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THE CURVE AND THE LANGLANDS PROGRAM : THE ABELIAN CASE

LAURENT FARGUES

Abstract. This is a review of the work of the author on his geometrization conjecture of the
local Langlands correspondence in the GL1-case, following [3].

1. Background on the Picard scheme of a compact Riemann surface

1.1. The Jacobian as a complex torus. Let X be a compact Riemann surface of genus g. We
define

JacX = H0(X,Ω1
X)∗/H1(X,Z)

where
— H0(X,Ω1

X) is the g-dimensional C-vector space of holomorphic 1-forms, differential forms
locally of the form f(z)dz in a local coordinate z with f holomorphic, defined everywhere
on X.

— H1(X,Z) = π1(X)ab is the first homology group of X, isomorphic to Z2g.
— The embedding

H1(X,Z) ↪→ H0(X,Ω1
X)∗

is defined by sending the 1-homology cycle c ∈ H1(X,Z) to the linear form

ω 7−→
∫
c

ω

This makes H1(X,Z) a lattice inside H0(X,Ω1
X)∗.

Then, JacX is not only a compact complex torus but in fact an abelian variety over C. In fact,
this is equipped with a canonical principal polarization.

1.2. Equivalence classes of degree 0 divisors and holomorphic line bundles. We define

Div0(X) =
{ ∑

x∈X

mx[x]
∣∣ mx = 0 for almost all x and

∑
x

mx = 0
}
,

the group of degree 0 Weil divisors on X. Let us note

M(X)

for the field of meromorphic functions on X. As is well known, the analytification functor induces
an equivalence between smooth proper curves over Spec(C) and compact Riemann surfaces. If
X = Xan thenM(X) = C(X), the field of rational functions on X.

For f ∈M(X)× we define

div(f) =
∑
x∈X

ordx(f)[x] ∈ Div0(X)

where ordx(f) gives the order of the zero/opposite of the order of the pole of f at x: if f =∑
n≥k anz

n
x is the Laurent expansion of f in a local coordinate zx in a neighborhood of x with

ak ̸= 0, ordx(f) = k.

The group of equivalence classes of degree 0 divisors is

Div0(X)/ ∼,

L’auteur a bénéficié du support du projet ANR-19-CE40-0015 ”COLOSS”.
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2 LAURENT FARGUES

where D ∼ D′ if D −D′ = div(f) for some non-zero f ∈M(X). This is identified with

Pic0(X).

Here the class of the degree 0 divisor D ∈ Div0(X) is sent to [O(D)] ∈ Pic(X). In the other
direction, if L is an holomorphic line bundle on X, there exists a meromorphic trivialization
η :M(X)

∼−−→ L ⊗OX
M(X). On can then define naturally div(η) ∈ Div(X) and this defines an

inverse to the map [D] 7→ [OX(D)].

1.3. The modular interpretation of the complex torus JacX . This is the following theorem.

Théorème 1.1 (Abel, Jacobi). The morphism

Div0(X) −→ H0(X,Ω1
X)∗/H1(X,Z)

[x]− [y] 7−→
[
ω 7→

∫ x

y

ω
]
mod H1(X,Z)

induces an isomorphism of groups

Pic0(X) = Div0(X)/ ∼ ∼−−→ JacX .

In the preceding the symbol
∫ x

y
means that we chose a path γ from y to x, γ(0) = y and

γ(1) = x, and then
∫ x

y
ω :=

∫
γ
ω. The choice of another path may give a different linear form on

H0(X,Ω1
X) but this differs from the preceding by an element of H1(X,Z), and thus our map is

well defined.
Let us note that in the preceding theorem, the injectivity part is due to Abel and the surjectivity

to Jacobi.

1.4. The full Picard scheme. Let PicX be the Picard variety classifying holomorphic line bun-
dles on X. One has an exact sequence of complex analytic groups

0 −→ Pic0X︸ ︷︷ ︸
JacX

−→ PicX︸ ︷︷ ︸∐
d∈Z PicdX

deg−−−→ Z −→ 0.

This sequence is split by the choice of a point ∞ ∈ X by sending 1 ∈ Z to OX([∞]).

