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Abstract

Human voice production involves neuromuscular control of the vocal tract articulators resulting in
complex time-varying vocal tract geometries associated with different speech sounds. In order to
study and measure the acoustics of a dynamic vocal tract, a simplified two-parameter vocal tract
model is investigated, which is suitable to be exploited in physical studies using a dynamic mechani-
cal vocal tract replica allowing to impose both model parameters which are the position and degree of
constriction. Acoustic resonance frequencies up to 5 kHz are modelled for the full parameter space.
Results are compared to formants of human speakers for the simplified two-parameter vocal tract
model including selected vocal tract geometries derived from MRI data. It is found that the agree-
ment for the first three resonance frequencies for 10 vowels is within 10% since the mean relative
error varies from 0.9% up to 9.1%. Overall, the simplified two-parameter vocal tract model allows to
reproduce resonances up to 5 kHz. Advantages and limitations of the model are discussed.

Keywords: Acoustics; Waveguide dynamics; Vowels.

1. Introduction

The human vocal tract extends from the glottis at its back to the lips at its front. Sound propaga-
tion inside the vocal tract is an important area of study in speech acoustics. In this paper, we approach
the problem from the point of view of vowels, and investigate the relationship between acoustic and
geometrical waveguide features. Indeed, the vocal tract is a complex waveguide which is shaped dynam-
ically through articulation. As such, even for a single sustained vowel, cross-section areas throughout
the vocal tract can vary from a few up to several hundred mm2 [6]. Acoustic resonance frequencies or
formants issued by the vocal tract waveguide vary considerably depending on the vocal tract geometry.
The first formant frequencies (F1 up to F3), which are crucial to distinguish between vowels, vary in a
frequency band up to about 5 kHz and are reported to differ considerably between speakers. The inter-
speaker variability observed for adult males, adult women and children is illustrated in Fig. 1. Mean
formant frequencies from Table II of the reference paper by Peterson and Barney [5] for a total of 76
speakers (33 men, 18 women and 15 children) are plotted as well as the inter-speaker range obtained
considering the maximum and minimum formants for 43 adult males, 53 adult women and 43 children
from [1, 2, 3, 4, 5, 6, 8]. The range for each single formant shows the variability associated with each
vowel, which can amount to the same order of magnitude as the formant frequency. The size of the
(F1, F2) space associated with each vowel is then indicated in Fig. 1(b) with an ellipse whose axes and
orientation are obtained following a principal component analysis of the co-variance matrix of 13 (M,
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(a) frequency ranges for F1, F2, F3 (b) formant space (F1, F2)

Figure 1: Vowel formants Fi observed for American English speakers (43 adult men (M), 53 adult woman
(W), 43 children (C)) [1, 2, 3, 4, 5, 6, 8], values (male adult) of Table II in [6] (×) are indicated as a
reference: a) frequency range (bars) and mean values (•, Table II [5]), b) formant space from 13 (F1, F2)
pairs (M, W, C) for each vowel with influence of constriction degree (F1) and location (F2).

W and C) formant pairs (F1, F2) [1, 2, 3, 4, 5, 6, 8]. Phonetic textbooks generally relate an increase of
F1 to an articulatory release of a vocal tract area constriction (close towards open) and an increase of
F2 to an articulatory forward shift of a vocal tract constriction (back towards front) [1]. Following this
reasoning, the vowel space spanned by formant frequencies (F1, F2) plotted in Fig. 1(b) reflects both the
degree and the position of a main vocal tract constriction. Using this reasoning a simplified geometrical
waveguide model capable to impose these geometrical constriction features should be able to reconstruct
the formant space for vowels up to some degree. Therefore, in this work, it is aimed to investigate the
relationship beween formants and vocal tract geometry using a simplified two-parameter geometrical de-
formable waveguide model proposed in [7]. It is sought to what extent this model in combination with a
one-dimensional (1D) acoustic model is capable to explain the extent of the vowels space for formants up
to 5 kHz. The model outcome in terms of acoustic resonance frequencies is evaluated against formants
given in literature for sustained vowels uttered by human speakers. The ability of simplified waveguides
to reproduce vowel formants is discussed.

