Frédérique Charles 
  
Laurent Desvillettes 
  
Small Mass Ratio Limit of Boltzmann Equations in the Context of the Study of Evolution of Dust Particles in a Rarefied Atmosphere

Keywords: Boltzmann equation, Vlasov equation, Povzner's inequality AMS subject classification: 45J05, 76P05, 76T15, 82C40

We propose a model based on the coupling of two Boltzmann-like equations for the study of the evolution of dust particles in a rarefied atmosphere, such as it can be found in the context of safety studies for the ITER project of nuclear fusion.

When the typical size of a dust speck becomes too large, the numerical simulation of the system under study becomes too expensive, and one needs to introduce an asymptotic model in which the mass ratio between molecules and dust specks tends to 0. This model is constituted of a coupling (by a drag force term) between a Boltzmann equation and a Vlasov equation.

A rigorous proof of the passage to the limit is given in the spatially homogeneous setting. It includes a new variant of Povzner's inequality in which the vanishing mass ratio is taken into account.

Introduction

In the case of a loss of vacuum accident (LOVA) in the future nuclear fusion reactor ITER, the particles of dust produced by the abrasion of the wall by the plasma might be dispersed in the reactor and one needs to study their evolution.

This study can be performed by the use of macroscopic models (of Euler or Navier-Stokes type), Cf. [T]. However, those models are known to be inaccurate in a rarefied context, which occurs at the very beginning of the LOVA (later on, the pressure rapidly increases and the macroscopic models recover their validity).

Our proposition of modeling for the beginning of the LOVA consists in writing a kinetic-like system for the density of molecules and dust specks. The model that we present can be compared to related models used for example in the study of cometary flows (Cf. [F]).

The unknowns are the density f 2 := f 2 (t, x, v) ≥ 0 of molecules (of radius r 2 and mass m 2 ) which at time t and point x move with velocity v, and the density f 1 := f 1 (t, x, v, r) ≥ 0 of specks of dust (assumed to be spherical for the sake of simplicity) which at time t, point x, have velocity v and radius r. Here t ∈ R + , x ∈ Ω an open bounded and regular subset of R 3 , v ∈ R 3 and r ∈ [r min , r max ] with 0 < r min < r max . The equations write

∂f 1 ∂t + v • ∇ x f 1 = R 1 (f 1 , f 2 ), (1.1) ∂f 2 ∂t + v • ∇ x f 2 = R 2 (f 1 , f 2 ) + Q(f 2 , f 2 ), (1.2)
where R 1 , R 2 , Q are collision kernels defined by

R 1 (f 1 , f 2 )(v 1 , r) = R 3 S 2 [f 1 (v 1 , r)f 2 (v 2 ) -f 1 (v 1 , r)f 2 (v 2 )] ×(r 2 + r) 2 |ω • (v 2 -v 1 )| dωdv 2 , R 2 (f 1 , f 2 )(v 2 ) = R 3 S 2 rmax rmin [f 1 (v 1 , r)f 2 (v 2 ) -f 1 (v 1 , r)f 2 (v 2 )] ×(r 2 + r) 2 |ω • (v 2 -v 1 )| drdωdv 1 , with        v 1 = v 1 + 2ε(r) 1 + ε(r) [ω • (v 2 -v 1 )]ω, v 2 = v 2 - 2 1 + ε(r) [ω • (v 2 -v 1 )]ω, (1.3)
and

Q(f 2 , f 2 )(v) = R N S N -1 [f 2 (v )f 2 (v * ) -f 2 (v)f 2 (v * )] ×B |v -v * |, v -v * |v -v * | • σ dσdv * , (1.4) with      v = v + v * 2 + |v -v * | 2 σ, v * = v + v * 2 - |v -v * | 2 σ.
(1.5)

In relations (1.3), ε(r) represents the ratio of mass between a molecule and a dust speck of radius r (that is, ε(r) = (r min /r) 3 ε(r min )). We have assumed that the collision kernels R 1 , R 2 corresponding to the interaction between molecules and specks of dust are of hard sphere type. This assumption is however not typical for collisions between molecules, and we consider instead that the cross section B is of variable hard sphere (VHS) type:

B(y, z) = C ef f y α , (1.6)
with C ef f > 0 and α ∈ [0, 1]. This cross section is widely used in DSMC (Direct Simulation Monte Carlo) methods (Cf. [B], [N] for example). Note that the rest of our paper would still hold if C ef f were a (smooth) function of z (that is, in the case of smoothly cutoff hard potentials).

The modeling assumptions underlying eq. (1.1), (1.2) include the absence of collisions between the dust specks. This is related to the value of the typical collision time (Cf. [B]) t 1,1 between two particles of dust, which is, in our context, much larger than the other time scales. Note also that the collision kernels R 1 , R 2 could be modeled differently, since collisions between molecules and particles of dust are not necessarily conservative (that is, some kinetic energy can be lost). For more details about this possibility of modeling, we refer to [C1] and the forthcoming work [C2].

The mathematical study of spatially homogeneous solutions to eq. (1.1) -(1.2) can be done in the same spirit as in [Ar]. It leads to the following Proposition. Its Proof is briefly sketched in Section 2.

Proposition 1.1 : Let f 1,in := f 1,in (v, r) ≥ 0 be an initial datum such that R 3 rmax rmin f 1,in (v, r) (1 + |v| 2 + | log f 1,in (v, r)|) drdv < +∞,
and f 2,in := f 2,in (v) ≥ 0 be an initial datum such that

R 3 f 2,in (v) (1 + |v| 2 + | log f 2,in (v)|) dv < +∞.
Then for all C ef f > 0, α ∈]0, 1[, 0 < r min < r max (constants appearing in the definition of R 1 , R 2 , Q), there exists a spatially homogeneous weak solution

(f 1 : (t, r, v) ∈ R + × R 3 × [r min , r max ] → f 1 (t, v, r) ≥ 0, f 2 : (t, v) ∈ R + × R 3 → f 2 (t, v) ≥ 0) to eq. (1.1) -(1.2) such that for all T > 0, sup t∈[0,T ] R 3 rmax rmin f 1 (t, v, r) (1 + |v| 2 + | log f 1 (t, v, r)|) drdv < +∞, sup t∈[0,T ] R 3 f 2 (t, v) (1 + |v| 2 + | log f 2 (t, v)|) dv < +∞.
It satisfies moreover (for all t ∈ R + ), the conservation of mass for a.e r ∈ [r min , r max ],

R 3 f 1 (t, v, r) dv = R 3 f 1,in (v, r) dv, (1.7) R 3 f 2 (t, v) dv = R 3 f 2,in (v) dv, (1.8)
and the following entropy inequality

R 3 rmax rmin f 1 (t, v 1 , r) ln (f 1 (t, v 1 , r)) drdv 1 + R 3 f 2 (t, v 2 ) ln (f 2 (t, v 2 )) dv 2 ≤ R 3 rmax rmin f 1,in (v 1 , r) ln (f 1,in (v 1 , r)) drdv 1 + R 3 f 2,in (v 2 ) ln (f 2,in (v 2 )) dv 2 .
(1.9) Finally, if for some s ≥ 1,

R 3 rmax rmin (1 + |v| 2 ) s [f 1,in (v, r) + f 2,in (v)] drdv < +∞, then one can find f 1 , f 2 in such a way that (for all T > 0) sup t∈[0,T ] R 3 rmax rmin (1 + |v| 2 ) s [f 1 (t, v, r) + f 2 (t, v)] drdv < +∞, (1.10)
and the following relation of conservation of energy holds:

R 3 rmax rmin f 1 (t, v, r) |v| 2 r r min 3 drdv + ε m R 3 f 2 (t, v) |v| 2 dv = R 3 rmax rmin f 1,in (v, r) |v| 2 r r min 3 drdv + ε m R 3 f 2,in (v) |v| 2 dv, (1.11) 
where ε m = ε(r min ). By a weak solution, we mean here that for all T > 0,

(f 1 , f 2 ) ∈ Lip [0, T ], L 1 R 3 × [r min , r max ] × Lip [0, T ], L 1 R 3 , (1.12)
and (f 1 , f 2 ) satifies for all t ∈ [0, T ], and a.e. v ∈ R 3 , r ∈ [r min , r max ],

f 1 (t, v, r) = f 1,in (v, r) + t 0 R 1 (f 1 , f 2 )(s, v, r) ds, (1.13) f 2 (t, v) = f 2,in (v) + t 0 Q(f 2 , f 2 )(s, v) + R 2 (f 1 , f 2 )(s, v) ds. (1.14)
The set of (spatially inhomogeneous) eq. (1.1), (1.2) can be simulated at the numerical level by a DSMC method. We refer to [C1] for numerical results in the context of an experiment related to a LOVA.

