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This paper addresses the boundary output feedback stabilization of general 1-D reaction-diffusion PDEs with delayed boundary measurement. The output takes the form of a either Dirichlet or Neumann trace. The output delay can be arbitrarily large. The control strategy is composed of a finite-dimensional observer that is used to observe a delayed version of the first modes of the PDE and a predictor component which is employed to obtain the control input to be applied at current time. For any given value of the output delay, we assess the stability of the resulting closedloop system provided the order of the observer is selected large enough. Taking advantage of this result, we discuss the extension of the control strategy to the case of simultaneous input and output delays.

Introduction

Time delays commonly arise in the design of control strategies due to either natural feedback processes or the active implementation of control laws. Moreover, time delays are well-known for their capability to introduce instabilities when not considered properly in the control design. For these reasons, the feedback control of finitedimensional systems in the presence of delays has been extensively studied [START_REF] Artstein | Linear systems with delayed controls: a reduction[END_REF][START_REF] Richard | Time-delay systems: an overview of some recent advances and open problems[END_REF]. The extension of this problematic to Partial Differential Equations (PDEs) has been the topic of a number of papers in the recent years [START_REF] Nicaise | Stabilization of the wave equation with boundary or internal distributed delay[END_REF][START_REF] Wang | Delay-dependent exponential stabilization for linear distributed parameter systems with time-varying delay[END_REF]. In particular, the development of control strategies for the feedback stabilization of reaction-diffusion PDEs with an arbitrarily long delay in the either control input [START_REF] Katz | Sub-predictors and classical predictors for finite-dimensional observer-based control of parabolic PDEs[END_REF][START_REF] Krstic | Control of an unstable reaction-diffusion PDE with long input delay[END_REF]Lhachemi & Prieur, 2021a[START_REF] Lhachemi | Predictor-based output feedback stabilization of an input delayed parabolic PDE with boundary measurement[END_REF][START_REF] Lhachemi | An LMI condition for the robustness of constant-delay linear predictor feedback with respect to uncertain time-varying input delays[END_REF], 2021;[START_REF] Qi | Compensation of spatially-varying input delay in distributed control of reaction-diffusion PDEs[END_REF] or state [START_REF] Hashimoto | Stabilization of reaction diffusion equations with state delay using boundary control input[END_REF][START_REF] Kang | Boundary control of delayed ODE-heat cascade under actuator saturation[END_REF][START_REF] Lhachemi | Boundary feedback stabilization of a reaction-diffusion equation with robin boundary conditions and state-delay[END_REF], 2021) has been intensively studied.

In this paper, we address the boundary output feedback stabilization of general 1-D reaction-diffusion PDEs with delayed boundary measurement. The control input and boundary conditions take the form of Dirichlet/Neumann/Robin boundary conditions. The output is selected as a either Dirichlet or Neumann boundary trace presenting an arbitrarily long delay. The control strategy couples a finite-dimensional observer [START_REF] Balas | Finite-dimensional controllers for linear distributed parameter systems: exponential stability using residual mode filters[END_REF][START_REF] Curtain | Finite-dimensional compensator design for parabolic distributed systems with point sensors and boundary input[END_REF][START_REF] Grüne | Finite-dimensional output stabilization of linear diffusionreaction systems-a small-gain approach[END_REF][START_REF] Harkort | Finite-dimensional observer-based control of linear distributed parameter systems using cascaded output observers[END_REF] used to observe a finite number of modes of the PDE and a predictor component [START_REF] Artstein | Linear systems with delayed controls: a reduction[END_REF][START_REF] Karafyllis | Predictor feedback for delay systems: Implementations and approximations[END_REF]. To design the finite-dimensional observer, we leverage the approach reported first in [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF] relying on spectral-reduction methods [START_REF] Coron | Global steady-state controllability of one-dimensional semilinear heat equations[END_REF][START_REF] Coron | Global steady-state stabilization and controllability of 1D semilinear wave equations[END_REF][START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF], and more specifically on the scaling-based procedures described in [START_REF] Lhachemi | Finite-dimensional observer-based boundary stabilization of reaction-diffusion equations with a either Dirichlet or Neumann boundary measurement[END_REF], 2021b) that allow to handle Dirichlet/Neumann boundary measurement while performing, for very general 1-D reaction-diffusion PDEs, the control design directly with the actual control input u and not its time-derivative v = u. We refer the reader, e.g., to (Curtain & Zwart, 2012, Sec. 3.3.) for a general introduction to the topic of boundary control systems.

