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Abstract—In the Arctic, global warming is 2–3 times faster than over other regions of the globe. As a result,
noticeable changes are already being recorded in all areas of the environment. However, there is very little data
on such changes in the Russian Arctic. Therefore, to fill the gap in the data on the vertical distribution of the
gas and aerosol composition of air in this region, an experiment was carried out on the Tu-134 Optik f lying lab-
oratory in September 2020 to sound the atmosphere and water surface over the water areas of all seas in the Rus-
sian Arctic. This paper analyzes the spatial distribution of methane. It is shown that during the experiment its
concentration was the highest over the Kara Sea (2090 ppb) and the lowest over the Chukchi Sea (2005 ppb).
The East Siberian and Bering Seas were slightly different from the Chukchi Sea in terms of the methane con-
centration. Average values of CH4 are characteristic of the Barents (2030 ppb) and the Laptev Seas
(2040 ppb). The difference between the concentrations at an altitude of 200 meters and in the free tropo-
sphere attained 150 ppb over the Kara Sea, decreased to 91 and 94 ppb over the Barents and Laptev Seas, and
further decreased over the East Siberian, Chukchi, and Bering Seas to 66, 63, and 74 ppb, respectively. Hor-
izontal heterogeneity in the distribution of methane over the Arctic seas is the greatest over the Laptev Sea,
where it attained 73 ppb. It is two times higher than over the Barents and Kara Seas, and 5–7 times higher
than over the East Siberian and Bering Seas.

Keywords: Arctic, atmosphere, air, vertical distribution, methane, greenhouse gases, transport, impurities,
composition
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INTRODUCTION
One of the main problems classified by the world

community as “great challenges” is global warming
and the resulting environmental change. Predicted
40 years ago [1], it recently received another very
strong confirmation in [2, 3]: all previous cooling and
warming events in the time period from 0 to 2000 AD
were regional, and the current one is global. However,
there are regions where the warming occurs faster. The
Arctic relates to these regions; the increase in air tem-
perature is two to three times higher there than in
other regions [4, 5]. This phenomenon is called the
arctic amplification [6, 7]. In this regard, natural ques-
tions arise: how does warming in the Arctic affect the
air composition [8–13] and how does it correlate with
impurities entering the region [14–17]? Answering
these questions, as well as drawing up a plan of mea-
sures to preserve the vulnerable Arctic nature, is possi-
ble only on the basis of measurements and analysis of
direct and inverse relationships between the climate

warming and changes in the air composition [18].
However, such data for the Russian Arctic are insuffi-
cient. As a result, there is a situation where irreversible
environmental processes are taking place in the Arctic
requiring immediate response, and the information
about them is lacking, even estimates. Due to the lack
of data from the Russian Arctic, a disappointing con-
clusion was drawn in [19] that environmental and
socio-economic forecasts for the region under study
are impossible.

Studies of the atmospheric composition in the Arc-
tic are most often carried out in the surface air layer
along the coast of the Arctic Ocean [20–27]. The data
from such studies on the dynamics of aerosol and gas
impurities in coastal areas make it possible to estimate
the power of sources and sinks of impurities con-
trolled. The processes of the exchange of impurities
between ocean the water surface, which is becoming
more and more free of ice, and the atmosphere remain
unclear. There is no information on the vertical distri-
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bution of impurities, which, as shown in the analysis of
the heating of different air layers, is very important
[28, 29]. Air heating can occur not only in the surface
air layer, but also in the middle troposphere. This
complicates the modeling of climate processes and
greatly complicates the forecast of environmental
changes.

Outside the Russian Arctic, laboratory aircraft are
widely used to study the vertical distribution of gaseous
and aerosol impurities [30–32]. The aircraft method
for studying the atmospheric composition along the
vertical is now recognized as reference [33], since it
allows the use of precision instruments and measure-
ments, including of the main meteorological parame-
ters, with a good space and time referencing.

