of the entire dataset. Te experiment was repeated 10 times to optimize the hyperparameters. 3 shows the performance results on benchmark datasets measured with the area under the receiver operating characteristic curve (AUC), along with the hyperparameters of AGR, m (the number of centroids) and r (the number of nearest centroids), and hyperparameters of MISSL, m (the number of clusters) and k (the number of nearest neighbors). Te average performances over 20-cv of AGR and MISSL are 97.65% and 98.98% of the reference performance, respectively. MISSL showed better performance than AGR in all datasets. It shows that the latent dimension using mutual information of MISSL better represents data than RBF kernels or LLE of AGR.

Results. Table

Te experimental results on computation time are shown in Table 4. Te computation time was measured separately in three parts: the network construction (or clustering), the latent representation, and the inference (prediction). For GSSL, no conversion time for new representation is required, and clustering time is only required for AGR and MISSL. However, GSSL takes a lot of time for both network construction and inference, whereas AGR or MISSL signifcantly reduces computation time by using clustering. Compared to AGR, MISSL is inherently superior to AGR in terms of speed as it does not require an optimization process. A comparison of the overall time empirically proves that MISSL is more efcient. For the small datasets, such as g241c and g241n, MISSL and AGR are 100 times and 90 times faster than the reference time, respectively, and for the large datasets, MNIST and CIFAR-10 are 1,000 times and 900 times faster. 

Applications for Suspect Candidate Scoring Using the Criminal Network

We applied MISSL to real crime data provided by the Korean National Police. Te experimental setup and results are as follows. 

Criminal

Results of Suspect Candidate Scoring.

In Figure 5, the AUCs for 100 cases are shown. Te overall average AUC for 20,500 cases is 0.82 ± 0.01. More specifcally, Figure 6 presents a typical scoring curve. Suspect candidates for case #8 are sorted along the curve. Te blue nodes represent predicted suspect candidates and the red represents the actual suspect. As shown in fgure, the real suspect is ranked relatively high, within the top 1%. Case #12 was similar to case #8. Both cases are similar in that the suspect steals money or jewelry. Te summary reports of cases #8 and #12 are described on the right side with the personal information of the suspect. Indeed, the suspect of case #12 was highly scored (red circle) and was the actual ofender of case #8. Figure 7 shows the computation time and performance of MISSL while varying the number of clusters or centroids, respectively. GSSL are indicated by red and blue dotted lines in the fgure. By comparing the computation time, it was found that the MISSL was 0.06 seconds when the number of clusters was 100, which is about 1.76e + 04 times faster than that of GSSL (1,058.65 seconds). Te computation time increases as the number of clusters increases but is still very trivial compared to GSSL. Te performance of MISSL increases as the number of clusters increases. Te highest AUC of 0.8 was reached when the number of clusters was 100. From the perspectives of both computational time and performance, MISSL provides a high accuracy within a reasonable amount of time. Tis is critical in real-world applications. In an urgent case, the police do not have to wait all day to get a list of suspect candidates.

Conclusion and Discussion

In this study, we proposed a framework for predicting suspect candidates based on the criminal network. Te algorithm we employed is graph-based SSL, which may be inappropriate when networks are large and complicatedly structured. So, to put the GSSL to practical use in the criminal network, we developed an algorithm based on latent representation and mutual information. Te proposed method, MISSL, shows almost similar performance to the graph-based SSL but has a much faster inference time. As an application, a criminal network is constructed from realworld crime data, and suspect candidate scoring is performed by MISSL. Te predicted results show the validity and efcacy of MISSL. Te framework of suspect candidate scoring introduces a novel way of analyzing crime data, and the results shed a new light on network-based machine learning approaches for social network analysis. Future eforts may identify a more efcient mechanism to optimize the hyperparameter of MISSL and the number of clusters (i.e., the number of latent dimensions) that afect performance. Empirically, a higher AUC was obtained from the increased number of clusters. From another perspective, clustering can be expensive for large-scale datasets. Terefore, further research on faster clustering methods or modeling the algorithms robust to clustering will enrich the results of our study. 
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 1361 Figure 1: Te schematic picture of the criminal network. Te upper layer is the people network and the lower layer is the case network. Te corresponding weight matrices are represented as W p and W c in the fgure on the right, respectively. Two networks are connected by person-to-case edges denoted by W pc in the weight matrix. A person node has demographic information of an individual while a case node has information on crime reports (texts are translated from Korean to English. Names or titles in texts are de-identifed. All the meaningless symbols were removed).