However, when the mass ratio between the molecules and the specks of dust becomes too small, the simulation becomes too expensive. Indeed, because of the intrisically explicit character of the DSMC method, the time step of the simulation must be at most of the same order of magnitude as the lowest of the time scales defined by the different types of collision. Here, it corresponds to the typical collision time t 1,2 between molecules and particles of dust (from the point of view of particles) which is related to the collision time between two molecules t 2,2 by the formula

t 1,2 ≈ (ε(r)) 2/3 t 2,2 .
In order to perform computations on a time scale of the order of t 2,2 , it is therefore necessary when the dust specks are "too big" (in practice, for the applications that we have in mind, when their typical radius is bigger than 10 -8 m) to write down a model in which the mass ratio ε(r) vanishes.

In order to do so, we perform a dimensional analysis leading to a nondimensional form of the equations, in which appears a parameter p which is related to the mass ratio and which tends to infinity when this ratio vanishes. These equations write (in a spatially homogeneous context)

∂f 1,p ∂t = p c R a,p 1 (f 1,p , f 2,p ), (1.15) ∂f 2,p ∂t = c R a,p 2 (f 1,p , f 2,p ) + Q a (f 2,p , f 2,p ), (1.16) 
where Q a , R a,p 1 , R a,p 2 are defined by

Q a (f 2 , f 2 ) (v) = R 3 S 2 [f 2 (v )f 2 (v * ) -f 2 (v)f 2 (v * )] ×C a ef f |v -v * | α dσdv * ,
where C a ef f is a dimensionless constant [and v , v * satisfy (1.5)],

R a,p 1 (f 1 , f 2 )(v 1 , r) = R 3 S 2 f 1 (v 1,p , r)f 2 (v 2,p ) -f 1 (v 1 , r)f 2 (v 2 ) × 1 2 √ π p c + r 2 v 2 - v 1 ξ p • ω dωdv 2 ,
and

R a,p 2 (f 1 , f 2 )(v 2 ) = R 3 S 2 r0 1 f 1 (v 1,p , r)f 2 (v 2,p ) -f 1 (v 1 , r)f 2 (v 2 ) × 1 2 √ π p c + r 2 v 2 - v 1 ξp • ω drdωdv 1 ,
where c, ξ are dimensionless constants, r 0 = rmax rmin , and

         v 1,p = v 1 + 2 ξ pr -3 (ξ p) 2 + r -3 ω • v 2 - v 1 ξ p ω, v 2,p = v 2 - 2 (ξ p) 2 (ξ p) 2 + r -3 ω • v 2 - v 1 ξ p ω.
(1.17)

This dimensional analysis is briefly explained in Section 2, and a detailled description will be published in the forthcoming work [C2].

We rigorously show in this paper that in the limit p → ∞, the solutions to eq. (1.15) -(1.16) given by Proposition 1.1 converge towards the solution of the following Vlasov-Boltzmann coupling:

∂f 1 ∂t + K(f 2 ) • ∇ v f 1 = 0, (1.18) ∂f 2 ∂t = m(f 1,in )L(f 2 ) + Q a (f 2 , f 2 ), (1.19)
where

m(f 1,in ) = c R 3 r0 1 f 1,in (v 1 , r) r 2 drdv 1 , L(f 2 )(t, v) = S 2 [f 2 (t, v -2(ω • v)ω) -f 2 (t, v)] |v • ω| dω, and 
K(f 2 )(t, r) = 2 π c r ξ R 3 |v 2 | v 2 f 2 (t, v 2 )dv 2 .
(1.20)

More precisely, we shall prove the

Theorem 1.1 Let c > 0, ξ > 0, C a ef f > 0, α ∈ [0, 1], r 0 > 1 be the parameters appearing in Q a , R a,p 1 , R a,p 2 . Let also f 1,in := f 1,in (r, v) ≥ 0, f 2,in := f 2,in (v) ≥ 0 be initial data such that R 3 r0 1 f 1,in (v, r) (1 + |v| 4 + | log f 1,in (v, r)|) drdv < +∞, R 3 f 2,in (v) (1 + |v| 4 + | log f 2,in (v)|) dv < +∞.
(1.21)

Then, if (f 1,p , f 2,p ) denotes a family (indexed by p) of weak solutions to eq. (1.15) -(1.16) given by Proposition 1.1 (with f 1,p (0,

•) = f 1,in , f 2,p (0, •) = f 2,in ), one can extract a subsequence (still denoted by (f 1,p , f 2,p )) which con- verges for all T > 0 in L ∞ ([0, T ]; M 1 (R 3 × [1, r 0 ]) × L 1 (R 3 )) weak* towards a weak solution (f 1 , f 2 ) ∈ L ∞ ([0, T ]; M 1 (R 3 × [1, r 0 ]) × L 1 (R 3 )) to eq. (1.18) - (1.20).
By a weak solution, we here mean that for all

ψ ∈ C 2 c R + × R 3 × [1, r 0 ] , we have - ∞ 0 R 3 r0 1 f 1 (t, v, r) ∂ψ ∂t (t, v, r) drdvdt = R 3 r0 1 f 1,in (v, r)ψ(0, v, r) drdv + ∞ 0 R 3 r0 1 K(f 2 )(t, r) • ∇ v ψ(t, v, r)f 1 (t, v 1 , r) drdvdt, (1.22)
and for all ϕ ∈ C 2 c R + × R 3 , we have

- ∞ 0 R 3 f 2 (t, v) ∂ϕ ∂t (t, v) dvdt = R 3 f 2,in (v)ϕ(0, v) dv + m (f 1,in ) ∞ 0 R 3 L(f 2 )(t, v)ϕ(t, v) dvdt + ∞ 0 R 3 Q a (f 2 , f 2 )(t, v)ϕ(t, v) dvdt.
(1.23)

Note that in the formulas above, we have used the notation f (•, v, r) drdv instead of df (•, v, r). This is justified in particular by the fact that this measure has a density, as stated in the Remark at the end of this paper.

Small ratio of mass limits in the context of kinetic equations are described in [D], in particular in the context of plasmas. Among the many references in this work, we wish to quote [START_REF] Degond | The asymptotics of collision operators for two species of particles of disparate masses[END_REF] and [START_REF] Degond | Transport coefficients of plasmas and disparate mass binary gases[END_REF], in which some of the computations are close to the computations that we present here.

Our method of proof is based on uniform w.r.t. p a priori estimates including in particular moments estimates based on a new variant of Povzner's inequality, especially suited for collisions of particles with disparate masses. We refer for previous versions of this inequality (including inequalities devised for non cutoff or energy-dissipating kernels) to [P], [Bo], [L], [De], [MW], [DeM], [W], [GPV].

Unfortunately, the entropy estimate for f 1,p is not uniform w.r.t. p (this uniformity holds only for f 2,p ) so that the passage to the limit when p → ∞ is done only in the sense of weak measures. Note that measure-valued solutions to the Boltzmann equation have been introduced in the context of steady solutions, (Cf. for example [START_REF] Cercignani | Measure solutions of the steady Boltzmann equation in a slab[END_REF]). Our own context is somehow more favorable, since when the initial datum is smooth enough, the equation obtained at the limit preserves in the evolution this smoothness.

The second section of this work is devoted to a brief Proof of Proposition 1.1 and to the exposition of the dimensional analysis leading to eq. (1.15) -(1.16). Then, in section 3, Theorem 1.1 is proven.

Preliminaries: Proof of Proposition 1.1 and Dimensional Analysis

We begin this section with a brief sketch of the Proof of Proposition 1.1. It mainly uses classical tools, and can be found in detail in the forthcoming work [C2].