In the Russian Arctic, air composition was studied
only in the surface air at drifting stations [34, 35] or
from research vessels [36–42]. In 2010, a well-
equipped Tiksi coastal international hydrometeoro-
logical observatory appeared [43]. Unfortunately, it is
the only one at the Arctic Ocean coast, which is several
thousand kilometers long in the Russian sector. In the
past decade, the authors of this work carried out two
small f light campaigns in the Russian Arctic within
international projects [44, 45].

To fill the gap in the data on the vertical distribu-
tion of gaseous and aerosol compositions of the atmo-
sphere, we carried out an experiment on sounding the
atmosphere and water surface over all seas of the Arctic
Ocean in the Russian Arctic (Barents, Kara, Laptev,
East Siberian, and Chukchi) in September 2020 from
the TU-134 Optik f lying laboratory. The Bering Sea in
the Pacific Ocean was chosen as reference in relation
to the Arctic. It should be noted that such a large-scale
experiment was not carried out either in the former
Soviet Union or in modern Russia. The experiment
and the parameters of the equipment used are
described in [46]; average concentrations of impurities
over all seas are also given there. The present work
begins a series of papers with the detailed analysis of
the air composition over each of seas.

Let us start this series from methane. The impor-
tance of studying the dynamics of this air component
in the Arctic has recently dramatically increased due to
the degradation of permafrost. The high concentra-
tions of CH4 over the region under study was ascer-
tained both in the surface measurements [47, 48] and
from satellite data [49, 50] for the tropospheric depth.
However, opinions differ regarding how the methane
concentration increases.

The methane emission from the ocean water sur-
face into the atmosphere was numerically simulated
with direct measurement data. The analysis of the
simulation results has shown that the amount of CH4
emitted is insufficient to form the concentrations
observed [51–53].

Additional methane can come from the decompo-
sition of gas hydrates on the ocean bed. This phenom-
ATMOSPHERIC AND OCEANIC OPTICS  Vol. 36  No
enon was recorded, in particular, in measurements
from sea vessels by researchers of the Far Eastern
Branch of the Russian Academy of Sciences under the
leadership of I.P. Semiletov [54–56]. However, there
are scientists who disagree with the assessment made
by Semiletov of the scale of the threat from the decom-
position of gas hydrates [57, 58]. Moreover, it was
found in recent works [59, 60] that there are no frozen
rocks and gas hydrates in the areas where seeps were
found, and the seeps are due to the migration of gases
from great depths through the existing faults.

Some researchers believe that an additional amount
of methane and other impurities can be transferred to
the Arctic Ocean from the surrounding land [61–64],
including from swamps, gas fields, and fires [39–42],
and not only through air. The water comes into the Arc-
tic Ocean from more southerly oceans and carries an
additional amount of microbes and bacteria [65]. They,
in turn, can additionally emit a certain amount of meth-
ane into the atmosphere [66, 67]. The transfer of impu-
rities to the Arctic turned out to be so significant, but lit-
tle studied, that the German Aerospace Agency orga-
nized a special HALO-AC program, within which three
airborne laboratories are to simultaneously study this
process at different altitudes [68].

The transfer is also possible from coastal areas
where permafrost is actively thawing under the
warming climate, in which a huge amount of organic
matter is accumulated. It is processed by anaerobic
microbes into methane or carbon dioxide [69–71].
Moreover, the reserves of organics are so large that they
are called a delay action “hidden carbon bomb” [72],
which can “explode” with further warming in the
region.

In addition to methane emission from the soil, the
thawing of permafrost in the Arctic results in the for-
mation of thermokarst lakes, the release of methane
from which is an order of magnitude more intense
than from other sources and can attain hundreds of
grams per square meter per year [73–76]. According
to [77], the area of lakes in plains can be from 10 to
30% of such territories. Therefore, this source is
comparable in power with others.