2. Methodology

2.1 Simplified vocal tract model and 1D acoustic model

2.1.1 Simplified two-parameter vocal tract model

A simplified two-parameter vocal tract model is based on the analytical compressed elastic cylindrical
waveguide model proposed and validated in [7]. The undeformed uniform cylindrical waveguide of
length L0 and wall thickness d is positioned along the x-direction and its uniform cross-section along the
yz-plane is characterised by the internal diameter D with circular cross-section area A0 = πD2/4. The
waveguide is deformed by squeezing it locally between a pincher consisting of two rounded symmetrical
bars (diameter 6.4 mm) positioned parallel to the y-direction as depicted in Fig. 2(a). Pinching squeezes
the waveguide locally so that a constriction is induced along the longitudinal x-direction reducing the
cross-sectional area along the deformed portion of the waveguide. The geometrical effect of squeezing
can be accurately described as a function of two geometrical parameters, namely constriction position xc

and constriction degree P(β) = 1− β with β = bxc/b0, b0 = D/2 and bxc ≤ b0 denoting the minor axis
of the cross-section at x = xc corresponding to its half-length along the z-axis. Increasing the squeezing

ICSV29, Annual Congress of International Institute of Acoustics and Vibration (IIAV), 9-13 July 2023



(a) without constriction, P = 0 % (b) with constriction, P = 88 %

Figure 2: Simplified two-parameter (xc,P) geometrical vocal tract model as a cylindrical waveguide
of length L0 squeezed with a single pincher (two parallel bars) at constriction position xc imposing
constriction degree P = 1− bxc/b0: a) P = 0 %, b) P = 88 % and stadium-shaped cross-sections.

effort increases thus P from P(β = 1) = 0 (bxc = b0) for the undeformed waveguide to P(β < 1) > 0
(bxc < b0) for the deformed waveguide until at most P(β = 0) = 1 (bxc = 0) for complete closure. The
deformation is quasi-symmetrically around the constriction position xc over a length of 8× b0 (or 4×D)
and deformed cross-sections can be accurately modelled analytically considering as a stadium ring with
rounded edges as illustrated in Fig. 2(b). The cross-sectional area A(x) and major axis a(x) as a function
of longitudinal x-position is then obtained for imposed parameter set (P , xc) as

A(x;P , xc) =πβ2(x;P , xc)b
2
0 + 2A0β(x;P , xc)

(
1− β(x;P , xc)

)
, (2.1.1)

a(x;P , xc) = β(x;P , xc)b0 +
π

2
b0
(
1− β(x;P , xc)

)
(2.1.2)

with β(x;P , xc) = b(x;P , xc)/b0 obtained from minor axis b(x;P , xc) as

b(x;P , xc) = b0

1− P

(
(x− xc)

2

α2
P

+ 1

)−1
 (2.1.3)

with αP denoting half peak width at half amplitude of the deformed longitudinal outer edge approximated
as a quadratic function of the constriction degree αP(P) = 48P2 − 70P +39. As illustrated in Fig. 1(b),
the cross-section shape at each x-position along the longitudinal waveguide axis can be modelled from the
minor b(x) and major a(x) axes. The outlined simplified and analytical two-parameter geometrical vocal
tract waveguide model allows thus naturally a quantitative and systematic assessment of the influence of
the constriction position xc and constriction degree P on the acoustic waveguide resonances. The model
is thus particularly suitable to investigate to what extent constriction parameters (xc,P) can reproduce
the formants illustrated in Fig. 1. In the following, geometrical waveguide characteristics D = 25 mm,
d = 3 mm and L0 = 171 mm are held constant. The waveguide outlet at the lips (x = 0) is set in an
rectangular flat baffle (37 cm × 35 cm and thickness 5 mm) in order to represent the face.

2.1.2 Acoustic model

The lowest cut-on frequency fc associated with the first higher order acoustic propagation mode de-
pends on the largest dimension of the waveguide cross-sections as well as on the cross-section shape [1].
The largest cross-section dimension corresponds to the half-width of the stadium ring at the constric-
tion, i.e. major axis a(x = xc) denoted ac in short (Eq. (2.1.1)). For very small (near 0) and very large
(near 1) constriction degrees P , the stadium ring cross-section shape can be approximated as circular and
rectangular respectively [7]. For these shapes, cut-on frequencies fc as a function of major axis ac are
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given analytically as fc = α◦c/ac (circular, small Pd) and fc = α□c/ac (rectangular, large P) with with
c = 340 m/s denoting the sound speed in air at room temperature (21 oC) and α◦ = 0.92/π and α□ = 1/4.
Accounting for the waveguide dimensions, this implies that the lowest cut-on frequency decreases from
fc = 7.9 kHz (P = 0 %, circular) to fc = 4.3 kHz (rectangular, P = 98 %). For vowels (Fig. 1(a)) the
first three formants Fi∈{1,2,3} are smaller than fc, thus a plane wave acoustic model approach, neglecting
higher order mode propagation, can be used to evaluate to which extent acoustic resonances frequencies
of the simplified two-parameter vocal tract model can explain vowel formants and their variability.
For plane waves, the acoustic field inside the waveguide (Fig. 2) at each longitudinal position x and time
t is given as p(x, t) = P (x)ejωt with radian wave frequency ω = 2πf and complex-valued pressure am-
plitude P (x) = P+e