Sketch of the Proof of Proposition 1.1 : We first introduce the following approximation of eq. (1.1) -(1.2) (in the spatially homogeneous case),

∂f n 1 ∂t = R n 1 (f n 1 , f n 2 ) 1 + 1 n |f n 1 | drdv + 1 n |f n 2 | dv , (2.1) ∂f n 2 ∂t = R n 2 (f n 1 , f n 2 ) + Q n (f n 2 , f n 2 ) 1 + 1 n |f n 2 | dv + 1 n |f n 1 | drdv , (2.2) f n 1 (0, v, r) = f 1,in (v, r) 1 {f1,in(v,r)≤n} + 1 n e -|v| 2 /2 , (2.3) f n 2 (0, v) = f 2,in (v) 1 {f2,in(v)≤n} + 1 n e -|v| 2 /2 , (2.4) with R n 1 , R n 2 , Q n defined by [eq. (1.3), (1.5) and] R n 1 (f 1 , f 2 )(v 1 , r) = R 3 S 2 [f 1 (v 1 , r)f 2 (v 2 ) -f 1 (v 1 , r)f 2 (v 2 )] × min n, (1 + r) 2 |ω • (v 1 -v 2 )| dωdv 2 , R n 2 (f 1 , f 2 )(v 2 ) = R 3 S 2 rmax rmin [f 1 (v 1 , r)f 2 (v 2 ) -f 1 (v 1 , r)f 2 (v 2 )] × min n, (1 + r) 2 |ω • (v 2 -v 1 )| drdωdv 1 , and 
Q n (f 2 , f 2 )(v) = R 3 S 2 [f 2 (v )f 2 (v * ) -f 2 (v)f 2 (v * )] × min {n, C ef f |v -v * | α }dσdv * .
(2.5)

We first observe that the operators in the r.h.s. of (2.1)

-(2.2) are Lipschitz- continuous w.r.t. L 1 (R 3 × [r min , r max ]) × L 1 (R 3 ) so that one can find a solution in C 1 (R + ; L 1 (R 3 × [r min , r max ]) × L 1 (R 3 )) to system (2.1) -(2.4).
Moreover, it is easy to prove (thanks to some variant of the minimum principle) that f n 1 , f n 2 ≥ 0, and one can check that the following uniform w.r.t. n a priori estimates hold:

sup t≥0,n∈N * R 3 rmax rmin f n 1 (t, v, r) drdv < +∞, (2.6) sup t≥0,n∈N * R 3 f n 2 (t, v) dv < +∞, (2.7)
(deduced from the conservation of mass for molecules on one hand, and dust specks on the other hand)

sup t≥0,n∈N * R 3 rmax rmin f n 1 (t, v, r) | log f n 1 (t, v, r)| dr (2.8) +f n 2 (t, v) | log f n 2 (t, v)| dv < +∞,
(deduced from the entropy inequality)

sup t≥0,n∈N * R 3 rmax rmin |v| 2 f n 1 (t, v, r) dr + |v| 2 f n 2 (t, v) dv < +∞, (2.9) 
(deduced from the conservation of kinetic energy).

As a consequence, it is possible to extract from the sequence (

f n 1 , f n 2 ) n∈N * a subsequence which converges in C(R + ; L 1 (R 3 × [r min , r max ]; (1 + |v|) dvdr) × L 1 (R 3 ; (1+|v|) dv)) weak towards a couple of functions (f 1 , f 2 ) such that f 1 , f 2 ≥ 0, f 1 , f 2 satisfies the bounds (2.6) -(2.9) [with f n 1 , f n 2 replaced by f 1 , f 2
, and without having to take the supremum w.r.t. n ∈ N * ], and f 1 , f 2 is a weak solution to eq. (1.1), (1.2), with initial datum f 1,in , f 2,in .

The Proof of Proposition 1.1 can be concluded by noticing that for all s ≥ 1, estimates (1.10) and (1.11) are a consequence of an easy variant of Povzner's inequality (Cf. for example [MW]). Once again, we refer to the forthcoming work [C2] for a completely detailed Proof of Proposition 1.1.

We now turn to the establishment of a non-dimensional version of eq. (1.1), (1.2). Our assumptions concern cases in which the number of dust particles is very small in front of the number of molecules, and in which the radiuses of different dust particles are of the same order of magnitude.

We introduce a time scale t • which is the typical collision time of two molecules (we refer to the forthcoming work [C2] for non-dimensional versions of eq. (1.1), (1.2) with other time scales), a typical length scale L which corresponds to the mean free path of molecules, and, like in [START_REF] Degond | The asymptotics of collision operators for two species of particles of disparate masses[END_REF], two different scales V • 1 and V • 2 for the velocities of particles of dust and molecules respectively (they correspond to the thermal velocities of the species). We assume that the two species have temperatures of the same order of magnitude. We let T • be this order of magnitude. Under this assumption, V • 1 and V • 2 are defined by

V • 1 = 8kT • πm 1 (r min ) and V • 2 = 8kT • πm 2 ,
where m 1 (r min ) is the mass of a particle of dust of radius r min , and m 2 is the mass of a molecule. These velocities are related by the formula

V • 1 = √ ε m V • 2 .
(2.10) Contrary to the assumptions made in [START_REF] Degond | The asymptotics of collision operators for two species of particles of disparate masses[END_REF], we introduce here two different orders of magnitude n • 1 and n • 2 for the number density of the species, and we define by

α • = n • 1 n • 2 (2.11)
the ratio of these magnitudes. In the applications that we have in mind, this ratio is very small. Then, we introduce the dimensionless densities in the phase space:

f1 ( t, x, v1 , r) = (V • 1 ) 3 r min n • 1 f 1 (t, x, v, r), and f2 ( t, x, v2 ) = (V • 2 ) 3 n • 2 f 2 (t, x, v 2 ),
where x, t, v1 and v2 are the dimensionless variables defined by

x = x L , t = t t • , r = r r min , v1 = v 1 V • 1 , v2 = v 2 V • 2 , where t • = 1 4π n • 2 r 2 2 V • 2 , L = t • V • 2 ,
and f 1 , f 2 are solutions to eq. (1.1) -(1.5). The densities ( f1 , f2 ) are then solutions to the following system of equations

∂ f1 ∂ t + √ ε m v1 • ∇ x f1 = 1 4π η ε m 2/3 R1 ( f1 , f2 ), ∂ f2 ∂ t + v2 • ∇ x f2 = α • 4π η ε m 2/3 R2 ( f1 , f2 ) + Q( f2 , f2 ).
Here R1 , R2 and Q are defined by

Q f2 , f2 (v) = R 3 R 3 S 2 f2 (v ) f2 (v * ) -f2 (v) f2 (v * ) × C ef f (V • 2 ) α 4π r 2 2 V • 2 |v -v * | α dσdv * , with      v = v + v * 2 + |v -v * | 2 σ, v * = v + v * 2 - |v -v * | 2 σ, R1 ( f1 , f2 )(v 1 , r) = R 3 S 2 f1 (v 1 , r) f2 (v 2 ) -f1 (v 1 , r) f2 (v 2 ) × εm η 1/3 + r 2 v2 - √ ε m v1 • ω dωdv 2 , and 
R2 ( f1 , f2 )( v2 ) = R 3 S 2 r0 1 f1 (v 1 , r) f2 (v 2 ) -f1 (v 1 , r) f2 (v 2 ) × εm η 1/3 + r 2 v2 - √ ε m v1 • ω drdωdv 1 , with        v 1 = v1 + 2 √ ε m r-3 1 + ε m r-3 [ω • (v 2 - √ ε m v1 )]ω, v 2 = v2 - 2 1 + ε m r-3 [ω • (v 2 - √ ε m v1 )]ω,
and r 0 = rmax rmin . Finally, η is an dimensionless constant defined by η =

3m 2 4πρr 3 2 ,
where ρ is the volumic mass of particles of dust and r 2 the radius of molecules

(that is, η εm 1/3 = rmin r2
). From now on, we also denote C a ef f :=

C ef f (V • 2 ) α 4π r 2 2 V • 2
(this parameter is of order 1 under our assumptions).

We now put ourselves in a spatially homogeneous context, and we establish the dimensionless versions of various estimates (mass, energy, entropy).