The choice of such a point ∞ identifies Pic0X and PicdX via the map L 7→ L (d[∞]). This
induces an isomorphism

π1(Pic
0
X)

∼−−→ π1(Pic
d
X).

Here we don’t fix a base point in the π1 since it is abelian and thus does not depend canonically
on the choice of such a base point. Translation by a point on the complex torus JacX induces the
identity at the level of the π1 and we thus have a canonical identification

π1(Pic
0
X) = π1(Pic

d
X)

independent on the choice of ∞.

2. Geometric class field theory for compact Riemann surfaces

There is an Abel-Jacobi morphism in degree 1

AJ1 : X −→ Pic1X

x 7−→ [O([x])].
This is the zero map when g = 0, an isomorphism when g = 1, and a Zariski closed immersion

X ↪→ Pic1X

when g > 1.

Geometric class field theory for compact Riemann surfaces is then the following elementary
statement.
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Théorème 2.1. The morphism

π1(AJ1) : π1(X,x) −→ π1(Pic
1
X) = π1(JacX)

induces an isomorphism
π1(X)ab

∼−−→ π1(JacX).

In other terms, any abelian Galois cover of X comes by pullback via AJ1 from a cover of JacX .

3. The geometric Langlands point of view

3.1. Statement of the theorem. From now on, X is a smooth projective curve over the alge-
braically closed field k. We note

JacX = Pic0X
its Jacobian, an abelian variety over k.

We seek to construct a canonical isomorphism

π1(X)ab
∼−−→ π1(JacX).

Here the π1 is Grothendieck’s profinite fundamental group, the profinite completion of the topo-
logical π1 of the preceding sections in the case of compact Riemann surfaces. As before, since we
are working with abelian fundamental groups, there is no need to fix a base point: if x and x′ are
two geometric points of X there is a canonical isomorphism

π1(X,x)ab
∼−−→ π1(X,x′)ab

independent of the choice of a path between x and x′.

Remarque 3.1. As a consequence of the independence of the base geometric point of the abelian-
ized π1 of a connected Noetherian scheme X, for any such X, for any point x ∈ X, there is a
canonical morphism of abelian groups

Gal(k(x)sep|k(x))ab −→ π1(X)ab.

In particular if X is an Fq-scheme for any closed point x of X one can define Frobx ∈ π1(X)ab.
In general, this is only well defined as a conjugacy class {Frobx} in π1(X) (which is itself only
defined up to inner automorphisms if we don’t fix a geometric base point).

Remarque 3.2. We use all the time the fact that if A is an abelian variety over k then π1(A, 0)
is an abelian group. In fact this is equal to∏

ℓ

Tℓ(A) = lim←−
n≥1

A[n](k).

where ℓ goes through the set of all prime numbers. This is a consequence of the fact if Z1 and Z2

are two proper k-schemes then π1(Z1 ×Spec(k) Z2, (z1, z2))
∼−−→ π1(Z1, z1)× π1(Z2, z2) ([1, Exposé

X, Corollaire 1.7]). As a consequence, the group law of A induces a law ∗ : π1(A, 0)× π1(A, 0)→
π1(A, 0) that is a morphism of groups and makes (π1(A, 0), ∗) a group. From this we deduce that
∗ is the group law of π1(A, 0) and this is abelian (same proof as the one for the π1 of H-spaces in
algebraic topology). As a consequence, if B → A is a connected finite étale cover, any choice of
a point in B(k) mapping to 0 ∈ A(k) makes B an abelian variety and the morphism B → A an
étale isogeny.

Here is now what we want to prove: the Abel-Jacobi map in degree 1

AJ1 : X −→ Pic1X

induces an isomorphism
π1(X)ab

∼−−→ π1(Pic
1
X) = π1(JacX)

(abelianization in the category of profinite groups i.e. π1(X)ab := π1(X)/[π1(X), π1(X)]). In
other terms: any finite étale connected abelian cover of X comes by pull-back via AJ1, after fixing
a point ∞ ∈ X(k) and thus an isomorphism JacX

∼−−→ Pic1X , from an étale isogeny B ↠ JacX .
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We dualize the situation and look at characters of our π1. This is then reduced to the following
geometric Langlands statement for GL1. Here ℓ is any prime number.