The recently published review on the budget of
methane in the atmosphere [78] refines the power
ranges of individual sources on the planet, but it does
not answer the question about the reasons for the
increase in the CH4 concentration over the Arctic.
Estimates of the CH4 emission power of one or another
source in [79] show that they can differ by three orders
of magnitude. Their power is apparently growing.
Methane concentrations rose more in 2021 than in any
previous year, according to the US National Oceanic
and Atmospheric Administration (NOAA), which
summarized measurement data from 40 sites around
the world. This once again emphasizes the importance
of studying the spatiotemporal variability of methane
in the atmosphere [80].
. 5  2023
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Fig. 1. Vertical distribution of the methane concentration
over Arkhangelsk (12:58) and the Barents Sea (13:30,
14:22, 14:52, and 15:38) on September 4, 2020.
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Since [46] gives a complete description of the
experiment, we do not repeat it in this paper. We only
recall that the methane concentration was measured
with a G2301-m CRDS gas analyzer (Picarro Inc.,
United States). This device is designed specifically for
an airborne laboratory and allows one to measure the
CH4concentration in the range 0–20 ppm with an
error < ±0.0015 million−1 and a frequency of 1 Hz.
The methane profiles were retrieved from the data of
every second measurements using a moving average
over 30 points and subsequent interpolation with an
altitude step of 10 m.

The small differences in methane concentrations
over different seas above 5000 m was also shown in
[46]. Therefore, data above 5000 m are not considered
in this work.

1. VERTICAL DISTRIBUTION
1.1. Barents Sea and Coastal Areas

The atmospheric sounding over the Barents Sea
was carried out on September 4, 2020. It began with a
climb in Arkhangelsk at 12:58 (hereinafter, GMT
time). Then the aircraft twice descended to 200 m asl
and twice ascended up to 9000 m. One CH4 concen-
tration profile was derived over land and four over the
sea (Fig. 1). Profiles are marked by their start time:
13:30, 14:22, 14:52, and 15:38 (sea); 12:58 (land).

Figure 1 shows that the methane concentrations
were maximal in the mixing, surface, or near-water air
layers. The vertical distribution of methane concentra-
tion in the troposphere was largely determined by the
structure of the atmospheric boundary layer (ABL).
The height of this layer (HABL) was estimated from
changes in the virtual potential temperature profiles (θ

v
)

(the data for the calculation of which were synchro-
nously measured with the gas components), the mix-
ing ratio (r), and the concentration of atmospheric
impurities by the method [81]. Their dynamics are
shown in Fig. 2. One can see that HABL varied from 1.5
to 2.3 km over land and most of the water area during
the experiment. Attention should be paid to the large
variation in the ABL height over different parts of the
Barents Sea. The sites where the profiles were derived
can be seen in Fig. 3b. Some profiles have secondary
maxima in the lower part of the ABL. The difference
between the concentrations in the surface layer and
the upper boundary of the ABL attains 110–140 ppb.

This vertical distribution of methane indicates that
the main source of this gas is on the underlying sur-
face, whether it be land or sea. The vertical sounding
of the atmosphere was carried out after 16:00 local
time, when the inner mixing layer had already disinte-
grated and, due to turbulent mixing, impurities began
to propagate throughout the ABL [82]. Above the
ABL, a slow decrease in the methane concentration is
observed up to an altitude of 5000 m. This conclusion
is also supported by the profiles of the mixing ratio of
ATMOSPHE
the water vapor (Fig. 2), the source of which is evapo-
ration from the underlying surface.

Figure 1 shows that the CH4 concentration in the
ABL was higher over land than over the sea. Since,
according to the analysis of the synoptic situation [46],
air transport during this period occurred in a north-
easterly direction, this can mean that the coastal
sources of methane were of higher power than the
marine source during that period. The back trajecto-
ries for that day shown in Fig. 3a also confirm this.
They are constructed for the corner points of a “con-
ditional” triangle representing the route of the Tu-134
Optik f lying laboratory (red curve in Fig. 3b).

As can be seen from Fig. 3 the air that entered the
region of measurements in the ABL was formed over
the land. In the free troposphere, the transport direc-
tion changed from southwest to west.

In order to confirm that the power of the coastal
sources was higher than that of the marine one, the
differences between the concentrations over the sea
and in the Arkhangelsk area are shown in Fig. 2f. One
can see that the negative difference in the concentra-
tions of CH4 of up to 95 ppb is observed inside the
ABL, near an altitude of 1000 m. It decreases towards
the upper boundary of the ABL. At the level HABL it
becomes positive, and in the middle troposphere it
again becomes negative. Above 4000 m, the differ-
ences in concentrations become less significant.