We first notice that the dimensionless versions of the relations of conservation of mass are similar to formulas (1.7) and (1.8): we get indeed, for a.e t ∈ R + and for all r ∈ [1, r 0 ]:

R 3 f1 ( t, v1 , r) dv 1 = R 3 f1 (0, v1 , r) dv 1 , (2.12) 
(where r 0 = rmax rmin ), and

R 3 f2 ( t, v2 ) dv 2 = R 3 f2 (0, v2 ) dv 2 .
(2.13)

We also get

rmax rmin R 3 f 1 (t, v 1 , r) |v 1 | 2 r r min 3 drdv 1 = n • 1 (V • 1 ) 2 r0 1 R 3 f1 ( t, v1 , r) |v 1 | 2 r3 drdv 1 , R 3 f 2 (t, v 2 ) |v 2 | 2 dv 2 = n • 2 (V • 2 ) 2 R 3 f2 ( t, v2 ) |v 2 | 2 dv 2 .
Thanks to (2.10), (2.11), one deduces from the relation of conservation of energy (1.11) the following relation:

α • r0 1 R 3 f1 ( t, v1 , r) |v 1 | 2 r3 drdv 1 + R 3 f2 ( t, v2 ) |v 2 | 2 dv 2 = α • r0 1 R 3 f1 (0, v1 , r) |v 1 | 2 r3 drdv 1 + R 3 f2 (0, v2 ) |v 2 | 2 dv 2 . (2.14) Moreover, since R 3 rmax rmin f 1 (t, v 1 , r) ln (f 1 (t, v 1 , r)) drdv 1 = n • 1 R 3 r0 1 f1 ( t, v1 , r) ln f1 ( t, v1 , r) drdv 1 +n • 1 ln (n • 1 ) -ln (V • 1 ) 3 r min R 3 r0 1 f1 ( t, v1 , r)drdv 1 ,
and

R 3 f 2 (t, v 2 ) ln (f 2 (t, v 2 )) dv 2 = n • 2 R 3 f2 ( t, v2 ) ln f2 ( t, v2 ) dv 2 +n • 2 ln (n • 2 ) -ln (V • 2 ) 3 R 3 f2 ( t, v2 )dv 2 ,
[and thanks to relations (2.12) and (2.13)], the entropy inequality (1.9) leads to the following inequality:

α • R 3 r0 1 f1 ( t, v1 , r) ln f1 ( t, v1 , r) drdv 1 + R 3 f2 ( t, v2 ) ln f2 ( t, v2 ) dv 2 ≤ α • R 3 r0 1 f1 (0, v1 , r) ln f1 (0, v1 , r) drdv 1 + R 3 f2 (0, v2 ) ln f2 (0, v2 ) dv 2 .
(2.15)

In the experiment that we consider, the typical value of α • is 10 -6 , that of ε m is 10 -12 , and that of η is 6 • 10 -2 . Therefore, we consider that

c := α • 4π η ε m 2/3 ∼ 1, and 1 √ ε m ∼ 1 α • := p → ∞.
(2.16)

We now write

f 1 (t, v, r) instead of f1 ( t, v1 , r), f 2 (t, v) instead of f2 ( t, v2 ), Q a instead of Q, R a,p 1 instead of R1 , R a,p 2 instead of R2 . Then we have ε m η 1/3 = 1 2 √ π p c
, and we write 1 √ εm = ξ p, with ξ > 0 fixed. We end up with system (1.15), (1.16).

Next section is devoted to the proof that when p → ∞ in (1.15), (1.16), the solutions of this system converge towards the solutions of a Boltzmann-Vlasov coupling given by eq. (1.18), (1.19) [that is, Theorem 1.1].

Proof of Theorem 1.1

We now begin the Proof of Theorem 1.1 : For the sake of readability, we only consider the case ξ = 1 (this changes nothing in the Proof). We first express what remains of the relations of conservation of mass, energy (and of the evolution of entropy) when p → ∞ in eq. (1.15), (1.16), under the assumptions of Theorem 1.1. According to relations (2.12), (2.13), (2.14), (1.9) and to assumption (2.16), the following estimates hold, for all p ∈ N, for all t ∈ R + , and for a.e r ∈ [1, r 0 ]:

R 3 f 1,p (t, v, r) dv = R 3 f 1,in (v, r) dv, (3.1) R 3 f 2,p (t, v) dv = R 3 f 2,in (v) dv, (3.2) 1 p R 3 r0 1 f 1,p (t, v, r) ln (f 1,p (t, v, r)) drdv + R 3 f 2,p (t, v) ln (f 2,p (t, v)) dv ≤ 1 p R 3 r0 1 f 1,in (v, r) ln (f 1,in (v, r)) drdv + R 3 f 2,in (v) ln (f 2,in (v)) dv, (3.3) and 1 p r0 1 R 3 f 1,p (t, v, r) |v| 2 r 3 drdv + R 3 f 2,p (t, v) |v| 2 dv = 1 p r0 1 R 3 f 1,in (v, r) |v| 2 r 3 drdv + R 3 f 2,in (v) |v| 2 dv.
(3.4)

We consequently obtain the following bounds (for all T > 0) So is also the bound

sup p∈N * sup t∈[0,T ] R 3 1 + |v| + |v| 2 f 2,p (t, v) dv < +∞, ( 3 
sup p∈N * sup t∈[0,T ] R 3 r0 1 1 + |v| 2 p f 1,p (t, v, r) drdv < +∞.
In order to obtain (3.6), we only have to prove the following bound:

sup p∈N * sup t∈[0,T ] R 3 r0 1 |v|f 1,p (t, v, r) drdv < +∞. (3.7) Let p ∈ N * and t ∈ [0, T ]. We have r0 1 R 3 f 1,p (t, v 1 , r) |v 1 | drdv 1 = r0 1 R 3 f 1,in (v 1 , r) |v 1 | drdv 1 +p c r0 1 R 3 t 0 R a,p 1 (f 1,p , f 2,p )(s, v 1 , r) |v 1 | dsdrdv 1 , with r0 1 R 3 f 1,in (v 1 , r) |v 1 | drdv 1 ≤ r0 1 R 3 f 1,in (v 1 , r) 1 + |v 1 | 2 drdv 1 < +∞.
Thanks to the involutive character of the transformation (v 1 , v 2 ) → v 1,p , v 2,p , one can get:

p t 0 r0 1 R 3 R a,p 1 (f 1,p , f 2,p )(s, v 1 , r) |v 1 | drdv 1 ds = p t 0 R 3 R 3 S 2 r0 1 f 1,p (s, v 1 , r) f 2,p (s, v 2 ) ω • v 1 p -v 2 × 1 2 √ π pc + r 2 v 1,p -|v 1 | drdωdv 2 dv 1 ds. Noticing that ω • v 1 p -v 2 v 1,p -|v 1 | ≤ v 1 p -v 2 v 1,p -v 1 ≤ C st p 1 + |v 1 | 2 p 1 + |v 2 | 2 ,
we get

p t 0 r0 1 R 3 R a,p 1 (f 1,p , f 2,p )(s, v 1 , r) dsdrdv 1 ≤ C st sup p∈N * sup t∈[0,T ] R 3 r0 1 1 + |v 1 | 2 p f 1,p (t, v, r) dvdr × sup p∈N * sup t∈[0,T ] R 3 1 + |v 2 | 2 f 2,p (t, v) dv,
and estimate (3.7) (and therefore (3.5)) holds.

