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Human voice production involves neuromuscular control of the vocal tract articulators resulting in complex time-varying vocal tract geometries associated with different speech sounds. In order to study and measure the acoustics of a dynamic vocal tract, a simplified two-parameter vocal tract model is investigated, which is suitable to be exploited in physical studies using a dynamic mechanical vocal tract replica allowing to impose both model parameters which are the position and degree of constriction. Acoustic resonance frequencies up to 5 kHz are modelled for the full parameter space. Results are compared to formants of human speakers for the simplified two-parameter vocal tract model including selected vocal tract geometries derived from MRI data. It is found that the agreement for the first three resonance frequencies for 10 vowels is within 10% since the mean relative error varies from 0.9% up to 9.1%. Overall, the simplified two-parameter vocal tract model allows to reproduce resonances up to 5 kHz. Advantages and limitations of the model are discussed.

Introduction

The human vocal tract extends from the glottis at its back to the lips at its front. Sound propagation inside the vocal tract is an important area of study in speech acoustics. In this paper, we approach the problem from the point of view of vowels, and investigate the relationship between acoustic and geometrical waveguide features. Indeed, the vocal tract is a complex waveguide which is shaped dynamically through articulation. As such, even for a single sustained vowel, cross-section areas throughout the vocal tract can vary from a few up to several hundred mm 2 [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF]. Acoustic resonance frequencies or formants issued by the vocal tract waveguide vary considerably depending on the vocal tract geometry. The first formant frequencies (F 1 up to F 3 ), which are crucial to distinguish between vowels, vary in a frequency band up to about 5 kHz and are reported to differ considerably between speakers. The interspeaker variability observed for adult males, adult women and children is illustrated in Fig. 1. Mean formant frequencies from Table II of the reference paper by Peterson and Barney [START_REF] Peterson | Control methods used in a study of the vowels[END_REF] for a total of 76 speakers (33 men, 18 women and 15 children) are plotted as well as the inter-speaker range obtained considering the maximum and minimum formants for 43 adult males, 53 adult women and 43 children from [START_REF] Crocker | Handbook of acoustics[END_REF][START_REF] Hillenbrand | Acoustic characteristics of American English vowels[END_REF][START_REF] Eichhorn | Effects of aging on vocal fundamental frequency and vowel formants in men and women[END_REF][START_REF] Kewley-Port | Formant-frequency discrimination for isolated english vowels[END_REF][START_REF] Peterson | Control methods used in a study of the vowels[END_REF][START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF][START_REF] Yeung | Subglottal resonances of American English speaking children[END_REF]. The range for each single formant shows the variability associated with each vowel, which can amount to the same order of magnitude as the formant frequency. The size of the (F 1 , F 2 ) space associated with each vowel is then indicated in Fig. 1(b) with an ellipse whose axes and orientation are obtained following a principal component analysis of the co-variance matrix of 13 (M, W and C) formant pairs (F 1 , F 2 ) [START_REF] Crocker | Handbook of acoustics[END_REF][START_REF] Hillenbrand | Acoustic characteristics of American English vowels[END_REF][START_REF] Eichhorn | Effects of aging on vocal fundamental frequency and vowel formants in men and women[END_REF][START_REF] Kewley-Port | Formant-frequency discrimination for isolated english vowels[END_REF][START_REF] Peterson | Control methods used in a study of the vowels[END_REF][START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF][START_REF] Yeung | Subglottal resonances of American English speaking children[END_REF]. Phonetic textbooks generally relate an increase of F 1 to an articulatory release of a vocal tract area constriction (close towards open) and an increase of F 2 to an articulatory forward shift of a vocal tract constriction (back towards front) [START_REF] Crocker | Handbook of acoustics[END_REF]. Following this reasoning, the vowel space spanned by formant frequencies (F 1 , F 2 ) plotted in Fig. 1(b) reflects both the degree and the position of a main vocal tract constriction. Using this reasoning a simplified geometrical waveguide model capable to impose these geometrical constriction features should be able to reconstruct the formant space for vowels up to some degree. Therefore, in this work, it is aimed to investigate the relationship beween formants and vocal tract geometry using a simplified two-parameter geometrical deformable waveguide model proposed in [START_REF] Van Hirtum | Validation of an analytical compressed elastic tube model for acoustic wave propagation[END_REF]. It is sought to what extent this model in combination with a one-dimensional (1D) acoustic model is capable to explain the extent of the vowels space for formants up to 5 kHz. The model outcome in terms of acoustic resonance frequencies is evaluated against formants given in literature for sustained vowels uttered by human speakers. The ability of simplified waveguides to reproduce vowel formants is discussed.

