Sur la gerbe de Kaletha, la courbe et l’ensemble de Kottwitz
Laurent Fargues

To cite this version:
Laurent Fargues. Sur la gerbe de Kaletha, la courbe et l’ensemble de Kottwitz. 2023. hal-04234891

HAL Id: hal-04234891
https://hal.science/hal-04234891
Preprint submitted on 10 Oct 2023
Let $E|E$ be the degree n unramified extension and $X_n := X \otimes_E E_n$. Let $X'_n := X \otimes_E E(\pi^{1/n})$. There are two morphisms

$$X_n \to \mathfrak{X} \text{ and } X'_n \to \mathfrak{X}.$$

I think the following is true.

Proposition 1. The category of vector bundles on \mathfrak{X} is equivalent to the category of vector bundles \mathcal{E} on X_n and \mathcal{E}' on X'_n together with an isomorphism of their pullback to $X \otimes_E E_n(\pi^{1/n})$.

The point would be the following. Consider

$$X_n \times_{\mathfrak{X}} X_n \to X_n \times_{\mathfrak{X}} X_n = \coprod_{\tau} X_n$$

where $\tau \in \text{Gal}(E_n|E)$. Now one has, with respect to this decomposition,

$$X_n \times_{\mathfrak{X}} X_n = \coprod_{\tau} T_\tau$$

where $T_\tau \to X_n$ is the μ_n-torsor of isomorphisms between $\tau^* \mathcal{O}_{X_n}(1)$ and $\mathcal{O}_{X_n}(1)$ as n-roots of $\mathcal{O}_{X}(1)$. Now, the isomorphism class of this torsor lies in

$$H^1(X_n, \mu_n) = E^*_n/(E^*_n)^n$$

via the identification with $H^1(E_n, \mu_n)$ and Kummer theory.

Lemma 1. If $\tau = \sigma^i$, the preceding torsor is identified with the torsor of n-roots of π^{-i}.

Proof. The functor from μ_n-torsors over Spec(E_n) toward the one over X_n is an equivalence. Via the functors $\varphi_{mod} \to \text{Bun}_X$ and $\varphi_n_{mod} \to \text{Bun}_X$, the base change functor $\text{Bun}_X \to \text{Bun}_{X_n}$ is identified with $(D, \varphi) \to (D, \varphi^n)$. Moreover the identification $\tau^* \mathcal{E}(D, \varphi^n) \sim \mathcal{E}(D, \varphi^n)$ is given by $\varphi^i \otimes 1 : (D, \varphi^n) \otimes_{E_n, \varphi^i} E_n \sim (D, \varphi^n)$.

Now, $\mathcal{O}_{X_n}(1)$ corresponds to the isocrystal $(L, \pi^{-1} \varphi^n)$ together with the identification $(L, \pi^{-1} \varphi^n)^{\otimes n} = (L, (\pi^{-1} \varphi)^n)$. Moreover $\tau^* \mathcal{O}_{X_n}(1)$ corresponds to the same but with the preceding identification multiplied by π^{-i}. Thus, our torsor sends the étale E-algebra A to the set of automorphisms of $(L, \pi^{-1} \varphi^n) \otimes_E A$ that respect the preceding identifications. \square

Thus,

$$T_\tau = X \otimes_E E_n[T]/(T^n - \pi^{-i}),$$

and in particular, $T_\sigma = X \otimes_E E_n(\pi^{1/n})$.

Now, we have to look at

$$X_n \times_{\mathfrak{X}} X_n \times_{\mathfrak{X}} X_n \to \coprod_{\tau_1, \tau_2} X_n$$

which, I think, is equal to

$$\coprod_{\tau_1, \tau_2} T_{\tau_1} \times T_{\tau_2}$$

together with morphisms from T_{τ_1, τ_2} toward T_{τ_1}, T_{τ_2} and $T_{\tau_1 \tau_2}$. Try to conclude using this! Maybe I’m wrong, I don’t know, the cocyle condition has to be written carefully.