It is worth noting that the robustness of the finite-dimensional control strategy reported in [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF] to small enough input and measurement delays was discussed in (Katz & Fridman, 2021a). However, the presence of an arbitrarily long output delay imposes more stringent constraints on the system and requires the development of a dedicated control strategy. This is achieved in this paper by leveraging a predictor design [START_REF] Deng | Prediction-based control with delay estimation of lti systems with input-output delays[END_REF][START_REF] Karafyllis | Predictor feedback for delay systems: Implementations and approximations[END_REF]. The possibility to couple a finite-dimensional observer with a predictor to handle arbitrary input delays was reported first in [START_REF] Katz | Sub-predictors and classical predictors for finite-dimensional observer-based control of parabolic PDEs[END_REF] in the very specific configuration of a Neumann boundary control, for a bounded output operator, and for system trajectories evaluated in L 2 norm. The case of general input delayed 1-D reaction-diffusion PDEs with Dirichlet/Neumann/Robin boundary control and Dirichlet/Neumann boundary measurement was solved in [START_REF] Lhachemi | Predictor-based output feedback stabilization of an input delayed parabolic PDE with boundary measurement[END_REF] for PDE trajectories in H 1 norm. In this paper we address the dual problem of (Lhachemi & Prieur, 2021c), namely the output feedback stabilization of reaction-diffusion PDEs in the presence of an arbitrary output delay. The proposed control strategy is composed of a finite-dimensional observer that is used to observe a delayed version of the first modes of the PDE (this delayed observation matches with the measurement delay) and a predictor component which is employed to obtain the control input to be applied at current time. For a given value of the output delay, we derive a set of sufficient LMI conditions ensuring the exponential stability of the resulting closed-loop system for PDE trajectories evaluated in H 1 norm. For any given value of the output delay, these control design constraints are shown to be feasible provided the order of the observer is selected large enough. Combining the approach developed in this paper with the one reported in [START_REF] Lhachemi | Predictor-based output feedback stabilization of an input delayed parabolic PDE with boundary measurement[END_REF] for the case of an input delay, we also discuss the extension of the method to the stabilization of reaction-diffusion PDEs in the presence of both input and output delays.

The paper is organized as follows. After introducing some definitions and properties, the control design problem addressed in this paper is presented in Section 2. The case of a delayed Dirichlet boundary measurement is reported in Section 3. The control design procedure is then extended to delayed Neumann boundary measurement in Section 4. A numerical illustration of these two settings is presented in Section 5. The extension of the obtained results to the case of input and output delays is discussed in Section 6. Finally, concluding remarks are formulated in Section 7.

Definitions and problem setting

Definitions and properties

Notation

Spaces R n are equipped with the Euclidean norm denoted by • . The associated induced norms of matrices are also denoted by • . For any two vectors X and Y of arbitrary dimensions, col(X, Y ) stands for the vector [X , Y ] . L 2 (0, 1) stands for the space of square integrable functions on (0, 1) and is endowed with the inner product f, g = 1 0 f (x)g(x) dx. The corresponding norm is denoted by • L 2 . For an integer m ≥ 1, H m (0, 1) stands for the m-order Sobolev space and is endowed with its usual norm • H m . For any symmetric matrix P ∈ R n×n , P 0 (resp. P 0) indicates that P is positive semi-definite (resp. positive definite).

Properties of Sturm-Liouville operators

Let θ 1 , θ 2 ∈ [0, π/2], p ∈ C 1 ([0, 1]) and q ∈ C 0 ([0, 1]) with p > 0 and q ≥ 0. Let the Sturm-Liouville operator A : D(A) ⊂ L 2 (0, 1) → L 2 (0, 1) be defined by Af = -(pf ) + qf on the domain

D(A) = {f ∈ H 2 (0, 1) : c θ1 f (0) -s θ1 f (0) = c θ2 f (1) + s θ2 f (1) = 0}.
Here we use the short notations c θi = cos θ i and s θi = sin θ i . It is well-known that the eigenvalues λ n , n ≥ 1, of A are simple, non negative, and form an increasing sequence with λ n → +∞ as n → +∞. Moreover the corresponding unit eigenvectors φ n ∈ L 2 (0, 1) form a Hilbert basis. The domain of the operator A is equivalently characterized in terms of the above eigenstructures by

D(A) = {f ∈ L 2 (0, 1) : n≥1 |λ n | 2 | f, φ n | 2 < +∞}.
Introducing p * , p * , q * ∈ R so that 0 < p * ≤ p(x) ≤ p * and 0 ≤ q(x) ≤ q * for all x ∈ [0, 1], we have 0 ≤ π 2 (n -1) 2 p * ≤ λ n ≤ π 2 n 2 p * + q * for all n ≥ 1 (see, e.g., [START_REF] Orlov | On general properties of eigenvalues and eigenfunctions of a Sturm-Liouville operator: comments on "ISS with respect to boundary disturbances for 1-D parabolic PDEs[END_REF]). Furthermore, with the additional assumption p ∈ C 2 ([0, 1]), we also have that φ n (ξ) = O(1) and φ n (ξ) = O( √ λ n ) as n → +∞ for any given ξ ∈ [0, 1] (see, e.g., [START_REF] Orlov | On general properties of eigenvalues and eigenfunctions of a Sturm-Liouville operator: comments on "ISS with respect to boundary disturbances for 1-D parabolic PDEs[END_REF]). Besides and under the assumption q > 0, an integration by parts and the continuous embedding H 1 (0, 1) ⊂ L ∞ (0, 1) show the existence of constants C 1 , C 2 > 0 such that

C 1 f 2 H 1 ≤ n≥1 λ n f, φ n 2 = Af, f ≤ C 2 f 2 H 1 (1)
for all f ∈ D(A). The latter inequalities and the Riesz-spectral nature of A imply that the series expansion f = n≥1 f, φ n φ n holds in H 2 (0, 1) norm for any f ∈ D(A).