Methodology

Simplified vocal tract model and 1D acoustic model

Simplified two-parameter vocal tract model

A simplified two-parameter vocal tract model is based on the analytical compressed elastic cylindrical waveguide model proposed and validated in [START_REF] Van Hirtum | Validation of an analytical compressed elastic tube model for acoustic wave propagation[END_REF]. The undeformed uniform cylindrical waveguide of length L 0 and wall thickness d is positioned along the x-direction and its uniform cross-section along the yz-plane is characterised by the internal diameter D with circular cross-section area A 0 = πD 2 /4. The waveguide is deformed by squeezing it locally between a pincher consisting of two rounded symmetrical bars (diameter 6.4 mm) positioned parallel to the y-direction as depicted in Fig. 2(a). Pinching squeezes the waveguide locally so that a constriction is induced along the longitudinal x-direction reducing the cross-sectional area along the deformed portion of the waveguide. The geometrical effect of squeezing can be accurately described as a function of two geometrical parameters, namely constriction position and deformed cross-sections can be accurately modelled analytically considering as a stadium ring with rounded edges as illustrated in Fig. 2(b). The cross-sectional area A(x) and major axis a(x) as a function of longitudinal x-position is then obtained for imposed parameter set (P, x c ) as 

A(x; P, x c ) = πβ 2 (x; P, x c )b 2 0 + 2A 0 β(x; P, x c ) 1 -β(x; P, x c ) , (2.1.1) a(x 
; P, x c ) = β(x; P, x c )b 0 + π 2 b 0 1 -β(x; P, x c ) (2.1.2) with β(x; P, x c ) = b(x; P, x c )/b 0 obtained from minor axis b(x; P, x c ) as b(x; P, x c ) = b 0   1 -P (x -x c ) 2 α 2 P + 1 -1   ( 2 

Acoustic model

The lowest cut-on frequency f c associated with the first higher order acoustic propagation mode depends on the largest dimension of the waveguide cross-sections as well as on the cross-section shape [START_REF] Crocker | Handbook of acoustics[END_REF]. The largest cross-section dimension corresponds to the half-width of the stadium ring at the constriction, i.e. major axis a(x = x c ) denoted a c in short (Eq. (2.1.1)). For very small (near 0) and very large (near 1) constriction degrees P, the stadium ring cross-section shape can be approximated as circular and rectangular respectively [START_REF] Van Hirtum | Validation of an analytical compressed elastic tube model for acoustic wave propagation[END_REF]. For these shapes, cut-on frequencies f c as a function of major axis a c are given analytically as f c = α • c/a c (circular, small P d) and f c = α □ c/a c (rectangular, large P) with with c = 340 m/s denoting the sound speed in air at room temperature (21 o C) and α • = 0.92/π and α □ = 1/4. Accounting for the waveguide dimensions, this implies that the lowest cut-on frequency decreases from f c = 7.9 kHz (P = 0 %, circular) to f c = 4.3 kHz (rectangular, P = 98 %). For vowels (Fig. 1(a)) the first three formants F i∈{1,2,3} are smaller than f c , thus a plane wave acoustic model approach, neglecting higher order mode propagation, can be used to evaluate to which extent acoustic resonances frequencies of the simplified two-parameter vocal tract model can explain vowel formants and their variability. For plane waves, the acoustic field inside the waveguide (Fig. 2) at each longitudinal position x and time t is given as p(x, t) = P (x)e jωt with radian wave frequency ω = 2πf and complex-valued pressure amplitude P (x) = P + e -jkx + P -e jkx obtained as the sum of an acoustic wave with amplitude P + traveling in the positive x-direction and an acoustic wave with amplitude P -traveling in the negative x-direction where k denotes the wavenumber. For a plane wave propagating in the positive direction, the reflection coefficient R x at position x is the ratio of the reflected and incident wave R x = P -/P + e 2jkx from which the impedance Z x at position x is obtained as

Z x = Z c (1 + R x )/(1 -R x ) with characteristic impedance Z c = ρc/A(x)
and air density ρ = 1.2 kg/m 3 . At the open waveguide outlet (x = 0), the assumption of a plane wave front underlying R x no longer holds. The reflection coefficient at the outlet R 0 is then obtained from the radiation impedance as R 0 = -|R 0 |e -2jkδ with δ the real part of the end correction defining the effective acoustic waveguide length. The reflection coefficient Z 0 is obtained from R 0 following Z x . The real part of the radiation impedance represents the radiation loss. In the case of a flanged outlet condition, corresponding to the rectangular baffle at x = 0, the modulus of the reflection coefficient R 0 and end correction δ are approximated for kb 0 < 3.5 or wave frequencies f < 15 kHz as

|R 0 | = 1 + 0.323(kb 0 ) + 0.077(kb 0 ) 2 1 + 0.323(kb 0 ) + (1 -0.077)(kb 0 ) 2 (2.1.4) δ b 0 =0.8216 1 + 0.77(kb 0 ) 2 1 + 0.77(kb 0 ) -1
.