We now show that higher order moments can be bounded for f 2,p (uniformly w.r.t. p), provided that they initially exist. More precisely, we define for s ≥ 1, and

g 1 := g 1 (t, v, r) ≥ 0, g 2 := g 2 (t, v) ≥ 0, the quantities M γ,p (g 1 , g 2 )(t) = R 3 (1 + |v| γ ) g 2 (t, v) + 1 p r0 1 r 3γ 2 g 1 (t, v, r) dr dv, and 
S γ (g 1 , g 2 )(t) = R 3 (1 + |v| γ ) g 2 (t, v) dv + R 3 r0 1 (1 + |v| γ ) g 1 (t, v, r) drdv.
Then the following Proposition holds:

Proposition 3.1 Let s ≥ 1. Then there exist constants K 1 , K 2 , K 3 > 0 which depend only on s, T, r 0 , c, ξ and C a ef f > 0, α ∈ [0, 1] in the cross section of Q a , R a,p 1 , R a,p 2 , such that (for all g 1 := g 1 (t, v, r) ≥ 0, g 2 := g 2 (t, v) ≥ 0 such that the integrals make sense)

R 3 1 + |v| 2s Q a (g 2 , g 2 )(t, v) dv ≤ K 1 M 2s,p (g 2 , g 2 )(t) (3.8) × M 2,p (g 2 , g 2 )(t) + M 2s-2,p (g 2 , g 2 )(t) . R 3 1 + |v| 2s R a,p 2 (g 1 , g 2 )(t, v) + r0 1 r 3s R a,p 1 (g 1 , g 2 )(t, v, r) dr dv ≤ K 2 M 2s,p (g 1 , g 2 )(t)S 1 (g 1 , g 2 )(t) + pM 2s-1,p (g 1 , g 2 )(t)M 2,p (g 1 , g 2 )(t) ,
(3.9) and

R 3 1 + |v| 2s R a,p 2 (g 1 , g 2 )(t, v) + r0 1 r 3s R a,p 1 (g 1 , g 2 )(t, v, r) dr dv ≤ K 3 M 2,p (g 1 , g 2 )(t)M 2s-1,p (g 1 , g 2 )(t) + K 3 p S 1 (g 1 , g 2 )(t)M 2s,p (g 1 , g 2 )(t) + K 3 p 2 M 2s+1,p (g 1 , g 2 )(t) + K 3 p M 3,p (g 1 , g 2 )(t)M 2s-2,p (g 1 , g 2 )(t).
(3.10)

Proof of Proposition 3.1 : We use the classical Povzner's inequality to prove inequalities (3.8) and (3.9). More precisely, the inequality for (3.8) can be found in [De] for example. We have, for inequality (3.9):

R 3 1 + |v| 2s R a,p 2 (g 1 , g 2 )(t, v) + r0 1 r 3s R a,p 1 (g 1 , g 2 )(t, v, r) dr dv ≤ R 3 R 3 r0 1 S 2 r 3 |v 1,p | 2 + |v 2,p | 2 s -r 3s |v 1 | 2s -|v 2 | 2s × ω • v 1 p -v 2 1 2 √ π pc + r 2 g 1 (t, v 1 , r) g 2 (t, v 2 ) drdωdv 2 dv 1 ,
and since the couple of velocities (v 1,p , v 2,p ) given by (1.17) satifies the relation

r 3 v 1,p 2 + v 2,p 2 = r 3 |v 1 | 2 + |v 2 | 2 ,
we get

r 3 |v 1,p | 2 + |v 2,p | 2 s -r 3s |v 1 | 2s -|v 2 | 2s ω • v 1 p -v 2 ≤ C st (s, r 0 ) |v 1 | 2s-1 |v 2 | + |v 1 ||v 2 | 2s-1 v 1 p -v 2 ≤ C st (s, r 0 ) 1 p |v 1 | 2s |v 2 | + |v 1 ||v 2 | 2s + 1 p |v 1 | 2 |v 2 | 2s-1 + |v 1 | 2s-1 |v 2 | 2
and estimate (3.9) holds. This estimate only depends on moments M k with k ≤ 2s, but is not uniform w.r.t p. So it is not possible at this level to use it to establish a uniform estimate on the moments M s .

Therefore, we establish inequality (3.10) thanks to a new variant of Povzner's inequality. We use for that an other parametrisation of the post-collisional velocities in the operators R a,p 1 and R a,p 2 (Cf. [De] again):

R a,p 1 (g 1 , g 2 )(t, v 1 , r) = R 3 S 2 1 2 1 2 √ π pc + r 2 v 1 p -v 2 × g 1 (t, v 1,p , r) g 2 (t, v 2,p ) -g 1 (t, v 1 , r) g 2 (t, v 2 ) dσdv 2 ,
and

R a,p 2 (g 1 , g 2 )(t, v 2 ) = R 3 S 2 r0 1 1 2 1 2 √ π pc + r 2 v 1 p -v 2 × g 1 (t, v 1,p , r)g 2 (t, v 2,p ) -g 1 (t, v 1 , r)g 2 (t, v 2 ) drdσdv 1 , with          v 1,p = p 2 1 + r 3 p 2 v 1 r 3 + v 2 p - 1 p v 2 - v 1 p σ , v 2,p = p 2 1 + r 3 p 2 1 p v 1 r 3 + v 2 p + r 3 v 2 - v 1 p σ .
(3.11)

We now establish the new variant of Povzner's inequality. We define, for

(v 1 , v 2 ) ∈ R 3 × R 3 , σ ∈ S 2 , r ∈ [1,
r 0 ] and s ≥ 1, the quantity

ψ s v1,v2 (σ, r) = r 3s v 1,p 2s + v 2,p 2s -r 3s |v 1 | 2s -|v 2 | 2s ,
where v 1,p and v 2,p are given by (3.11), and we begin by introducing the vector σ 0 ∈ S 2 defined as:

σ 0 = - v 2 -v1 p v 2 -v1 p .
Noticing that r 3 -1 p 2 ≥ 0 for all p ∈ N * , r ∈ [1, r 0 ], we get

ψ s v1,v2 (σ 0 , r) = p 2 1 + r 3 p 2 2s r 3s r 3 - 1 p 2 v 1 + 2 p v 2 2s + 2r 3 p v 1 -r 3 - 1 p 2 v 2 2s -r 3s |v 1 | 2s -|v 2 | 2s ≤ p 2 1 + r 3 p 2 2s r 3s r 3 - 1 p 2 |v 1 | + 2 p |v 2 | 2s + 2r 3 p |v 1 | + r 3 - 1 p 2 |v 2 | 2s -r 3s |v 1 | 2s -|v 2 | 2s ≤ (a s (p) -1) r 3s |v 1 | 2s + |v 2 | 2s + F (v 1, v 2 ), with a s (p) = p 2 1 + r 3 p 2 2s r 3 - 1 p 2 2s + r 3s 2 p 2s , and 
F (v 1 , v 2 ) ≤ C st (s) p 2 1 + r 3 p 2 2s × |v 1 | 2s-1 |v 2 | r 3s r 3 - 1 p 2 2s-1 2 p + 2r 3 p 2s-1 r 3 - 1 p 2 +|v 1 ||v 2 | 2s-1 r 3s r 3 - 1 p 2 2 p 2s-1 + 2r 3 p r 3 - 1 p 2 2s-1 ≤ G s,p,r |v 1 | 2s-1 |v 2 | + |v 1 ||v 2 | 2s-1 , with G s,p,r = C st (s) p 2 1 + r 3 p 2 2s r 3(2s-1) r 3 - 1 p 2 2s-1 2 p + 2 p 2s-1 r 3 - 1 p 2 ≤ C st (s, r 0 ) p .
Moreover,

a s (p) ≤ r 3 p 2 -1 2 + 4r 3 p 2 (1 + r 3 p 2 ) 2 s = 1,
consequently we have

ψ s v1,v2 (σ 0 , r) ≤ C st (s, r 0 ) p |v 1 | 2s-1 |v 2 | + |v 1 | |v 2 | 2s-1 . (3.12)
We then study the quantity ψ s v1,v2 (σ, r) -ψ s v1,v2 (σ 0 , r) for any σ ∈ S 2 . We denote here v 1,p,σ and v 2,p,σ the post-collisional velocities given by (3.11) corresponding to this vector σ, and v 1,p,σ0 and v 2,p,σ0 the post-collisional velocities given by (3.11) for σ = σ 0 . We can write

ψ s v1,v2 (σ, r) -ψ s v1,v2 (σ 0 , r) = r 3s |v 1,p,σ | 2s -|v 1,p,σ0 | 2s + |v 2,p,σ | 2s -|v 2,p,σ0 | 2s , with |v 1,p,σ | 2s -|v 1,p,σ0 | 2s ≤ p 2 1 + r 3 p 2 2s |v 1 | r 3 + 1 p 2 + 2 p |v 2 | 2s -r 3 - 1 p 2 |v 1 | - 2 p |v 2 | 2s , and 
|v 2,p,σ | 2s -|v 2,p,σ0 | 2s ≤ p 2 1 + r 3 p 2 2s 2r 3 p |v 1 | + 1 p 2 + r 3 |v 2 | 2s - 2r 3 p |v 1 | -r 3 - 1 p 2 |v 2 | 2s .
Using the inequality