Invoking again the continuous embedding H 1 (0, 1) ⊂ L ∞ (0, 1), we deduce that f (0) = 2.2. Problem setting and spectral reduction

Problem setting

Let the reaction-diffusion system with boundary control be described by

z t (t, x) = (p(x)z x (t, x)) x -q(x)z(t, x) (2a) c θ1 z(t, 0) -s θ1 z x (t, 0) = 0 (2b) c θ2 z(t, 1) + s θ2 z x (t, 1) = u(t) (2c) z(0, x) = z 0 (x) (2d)
for t > 0 and x ∈ (0, 1). Here θ 1 , θ 2 ∈ [0, π/2], p ∈ C 2 ([0, 1]) with p > 0, and q ∈ C 0 ([0, 1]). The state of the reaction-diffusion PDE at time t is z(t, •), the command is u(t), and the initial condition is z 0 . We define the initial command as u 0 = c θ2 z 0 (1) + s θ2 z 0,x (1). For some measurement delay h > 0, the system output is chosen as the either delayed Dirichlet or delayed Neumann trace. More precisely, in the case θ 1 ∈ (0, π/2], the delayed Dirichlet boundary measurement is defined by

y D (t) = z(t -h, 0), t ≥ h y 0 (t -h), 0 ≤ t ≤ h (3)
Similarly but in the case θ 1 ∈ [0, π/2), the delayed Neumann boundary measurement is defined by

y N (t) = z x (t -h, 0), t ≥ h y 0 (t -h), 0 ≤ t ≤ h (4) 
In both cases, y 0 : [-h, 0] → R is the initial condition of the delayed boundary measurement and is assumed to be Lipschitz continuous.

Without loss of generality, we introduce q ∈ C 0 ([0, 1]) and q c ∈ R so that q(x) = q(x) -q c , q(x) > 0.

(5)

Spectral reduction

Based on the change of variable formula

w(t, x) = z(t, x) - x 2 c θ2 + 2s θ2 u(t) (6) 
the PDE (2) in original coordinates can be equivalently reformulated as the homogeneous PDE described by

v(t) = u(t) (7a) w t (t, x) = (p(x)w x (t, x)) x -q(x)w(t, x) + a(x)u(t) + b(x)v(t) (7b) c θ1 w(t, 0) -s θ1 w x (t, 0) = 0 (7c) c θ2 w(t, 1) + s θ2 w x (t, 1) = 0 (7d) w(0, x) = w 0 (x) (7e)
Here we have a

(x) = 1 cθ 2 +2sθ 2 {2p(x)+2xp (x)-x 2 q(x)}, b(x) = -x 2 cθ 2 +2sθ 2
, and w 0 (x) = z 0 (x) -x 2 cθ 2 +2sθ 2 u(0). Noting that w(t, 0) = z(t, 0) and w x (t, 0) = z x (t, 0), the boundary measurements are described for t ≥ h by

y D (t) = w(t -h, 0), y N (t) = w x (t -h, 0). ( 8 
)
Let us now define the coefficients of projection z n (t) = z(t, •), φ n , w n (t) = w(t, •), φ n , a n = a, φ n , and b n = b, φ n . Owing to (6), we infer that that

w n (t) = z n (t) + b n u(t), n ≥ 1. ( 9 
)
We now project the two PDEs representations ( 2) and ( 7) into the Hilbert basis (φ n ) n≥1 . The former representation gives

żn (t) = (-λ n + q c )z n (t) + β n u(t) (10) 
where

β n = a n + (-λ n + q c )b n = p(1){-c θ2 φ n (1) + s θ2 φ n (1)} = O( √ λ n ). The latter representation implies that u(t) = v(t) (11a) ẇn (t) = (-λ n + q c )w n (t) + a n u(t) + b n v(t) (11b) 
Finally the delayed measurements ( 8) can be expressed for t ≥ h as the following series expansions:

y D (t) = n≥1 w n (t -h)φ n (0), y N (t) = n≥1 w n (t -h)φ n (0). ( 12 
)

Case of a delayed Dirichlet measurement

We address in this section the output feedback stabilization of the reaction-diffusion PDE described by (2) for θ 1 ∈ (0, π/2] with delayed Dirichlet measurement (3).