Thus, it can be concluded that during the period of
the experiment over the Barents Sea, the power of the
coastal sources of methane was higher than over the
water surface, i.e., the CH4 was transported from land.
RIC AND OCEANIC OPTICS  Vol. 36  No. 5  2023
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Fig. 2. Vertical distributions of the methane concentration (black curve), mixture ratio r (blue curve), and virtual potential tem-
perature θ

v
 (red curve) over (a–d) the Barents Sea and (e) in the region of Arkhangelsk; (f) (land–sea) differences in the methane

concentrations on September 4, 2020. Hereinafter in the figures: ML is the mixing layer, IL is the involvement layer, RL is the
residual layer, FT is the free troposphere; cloud layers are shaded.
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Fig. 3. (a) Back trajectories of air masses for the areas of measurement of vertical profiles of methane concentration (13:00–
15:00 GMT, September 4, 2020); (b) pattern of the f light to the Barents Sea area.
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1.2. Kara Sea
The air composition over the Kara Sea was mea-

sured on September 6, 2020. The sounding was carried
out according to a scheme whose horizontal projec-
tion is similar in shape to a hysteresis loop. The f lying
laboratory departed from the Naryan-Mar airport.
Four vertical concentration profiles were measured
over the sea (Fig. 4). A profile measured near Naryan-
Mar region is added for comparison.
ATMOSPHE

Fig. 4. Vertical distribution of the methane concentration
over Naryan-Mar (10:55) and the Kara Sea (11:24, 12:13,
12:41, and 13:27), September 6, 2020.
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According to profiles “11:24” and “12:13,” the
methane concentration is higher over the sea than over
land not only in the surface and near-water layers, but
also throughout the lower troposphere (up to 4000 m).
The difference between the concentrations in the
near-water layer (200 m) and the minimal value near
an altitude of 3000 m attains 180 ppb. The retarding
properties of the upper boundary of the ABL, the
height of which is 1.8 km above the land and varied
from 1.7 to 2.0 km above the sea, are not pronounced
(Fig. 5).

This vertical distribution of methane in this region
indicates that there is a source of CH4 in the Kara Sea,
which is of higher power than coastal sources. This is
confirmed by the data in Fig. 6a, which shows the
back trajectories for that day. It can be seen that air
arrived to all areas of the Kara Sea where airborne
sounding was carried out from the adjacent land
along southwestern trajectories. Thus, a certain
amount of methane emitted from the sea surface was
added to the methane transported with the incoming
air mass. The concentration of this additional meth-
ane attained ~80 ppb over the Kara Sea. Near an alti-
tude of 1000 m, a thin layer was observed, where the
methane content was less than over the mainland. An
additional amount of methane again appears in the
1500–4000 m layer above certain areas of the Kara
Sea, probably, due to the inhomogeneity of the meth-
ane emission from the ocean surface. We will dwell on
this issue a little later.

Above 4000 m, the behavior of the concentrations
(Figs. 5a–5e) and their differences (Fig. 5f) is neutral.
RIC AND OCEANIC OPTICS  Vol. 36  No. 5  2023
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Fig. 5. Vertical distributions of the methane concentration (black curve), mixing ratio (blue curve), and virtual potential tempera-
ture (red curve) over (a–d) the Kara Sea and (e) in the Naryan-Mar region; (f) (land–sea) differences in methane concentrations
on September 6, 2020.
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1.3. Laptev Sea

The sounding over the Laptev Sea was carried out
on September 9, 2020, starting from the Tiksi airport
following the triangle scheme (Fig. 7).
ATMOSPHERIC AND OCEANIC OPTICS  Vol. 36  No
The concentration of methane in this area is
noticeably lower than in the previous ones. This indi-
cates a lower power of CH4 sources in the surrounding
area and on the sea surface. At the same time, the con-
. 5  2023
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Fig. 6. (a) Back trajectories of air masses for the areas of measurements of the methane profiles (11:00–13:00 GMT, September 6,
2020); (b) pattern of the flight to the Kara Sea area.
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tent of methane over the sea is higher than over land,
both in the near-surface layer and in the lower tropo-
sphere as a whole. The difference between the concen-
trations in the near-water layer and the lower tropo-
sphere also decreased, it is less than 100 ppb here.