(a + b) 2s -(a -b) 2s = s (a+b) 2 (a-b) 2 x s-1 dx ≤ 4s (a + b) 2s-2 ab,
with a, b > 0 and s > 1, and the inequality

(a + b) x ≤ 2 x (a x + b x ) ,
with x > 0, we obtain:

|v 1,p,σ | 2s -|v 1,p,σ0 | 2s ≤ p 2 1 + r 3 p 2 2s 4sr 3 p |v 1 | r 3 + 1 p 2 + 2 p |v 2 | 2s-2 |v 1 | 1 p |v 1 | + 2 |v 2 | ≤ p 2 1 + r 3 p 2 2s C st (s, r 0 ) p |v 1 | 2s-2 r 3 + 1 p 2 2s-2 + 2 p 2s-2 |v 2 | 2s-2 × |v 1 | 1 p |v 1 | + 2 |v 2 | , and 
|v 2,p,σ | 2s -|v 2,p,σ0 | 2s ≤ p 2 1 + r 3 p 2 2s 4sr 3 p 2r 3 p |v 1 | + 1 p 2 + r 3 |v 2 | 2s-2 2r 3 |v 1 | + 1 p |v 2 | |v 2 | ≤ p 2 1 + r 3 p 2 2s C st (s, r 0 ) p 2r 3 p 2s-2 |v 1 | 2s-2 + 1 p 2 + r 3 2s-2 |v 2 | 2s-2 × 2r 3 |v 1 | + 1 p |v 2 | |v 2 | . Then r 3s |v 1,p,σ | 2s -|v 1,p,σ0 | 2s + |v 2,p,σ | 2s -|v 2,p,σ0 | 2s (3.13) ≤ b s (p) r 3s |v 1 | 2s + |v 2 | 2s + H(v 1 , v 2 ), (3.14) 
where

b s (p) = C st (s, r 0 ) p 2 p 2 1 + r 3 p 2 2 , and 
H(v 1 , v 2 ) = p 2 1 + r 3 p 2 2 C st (s, r 0 ) p |v 2 | |v 1 | 2s-1 + |v 1 | |v 2 | 2s-1 + C st (s, r 0 ) p 2 2 p 2s-2 |v 1 | 2 |v 2 | 2s-2 + |v 2 | 2 |v 1 | 2s-2
.

Finally we estimate ψ s v1,v2 (σ, r) v1 p -v 2 . Thank to (3.12) and (3.13), we obtain, for s ≥ 1 and using the bound 1 ≤ r ≤ r 0 ,

ψ s v1,v2 (σ, r) ≤ C st (s, r 0 ) p 2 (|v 1 | 2s + |v 2 | 2s ) + C st (s, r 0 ) p |v 1 | 2s-1 |v 2 | + |v 2 | 2s-1 |v 1 | + C st (s, r 0 ) p 2 |v 1 | 2s-2 |v 2 | 2 + |v 2 | 2s-2 |v 1 | 2 .
Then

ψ s v1,v2 (σ, r) v 1 p -v 2 ≤ C st (s, r 0 ) p 2 1 p |v 1 | 2s+1 + |v 2 | 2s+1 + C st (s, r 0 ) p 1 p |v 1 | 2s |v 2 | + |v 1 | |v 2 | 2s + C st (s, r 0 ) p 1 p |v 1 | 2 |v 2 | 2s-1 + |v 2 | 2 |v 1 | 2s-1 + C st (s, r 0 ) p 2 1 p |v 1 | 3 |v 2 | 2s-2 + |v 2 | 3 |v 1 | 2s-2 ,
and we finally obtain (3.10). This ends the Proof of Proposition 3.1.

Thanks to Proposition 3.1, we can prove the following (uniform w.r.t. p) bounds for the solutions of eq. (1.15), (1.16): Proposition 3.2 Under the assumptions of Theorem 1.1, the moment of order 3 of f 2,p is uniformly bounded (w.r.t. p) for all T > 0, more precisely:

sup t∈[0,T ],p∈N * R 3 r0 1 1 p f 1,p (t, v, r) + f 2,p (t, v) (1 + |v| 3 ) drdv < +∞. (3.15)
Proof of Proposition 3.2 : Thanks to (3.5), (3.6), we know that (for all T > 0)

S := sup t∈[0,T ] sup p∈N * S 1 (f 1,p , f 2,p ) < +∞, (3.16) 
and

M 2 := sup t∈[0,T ] sup p∈N * M 2,p (f 1,p , f 2,p ) (t) < +∞.
(3.17)

The Proof will be divided in several steps. We first notice thanks to (3.8) and (3.9) used with s = 3/2 that (for all T > 0)

sup p∈N * sup t∈[0,T ] 1 p M 3,p (f 1,p , f 2,p )(t) < +∞. (3.18)
Using the same inequalities, but with s = 2, we then obtain:

sup p∈N * sup t∈[0,T ] 1 p 2 M 4,p (f 1,p , f 2,p )(t) < +∞. (3.19)
This allows us to prove, thanks to inequality (3.10) used with s = 3/2 that:

sup p∈N * sup t∈[0,T ] M 3,p (f 1,p , f 2,p )(t) < +∞. (3.20) 
Let us now give a few more details about the successive bounds:

Bound on 1 p M 3,p (f 1,p , f 2,p )(t): Since f 1,p and f 2,p are solutions of the equations (1.15) and (1.16), we have, for all s ≥ 1:

M 2s,p (f 1,p , f 2,p )(t) = M 2s,p (f 1,in , f 2,in ) + t 0 R 3 1 + |v 2 | 2s Q a (f 1,p , f 2,p )(τ, v 2 ) dv 2 dτ +c t 0 R 3 1 + |v 2 | 2s R a,p 2 (f 1,p , f 2,p )(τ, v 2 ) dv 2 dτ +c t 0 R 3 r0 1 r 3s 1 + |v 1 | 2s R a,p 1 (f 1,p , f 2,p )(τ, v 1 , r) drdv 1 dτ.
Thank to (3.8) and (3.9), we obtain the following bound when s ∈ [1, 2] (with the notations (3.16) and (3.17))

M 2s,p (f 1,p , f 2,p )(t) ≤ M 2s,p (f 1,in , f 2,in ) + p c K 2 M 2 t 0 M 2s-1,p (f 1,p , f 2,p )(τ ) dτ + (K 1 M 2 + c K 2 S) t 0 M 2s,p (f 1,p , f 2,p )(τ ) dτ. (3.21)
so that thanks to (3.19) and Gronwall's lemma, we get estimate (3.20) (and (3.15)).

We now are in a position to pass to the limit in (the weak form of) eq. (1.15), (1.16). We first notice that thanks to estimates (3.3), (3.5) and (3.6), the sequences (f 1,p , f 2,p ) p∈N * converge up to extraction to measure-valued functions

(f 1 , f 2 ) in L ∞ (R + ; M 1 (R 3 × [1, r 0 ]) × L 1 (R 3
)) weak* and the following estimate holds:

sup t∈[0,T ] R 3 r0 1 (1 + |v|)f 1 (t, v, r) dvdr < ∞, (3.24) sup t∈[0,T ] R 3 (1 + |v| 2 )f 2 (t, v) dv < ∞. (3.25)
In the sequel, we keep the notation f 1 (t, v, r) for the measure-valued function In order to conclude the Proof of Theorem 1.1, it remains to show that (f 1 , f 2 ) is a weak solution to eq. (1.18), (1.19). We study for that the convergence of the weak form of kernels R a,p 1 (f 1,p , f 2,p ), R a,p 2 (f 1,p , f 2,p ) and Q a (f 2,p , f 2,p ), when p → ∞, in the following Proposition.

f 1 : R + → M 1 (R 3 × [1, r 0 ])
Proposition 3.3 Under the assumptions of Theorem 1.1, we can extract from (f 1,p , f 2,p ) p∈N * a subsequence such that (for all T > 0):

1. for all ψ ∈ C 2 c [0, T ] × R 3 × [1, r 0 ] , lim p→∞ T 0 R 3 r0 1 p c R a,p 1 (f 1,p , f 2,p )ψ drdvdt = T 0 R 3 r0 1 K(f 2 ) • ∇ v ψ f 1 drdvdt; (3.26) 2. for all ϕ ∈ C 1 c [0, T ] × R 3 , lim p→∞ T 0 R 3 c R a,p 2 (f 1,p , f 2,p )ϕ dvdt = T 0 R 3 m(f 1,in )L(f 2 )ϕ dvdt 3. for all ϕ ∈ C c [0, T ] × R 3 , lim p→∞ T 0 R 3 Q a (f 2,p , f 2,p )ϕ dvdt = T 0 R 3 Q a (f 2 , f 2 )ϕ dvdt. Proof of Proposition 3.3 : 1. Let ψ ∈ C 2 c [0, T ] × R 3 × [1, r 0 ] . Denoting I 1,p := p c T 0 R 3 r0 1 ψ(s, v, r)R a,p 1 (f 1,p , f 2,p )(s, v, r) drdvds,
and

I 1 = T 0 R 3 r0 1 K(f 2 )(r, s) • ∇ v ψ(s, v, r)f 1 (s, v, r) drdvds,
where K(f 2 ) is given by (1.20), we prove that lim p→∞ I 1,p = I 1 .