Control strategy

Let δ > 0 and N 0 ≥ 1 be such that -λ n + q c < -δ < 0 for all n ≥ N 0 + 1. Let N ≥ N 0 + 1 be arbitrarily fixed and that will be specified later. Inspired by (Karafyllis & Krstić, 2017, Chap. 3) in the context of finite-dimensional systems, we first design an observer that is used to estimate from the delayed measurement y D (t) the N first modes z n (t -h) of the PDE at time t -h. The observer dynamics reads, for t ≥ 0,

ŵn (t) = ẑn (t) + b n u(t -h) (13a) żn (t) = (-λ n + q c )ẑ n (t) + β n u(t -h) (13b) -l n N k=1 ŵk (t)φ k (0) -y D (t) , 1 ≤ n ≤ N 0 żn (t) = (-λ n + q c )ẑ n (t) + β n u(t -h), N 0 + 1 ≤ n ≤ N (13c)
where l n ∈ R are the observer gains and with u(τ ) = u 0 for τ ≤ 0. So ẑn (t) is seen as the estimation of z n (t -h) for times t ≥ h. Note that no control input is actually applied to the system (2) in negative time. The definition of u in negative time is only introduced here in order to make sure that the dynamics ( 13) is well-defined for all t ≥ 0. Since the observer (13) estimates the first modes of the PDE at time t -h while the feedback must be applied at current time t, we need to introduce a predictor component. Defining ẐN0 = ẑ1 . . . ẑN0 along with A 0 = diag(-λ 1 + q c , . . . , -λ N0 + q c ) and B 0 = β 1 . . . β N0 , we introduce the following Artstein tranformation:

ẐN0 A (t) = e A0h ẐN0 (t) + t t-h e A0(t-s) B 0 u(s) ds. ( 14 
)
We can now define the control input as

u(t) = K ẐN0 A (t) (15) 
for all t ≥ 0 where K ∈ R 1×N0 is the feedback gain.

Remark 1. The controller described by (13-15) takes a form similar to the one reported in [START_REF] Lhachemi | Predictor-based output feedback stabilization of an input delayed parabolic PDE with boundary measurement[END_REF] in the case of an input delay. However, due to the output delay considered in this paper, the measurement y D (t) appearing in ( 13b) is a time delayed version of the Dirichlet trace as described by (3). Moreover, the delayed input u(t -h) appearing in ( 13) is not reminiscent of an actual input delay, as the ones considered in [START_REF] Lhachemi | Predictor-based output feedback stabilization of an input delayed parabolic PDE with boundary measurement[END_REF], but is due to the fact that ẑn (t) does not estimate z n (t) but z n (t -h) for t ≥ h, so that the measurement y D (t) = w(t -h, 0) can indeed be used to design a classical Luenberger observer. We refer to (Karafyllis & Krstić, 2017, Chap. 3) for general explanations of such a control design strategy in the context of output delayed finite-dimensional systems.

Remark 2. Equations (14-15) imply that the initial condition ẐN0 (0) ∈ R N0 of the N 0 first modes of the observer must be selected so that u 0 = K ẐN0 A (0). For a given u 0 ∈ R, the latter condition is equivalent to Ke A0h ẐN0 (0) = 1 -0 -h Ke -A0s B 0 ds u 0 . This is possible as soon as K = 0.

Remark 3. The well-posedness of the closed-loop system composed of the plant (2), the delayed Dirichlet measurement (3), and the controller (13-15), is not trivial under this form due to the integral term ϕ(t) = t t-h e A0(t-s) B 0 u(s) ds appearing in ( 14). However, it is observed that such a function ϕ is the unique solution to the EDO

φ(t) = A 0 ϕ(t) + B 0 K ẐN0 A (t) -e A0h B 0 u(t -h) (16) 
associated with the initial condition ϕ(0) = 0 -h e -A0s B 0 u 0 ds. Hence considering the infinite-dimensional system described by the plant (2), the delayed Dirichlet measurement (3), the observer dynamics (13), the control input (15) with ẐN0

A (t) define by

ẐN0 A (t) = e A0h ẐN0 (t) + ϕ(t),
along with the ODE ( 16), the well-posedness in terms of classical solutions for initial conditions z 0 ∈ H 2 (0, 1) and ẑn (0) ∈ R so that c θ1 z 0 (0) -s θ1 z 0 (0) = 0 and c θ2 z 0 (1) + s θ2 z 0 (1) = u 0 = K ẐN0 A (0), and any Lipschitz continuous y 0 ∈ C 0 ([-h, 0]) so that y 0 (0) = z 0 (0), is now an immediate consequence of (Pazy, 2012, Thm. 6.3.1 and 6.3.3) and the use of a classical induction argument.

Truncated model for stability analysis

In order to complete the tuning of the controller gains and to perform the stability analysis, we need to introduce first a finite dimensional model capturing the N first modes of the PDE in z coordinates (2) and the controller dynamics (13-15) based on the delayed Dirichlet measurement (3). To do so we define the observation error of the n-th mode as e n (t) = z n (t -h) -ẑn (t) for all 1 ≤ n ≤ N and all t ≥ h. Defining E N0 = e 1 . . . e N0 , the scaled error ẽn = √ λ n e n , and ẼN-N0 = ẽN0+1 . . . ẽN , we obtain from (13b) and ( 15) that

ŻN0 (t) = A 0 ẐN0 (t) + B 0 u(t -h) + LC 0 E N0 (t) + L C1 ẼN-N0 (t) + Lζ(t -h) (17)
for all t ≥ h. Defining the residue of measurement as ζ = n≥N +1 w n φ n (0), we have