−jkx + P−e
jkx obtained as the sum of an acoustic wave with amplitude P+ traveling

in the positive x-direction and an acoustic wave with amplitude P− traveling in the negative x-direction
where k denotes the wavenumber. For a plane wave propagating in the positive direction, the reflection
coefficient Rx at position x is the ratio of the reflected and incident wave Rx = P−/P+e

2jkx from which
the impedance Zx at position x is obtained as Zx = Zc(1 +Rx)/(1−Rx) with characteristic impedance
Zc = ρc/A(x) and air density ρ = 1.2 kg/m3. At the open waveguide outlet (x = 0), the assumption
of a plane wave front underlying Rx no longer holds. The reflection coefficient at the outlet R0 is then
obtained from the radiation impedance as R0 = −|R0|e−2jkδ with δ the real part of the end correction
defining the effective acoustic waveguide length. The reflection coefficient Z0 is obtained from R0 fol-
lowing Zx. The real part of the radiation impedance represents the radiation loss. In the case of a flanged
outlet condition, corresponding to the rectangular baffle at x = 0, the modulus of the reflection coefficient
R0 and end correction δ are approximated for kb0 < 3.5 or wave frequencies f < 15 kHz as

|R0| =
1 + 0.323(kb0) + 0.077(kb0)

2

1 + 0.323(kb0) + (1− 0.077)(kb0)2
(2.1.4)

δ

b0
=0.8216

(
1 +

0.77(kb0)
2

1 + 0.77(kb0)

)−1

. (2.1.5)

Using a transmission line principle for impedance matching, the impedance between neighbouring points
xi and xi+1 with ∆x = xi+1 − xi along the positive x-directions yields

Zi

Zc

=
j tan k∆x+ Zi+1/Zc

1 + j
Zi+1

Zc

tan k∆x

. (2.1.6)

As outlet radiation impedance Z0 is known, the impedance at each x position can be determined when
the one-dimensional waveguides area function A(x) is known. The impedance at each x-position along
the waveguide yields Z(x) = P (x)/U(x) with acoustic volume flow rate u(x, t) = U(x)ejωt. Applying
the transmission line principle results then in the transfer matrix[

P (xi)
U(xi)

]
=

[
cos k∆x jZc sin k∆x

jZ−1
c sin k∆x cos k∆x

]
×
[
P (xi+1)
U(xi+1)

]
. (2.1.7)

Thus, from an imposed U(x = −L) at the waveguide’s inlet, P (x = −L) is found and the acoustic field
inside the waveguide can be determined from Eq. 2.1.7. For each frequency, transfer function H

H = 20 log10

∣∣∣∣∣ U0

U−L

∣∣∣∣∣ . (2.1.8)
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between inlet (x = −L) and outlet (x = 0) allows to determine resonance peak frequencies F̂ . The
model outcome is quantitatively evaluated by considering the mean relative absolute error with respect
to N formants Fi reported in [6] for a male adult with formant index i in the set {i1, . . . , in} as

Eri1...in =
1

N

∑
i∈{i1,...,in}

|F̂i − Fi|
Fi

. (2.1.9)

2.2 MRI-based vocal tract waveguides

Realistic vocal tract 1D cross-sections area functions A(x) obtained from MRI imaging and associ-
ated formants (× in Fig. 1) for 10 different sustained vowel utterances (6 up to 10 seconds) from Table
II in [6] are used as a reference. Original area functions A(x), as plotted in Fig. 3(a) and denoted MRI0,
are all characterised by at least one major constriction. The influence of such a constriction can be in-
vestigated with the simplified two-parameter vocal tract model presented in Section 2.1.1. Nevertheless,
due to the constant overall dimensions of the last (−L0, A0), cross-section areas A(x) can be larger than
the maximum cross section area A0 of the simplified vocal tract model. The same way the length of the
vocal tract L can be either shorter or longer than L0. To relate vocal tract geometries MRI0 to the sim-
plified two-parameter vocal tract model two geometrical transformations are assessed forcing the MRI
area function to fit within the unconstricted (P = 0 %) simplified two-parameter vocal tract domain. A
first type of reshaped vocal tract geometries labelled MRII is obtained by rescaling the longitudinal di-
mension with a factor αx = L0/L so that the rescaled length matches L0. In addition, cross-section areas
greater than A0 are set to A0. A second type of reshaped geometries labelled MRIII is obtained by scal-
ing the x-dimension again with αx and cross-section areas with factor αA = A0/max(A(x)). Rescaled
MRIII vocal tract lengths matches thus L0 and the maximum cross-section area matches A0. All three
(MRI0, MRII , MRIII) MRI-related vocal tract area functions A(x) are illustrated in Fig. 3(b) for vowel
textbfa. Scaling with αL (MRII and MRIII) alters the constriction position xc, which will either shift
towards the lip (xc decreases) when αx < 1 (L > L0) or towards the glottis (xc increases) when αx < 1
(L < L0). On the other hand scaling with αA (MRIII) affects constriction degree P , which will either
decrease for αA > 1 (A0 > max(A(x))) or increase for αA < 1 (A0 < max(A(x))). Thus, transforma-
tions might affect formants, but favour use of the simplified two-parameter vocal tract model in order to
investigate observed differences between geometries and between MRII and MRIII in particular.