The nature of the vertical distribution of methane
concentration noticeably changes over the territory
under study. It depends on the height of the mixing
ATMOSPHE

Fig. 7. Vertical distribution of the methane concentration
over Tiksi (03:09) and the Laptev Sea (03:42, 04:21, 04:50,
and 05:30) on September 9, 2020.
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layer, which varied from 200 to 700 m (Fig. 8). Sec-
ondary concentration maxima are seen in the residual
ABL layer. This situation has developed due to the
peculiarities of air transport in the region under study.
Air was supplied to the water area of the Laptev Sea
from the western regions of the Arctic Ocean, and to
Tiksi, on the contrary, from the continental regions. In
this case, it is difficult to assume a relationship
between the methane concentrations over the land
and sea. Therefore, a land–sea comparison is omitted.

1.4. East Siberian Sea

Since the Pevek airport was closed for repairs,
sounding of the atmosphere over the East Siberian and
Chukchi Seas was started from the Anadyr airport. The
flight to and departure from the sounding site took a lot
of time and reduced the time of the main work. As a
result, the territory under study was smaller. Neverthe-
less, we revealed the features of the methane distribu-
tion over these seas (Figs. 9 and 10).

Figure 9 shows that the vertical methane distribu-
tion over the East Siberian Sea generally corresponds
to the previous profiles. The highest concentrations
are observed in the near-surface air layer, then the
concentration drops up to an altitude of 2500 m.
Above, the behavior was close to neutral. In contrast to
the distributions over the western seas, the change to
the neutral behavior occurs much lower here. Over the
western seas, it was observed near and above 4000 m.
This difference is due to the low height of the mixing
layer, which did not exceed 1000 m in four of the five
RIC AND OCEANIC OPTICS  Vol. 36  No. 5  2023
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Fig. 8. Vertical distributions of the methane concentration (black curve), mixing ratio (blue curve), and virtual potential tempera-
ture (red curve) over (a–d) the Laptev Sea and (e) in the Tiksi region; back trajectories of air masses for areas of measurements
of the methane profiles over (f) the Laptev Sea and (g) Tiksi (03:00–05:00, September 9, 2020).
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Fig. 9. Vertical distribution of the methane concentration
over Anadyr (22:32) and the East Siberian Sea (23:08,
23:40, 23:51, and 00:22) on September 15–16, 2020.
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profiles (Fig. 10). The difference between the concen-
trations in the near-water layer and in the lower tropo-
sphere also significantly lower, 84 ppb. One can also
note a smaller spread of concentrations between indi-
vidual profiles at all altitudes. This indicates the
homogeneity of the methane source in the air mass
entering the sea area.

This vertical distribution is explained by the history
of the air mass observed in the area of the experiment.
As follows From Fig. 10f the air in the near-water and
boundary layers came from the Western Hemisphere,
from the Arctic Ocean surface along the Alaska coast-
line. In the free troposphere, the air was also transferred
from the Arctic Ocean. Since measurements were not
made in those areas, a comparison cannot be made.

1.5. Chukchi Sea

The sounding over the Chukchi Sea was carried out
on September 14–15, 2020, a day earlier than over the
East Siberian Sea, due to synoptic conditions. The
measurement data are shown in Fig. 11.

The comparison between Figs. 7 and 11 shows that
the nature of the vertical distribution and the methane
concentration over the Chukchi Sea is close to that
observed over the East Siberian Sea. But the change to
the neutral behavior of the concentration occurred even
lower, near an altitude of 1800 m, over the Chukchi Sea.
The mixing layer was located noticeably lower here, at
an altitude of no more than 600 m (Fig. 12).

The CH4 concentration in the ABL above the sea
surface was higher than above the continent. This com-
parison is conventional, since the territory between the
Chukchi Sea and Anadyr is mountainous, and the
ATMOSPHE
mountains prevents the transfer of air masses. The max-
imal difference in the concentrations is 85 ppb.