ζ(t -h) = n≥N +1 w n (t -h)φ n (0) for all t ≥ h. The different matrices are defined by C 0 = φ 1 (0) . . . φ N0 (0) , C1 = φN 0 +1(0) √ λN 0 +1 . . . φN (0)
√ λN , and L = l 1 . . . l N0 . Invoking the Artstein transformation (14) and using (15) we infer that

ŻN0 A (t) = (A 0 + B 0 K) ẐN0 A (t) + e A0h LC 0 E N0 (t) (18) 
+ e A0h L C1 ẼN-N0 (t) + e A0h Lζ(t -h) for all t ≥ h. Besides, the combination of (10) evaluated at time t -h and (17) gives

ĖN0 (t) = (A 0 -LC 0 )E N0 (t) -L C1 ẼN-N0 (t) -Lζ(t -h) (19) 
for all t ≥ h.

Based on (13c) and defining the scaled estimation zn = ẑn /λ n and ZN-N0 = zN0+1 . . . zN , we deduce that

ŻN-N0 (t) = A 1 ZN-N0 (t) + B1 u(t -h) for t ≥ 0 where A 1 = diag(-λ N0+1 + q c , . . . , -λ N + q c ) and B1 = β N0+1 /λ N0+1 . . . β N /λ N .
Introducing the second Artstein tranformation:

ZN-N0 A (t) = e A1h ZN-N0 (t) + t t-h e A1(t-s) B1 u(s) ds ( 20 
)
and owing to (15) we infer that ŻN-N0

A (t) = A 1 ZN-N0 A (t) + B1 K ẐN0 A (t). (21) 
Moreover, using (10) evaluated at time t -h and (13c), the error dynamics reads

ĖN-N0 (t) = A 1 ẼN-N0 (t) (22) 
for all t ≥ h.

Introducing the state vector

X = col ẐN0 A , E N0 , ZN-N0 A , ẼN-N0 , (23) 
we obtain from (18-19) and (21-22) that

Ẋ(t) = F X(t) + Lζ(t -h) (24) 
for all t ≥ h where

F =     A 0 + B 0 K e A0h LC 0 0 e A0h L C1 0 A 0 -LC 0 0 -L C1 B1 K 0 A 1 0 0 0 0 A 1     , L =     e A0h L -L 0 0     With X(t) = col (X(t), ζ(t -h))
and based on ( 15) and ( 17), we also have

u(t) = KX(t), ∀t ≥ h ; v(t) = u(t) = K ŻN0 A (t), ∀t ≥ 0 (25) = E X(t), ∀t ≥ h with K = K 0 0 0 and E = K A 0 + B 0 K e A0h LC 0 0 e A0h L C1 e A0h L .
Remark 4. The application of the Hautus test shows that the pairs (A 0 , B 0 ) and (A 0 , C 0 ) satisfy the Kalman condition. Hence one can always compute feedback and observer gains K ∈ R 1×N0 and L ∈ R N0 so that A 0 + B 0 K and A 0 -LC 0 are Hurwitz with arbitrary pole assignment.

Remark 5. It is worth noting that the matrix F and the vector L of the truncated model ( 24) are identical to the ones obtained in [START_REF] Lhachemi | Predictor-based output feedback stabilization of an input delayed parabolic PDE with boundary measurement[END_REF] in the case of an input delay (instead of an output delay). However, the reduced model derived in [START_REF] Lhachemi | Predictor-based output feedback stabilization of an input delayed parabolic PDE with boundary measurement[END_REF]) is delay-free and valid for all t ≥ 0, essentially because the predictor components manage to completely compensate the input delay. This is not the case in the output delay setting studied in this paper due to the delayed residue of measurement ζ(t -h). Conversely, since no input delay appears in the original PDE dynamics (2), the dynamics of the coefficients of projection ( 11) are delay-free. This is in contrast with the input delay setting studied in [START_REF] Lhachemi | Predictor-based output feedback stabilization of an input delayed parabolic PDE with boundary measurement[END_REF] where the dynamics of the modes present a time delay.

Main stability result

We are now in position to state the main result of this section.

Theorem 3.1. Let θ 1 ∈ (0, π/2], θ 2 ∈ [0, π/2], p ∈ C 2 ([0, 1]) with p > 0, and q ∈ C 0 ([0, 1]). Let q ∈ C 0 ([0, 1]) and q c ∈ R be such that (5) holds. Let δ > 0 and N 0 ≥ 1 be such that -λ n + q c < -δ for all n ≥ N 0 + 1. Let K ∈ R 1×N0 \{0} and L ∈ R N0 be such that A 0 + B 0 K and A 0 -LC 0 are Hurwitz with eigenvalues that have a real part strictly less than -δ < 0. Let h > 0 be given. For a given N ≥ N 0 + 1, assume that there exist P 0, α > 1, and β, γ > 0 such that

Θ 1 0, Θ 2 ≤ 0 ( 26 
)
where

Θ 1 = F P + P F + 2δP + αγ R N a 2 L 2 K K P L L P -βe -2δh + αγ R N b 2 L 2 E E (27a) Θ 2 = 2γ -1 - 1 α λ N +1 + q c + δ + βM φ ( 27b 
)
where

