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Let En|E be the degree n unramified extension and Xn := X ⊗E En. Let X ′n := X ⊗E E(π1/n).
There are two morphisms

Xn → X and X ′n → X.

I think the following is true.

Proposition 1. The category of vector bundles on X is equivalent to the category of vector bundles E on
Xn and E ′ on X ′n together with an isomorphism of their pullback to X ⊗E En(π1/n).

The point would be the following. Consider

Xn ×X Xn −→ Xn ×X Xn =
∐
τ

Xn

where τ ∈ Gal(En|E). Now one has, with respect to this decomposition,

Xn ×X Xn =
∐
τ

Tτ

where Tτ → Xn is the µn-torsor of isomorphisms between τ∗OXn
(1) and OXn

(1) as n-roots of OX(1).
Now, the isomorphism class of this torsor lies in

H1(Xn, µn) = E∗n/(E
∗
n)
n

via the identification with H1(En, µn) and Kummer theory.

Lemma 1. If τ = σi, the preceding torsor is identified with the torsor of n-roots of π−i.

Proof. The functor from µn-torsors over Spec(En) toward the one over Xn is an equivalence. Via the
functors ϕ−modL → BunX and ϕn−modL → BunXn , the base change functor BunX → BunXn is
identified with (D,ϕ) 7→ (D,ϕn). Moreover the identification τ∗E (D,ϕn)

∼−−→ E (D,ϕn) is given by
ϕi ⊗ 1 : (D,ϕn)⊗En,σi En

∼−−→ (D,ϕn).
Now,OXn

(1) corresponds to the isocrystal (L, π−1ϕn) together with the identification (L, π−1ϕn)⊗n =
(L, (π−1ϕ)n). Moreover τ∗OXn

(1) corresponds to the same but with the preceding identification multi-
plied by π−i. Thus, our torsor sends the étaleE-algebraA to the set of automorphisms of (L, π−1ϕn)⊗EA
that respect the preceding identifications. �

Thus,
Tτ = X ⊗E En[T ]/(Tn − π−i),

and in particular, Tσ = X ⊗E En(π1/n).

Now, we have to look at
Xn ×X Xn ×X Xn −→

∐
τ1,τ2

Xn

which, I think, is equal to ∐
τ1,τ2

Tτ1 × Tτ2

together with morphisms from Tτ1,τ2 toward Tτ1 , Tτ2 and Tτ1τ2 . Try to conclude using this ! Maybe I’m
wrong, I don’t know, the cocyle condition has to be written carefully.

1


