2022 DPS (London)

Saturn Rules!(?) Irregular moon populations

B. Gladman, E. Ashton, M. Beaudoin (Univ. of British Columbia) now J-M. Petit (Obs-Besancon, CNRS) M. Alexandersen (Harvard Smithsonian)

Irregular moon discoveries

- Nearly all have been found in the CCD era due to:
- Depth
- Area
- Opposition search planet+moons displace nearly 'rigidly' in a night

Irregular moon discoveries

- Nearly all have been found in the CCD era due to:
- Depth
- Area
- Opposition search planet+moons displace nearly `rigidly' in a night
- Two main types of search techniques:
- A) 3 image linearly-moving target searches.
- Shorter exposures limit depth to prevent trailing losses
- Scattered light can be the limited factor on depth

Irregular moon diss

- Nearly all have been found in the
- Depth
- Area
- Opposition search planet+moons in a night
- Two main types of search techniqu
- A) 3 image linearly-moving target se
- Shorter exposures limit depth to pre'
- Scattered light can be the limited factor on depth

Irregular moon discoveries

- Nearly all have been found in the CCD era due to:
- Depth
- Area
- Opposition search planet+moons displace nearly `rigidly' in a night
- Two main types of search techniques:
- A) 3 image linearly-moving target searches.
- Shorter exposures limit depth to prevent trailing losses
- Scattered light can be the limiting factor on depth
- B) 'Shift and stack' or 'pencil-beam' searches
- Difficult for J\&S due to huge range of possible rates and angles

Shift and stack

Image 1

Image 2

Image 3

Image 1

Image 2

Image 3

Stacked image

Shift Rate Too Slow

$$
\begin{aligned}
& \text { Mry }
\end{aligned}
$$

$$
\begin{aligned}
& \text { " } \\
& \text { Li } \quad \mathrm{N}+\mathrm{N}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ", }
\end{aligned}
$$

Juuust right

 .
" y-

Shift Rate Too Fast

At sub-arcsec IQ, there is a large parameter space of recombination rates and angles

Uranus + Neptune:

- parameter space moderate
- pencil-beams covered most of Hill spheres ~ 20 years ago
- mag~25 ==> D> ~10 km

Jupiter+Saturn:

-huge challenge due to proximity and large Hill Spheres

- 3-image methods done by ~2006

Jovian System

Characterised Detection
Uncharacterised Detection

Ashton et al (2020) PS J

Ashton et al (2020) PSJ

Ashton et al (2020) PSJ

Saturnian detections

Efficiency functions

Saturn

Jupiter

Bottke et al. (2010)

Bottke et al. (2010)

- Jupiter IS

consistent with ~ collisional equilibrum
-At D~3 km, Saturn has ~4 times as many irregular as Jupiter (!)

- Saturn may have more moons than all other planets combined(!)

S/2019 S 1 : Exceptionally close

The Planetary Science Journal, 3:107 (5pp), 2022 May
Ashton et al

- Often deep in Saturn's scattered light.
-Direct orbits harder to find?
- Gets very close to lapetus (1.15x)

S/2019 S 1 is in the Inuit group

Summary

- Jupiter's moons in \sim collisional equilibrium down to $<1 \mathrm{~km}$
- Saturnian system had a collision generating many few-km moons ~ 100 Myr ago
- This results in it having >100 moons with D>3 km
- The preponderance of retrograde irregulars is enhanced by selection effects, as the direct moons suffer from scattered light due to their closer orbits.

Clues from physical studies

Saturnian system

Jovian irregular system

Saturnian irregular system

Jovian Results

- 55 non-implanted were found.
- 3 travelling fast outer main asteroids).
- Thus 52 moon candidates

Catalogued objects near the field

Uranian and Neptunian irregulars

Irregular Moons - PROB NOT

- Usually irregular moons are smaller in size and have larger orbits compared with regular moons.
- They typically have inclined, non-circular orbits.
- Regular moons formed around their host planet, whereas irregular moons were captured from a heliocentric orbit.
- Two popular capture mechanisms
- Gas drag from a 'puffy’ planet
- Binary exchange reaction

Archival jovian data

- Done essentially as a `warm up’ for the Saturnian search, but yielded interesting new result.
- Consisted of a single one square-degree CFHT field.
- Acquired on $8^{\text {th }}$ Sept 2010 for bright jovian recovery.
- The field centre was 1.5° west of Jupiter
- There were 60 sequential 140-second exposures (3 hours total)
- This data set had never been 'shifted and stacked' because of the large parameter space this entailed.