M φ = n≥N +1 |φn(0)| 2 λn < +∞.
Then there exists a constant M > 0 such that for any initial condition z 0 ∈ H 2 (0, 1) and ẑn (0) ∈ R so that c θ1 z 0 (0) -s θ1 z 0 (0) = 0 and c θ2 z 0 (1) + s θ2 z 0 (1) = u 0 = K ẐN0 A (0), and any Lipschitz continuous y 0 ∈ C 0 ([-h, 0]) so that y 0 (0) = z 0 (0), the trajectories of the closed-loop system composed of the plant (2), the delayed Dirichlet measurement (3), and the controller (13-15) satisfy

z(t, •) 2 H 1 + N n=1 ẑn (t) 2 ≤ M e -2δt z 0 2 H 1 + N n=1 ẑn (0) 2 + u 2 0 + y 0 2 ∞ (28)
for all t ≥ 0. Moreover, for any given h > 0, the constraints (26) are always feasible for N selected large enough.

Proof. Let V (t) = V 0 (t) + V 1 (t) be defined for t ≥ h by V 0 (t) = X(t) P X(t) + γ n≥N +1 λ n w n (t) 2 (29a) V 1 (t) = β t (t-h) + e -2δ(t-s) ζ(s) 2 ds (29b)
where (t -h) + = max(t -h, 0). The computation of the time derivative of V along the system trajectories ( 11) and (24) for t > h gives

V ≤ X F P + P F P L L P -βe -2δh X -2δV 1 + βζ 2 + 2γ n≥N +1 λ n (-λ n + q c )w 2 n + 2γ n≥N +1 λ n {a n u + b n v}w n .
Using (25) and invoking Young inequality, we infer for any α > 0 that

2 n≥N +1 λ n a n uw n ≤ 1 α n≥N +1 λ 2 n w 2 n + α R N a 2 L 2 X K KX and 2 n≥N +1 λ n b n vw n ≤ 1 α n≥N +1 λ 2 n w 2 n + α R N b 2 L 2 X E E X.
The above estimates imply

V + 2δV ≤ X Θ 1 X + βζ 2 + 2γ n≥N +1 λ n -1 - 1 α λ n + q c + δ w 2 n .
Since, by definition, ζ = n≥N +1 w n φ n (0) we obtain from Cauchy-Schwarz inequality that βζ 2 ≤ βM φ n≥N +1 λ n w 2 n . Hence we have that

V + 2δV ≤ X Θ 1 X + n≥N +1 λ n Γ n w 2 n ( 30 
)
where 26) we deduce that V + 2δV ≤ 0 for all t > h. Hence V (t) ≤ e -2δ(t-h) V (h) for all t ≥ h. Using standard arguments similar to the ones reported in the proof of (Pazy, 2012, Thm. 6.3.3) to estimate the trajectories of the closed-loop system on the time interval [0, h], we infer the existence of a constant c > 0, independent of the initial conditions, such that

Γ n = 2γ -1 -1 α λ n + q c + δ + βM φ . Since α > 1, we observe that Γ n ≤ Γ N +1 = Θ 2 for all n ≥ N + 1. Owing to (
n≥1 λ n w n (t) 2 + N n=1 ẑn (t) 2 ≤ c   n≥1 λ n w n (0) 2 + N n=1 ẑn (0) 2 + u 2 0 + y 0 2 ∞   for all t ∈ [0, h].
The claimed stability estimate ( 28) is now obtained from the definition of V , the estimates (1), and by invoking the Artstein transformations ( 14) and ( 20).

It remains to show that the constraints (26) are feasible provided the dimension N ≥ N 0 + 1 of the observer is selected sufficiently large. First, applying the Lemma reported in Appendix to the matrix F + δI, we infer for any N ≥ N 0 + 1 the existence of a matrix P 0 so that F P + P F + 2δP = -I and P = O(1) as N → +∞. Let α > 1 be arbitrarily fixed. For any given N ≥ N 0 + 1 we set β = √ N > 0 and γ = 1/N > 0. In this case, we observe that Θ 2 → -∞ as N → +∞ showing that Θ 2 ≤ 0 for N large enough. Moreover, since K = K and L are independent of N while P = O( 1) and E = O(1) as N → +∞, the application of the Schur complement shows that Θ 1 0 for sufficiently large N ≥ N 0 + 1. This completes the proof.

Remark 6. For a given N ≥ N 0 + 1 and fixing arbitrarily the value of α > 1, the constraints (26) now take the form of LMIs. Moreover, following the proof of Theorem 3.1, this latter LMI formulation remains feasible provided N is selected large enough.

Case of a delayed Neumann measurement

We address in this section the output feedback stabilization of the reaction-diffusion PDE described by (2) for θ 1 ∈ [0, π/2) with delayed Neumann measurement (4).