(2.1.5) Using a transmission line principle for impedance matching, the impedance between neighbouring points x i and x i+1 with ∆x = x i+1 -x i along the positive x-directions yields

Z i Z c = j tan k∆x + Z i+1 /Z c 1 + j Z i+1 Z c tan k∆x . (2.1.6)
As outlet radiation impedance Z 0 is known, the impedance at each x position can be determined when the one-dimensional waveguides area function A(x) is known. The impedance at each x-position along the waveguide yields Z(x) = P (x)/U (x) with acoustic volume flow rate u(x, t) = U (x)e jωt . Applying the transmission line principle results then in the transfer matrix

P (x i ) U (x i ) = cos k∆x jZ c sin k∆x jZ -1 c sin k∆x cos k∆x × P (x i+1 ) U (x i+1 ) . (2.1.7)
Thus, from an imposed U (x = -L) at the waveguide's inlet, P (x = -L) is found and the acoustic field inside the waveguide can be determined from Eq. 2.1.7. For each frequency, transfer function H .1.8) between inlet (x = -L) and outlet (x = 0) allows to determine resonance peak frequencies F . The model outcome is quantitatively evaluated by considering the mean relative absolute error with respect to N formants F i reported in [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF] for a male adult with formant index i in the set {i 1 , . . . , i n } as

H = 20 log 10 U 0 U -L . ( 2 
Er i 1 ...in = 1 N i∈{i 1 ,...,in} | Fi -F i | F i .
(2.1.9)

MRI-based vocal tract waveguides

Realistic vocal tract 1D cross-sections area functions A(x) obtained from MRI imaging and associated formants (× in Fig. 1) for 10 different sustained vowel utterances (6 up to 10 seconds) from Table II in [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF] are used as a reference. Original area functions A(x), as plotted in Fig. 3(a) and denoted MRI 0 , are all characterised by at least one major constriction. The influence of such a constriction can be investigated with the simplified two-parameter vocal tract model presented in Section 2.1.1. Nevertheless, due to the constant overall dimensions of the last (-L 0 , A 0 ), cross-section areas A(x) can be larger than the maximum cross section area A 0 of the simplified vocal tract model. The same way the length of the vocal tract L can be either shorter or longer than L 0 . To relate vocal tract geometries MRI 0 to the simplified two-parameter vocal tract model two geometrical transformations are assessed forcing the MRI area function to fit within the unconstricted (P = 0 %) simplified two-parameter vocal tract domain. A first type of reshaped vocal tract geometries labelled MRI I is obtained by rescaling the longitudinal dimension with a factor α x = L 0 /L so that the rescaled length matches L 0 . In addition, cross-section areas greater than A 0 are set to A 0 . A second type of reshaped geometries labelled MRI II is obtained by scaling the x-dimension again with α x and cross-section areas with factor α A = A 0 / max(A(x)). Rescaled MRI II vocal tract lengths matches thus L 0 and the maximum cross-section area matches A 0 . All three (MRI 0 , MRI I , MRI II ) MRI-related vocal tract area functions A(x) are illustrated in Fig. 3(b) for vowel textbfa. Scaling with α L (MRI I and MRI II ) alters the constriction position x c , which will either shift towards the lip (x c decreases) when α x < 1 (L > L 0 ) or towards the glottis (x c increases) when α x < 1 (L < L 0 ). On the other hand scaling with α A (MRI II ) affects constriction degree P, which will either decrease for α A > 1 (A 0 > max(A(x))) or increase for α A < 1 (A 0 < max(A(x))). Thus, transformations might affect formants, but favour use of the simplified two-parameter vocal tract model in order to investigate observed differences between geometries and between MRI I and MRI II in particular. 