Thank to the involutive character of the transformation (v 1 , v 2 ) → (v 1,p , v 2,p ), I 1,p can be written under the form :

I 1,p = c T 0 R 3 R 3 S 2 r0 1 1 2 √ π p c + r 2 f 1,p (s, v 1 , r)f 2,p (s, v 2 ) × ω • v 1 p -v 2 p ψ(s, v 1,p , r) -ψ(s, v 1 , r) drdωdv 2 dv 1 ds with v 1,p = v 1 + 2pr -3 p 2 + r -3 ω • v 2 - v 1 p ω,
and thanks to the relation

S 2 (a • ω) (b • ω) |a • ω| dω = π |a| (a • b) ,
for a ∈ R 3 and b ∈ R 3 , I 1 can be written under the form:

I 1 = 2c T 0 R 3 R 3 S 2 r0 1 r 2 |v 2 • ω| (v 2 • ω) f 2 (s, v 2 ) (ω • ∇ v1 ψ(s, v 1 , r)) × 1 r 3 f 1 (v 1 , r, s) drdωdv 1 dv 2 ds.
We now write the difference I 1,p -I 1 as the following sum:

I 1,p -I 1 = J 1 1,p + J 2 1,p + J 3 1,p + J 4 1,p + J 5 1,p ,
where

J 1 1,p = p c T 0 R 3 R 3 S 2 r0 1 1 2 √ π p c + r 2 -r 2 f 1,p (s, v 1 , r)f 2,p (s, v 2 ) × ω • v 1 p -v 2 ψ(s, v 1,p , r) -ψ(s, v 1 , r) drdωdv 2 dv 1 ds, J 2 1,p = p c T 0 R 3 R 3 S 2 r0 1 ω • v 1 p -v 2 -|ω • v 2 | f 2,p (s, v 2 ) ×r 2 f 1,p (s, v 1 , r) ψ(s, v 1,p , r) -ψ(s, v 1 , r) drdωdv 2 dv 1 ds, J 3 1,p = c T 0 R 3 R 3 S 2 r0 1 r 2 f 1,p (s, v 1 , r)f 2,p (s, v 2 ) |ω • v 2 | × p ψ(s, v 1,p , r) -ψ(s, v 1 , r) - 2 r 3 ω • ∇ v1 ψ(s, v 1 , r) (v 2 • ω) ×drdωdv 1 dv 2 ds, J 4 1,p = 2 c T 0 S 2 R 3 r0 1 1 r ω • ∇ v1 ψ(s, v 1 , r)f 1 (s, v 1 , r)drdv 1 × R 3 (f 2,p (s, v 2 ) -f 2 (s, v 2 )) (v 2 • ω) |ω • v 2 | dv 2 dωds, J 5 1,p = 2 c T 0 S 2 R 3 r0 1 1 r ω • ∇ v1 ψ(s, v 1 , r) (f 1,p (s, v 1 , r) -f 1 (s, v 1 , r)) drdv 1 × R 3 f 2,p (s, v 2 ) |ω • v 2 | (v 2 • ω) dv 2 dωds.
Note that the three first terms are related to the convergence of explicitly given functions of p (that is, we do not use the convergence of f 1,p , f 2,p in those terms), so they can easily be treated. On the contrary, the two last terms are related to the convergence of f 1,p , f 2,p . The term J 5 1,p is the one for which care is most needed, since it contains a product of two (a priori) weakly convergent sequences.

Noticing that

p ψ(s, v 1,p , r) -ψ(s, v 1 , r) ≤ p ∇ψ ∞ v 1,p -v 1 ≤ 2 ∇ψ ∞ v 2 - v 1 p ,
and thank to bounds (3.5) and (3.6), it is easy to prove that lim

p→∞ J 1 1,p = lim p→∞ J 2 1,p = 0. Moreover, ψ(s, v 1,p , r) -ψ(s, v 1 , r) = v 1,p -v 1 • ∇ v1 ψ(s, v 1 , r) + T (v 1 , v 2 , r, s, p) = 2pr -3 p 2 + r -3 ω • v 2 - v 1 p (ω • ∇ v1 ψ(s, v 1 , r)) + T (v 1 , v 2 , r, s, p), with, since ψ ∈ C 2 c [0, T ] × R 3 × [1, r 0 ] , |T (v 1 , v 2 , r, s, p)| ≤ D 2 v ψ ∞ 2 v 1,p -v 1 2 ≤ C st D 2 v ψ ∞ p 2 v 2 - v 1 p 2 . Then p ψ(s, v 1,p , r) -ψ(s, v 1 , r) - 2 r 3 (ω • ∇ v1 ψ(s, v 1 , r)) (v 2 • ω) |ω • v 2 | ≤ C st (r 0 ) D v ψ ∞ r 3 1 p 2 |v 2 | 2 + |v 1 | p |v 2 | + C st (r 0 ) D 2 v ψ ∞ p |v 2 | 3 + |v 2 ||v 1 | 2 p 2 + 2 |v 1 ||v 2 | 2 p ,
and thank to bounds (3.5), (3.6), and (3.15), we see that lim p→∞ J 3,p = 0. Morever, one can write

J 4 1,p = T 0 R 3 h(s, v 2 ) (f 2,p (s, v 2 ) -f 2 (s, v 2 )) 1 + |v 2 | 2 dv 2 ds with h ∈ L ∞ [0, T ] × R 3
; so that thanks to the weak convergence of (f 2,p ) p∈N * and to the bound (3.15), we get lim p→∞ J 4 1,p = 0. It remains to prove that lim p→∞ J 5 1,p = 0. We write for that

J 5 1,p = T 0 R 3 r0 1 2 c r ∇ v1 ψ(s, v 1 , r) • k p (s) (f 1,p (s, v 1 , r) -f 1 (s, v 1 , r)) drdv 1 ds, where k p (s) = R 3 S 2 ωf 2,p (s, v 2 ) |ω • v 2 | (v 2 • ω) dωdv 2 .
Thanks to estimate (3.5), the sequence (k p ) p∈N * is bounded in L ∞ ([0, T ]).

Moreover, for all h > 0 and t ∈ [0, T ] such that t + h ≤ T , the following estimate holds for all p ∈ N * :

t 0 |k p (s + h) -k p (s)| ds ≤ C st t 0 s+h s R 3 cR a 2,p (f 1,p , f 2,p )(τ, v 2 ) + Q a (f 2,p , f 2,p )(τ, v 2 ) × S 2 ω |ω • v 2 | (v 2 • ω) dω dv 2 dτ ds ≤ ht C st sup τ ∈[0,T ],p∈N * R 3 f 2,p (τ, v 2 ) |v 2 | 3 + 1 dv 2 × sup τ ∈[0,T ],p∈N * R 3 f 1,p (τ, v 1 , r) 1 + |v 1 | p + |v 1 | 2 p 2 + |v 1 | 3 p 3 drdv 1 + sup τ ∈[0,T ],p∈N * R 3 f 2,p (τ, v 2 ) (|v 2 | 3 + 1) dv 2 .
Using estimate (3.15), we deduce then from the criterion of strong L 1 compactness that {k p , p ∈ N * } strongly converges (up to a subsequence) in L 1 ([0, T ]).

But ]) weak*. This allows us to conclude that lim p→∞ J 5 1,p = 0.