Control strategy

Let δ > 0 and N 0 ≥ 1 be such that -λ n +q c < -δ < 0 for all n ≥ N 0 +1. Let N ≥ N 0 +1 be arbitrarily fixed and that will be specified later. The observer dynamics is described for t ≥ 0 by

ŵn (t) = ẑn (t) + b n u(t -h) (31a) żn (t) = (-λ n + q c )ẑ n (t) + β n u(t -h) (31b) -l n N k=1 ŵk (t)φ k (0) -y N (t) , 1 ≤ n ≤ N 0 żn (t) = (-λ n + q c )ẑ n (t) + β n u(t -h), N 0 + 1 ≤ n ≤ N (31c)
where l n ∈ R are the observer gains. The command input is then defined based on the Artstein transformation ( 14) and the feedback (15). The well-posedness of the resulting closed-loop system follows the same arguments that the ones reported in Remark 3.

Truncated model for stability analysis

Proceeding as in Subsection 3.2 while replacing the definition of ζ, ẽn , C 0 and C1 by the following: ζ = n≥N +1 w n φ n (0), ẽn = λ n e n , C 0 = φ 1 (0) . . . φ N0 (0) , and C1 =

φ N 0 +1 (0) λN 0 +1 . . . φ N (0)
λN , we infer that the representation (24) holds for all t ≥ h.

Main stability result

We now state the main result of this section.

Theorem 4.1. Let θ 1 ∈ [0, π/2), θ 2 ∈ [0, π/2], p ∈ C 2 ([0, 1]
) with p > 0, and q ∈ C 0 ([0, 1]). Let q ∈ C 0 ([0, 1]) and q c ∈ R be such that (5) holds. Let δ > 0 and N 0 ≥ 1 be such that -λ n + q c < -δ for all n ≥ N 0 + 1. Let K ∈ R 1×N0 \{0} and L ∈ R N0 be such that A 0 + B 0 K and A 0 -LC 0 are Hurwitz with eigenvalues that have a real part strictly less than -δ < 0. Let h > 0 be given. For a given N ≥ N 0 + 1, assume that there exist ∈ (0, 1/2], P 0, α > 1, and β, γ > 0 such that

Θ 1 0, Θ 2 ≤ 0, Θ 3 ≥ 0 (32)
where Θ 1 is defined by (27a) while

Θ 2 = 2γ -1 - 1 α λ N +1 + q c + δ + βM φ ( )λ 1/2+ N +1 (33a) Θ 3 = 2γ 1 - 1 α - βM φ ( ) λ 1/2- N +1 (33b) 
where

M φ ( ) = n≥N +1 |φ n (0)| 2 λ 3/2+ n < +∞.
Then there exists a constant M > 0 such that for any initial condition z 0 ∈ H 2 (0, 1) and ẑn (0) ∈ R so that c θ1 z 0 (0)-s θ1 z 0 (0) = 0 and c θ2 z 0 (1) + s θ2 z 0 (1) = u 0 = K ẐN0 A (0), and any Lipschitz continuous y 0 ∈ C 0 ([-h, 0]) so that y 0 (0) = z 0,x (0), the trajectories of the closed-loop system composed of the plant (2), the delayed Neumann measurement (4), and the controller composed of ( 31) and (14-15) satisfy

z(t, •) 2 H 1 + N n=1 ẑn (t) 2 ≤ M e -2δt Aw 0 2 L 2 + N n=1 ẑn (0) 2 + u 2 0 + y 0 2 ∞ ( 34 
)
for all t ≥ 0. Moreover, for any given h > 0, the constraints (32) are always feasible for N selected large enough.

Proof. Let V (t) = V 0 (t) + V 1 (t)
for t ≥ h be defined by ( 29). The first part of the proof follows the same lines that the one of Theorem 3.1. However, since ζ is now defined by ζ = n≥N +1 w n φ n (0), its estimate is replaced by the following:

βζ 2 ≤ βM φ ( ) n≥N +1 λ 3/2+ n w 2
n . This implies that (30) holds for all t > h with

Γ n = 2γ -1 -1 α λ n + q c + δ + βM φ ( )λ 1/2+ n
. Recalling that ∈ (0, 1/2], we obtain for any n ≥ N + 1 that λ

1/2+ n = λ n /λ 1/2- n ≤ λ n /λ 1/2- N +1 . Since Θ 3 ≥ 0, this implies that Γ n ≤ -Θ 3 λ n + 2γ{q c + δ} ≤ Γ N +1 = Θ 2 ≤ 0 for all n ≥ N + 1.
The proof of the stability estimate (34) is now obtained using similar arguments that the ones reported in the proof of Theorem 3.1. We use here in particular for some α 0 ∈ (3/4, 1) the fact that, based on standard arguments similar to the ones reported in the proof of (Pazy, 2012, Thm. 6.3.3), we have the existence of a constant c > 0, independent of the initial conditions, such that

n≥1 λ 2α0 n w n (t) 2 + N n=1 ẑn (t) 2 ≤ c   n≥1 λ 2α0 n w n (0) 2 + N n=1 ẑn (0) 2 + u 2 0 + y 0 2 ∞   for all t ∈ [0, h].
Finally, the feasibility of the constraints (32) for N large enough is obtained similarly by setting = 1/8, β = N 1/8 , and γ = 1/N 3/16 .