Air arrive to the water area of the Chukchi Sea in
the ABL through the Pacific Ocean from the territory
of Alaska (Fig. 12f). In the free atmosphere, the air
arrived from the Pacific Ocean, but bypassing Alaska.

1.6. Bering Sea

Sounding over the Bering Sea was not scheduled.
However, the peculiarities of methane distribution
over the East Siberian and Chukchi Seas necessitated
a control f light, because of the large differences
between the methane concentration in the near-water
air layer over the western and eastern seas. The mea-
surements were taken on September 16, 2020, in the
afternoon. The aircraft f lew from the Anadyr airport
immediately towards the Bering Sea at a low altitude.
Fig. 8e shows the profile measured in the Anadyr
region two hours earlier, when returning from the East
Siberian Sea.

The data in Fig. 13 repeat the measurements over
the East Siberian and Chukchi Seas both in terms of
methane concentrations and of the boundary of the
change to neutral altitude variations. The difference
between the concentrations in the near-water layer
and in the lower troposphere remained the same,
83 ppb on average. The height of the mixing layer over
the Bering Sea was close to that observed over the East
Siberian and Chukchi Seas, and the height of the ABL
increased as compared to the Chukchi Sea (Fig. 14).

In contrast to the profiles over the previously con-
sidered seas, the profiles in Figs. 13 little differ from
each other over different parts of the Bering Sea in the
ABL. Differences are mainly observed above HABL.
This is due to the peculiarities of air transport at these
altitudes. Figure 14f shows that the air mass trajecto-
ries are similar to those over the Chukchi Sea, which
causes the noticeable difference between the methane
concentrations in the free troposphere.

2. HORIZONTAL INHOMOGENEITIES 
IN THE METHANE DISTRIBUTION

During the experiment, in addition to vertical
sounding, horizontal f lights were also performed at
altitudes of 200, 5000, and 9000 m over different parts
of the seas. During such flights, the concentrations of
trace atmospheric gases were recorded at a frequency
of 1 Hz. These data make it possible to estimate the
variability of methane concentration over different
parts of each sea. The areas where measurements were
taken at an altitude of 200 m are shown in Fig. 15. We
believe that the inhomogeneity of the CH4 emission
from the ocean surface should be pronounced at this
altitude. The measurement results are shown in Fig. 16
and allow the comparison between variations in the
methane concentration over different seas.
RIC AND OCEANIC OPTICS  Vol. 36  No. 5  2023
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Fig. 10. Vertical distributions of the methane concentration (black curve), mixing ratio (blue curve), and virtual potential tem-
perature (red curve) over (a–d) the East Siberian Sea and (e) in the Anadyr region; (f) back trajectories of air masses for areas of
measurements of methane profiles over the East Siberian Sea (03:00–05:00, September 15–16, 2020).
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Fig. 11. Vertical distribution of the methane concentration
over Anadyr (23:38) and the Chukchi Sea (00:13, 00:50,
01:18, and 01:50) on September 14–15, 2020.
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On the one hand, Fig. 16 shows the differences in
the methane concentrations over different seas noted
in the previous section. On the other hand, it shows
the features of their horizontal distribution over water
areas. One can see that the variation in the CH4 con-
centration is the highest over the Laptev Sea, up to
73 ppb in three sections with a total length of about
250 km. Over the Barents and Kara Seas, it exceeds
30 ppb. The smallest horizontal variations in the con-
centration were recorded over the East Siberian and
Bering Seas. Now it is difficult to comment on these
data. Perhaps, the cause is the geological structure of
the sea bottom, which was reported in [59, 60]. Thus,
five mesoscale structures are clearly visible over the
Barents Sea, apparently reflecting the methane emis-
sion from the ocean surface. Fluctuations in the CH4
concentration, but with shorter periods, also take place
ATMOSPHE

Table 1. Average characteristics of methane distribution and 

Parameter
Barents

CH4 concentration at an altitude of 200 m, ppb 2030 ± 11
ABL height, km 1.9 ± 0.5
Difference between methane concentrations at 
200 m and in the free troposphere, ppb

140

Air temperature at an altitude of 200 m, °C 14.7 ± 1.9
Sea temperature (coastal stations), °C 11
Range of variation in the methane concentrations 
at an altitude of 200 m in horizontal sections, ppb

32
over the Kara Sea. Perhaps, this strong variability over
the Laptev Sea is due to the presence of methane seeps
described in [54–56].