Results

Resonance space for MRI-based vocal tract waveguides

Model results obtained when applying the 1D acoustic model approach outlined in Section 2.1.2 to waveguides obtained using vocal tract area functions MRI 0 , MRI I and MRI II (Section 2.2) are plotted in Fig. 4 and scaling factors (α x , α A ) used to obtain MRI I and MRI II from the original area function MRI 0 from [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF] are indicated. Modelled transfer functions H(f ) for vowels i, E, a, u are plotted in Fig. 4(a)-4(d) and resonance peaks are indicated. Depending on the vowel, transfer functions H(f ) obtained for MRI 0 , MRI I and MRI II are a near match (i or E) or exhibit significant differences (a or u). The modelled formant space ( F1 , F2 ) for MRI 0 , MRI I and MRI II as well as literature values (F 1 , F 2 ) associated with MRI 0 for 10 vowels are plotted in Fig. 4(e). Although that for each vowel all four data points remain in the same region differences are apparent. For MRI-based geometries, the discrepancy might be related to the magnitude of scaling factors (α x , α A ) (see e.g. a or u). For MRI 0 and literature values reported in [START_REF] Story | Comparison of magnetic resonance imaging-based vocal tract area functions obtained from the same speaker in 1994 and 2002[END_REF] the observed discrepancy can be partly explained by a mismatch in tempeature and thus sound speed. The discrepancy is further quantified considering Er 1 , Er 2 , Er 3 for each vowel in Fig. 4(f)-4(h). Relative error values Er 2 and Er 3 are less than 10 % whereas Er 1 can increase up to 23 %. The overall mean relative error Er 123 varies from 0.9 % up to 9.1 %. Overall, the discrepancy is thus acceptable for all geometries including MRI I and MRI II which fit within the largest A(x) domain occupied by the simplified two-parameter vocal tract model. This leads to the statement that formants Fi∈1,2,3 can be modelled within this domain. In how far imposing a single constriction with parameters (x c , P) allows to explain observed formants and associates tendencies is sought in the next section. 

Resonance space for simplified two-parameter vocal tract model

Modelled resonance frequencies F1 (x c , P), F2 (x c , P) and F3 (x c , P) for the simplified vocal tract model described in Section 2.1.1 are shown in Fig. 5 as a function of its two-parameter space (x c , P) with -L 0 ≤ x c ≤ 0 and 0% ≤ P < 100%. Modelled F1 vary between 250 Hz and 500 Hz (overall increase of 100 %), modelled F2 between 900 Hz and 1600 Hz (overall increase of 77 %) and modelled F3 between 1800 Hz and 2800 Hz (overall increase of 55 %). Consequently, vowels with formants outside these ranges can not be reproduced with the simplified two-parameter vocal tract model using the chosen conditions. This is illustrated in Fig. 5(d) showing the limited resonance space ( F1 , F2 ), associated with the complete parameter space (x c , P), compared to vowel formant space. The influence of varying waveguide length L = L 0 on the resonance space is shown for a shorter (L = 130 mm) and longer (L = 250 mm) waveguide. Smallest and greatest resonance frequencies Fi∈1,2,3 are all observed in the parameter region associated with large constriction degrees P. In this high P-range, F1 (Fig. 5(a)) decreases with constriction position x c which is a tendency not illustrated in Fig. 1(b) where x c is solely associated with F 2 . Variation of F1 occurs for rather extreme P > 90 %. Consequently, extreme x c near the outlet and inlet as well as extreme constriction degrees P > 90 % are needed to exploit the full range of F1 . The increase of F1 for decreasing constriction degree P (close to open) pointed out in Fig. 1(b) is retrieved for x c away from the inlet (17 %) up to the waveguide's outlet (83 %). However, for the x c -range near the outlet (17%), the tendency is reversed as F1 decreases for decreasing P, which thus contradicts the thumb rule in Fig. 1(b). In the high P-range, F2 (Fig. 5(b)) exhibits two successive maxima and minima for increasing x c . Nevertheless, when not considering the extrema (10 %) near the inlet and outlet, F2 increases with x c (back to front). This tendency follows thus the thumb rule indicated in Fig. 1(b). Overall, the tendency is again most prominent for large P although that for some x c the finding holds for P > 40 %. In the high P-range, F3 (Fig. 5(c)) exhibits three successive maxima and minima for increasing x c . Consequently, alternating tendencies for increasing x c occur as near the outlet (14 %), F3 decreases, next F3 increases towards the center (36 %), followed again by a decrease of F3 (26 %) where-after F3 increases towards the outlet (24%). This increase or decrease of Fi∈1,2,3 with x c for high enough P is not necessarily linear, but can be concentrated in a compact parameter region. For constriction degrees P lower than the high P-range, the variation of resonance frequencies with either x c or P is limited, suggesting that a multitude of vocal tract geometries are associated with a same set ( F1 , F2 , F3 ). From the viewpoint of dynamic resonance frequency variation by two-parameter articulation, this might be a favourable feature. The relative error for the full twoparameter space Er 12 (x c , P) of the simplified vocal tract model is quantified for each vowel as illustrated 