(a) MRI0 for a, i, u (b) vowel a: MRI0, MRII , MRIII

Figure 3: Area functions A(x) from MRI imaging [6] and simplified two-parameter vocal tract domain
(−L0, A0) for P = 0 % (gray shaded): a) original MRI0 , b) MRI0 and reshaped MRII and MRIII .
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3. Results

3.1 Resonance space for MRI-based vocal tract waveguides

Model results obtained when applying the 1D acoustic model approach outlined in Section 2.1.2 to
waveguides obtained using vocal tract area functions MRI0, MRII and MRIII (Section 2.2) are plotted
in Fig. 4 and scaling factors (αx, αA) used to obtain MRII and MRIII from the original area function
MRI0 from [6] are indicated. Modelled transfer functions H(f) for vowels i, E, a, u are plotted in
Fig. 4(a)-4(d) and resonance peaks are indicated. Depending on the vowel, transfer functions H(f)
obtained for MRI0, MRII and MRIII are a near match (i or E) or exhibit significant differences (a or u).
The modelled formant space (F̂1, F̂2) for MRI0, MRII and MRIII as well as literature values (F1, F2)
associated with MRI0 for 10 vowels are plotted in Fig. 4(e). Although that for each vowel all four data
points remain in the same region differences are apparent. For MRI-based geometries, the discrepancy
might be related to the magnitude of scaling factors (αx, αA) (see e.g. a or u). For MRI0 and literature
values reported in [6] the observed discrepancy can be partly explained by a mismatch in tempeature and
thus sound speed. The discrepancy is further quantified considering Er1, Er2, Er3 for each vowel in
Fig. 4(f)- 4(h). Relative error values Er2 and Er3 are less than 10 % whereas Er1 can increase up to
23 %. The overall mean relative error Er123 varies from 0.9 % up to 9.1 %. Overall, the discrepancy is
thus acceptable for all geometries including MRII and MRIII which fit within the largest A(x) domain
occupied by the simplified two-parameter vocal tract model. This leads to the statement that formants
F̂i∈1,2,3 can be modelled within this domain. In how far imposing a single constriction with parameters
(xc,P) allows to explain observed formants and associates tendencies is sought in the next section.

(a) i (αx = 0.98, αA = 1.08) (b) E (αx = 1.01, αA = 0.51)

(c) a (αx = 0.99, αA = 1.79) (d) u (αx = 1.15, αA = 1.17) (e)

(f) (g) (h) (i)

Figure 4: Model outcome for vocal tract area functions MRI0, MRII and MRIII : a-d) transfer functions
H(f) with resonance peaks (•), e) modelled (F̂1, F̂2) (✳, •, ◦) and (F1, F2) (×) from literature [6], f-h)
relative accuracy Er1, Er2 and Er3 and i) mean relative accuracy Er123.
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3.2 Resonance space for simplified two-parameter vocal tract model