3. DISCUSSION
The vertical profiles of CH4 concentration measured

in the experiment described are in good agreement with
the data in other sectors of the Arctic acquired by for-
eign colleagues [83, 84]. The comparison of absolute
values is unfair, since the methane concentration has a
long-term trend, and our data do not coincide in time
with measurements by other researchers.

To compare the methane concentrations in the
near-water layer over different seas, Table 1 is com-
piled. It shows that the methane concentration at an
altitude of 200 m averaged over all measurements was
the highest over the Kara Sea (2091 ppb) and the
smallest over Chukchi Sea (2005 ppb) during the
experiment. Average values of the CH4 concentration
are characteristic of the Barents (2030 ppb) and the
Laptev Seas (2022 ppb). The methane concentra-
tions over the Laptev Sea and the East Siberian Sea
(2015 ppb) slightly differ. The estimates obtained are
partly confirmed by the results of works [85–87],
where high methane concentrations were recorded
over the Barents and Kara Seas.

The difference between the concentrations at an
altitude of 200 m and in the free troposphere attained
180 ppb over the Kara Sea, decreased to 140 and
94 ppb over the Barents and Laptev Seas and
decreased even more over the East Siberian, Chukchi,
and Bering Seas: to 84, 85, and 83 ppb, respectively.
This reflects the emission characteristics of the seas.
Partial confirmation of our data can be the measure-
ments of methane f luxes in the near-water layer [88],
where the annual methane f luxes in the Laptev, East
Siberian, and Chukchi Seas are estimated as 0.83;
0.62, and 0.03 Tg/year, respectively.

The difference in the concentrations weakly
depends on the height of the ABL and water and air
RIC AND OCEANIC OPTICS  Vol. 36  No. 5  2023

its variability and measurement conditions

Sea

Kara Laptev East 
Siberian Chukchi Bering

2091 ± 6 2022 ± 16 2015 ± 2 2005 ± 13 2012 ± 3
1.8 ± 0.1 1.6 ± 0.3 1.8 ± 0.5 1.3 ± 0.3 1.7 ± 0.2

180 94 84 85 83

12.1 ± 0.6 7.2 ± 1.7 3.6 ± 0.4 5.0 ± 0.4 6.9 ± 0.3
8 7 5 4 8

36 73 10 23 13
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Fig. 12. Vertical distributions of the methane concentration (black curve), mixing ratio (blue curve), and virtual potential tem-
perature (red curve) over (a–d) the Chukchi and (e) in the Anadyr region (e); (f) back trajectories of air masses for areas of mea-
surements of methane profiles over the Chukchi Sea (00:00–02:00, September 14–15, 2020).
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Fig. 13. Vertical distribution of the methane concentration
over Anadyr (01:16) and the Bering Sea (03:58, 04:28,
04:48, and 05:21) on September 16, 2020.
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temperatures (see Table 1). It is possible that internal
mixing requires more time over the sea [82] than over
land, so methane faster penetrates into the free tropo-
sphere over land.

Many works (for example, [89–93]) state that
coastal areas emit more methane than the ocean. This
is not about catastrophic processes [94, 95]. The
source of methane on land is probably thermokarst
lakes, which formed in abundance in the coastal tun-
dra. The above data shows that there are cases where the
CH4 concentration is higher over land than over sea,
and vice versa. It should be emphasized here that the
flights over the seas were carried out in the daytime,
when the inner mixing layer was absent and the pro-
cesses of impurity accumulation were not observed.
They can make a significant contribution over land.
To estimate the possible power of the sources, we have
compiled Table 2, which contains the maximal con-
centrations of methane over the seas and coastal areas
during the experiment. One can see that the maximal
methane concentrations during the experiment were
ATMOSPHE