Conclusion and perspectives

It is investigated to what extent a simplified two-parameter vocal tract model accounting for a single vocal tract constriction within a parameter space limited by its maximum area and length is able to reproduce vowel formants up to 5 kHz. MRI-based vocal tract geometries allowed to show that the parameter space is sufficient to approximate formants. Although that simplified geometries allow to retrieve thumb rules concerning the influence of constriction position and degree on resonance frequencies, resonance spaces overlap only with a subset of the formant spaces retrieved for vowels.

Figure 1 :

 1 Figure 1: Vowel formants F i observed for American English speakers (43 adult men (M), 53 adult woman (W), 43 children (C)) [1, 2, 3, 4, 5, 6, 8], values (male adult) of Table II in [6] (×) are indicated as a reference: a) frequency range (bars) and mean values (•, TableII[START_REF] Peterson | Control methods used in a study of the vowels[END_REF]), b) formant space from 13 (F 1 , F 2 ) pairs (M, W, C) for each vowel with influence of constriction degree (F 1 ) and location (F 2 ).

  x c and constriction degree P(β) = 1 -β with β = b xc /b 0 , b 0 = D/2 and b xc ≤ b 0 denoting the minor axis of the cross-section at x = x c corresponding to its half-length along the z-axis. Increasing the squeezing ICSV29, Annual Congress of International Institute of Acoustics and Vibration (IIAV), 9-13 July 2023

Figure 2 :

 2 Figure 2: Simplified two-parameter (x c , P) geometrical vocal tract model as a cylindrical waveguide of length L 0 squeezed with a single pincher (two parallel bars) at constriction position x c imposing constriction degree P = 1 -b xc /b 0 : a) P = 0 %, b) P = 88 % and stadium-shaped cross-sections.

.1. 3 )

 3 with α P denoting half peak width at half amplitude of the deformed longitudinal outer edge approximated as a quadratic function of the constriction degree α P (P) = 48P 2 -70P + 39. As illustrated in Fig.1(b), the cross-section shape at each x-position along the longitudinal waveguide axis can be modelled from the minor b(x) and major a(x) axes. The outlined simplified and analytical two-parameter geometrical vocal tract waveguide model allows thus naturally a quantitative and systematic assessment of the influence of the constriction position x c and constriction degree P on the acoustic waveguide resonances. The model is thus particularly suitable to investigate to what extent constriction parameters (x c , P) can reproduce the formants illustrated in Fig.1. In the following, geometrical waveguide characteristics D = 25 mm, d = 3 mm and L 0 = 171 mm are held constant. The waveguide outlet at the lips (x = 0) is set in an rectangular flat baffle (37 cm × 35 cm and thickness 5 mm) in order to represent the face.

Figure 3 :

 3 Figure 3: Area functions A(x) from MRI imaging [6] and simplified two-parameter vocal tract domain (-L 0 , A 0 ) for P = 0 % (gray shaded): a) original MRI 0 , b) MRI 0 and reshaped MRI I and MRI II .

Figure 4 :

 4 Figure 4: Model outcome for vocal tract area functions MRI 0 , MRI I and MRI II : a-d) transfer functions H(f ) with resonance peaks (•), e) modelled ( F1 , F2 ) (✳, •, •) and (F 1 , F 2 ) (×) from literature [6], f-h) relative accuracy Er 1 , Er 2 and Er 3 and i) mean relative accuracy Er 123 .

Figure 5 :

 5 Figure 5: Modelled resonance frequencies Fi∈1,2,3 for the full space (x c , P) of the simplified twoparameter vocal tract model: a) F1 , b) F2 , c) F3 , d) ( F1 , F2 ) on formant space (F 1 , F 2 ) of Fig. 1(b) for waveguide lengths L = 250 mm (•), L = L 0 (•, 171 mm) and L = 130 mm (•).

Figure 6 :

 6 Figure 6: a,b) Error Er 12 (x c , P) and simplified vocal tract selection for min(Er 12 ) (arrow in zoom), c,d) A(x)/A 0 (top) and ( F1 , F2 ) (bottom) for selection (Tube, ✳), MRI 0 (•), MRI I (•), vowels (F 1 , F 2 ) [6].
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