Théorème 3.3. Any rank 1 étale Qℓ local system E on X descends along AJ1 : X → Pic1X
to a rank 1 étale Qℓ-local system

AutE

on Pic1X .

Here the notation AutE means the automorphic local system associated to E by the geometric
Langlands program.

3.2. Sketch of the proof of the theorem.

3.2.1. Symmetrization. For d ≥ 1 let

DivdX

be the Hilbert scheme of degree d effective divisors on X. There is a morphism

πd : Xd −→ DivdX

(x1, . . . , xd) 7−→
d∑

i=1

[xi]

that induces an isomorphism

Xd/Sd
∼−−→ DivdX

(categorical quotient by Sd). In particular we have X = Div1X .

We now define for d ≥ 1

SdE :=
[
πd∗E

⊠d
]Sd

.

This is again a rank 1 local system on DivdX . This is deduced for example from [1, Exposé IX,
Remarque 5.6]: for any projective variety Z over k algebraically closed and d > 1, π1(Z

d/Sd) =
π1(Z)ab.

Remarque 3.4. More generally, when E is a higher rank local system, SdE is a perverse sheaf
on Divd, the so-called Laumon sheaf showing up in the geometric Langlands program.

3.2.2. Descent in high degree. Let us recall the following consequence of the Riemann-Roch theo-
rem.

Théorème 3.5. For d > 2g − 2,

AJd : DivdX −→ PicdX

is a Zariski locally trivial fibration with fiber Pd−g
k .

More precisely, the choice of a point ∞ ∈ X(k) induces an identification between[
PicX /Gm

]
and the Picard stack of X i.e. the gerbe

Picard stack −→ PicX = coarse moduli space

is split by the choice of ∞. There is then a universal line bundle Ld on

X ×Spec(k) Pic
d
X .



THE CURVE AND THE LANGLANDS PROGRAM: THE ABELIAN CASE 5

If pd is the projection to the factor PicdX then the perfect complex

Rpd∗L ∈ Perf [0,1](OPicdX
)

is concentrated in degree 0 when d > 2g − 2 and is a vector bundle

Hd = pd∗L

on PicdX . One then has for d > 2g − 2

DivdX P(Hd) PicdX

PicdX Picard stack

∼

AJd

loc.triv. fibration
in Ad−g+1∖{0}

BGm

For d > 2g − 2 we have a Serre exact sequence ([1, Exposé X, Corollaire 1.4]) for z ∈ DivdX(k)

with image w = AJd(z)

π1

(
(AJd)−1(w)︸ ︷︷ ︸

≃Pd−g
k

, z
)
−→ π1(DivdX , z) −→ π1(Pic

d
X ,AJd(z)) −→ 1.

The simple connectedness of Pd−g
k implies then that for d > 2g − 2

π1(DivdX , z)
∼−−→ π1(Pic

d
X , w).

As a consequence, we obtain the following result.

Proposition 3.6. For d > 2g − 2, the symmetrized local system SdE descends along AJd to a
unique rank 1 étale Qℓ-local system Fd on PicdX ,

SdE = (AJd)∗Fd.

3.2.3. Extension to all degrees. We now have a rank one étale locale system on
∐

d>2g−2 Pic
d
X .

Suppose that we have d, d′ ≥ 1. Then following diagram is then commutative

DivdX ×Divd
′

X Divd+d′

X

PicdX ×Picd
′

X Picd+d′

X

AJd ×AJd′
AJd+d′

md,d′

i.e. the Abel-Jacobi morphism is compatible with the monoid law of DivX =
∐

d≥1 DivdX and the
group law of the Picard scheme PicX .

We deduce the following result since the pullback under DivdX ×Divd
′

X → Divd+d′

X of Sd+d′E is

SdE ⊠ Sd′E and the descent along AJd×AJd
′
is unique.

Proposition 3.7. For d, d′ > 2g − 2 there is a canonical identification

Fd ⊠ Fd′ = m∗
d,d′Fd+d′ .