Table 2. Maximal methane concentrations over the seas
and coastal areas, ppb

Sea CH4 Shore CH4

Barents 2046 Arkhangelsk 2092
Kara 2104 Naryan-Mar 2203
Laptev 2054 Tiksi 2061
East Siberian 2020 Anadyr 2038
Chukchi 2021 Anadyr 2038
Bering 2018 Anadyr 2038
higher over coastal regions than over sea areas. This is
because CH4 accumulates in the inner mixing layer at
night in the presence of local sources. In the first half of
the day, when the inner mixing layer is destroyed [82],
the gas spread throughout the ABL. This is clearly seen
from the CH4 profiles in Fig. 17. During 10 h that
passed between two soundings, the methane concentra-
tion in the inner mixing layer (0–500 m) increased from
2065 to 2200 ppb, i.e., by 135 ppb. Above 500 m, CH4
concentration varied much weaker. The usual air
masses speed is 30–50 km/h [96]. Hence, an air mass
could be transported to 300–500 km for 10 h. Hence,
it is quite obvious that the increase in methane con-
centration occurred due to emissions from local
sources located near the measurement site. If the total
transfer is directed towards the ocean, then the addi-
tional amount of methane will be transferred there.

CONCLUSIONS

The analysis of the vertical distribution of methane
over all the Arctic seas showed that its concentrations
were maximal in the surface air layer during the exper-
iment. Some profiles have secondary maxima in the
lower part of the ABL. The difference between the
concentrations at a level of 200 m and in the free tro-
posphere attained 180 ppb over the Kara Sea and
decreased to 84, 85, and 83 ppb, respectively, over the
East Siberian, Chukchi, and Bering Seas. This vertical
distribution of methane indicates that the main source
of this gas is on the underlying surface, whether it be
land or sea, and reflects the emission characteristics of
the seas. Above the upper boundary of the ABL, the
methane concentration gradually decreased up to an
altitude of 5000 m.

The comparison between the methane concentra-
tions at an altitude of 200 m over all seas showed that
it was maximal over the Kara Sea and minimal over
the Chukchi Sea. The East Siberian and Bering Seas
slightly differed from the Chukchi Sea. The Barents
and Laptev Seas occupy an intermediate position.
Such a difference in the methane distribution in this
region indicates that there is probably a source of CH4
in the Kara Sea, which is of higher power than the oth-
ers. In this case, the concentration difference weakly
depends on the height of the ABL and the water and
air temperatures.

The comparison of the methane concentrations
over the sea and land at the same altitude revealed that
the concentration was higher over the coastal area than
over the sea in the Barents Sea area. It decreased with
the distance from the coast. In the Kara Sea region, on
the contrary, the concentration noticeably increased
with the distance from the coast. The “land–sea” dif-
ference in the CH4 concentrations was zero in the area
of the Laptev Sea. The assessment of this difference
for the rest of the seas with respect to the data for
Anadyr showed a slight excess of methane concentra-
RIC AND OCEANIC OPTICS  Vol. 36  No. 5  2023
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Fig. 14. Vertical distributions of methane concentration (black curve), mixing ratio (blue curve), and virtual potential temperature
(red curve) over (a–d) the Bering Sea and (e) in the Anadyr region; (f) back trajectories of air masses for areas of measurements
of methane profiles over the Bering Sea (04:00–05:00, September 16, 2020).
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Fig. 15. Areas (red lines) where methane concentrations were measured.
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Fig. 16. Methane concentration at an altitude of 200 m above the seas of the Russian Arctic.
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Fig. 17. (b) Vertical profiles of the methane concentration obtained in the Naryan-Mar region: (a, c) methane concentrations
(black curve), mixture ratio (blue curve), and virtual potential temperature (red curve) on September 6 and 7, 2020.
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tions over land. The comparison of the maximal meth-
ane concentrations recorded during the experiment
over the seas and adjacent continental territories
revealed that they were everywhere higher over land.

Taking into account the fact that the experiment
was local in time, it should be emphasized that it is
impossible to draw final conclusions either about the
position of methane sources in the territory under
study or about their intensity from the results. Further
regular and systematic monitoring of atmospheric
methane (and other greenhouse gases) is required.
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