

The size distribution of the hot classical belt: Streaming instability and more

J.-M. Petit (CNRS/UBFC), B. Gladman (UBC),
J.J. Kavelaars (NRC-HAA/UVic), M. Bannister (UC),
M. Alexandersen (CfA), Y.-T. Chen (IAAAS),
S. Gwyn (NRC-HAA), K. Volk (UofA),
W. Fraser (NRC-HAA)

OSSOS result

- Use H_r as a proxy for size
 - Only need good distances
- Hot / Cold based on proper inclination
 - Not ecliptic
- Hot and Cold have same H_r distributions
 - For $5.5 \lesssim H_r \lesssim 8.5$
 - i.e. 300 km $\geq D \geq$ few 10s of km

Size Distribution – Hot, Cold

Size Distribution – Hot, Cold

Size Distribution - Cold

Size Distribution – Hot, Cold

But wait a minute...

- Hot and Cold have # size distribution
 - Known and published:

Bernstein et al. 2004; Elliot et al. 2005;

Petit et al. 2011; Adams et al. 2014;

Fraser et al. 2014

So what ?

Resolving the tension

Single exponential

Resolving the tension

Broken exponentials

Science Implications

- Hot and Cold share same $H_r \gtrsim 5.5$ distributions
 - Cold population is primordial
 - Planetesimal size distribution not function of local conditions

And

- Negligible modification from collisions
 - → Hot belt's compact phase is short?

Science Implications

A possible candidate: Streaming Instability

Science Implications

- Conditions in Hot-object formation region allowed accretion of larger objects
 - Erased the taper for $H_r \lesssim 6$
- Dwarf planets (and bigger objects?) accreted mass from $6 \lesssim H_r \lesssim 9$ independent of size
 - Runaway bodies didn't care about size of what they swept up

and/or

Most of the big-object mass is pebble accretion and

≤ 250 km accreted negligible pebbles

Take Away

- Classical belt ~complete for $H_r \lesssim 5.3$
- Hot and Cold are identical for $H_r \gtrsim 5.5$
 - Same initial process: Streaming Instability (?)
 - More modeling work needed
- Hot: some other process created dwarf-planet size objects
 - Accretion by runaway, pebble, ?
 - Does not change the size distribution at smaller size

Size Distribution - Hot MPC sample