Via the canonical identification π1(JacX) = π1(Pic
d
X) for all d we deduced that the collection

(Fd)d>2g−2 is given by a collection of characters (χd)d>2g−2 of π1(JacX) satisfying

χd+d′(σ + τ) = χd(σ).χd′(τ).

All χd, d > 2g − 2, are thus equal. From this we deduce that (Fd)d>2g−2 extends canonically to
a rank 1 local system F = (Fd)d∈Z on the Picard group scheme PicX satisfying m∗F ≃ F ⊠ F
where m is the group law of PicX . Let us put this in the form of a lemma.
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Lemme 3.8. There is an identification between

(1) Rank 1 étale Qℓ-local systems on JacX ,

(2) Rank 1 étale Qℓ-local systems F on the Picard scheme PicX satisfying m∗F ≃ F ⊠ F
where m is the addition law,

(3) For any d ≥ 0, rank 1 étale Qℓ-local systems F on the monoid Pic>d
X satisfying m>d∗F ≃

F ⊠ F where m>d : Pic>d
X ×Pic>d

X → Pic>2d
X .

We can now set

AutE := F1.

One has Sd
[
(AJ1)∗F1

]
= SdE and thus (AJ1)∗F1 = E via the identification π1(X)ab = π1(DivdX)

for d ≥ 2. This finishes the proof of theorem 3.3.

4. Geometric Langlands and class field theory for function fields

The preceding is for algebraic curves over an algebraically closed field. Let now X be a smooth
projective curve over the finite field Fq. Suppose moreover that X is geometrically connected i.e.
Fq is algebraically closed inside

F = Fq(X)

the field of rational functions on X.

4.1. The reciprocity map. We use the exact sequence

1 −→ πgeo
1 (X) −→ π1(X) −→ Gal(Fq|Fq) −→ 1

and define

WX ⊂ π1(X),

the Weil group of X. For each point x ∈ X(Fq) there is a morphism

WFq(x) −→WX ,

see remark 3.1. This defines a reciprocity map

Div(X) Z 0

W ab
X FrobZq 1

deg

≃ n7→Frobn
q

that sens [x], x a closed point of X, to Frobx ∈WX , and where deg([x]) = [Fq(x) : Fq].

Here is the theorem we want to prove using geometric clas field theory.

Théorème 4.1. The reciprocity map Div(X)→W ab
X factorizes through the group of prin-

cipal divisors and induces an isomorphism

Div(X)/ ∼ = PicX(Fq)
∼−−→W ab

X .

Formulated in adelic terms, there is a reciprocity morphism

A×
F −→W ab

X

that is everywhere unramified, i.e. factorizes through A×
F /

∏
x∈|X|O

×
Fx

, and sends the uniformizing

element πx to Frobx. The theorem then says that if f ∈ F×,∏
x∈|X|

Frobordx(f)
x = 1 (reciprocity law)

and this induces an isomorphism
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F×\A×
F /

∏
x∈|X|

O×
Fx

∼−−→W ab
X .

4.2. The reciprocity law. The exact sequence

1 −→ πgeo
1 (X) −→WX −→ FrobZq −→ 1

induces an exact sequence

1 −→ coker
(
πgeo
1 (X)ab

Frobq − Id−−−−−−−−→ πgeo
1 (X)ab

)
−→W ab

X −→ FrobZq −→ 1.

Geometric class field theory for XFq
then gives an identification between the left term and

coker
(
TJacX

Frobq − Id−−−−−−−−→ TJacX
)

where T JacX = Hom(Q/Z, JacX(Fq)) is its Tate module. We now use Lang isogeny that gives an
exact sequence

1 −→ JacX(Fq) −→ JacX(Fq)
Frobq − Id−−−−−−−−→ JacX(Fq) −→ 1.

Applying Hom(Q/Z,−) we obtain an exact sequence

1 −→ TJacX
Frobq − Id−−−−−−−−→ TJacX −→ Ext1(Q/Z, JacX(Fq))︸ ︷︷ ︸

JacX(Fq)

−→ 1

We thus have a canonical exact sequence

1 −→ JacX(Fq) −→W ab
X −→ Z −→ 1.

It remains to identify the deduced map Div(X)0 → JacX(Fq) with the evident quotient map to
prove theorem 4.1. This is deduced from the following.