Modelled resonance frequencies F̂1(xc,P), F̂2(xc,P) and F̂3(xc,P) for the simplified vocal tract
model described in Section 2.1.1 are shown in Fig. 5 as a function of its two-parameter space (xc,P)
with −L0 ≤ xc ≤ 0 and 0% ≤ P < 100%. Modelled F̂1 vary between 250 Hz and 500 Hz (overall
increase of 100 %), modelled F̂2 between 900 Hz and 1600 Hz (overall increase of 77 %) and modelled
F̂3 between 1800 Hz and 2800 Hz (overall increase of 55 %). Consequently, vowels with formants
outside these ranges can not be reproduced with the simplified two-parameter vocal tract model using
the chosen conditions. This is illustrated in Fig. 5(d) showing the limited resonance space (F̂1, F̂2),
associated with the complete parameter space (xc,P), compared to vowel formant space. The influence
of varying waveguide length L = L0 on the resonance space is shown for a shorter (L = 130 mm) and
longer (L = 250 mm) waveguide. Smallest and greatest resonance frequencies F̂i∈1,2,3 are all observed
in the parameter region associated with large constriction degrees P . In this high P-range, F̂1 (Fig. 5(a))
decreases with constriction position xc which is a tendency not illustrated in Fig. 1(b) where xc is solely
associated with F2. Variation of F̂1 occurs for rather extreme P > 90 %. Consequently, extreme xc

near the outlet and inlet as well as extreme constriction degrees P > 90 % are needed to exploit the
full range of F̂1. The increase of F̂1 for decreasing constriction degree P (close to open) pointed out in
Fig. 1(b) is retrieved for xc away from the inlet (17 %) up to the waveguide’s outlet (83 %). However,
for the xc-range near the outlet (17%), the tendency is reversed as F̂1 decreases for decreasing P , which
thus contradicts the thumb rule in Fig. 1(b). In the high P-range, F̂2 (Fig. 5(b)) exhibits two successive
maxima and minima for increasing xc. Nevertheless, when not considering the extrema (10 %) near
the inlet and outlet, F̂2 increases with xc (back to front). This tendency follows thus the thumb rule
indicated in Fig. 1(b). Overall, the tendency is again most prominent for large P although that for
some xc the finding holds for P > 40 %. In the high P-range, F̂3 (Fig. 5(c)) exhibits three successive
maxima and minima for increasing xc. Consequently, alternating tendencies for increasing xc occur as
near the outlet (14 %), F̂3 decreases, next F̂3 increases towards the center (36 %), followed again by
a decrease of F̂3 (26 %) where-after F̂3 increases towards the outlet (24%). This increase or decrease
of F̂i∈1,2,3 with xc for high enough P is not necessarily linear, but can be concentrated in a compact
parameter region. For constriction degrees P lower than the high P-range, the variation of resonance
frequencies with either xc or P is limited, suggesting that a multitude of vocal tract geometries are
associated with a same set (F̂1, F̂2, F̂3). From the viewpoint of dynamic resonance frequency variation
by two-parameter articulation, this might be a favourable feature. The relative error for the full two-
parameter space Er12(xc,P) of the simplified vocal tract model is quantified for each vowel as illustrated

(a) F̂1(xc,P) (b) F̂2(xc,P) (c) F̂3(xc,P) (d) (F̂1, F̂2), influence of L

Figure 5: Modelled resonance frequencies F̂i∈1,2,3 for the full space (xc,P) of the simplified two-
parameter vocal tract model: a) F̂1, b) F̂2, c) F̂3, d) (F̂1, F̂2) on formant space (F1, F2) of Fig. 1(b)
for waveguide lengths L = 250 mm (◦), L = L0 (•, 171 mm) and L = 130 mm (•).
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(a) i, 17 %: (-52 mm, 98 %) (b) E, 4 %: (-159 mm, 99 %) (c) a, 17 %: (-142 mm, 99 %) (d) u, 21 %: (-93.5 mm, 99 %)

Figure 6: a,b) Error Er12(xc,P) and simplified vocal tract selection for min(Er12) (arrow in zoom), c,d)
A(x)/A0 (top) and (F̂1, F̂2) (bottom) for selection (Tube, ✳), MRI0 (•), MRII (•), vowels (F1, F2) [6].

in Fig. 6(a)-6(b)). The parameter set minimising the error (zoom near minEr12 < 28 %) is attributed
to each vowel resulting in a simplified vocal tract selection so that modelled resonances F̂i∈1,2,3 can be
compared to those obtained for MRI0 , MRII and formants Fi∈1,2,3 [6] as illustrated in Fig. 6(c)-6(d). In
general, xc is shifted towards the inlet suggesting that the constriction onset primes.

4. Conclusion and perspectives

It is investigated to what extent a simplified two-parameter vocal tract model accounting for a single
vocal tract constriction within a parameter space limited by its maximum area and length is able to repro-
duce vowel formants up to 5 kHz. MRI-based vocal tract geometries allowed to show that the parameter
space is sufficient to approximate formants. Although that simplified geometries allow to retrieve thumb
rules concerning the influence of constriction position and degree on resonance frequencies, resonance
spaces overlap only with a subset of the formant spaces retrieved for vowels.
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