Saturnian data

- Consisted of a two 1.1 square-degree CFHT fields.
- The two fields were east and west of Saturn.
- Both fields were visited twice on sequential nights.
- Acquired on $1^{\text {st }}$ to $4^{\text {th }}$ July 2019.
- Each visit consisted of 44 sequential 205-second exposures (3 hours total).

Implanted moons

- Artificial moons were implanted into the images to measure the efficiency of the operators.
- The artificial moons were made to look indistinguishable from the real ones (time variable PSF, trailing included).
- There were ~ 600 implanted moons per CCD for the jovian search and ~ 150 per CCD for the saturnian search

ovian Results

- 52 candidates
- 4 fainter than our characterisation limit.
- 1 found, by chance, while preforming astrometry on another candidate moon.
- Thus 47 characterised moons.
- Of which, 7 (of the brightest) were linked to previously known moons.

Extrapolation

- Almost all of our moons are likely retrograde since
- Only a small fraction of known jovians are direct (10/71)
- Most (8 of 10) direct jovians never, or only just, make it far enough away from Jupiter to appear in our field.
- On average there 1/11 of known retrograde jovians would be in our offset sky coverage.

Jovian size distribution

- Fitting $\mathrm{N}(<\mathrm{H}) \propto 10^{\alpha \mathrm{H}}$ yields:
$-\alpha=0.6 \pm 0.3$ for known moons, $m_{r}=21.9$ to 23.1.
$-\alpha=0.29 \pm 0.15$ for our detections, $m_{r}=23.7$ to 25.7
- This is not a surprise, as simulations (Bottke et al. 2010) produce 'waves' in the luminosity function as the exponential index fluctuates around the collisional equilibrium value of $\alpha=$ 0.5 (Dohnanyi 1969) as one descends the size distribution.
- Note that this work is 2 mags deeper.

Saturnian Results

- 120 non-implanted objects were found.
- 74 were characterised detetctions.
- 38 were linked to previously known moons.

Saturnian size distribution

- We estimate 150 saturnians with $\mathrm{D}>3 \mathrm{~km}$, about 3 times larger than the same-scale jovian population.
- Fitting size distribution, between $D=3$ and 4 km , yields $\alpha=$ $0.78^{+0.12}-0.14$.
- Were $\alpha=0.78$ to continue to $\mathrm{D}=1 \mathrm{~km}$, there will be ~10,000 multi-km saturnian irregulars.
- This slope is greater than collisional equilibrium ($\alpha=0.5$).
- We believe this is due to recent large collisions in the retrograde population.

A collision in the saturnian system

- In Chapter 5 of the thesis we look at which group did this recent collision occur in, and conclude that it likely involved the non-Phoebe-like members of the Norse group.
- Need orbits to say for sure (which will involve $5 x$ as much telescope time).
- The simple nov collision rate approximation is used to get a timescale of 0.11-2.8 Gyr for how recent the collision is.

Conclusions

- Shifting and stacking two different data sets produced 52 jovian and 120 saturnian irregular moon candidates.
- The jovian size distribution becomes shallower, to $\alpha=0.29$ beyond the completion limit.
- The saturnian size distribution appears to steepen to $\alpha=0.78$ beyond the completion limit, which we believe to be due to a recent ($0.11-2.8 \mathrm{Gyr}$) collision in the retrograde population.

Extra Slides

Estimates of Asteroid Strength

Population Index vs. Strength Law Slope

4.5 Byr Numerical Simulation

Efficiency Function

An efficiency funciton is created by fitting the binned fraction of implanted moons found by the following function:

$$
\eta\left(m_{r}\right)=\frac{A}{2}\left(1-\tanh \left(\frac{m_{r}-\mu}{\delta}\right)\right)
$$

$$
A=0.998, \mu=25.69 \text { and } \delta=0.31
$$