Proposition 4.2. Let A be an abelian variety over Fq.

(1) Via the splitting of WA → FrobZq sending Frobnq to Frobn0 , where 0 is the origin in A(Fq),
one has

W ab
A = coker

(
πgeo
1 (A)

F−Id−−−−−→ πgeo
1 (A)

)
⊕ Z

= coker
(
TA

F−Id−−−−−→ TA
)
⊕ Z

=︸︷︷︸
Lang

A(Fq)⊕ Z

(2) Via this identification, for any closed point x of A the element Frobx ∈ W ab
A corresponds

to (
TrFq(x)|Fq

(x), [Fq(x) : Fq]
)
∈ A(Fq)⊕ Z.

5. Abelian π1 in number theory

5.1. Number fields. The topic of abelian fundamental groups in number theory is vast. Of
course we have Kronecker-Weber theorem:

Qab =
⋃
n≥1

Q(ζn)

the cyclotomic extension. In general there is no explicit formula for the maximal abelian extension
of a number field in terms of a geometric object like Gm and its torsion points. Nevertheless class
field theory holds over any number field and the analogue of theorem 4.1 says that the maximal
abelian everywhere unramified extension of a number field K, its Hilbert class field, is a finite
extension of K with Galois group ClK the ideal class group of K. More precisely, we have the
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following reciprocity law. Let L|K be the maximal abelian everywhere unramified extension of K.
Then, L|K is finite and the map

A×
K

/ ∏
v|∞ real

K+×
v ×

∏
v|∞ complex

K×
v ×

∏
v ̸|∞

O×
Kv
−→ Gal(L|K)

that sends
• −1 ∈ K×

v to the complex complex conjugation Frobv induced by K ↪→ Kv = R if Kv ≃ R,
• πv ∈ K×

v a pseudo-uniformizing element of Kv to Frobv the associated Frobenius element
at the finite place v

factorizes through the group of principal ideles (reciprocity law) and induces an isomorphism

K×
∖
A×

K

/ ∏
v|∞ real

K+×
v ×

∏
v|∞ complex

K×
v ×

∏
v ̸|∞

O×
Kv

∼−−→ Gal(L|K).

Let us point that there is no ”geometric proof“ of reciprocity laws for number fields as this is the
case for function fields over finite fields. All proofs relies on Galois cohomological computations.
Typically there is no geometric proof of the fact that for a number field K and a class α ∈ Br(K),
the sum over all places v of K of the invariant of αv ∈ Br(Kv), as an element of Q/Z, is zero:∑

v

invv(αv)︸ ︷︷ ︸
∈ 1

2Z/Z if Kv≃R
0 if Kv≃C

∈Q/Z if v ̸|∞

= 0 ∈ Q/Z.

Some partial reciprocity results are known via geometric methods: the construction of algebraic
Hecke characters associated to CM abelian varieties but this only concerns CM fields and not the
full maximal abelian extension of any given number field.

5.2. Local fields. For p-adic fields the situation is better. The local Kronecker-Weber theorem
holds,

Qab
p =

⋃
n≥1

Qp(ζn).

But this holds for any finite degree extension E of Qp up to replacing the formal group “Gm by
a Lubin-Tate group. More precisely, if π is uniformizing element in E, q is the cardinal of the
residue field of E, and

f(T ) =
∑
n≥0

T qn

πn
∈ EJT K

then
X +

LT
Y = f−1(f(X) + f(Y )) ∈ OEJX,Y K

defines a one dimensional formal group law equipped with an action of OE with logarithm f . This
is a so-called Lubin-Tate group law. Multiplication by π on it is finite flat of degree q (this is a
lift of the q-Frobenius) and

TπLT = lim←−
n≥1

LT [πn](OE)

is a free rank 1 OE-module. Let

Eun =
⋃

(n,p)=1

E(ζn)

be the maximal unramified extension of E. Then, locall class field theory says that

Eab = Eun
(
torsion points of LT

)
.