Figures 3 ("Figure 2 :

 32 Figures 3(b) and 3(c) show several examples of NMIs that transform x i to the relative locations between clusters. For node x 1 , NMI(x 1 , C 1 ) � (30 × 3)/(3 × 12) � 2.5 by (4) since C 1 has 12 nodes and all three neighbors are a part of the cluster, whereas NMI(x 1 , C 2 ) and NMI(x 1 , C 3 ) are zeros. Tus, z 1 � [1, 0, 0]. Note that, node x 1 is in the core of C 1 far from C 2 and C 3 . Conversely, node x 3 is located on the boundary of C 2 and has neighbors belonging to C 1 , C 2 , and

Figure 3 :

 3 Figure 3: Te latent network and the latent vectors. (a) A criminal network with the latent network composed of centroids of the case clusters. Colors represent cluster membership and squares represent cluster centroids. (b) Te relative location estimation in circumstances of clusters of diferent shapes and densities.x 1 is estimated to be near the core of cluster 1 because all three of its neighbors belong to cluster 1 (homogeneous in terms of cluster membership), whereas x 2 or x 3 is estimated to be near the boundaries of clusters because the neighbors difer in cluster membership (heterogeneous). (c) Te cluster memberships of x 1 , x 2, and x 3 , NMI calculation result, and their latent vector Z.

Figure 4 :

 4 Figure 4: Te crime case network of 20,500 cases. Te node color represents the type of crime. Less than 1% of types are grouped by "etc." Te size of a node indicates the node degree. Te subnetwork of "assault" is depicted on the right insert. Te number in the case node represents the case report number. Te cases extracted show a similar criminal pattern in which the suspects either beat or detain the victims.

Figure 7 :

 7 Figure 7: Te computation time (line chart) and AUC performance (bar chart) of MISSL while varying the number of clusters. Te performance of GSSL is shown by red dotted lines.

Table 1 :

 1 Crime data description.

	Variables

Type Battery, assault, drug, theft, trafc violation, disorderly conduct, and fnancial crime similarities to the centroids and selects the closest cluster.

Table 2 :

 2 Benchmark datasets.

	Dataset	Classes	Dimension	Nodes	Remark
	g241c	2	241	1,500	Artifcial
	g241n	2	241	1,500	Artifcial
	MNIST	10	784	70,000	Large-scale
	CIFAR-10	10	3,072	60,000	Large-scale

Table 3 :

 3 AUC comparison on benchmark datasets.

	Method	g241c	g241n	MNIST	CIFAR-10
	AGR	0.6438 ± 0.0288	0.6448 ± 0.0468	0.9876 ± 0.0002	0.7305 ± 0.0014
	(m, r)	(150, 5)	(150, 5)	(300, 10)	(300, 10)
	MISSL	0.7652 ± 0.0266	0.6744 ± 0.0257	0.9885 ± 0.0006	0.7324 ± 0.0022
	(m, k)	(150, 10)	(150, 10)	(300, 20)	(300, 20)
	GSSL	0.7808 ± 0.01890	0.7504 ± 0.0682	0.9896 ± 0.0003	0.7340 ± 0.0025
	Te bold values refer to the values of the proposed method (MISSL).		

Table 4 :

 4 Computation time (sec.) on benchmark datasets.

	Data	Method	Network construction (or clustering)	Latent representation Z	Inference	Total
		AGR	0.20	1.19	0.01	1.40
	g241c	MISSL	0.20	0.08	0.01	0.29
		GSSL	0.25	-	0.06	0.31
		AGR	0.21	1.19	0.01	1.41
	g241n	MISSL	0.21	0.08	0.01	0.30
		GSSL	0.25	-	0.06	0.31
		AGR	25.00	67.29	0.08	92.37
	MNIST	MISSL	25.00	0.09	0.07	25.16
		GSSL	482.48	-	175.71	658.19
		AGR	85.12	77.70	0.02	162.84
	CIFAR-10	MISSL	85.12	0.06	0.01	85.19
		GSSL	1,221.03	-	111.54	1,332.57

Te bold values refer to the values of the proposed method (MISSL).

  Network and Experimental Setting. Figure4visualizes clusters in the case network using OpenOrd[START_REF] Martin | OpenOrd: an open-source toolbox for large graph layout[END_REF]. Te node color represents the type of crime. Te same type of crime is grouped closely in the network and batteries and assaults are grouped together since they are both violent crimes. For validation on suspect scoring, a case node is randomly selected as a test node, and the edges connected to the node are removed from the network (including the edge to the actual suspect). Te top 20 people with the highest scores were reported as suspect candidates. Te performance is measured by calculating the AUC of the predicted suspects for each crime case. Te leave-one-out (LOO) method is applied to 20,500 cases. AUC of suspect candidate scoring for each crime case. 100 cases are randomly sampled from 20,500 cases. Te worst case shows around 0.65 AUC and the best case shows around 0.93 AUC. Scores of suspect candidates for case #8. Blue circles indicate suspect candidates, and a red circle indicates actual suspects. Te suspect is in the top 1% of suspect candidates. Case #12 was similar to case #8.
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