R 3 r0 1 2 c r ∇ v1 ψ(s, v 1 , r) (f 1,p (s, v 1 , r) -f 1 (s, v 1 , r)) drdv 1 tends to 0 in L ∞ ([0, T 

Let

ϕ ∈ C 1 c [0, T ] × R 3 . We can write R 3 T 0 ϕ(s, v)R a,p 2 (f 1,p , f 2,p )(s, v) dvds = I + 2,p -I - 2,p ,
where we denote

I + 2,p = c T 0 R 3 R 3 S 2 r0 1 ϕ(s, v 2,p )f 1,p (s, v 1 , r)f 2,p (s, v 2 ) × 1 2 √ π p c + r 2 ω • v 1 p -v 2 drdωdv 1 dv 2 ds, and 
I - 2,p = c T 0 R 3 R 3 S 2 r0 1 ϕ(s, v 2 )f 1,p (s, v 1 , r)f 2,p (s, v 2 ) × 1 2 √ π p c + r 2 ω • v 1 p -v 2 drdωdv 1 dv 2 ds. Denoting I + 2 = c T 0 R 3 r0 1 r 2 f 1,in (v, r)dvdr × R 3 S 2 ϕ(s, v 2 -2 (ω • v 2 ) ω) f 2 (s, v 2 ) |ω • v 2 | dωdv 2 ds, and 
I - 2 = c T 0 R 3 r0 1 r 2 f 1,in (v, r)dvdr × R 3 S 2 ϕ(s, v 2 )f 2 (s, v 2 ) |ω • v 2 | dωdv 2 ds,
we prove that lim p→∞ I + 2,p = I + 2 (the proof can then be easily adapted to show that lim I + 2,p -I + 2 = J 1 2,p + J 2 2,p + J 3 2,p + J 4 2,p , where

J 1 2,p = c T 0 R 3 r0 1 f 1,in (v 1 , r)r 2 drdv 1 R 3 S 2 |ω • v 2 | ×ϕ (s, v 2 -2 (ω • v 2 ) ω) [f 2,p (s, v 2 ) -f 2 (s, v 2 )] dωdv 2 ds, J 2 2,p = c T 0 R 3 R 3 S 2 r0 1 ϕ(s, v 2,p )f 1,p (s, v 1 , r)f 2,p (s, v 2 ) × 1 2 √ π p c + r 2 -r 2 |ω • v 2 | drdωdv 1 dv 2 ds, J 3 2,p = c T 0 R 3 R 3 S 2 r0 1 ϕ(s, v 2,p )f 1,p (s, v 1 , r)f 2,p (s, v 2 ) 1 2 √ π pc + r 2 × ω • v 1 p -v 2 -|ω • v 2 | drdωdv 1 dv 2 ds, J 4 2,p = c T 0 R 3 r0 1 R 3 S 2 ϕ(s, v 2,p ) -ϕ (s, v 2 -2 (ω • v 2 ) ω)
×r 2 |ω • v 2 | f 2,p (s, v 2 )f 1,p (s, v 1 , r) drdv 1 dωdv 2 ds.

Firstly we have:

J 1 2,p = r0 1 R 3 f 1,in (v 1 , r)dv 1 r 2 dr × T 0 R 3 b(s, v 2 ) [f 2,p (s, v 2 ) -f 2 (s, v 2 )] (1 + |v 2 |) dv 2 ds with b(s, v 2 ) = 1 (1 + |v 2 |) S 2 ϕ (s, v 2 -2 (ω • v 2 ) ω) |ω • v 2 | dω,
and since b ∈ L ∞ ([0, T ] × R 3 ), the convergence of (f 2,p ) p∈N * in L ∞ [0, T ]; L 1 (R 3 , (1 + |v|) dv) weak* implies that lim p→∞ J 1 2,p = 0. Then, we can observe that f 2,p (τ, v 2 ) dv 2 , so that lim p→∞ J 2 2,p = 0 and lim p→∞ J 3 2,p = 0. Finally, we have the following estimate:

J 2 2,p ≤ C st √ p ϕ ∞ T R 3 r0 1 f 1,in (v 1 , r) drdv 1 × sup τ ∈[0,T ],p∈N * R 3
J 4 2,p ≤ c r 2 0 ∇ϕ ∞ T 0 R 3 R 3 r0 1 f 1,p (s, v 1 , r)f 2,p (s, v 2 ) |v 2 | × S 2 v 2,p -(v 2 -2 (ω • v 2 ) ω) dωdrdv 2 dv 1 ds, with v 2,p -(v 2 -2 (ω • v 2 ) ω) = - 2p 2 p 2 + r -3 ω • v 2 - v 1 p ω + 2 (ω • v 2 ) ω ≤ C st p (1 + |v 1 |) (1 + |v 2 |) .
We conclude that lim We prove here that lim p→∞ A 1,p = 0 (the proof can easily be adapted to show that lim p→∞ A 2,p = 0). We write A 1,p as the following sum:

A 1,p = J 1 3,p + J 2 3,p , is itself a function, given by f 1 (t, v, r) = f 1,in v -t 0 K(f 2 )(s, r)ds, r .

Remark: Let us also notice that thanks to classical arguments, uniqueness holds for "reasonable" solutions of eq. (1.1) -(1.2), since this system involves three Boltzmann kernels for cutoff hard potentials or hard spheres. It also holds for the limiting model (1.18) -(1.19). Indeed, eq. (1.19) is now autonomous (that is, not coupled to another equation), and it involves a mixture of a linear and a nonlinear Boltzmann kernel for cutoff hard potentials or hard spheres, for which uniqueness can be proven thanks to classical arguments. Then eq. (1.18) is (for a given f 2 ) a linear transport equation for which uniqueness is also classical (once again for "reasonable" solutions and initial data).

  is indeed a direct consequence of relations (3.1), (3.2) and (3.4).

  p (t, v, r)r 2 drdv = R 3 r0 1 f 1,in (v, r)r 2 drdvand we write the difference I + 2,p -I + 2 as the following sum:

  f 2,p (τ, v 2 ) |v 2 | dv 2 , p (τ, v 1 , r) |v 1 | drdv 1 × sup τ ∈[0,T ],p∈N * R 3

  ϕ ∈ C c [0, T ] × R 3 . Let us write: v 2 ) [Q a (f 2,p , f 2,p )(s, v) -Q a (f 2 , f 2 )(s, v)] dvds = A 1,p -A 2,p ,where we denoteA 1,p = T 0 R 3 R 3 S 2 [f 2,p (s, v)f 2,p (s, v * ) -f 2 (s, v)f 2 (s, v * )] ×ϕ(s, v ) C a ef f |v -v * | α dσdv * dvds, p (s, v)f 2,p (s, v * ) -f 2 (s, v)f 2 (s, v * )] . ×ϕ(s, v) C a ef f |v -v * | α dσdv * dvds.

  as in (3.24), though this measure might a priori not have a density w.r.t. Lebesgue's measure.Moreover, thanks to assumption (1.21), and bound (3.15), moments of order lower or equal to 3 of f 2,p are bounded w.r.t p.
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Taking s = 3 2 in (3.21), we obtain

Then, thanks to Gronwall's lemma, we can deduce that for all t ∈ [0, T ] :

(3.22) so that relation (3.18) holds.

Bound on

1 p 2 M 4,p (f 1,p , f 2,p )(t): Using now inequality (3.21) with s = 2, we see that for some constant K 4 > 0, for all t ∈ [0, T ],

Using (3.22) and Gronwall's lemma, we see that estimate (3.19) holds.

Bound on M 3,p (f 1,p , f 2,p )(t). We here use the bound (3.10), and obtain, for all s ∈ [1, 2], the following estimate:

Taking s = 3 2 in the previous estimate, we get:

where

follows that lim p→∞ J 1 3,p = 0. Then, using the weak formulations of Q a and R a,p 2 , we observe that

As a consequence, we can extract from (κ p ) p∈N * a subsequence which converges a.e. in [0, T ] × R 3 . Since moreover

3,p = 0. This ends the proof of Proposition 3.3.

We can then deduce from Proposition 3.3 that f 1 and f 2 are weak solution of (1.18) -(1.20), in the sense given by (1.22) and (1.23). This ends also the Proof of Theorem 1.1.

Remark: Note that f 1,in being a function (that is, not only a measure), the solution of the equation