The same holds for equal characteristic local fields, E = Fq((π)). One has to replace the Lubin-

Tate formal group by a Drinfeld module, “Ga/OE
equipped with the action of OE where the action

of Fq is the linear one and the action of π is given by π − Frobq. In other terms, Eab is given by
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the
⋃

n≥1 Fqn((π)) where we add the roots of the polynomials (πT − T q) ◦ · · · ◦ (πT − T q)︸ ︷︷ ︸
n-times

when n

varies.

The Tate module of the Lubin-Tate formal group defines a Lubin-Tate character

χLT : Gal(E|E) −→ O×
E .

We can then define

χ = χLT .π
w : WE −→ E×

where w : WE → Z is such that τ ≡ Frobw(τ)
q on the residue field. In this context the reciprocity

law says that

χ : W ab
E

∼−−→ E×.

6. The local reciprocity law via the curve ([3]

Let E be a local field with residue field Fq and uniformizing element π.

Let ∗ = Spd(Fq) be the final object of the v-topos of sheaves on Fq-perfectoid spaces equipped

with the v-topology ([4]). For S an Fq-perfectoid space we can define

XS

the relative curve parametrized by S as an E-adic analytic space.

For d ≥ 1 we can define a notion of a degree d relative Cartier divisor on XS when S varies.
This defines a v-sheaf

Divd −→ ∗.
Contrary to the ”classical case“, Div1 is not the curve itself but an object that looks like the curve
”seen in a mirror“. For any S as before, any untilt S♯ of S over E defines a Carteir divisor of
degree 1

S♯ ↪→ XS .

If Ĕ is the completion of the maximal unramified extension of E, Spa(Ĕ)⋄ = Spa(E)⋄ ×Spd(Fq)

Spf(Fq), and we thus have a morphism of v-sheaves

Spa(Ĕ)⋄ −→ Div1

over ∗.

Proposition 6.1. The preceding morphism induces an isomorphism of v-sheaves

Spa(Ĕ)⋄/φZ ∼−−→ Div1.

In particular, Div1 → ∗ is proper relatively representable in spatial diamonds. We can go
further. As in the classical case, the v-sheaf

∐
d≥1 Divd is a commutative monoid over ∗.

Théorème 6.2. For any d ≥ 1, the summation map of d-divisors of degree 1, πd :
(Div1)d → Divd, is quasi-pro-étale surjective and induces an isomorphism of pro-étale
sheaves

(Div1)d/Sd
∼−−→ Divd

(quotient as pro-étale sheaves).

We can go further an now introduce the Picard stack

Pic −→ ∗
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as a v-stack. One has
Pic =

∐
d∈Z
Picd

and the choice of π induces an identification

Picd ∼−−→
[
∗ /E×]︸ ︷︷ ︸

classifying stack of
pro-étale E×-torsors

Here is now the main theorem of [3], see [2] too.

Théorème 6.3. For d ≥ 2 the Abel-Jacobi morphism

AJd : Divd −→ Picd

is a pro-étale locally trivial fibration in simply connected spatial diamonds.

More precisely, this is a pro-étale fibration in punctured absolute Banach-Colmez spaces

Bφ=πd

∖ {0}
and we prove those are spatial diamonds satisfying: any finite étale cover has a section when d ≥ 2.

Exemple 6.4. In the equal characteristic case, when E = Fq((π)), one has

Bφ=πd

∖ {0} = Spa
(
FqJx

1/p∞

1 , . . . , x
1/p∞

d K,FqJx
1/p∞

1 , . . . , x
1/p∞

d K
)
∖ V (x1, . . . , xd),

that is thus in this case representable by a quasi-compact quasi-separated perfectoid space. In this
case the simple connectedness result is reduced after deperfectization and algebraization (GAGA) to
Zariski-Nagata purity result: any finite étale cover of Spec(FqJx1, . . . , xdK)∖V (x1, . . . , xd) extends

to a finite étale cover of Spec(FqJx1, . . . , xdK) when d ≥ 2 and is thus trivial.

The local reciprocity law is then deduced in the following way. The map

”π1(Div1) −→ π1(Pic1)“
(we put quotes because there is no general definition of a π1 for such objects) is identified with

χ : W ab
E −→ E×.

The method of section 3 then applies to prove this is an isomorphism.
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