Numerical example

For numerical illustration of the main results of this paper, we set the parameters p = 1, q = -5, θ 1 = π/5, θ 2 = 0 (Dirichlet boundary control), and the input delay h = 2 s. The resulting reaction-diffusion PDE given by ( 2) is open-loop unstable.

We set the feedback gain K = -1.6037. The observer gain is set as L = 4.0832 in the case of the delayed Dirichlet measurement (3) while L = 2.9666 in the case of the delayed Neumann measurement (4).

With fix the prescribed decay rate δ = 0.5. In the case of the Dirichlet measurement (3), the constraints of Theorems 3.1 are found feasible for an observer of dimension N = 3, ensuring the exponential stability of the closed-loop system in H 1 norm. Dealing with the case of the Neumann boundary measurement ( 4), the constraints of Theorem 4.1 are found feasible for an observer of dimension N = 15, ensuring the exponential decay of the closed-loop system in H 1 norm.

We complete this numerical illustration by depicting the closed-loop system behavior in the case of the delayed Dirichlet measurement (3). We set the initial conditions z 0 (x) = 5x 2 (x -3/4) and y 0 (τ ) = 3 cos(10π(τ + h)) sin(3πτ ) for τ ≤ 0, while ẑn (0) are fixed so that u 0 = K ẐN0 A (0). In this setting, the time domain evolution of the closed-loop system is depicted in Fig. 1. As predicted by Theorem 3.1, we observe the exponential decay of the both state of the PDE and observation error in spite of the h = 2 s output delay.

Extension to input and output delays

We briefly discuss in this section how the output feedback boundary stabilization of general 1-D reaction-diffusion PDEs in the presence of both input and output delays can be achieved by merging the techniques developed in this paper for an output delay and the ones reported in [START_REF] Lhachemi | Predictor-based output feedback stabilization of an input delayed parabolic PDE with boundary measurement[END_REF] for an input delay. We focus the presentation on the Dirichlet measurement but the same procedure can be used to address the case of the Neumann measurement. Consider the reaction-diffusion system with boundary control described by

z t (t, x) = (p(x)z x (t, x)) x -q(x)z(t, x) (35a) c θ1 z(t, 0) -s θ1 z x (t, 0) = 0 (35b) c θ2 z(t, 1) + s θ2 z x (t, 1) = u(t -h i ) (35c) z(0, x) = z 0 (x) (35d)
for t > 0 and x ∈ (0, 1). The different parameters are defined as in (2) while h i > 0 is an input delay. We assume that u(τ ) = 0 for all τ ≤ 0. In the case case θ 1 ∈ (0, π/2], the delayed Dirichlet boundary measurement is defined by

y D (t) = z(t -h o , 0), t ≥ h o y 0 (t -h o ), 0 ≤ t ≤ h o (36) 
with output delay h o > 0. We introduce q ∈ C 0 ([0, 1]) and q c ∈ R so that (5) holds.

Defining the change of variable

w(t, x) = z(t, x) - x 2 c θ2 + 2s θ2 u(t -h i ). ( 37 
)
we infer that 

w n (t) = z n (t) + b n u(t -h i ), n ≥ 1. ( 38 
(t) = (-λ n + q c )z n (t) + β n u(t -h i ) (39) while, in w coordinates, u(t) = v(t) (40a) ẇn (t) = (-λ n + q c )w n (t) + a n u(t -h i ) + b n v(t -h i ). ( 40b 
)
The delayed measurement is expressed for t ≥ h o by

y D (t) = n≥1 w n (t -h o )φ n (0). ( 41 
)
Let δ > 0 and N 0 ≥ 1 be such that -λ n + q c < -δ < 0 for all n ≥ N 0 + 1. Let N ≥ N 0 + 1 be arbitrarily given. The observer dynamics, used to estimate the N first modes z n (t -h o ) of the PDE at time t -h o , is described for t ≥ 0 by

ŵn (t) = ẑn (t) + b n u(t -h io ) (42a) żn (t) = (-λ n + q c )ẑ n (t) + β n u(t -h io ) (42b) -l n N k=1 ŵk (t)φ k (0) -y D (t) , 1 ≤ n ≤ N 0 żn (t) = (-λ n + q c )ẑ n (t) + β n u(t -h io ), N 0 + 1 ≤ n ≤ N (42c) 
where l n ∈ R are the observer gains and 

h io = h i + h o > 0.
we define the control input as

u(t) = K ẐN0 A (t) (44) 
for all t ≥ 0 where K ∈ R 1×N0 is the feedback gain. Then proceeding as in Subsection 3.2 but with ZN-N0

A defined by ZN-N0

A (t) = e A1hio ZN-N0 (t) + t t-hio e A1(t-s) B1 u(s) ds, (45) 
we infer that

Ẋ(t) = F X(t) + Lζ(t -h o ) (46) 
for all t ≥ h 0 where X is defined by ( 23) and ζ = n≥N +1 w n φ n (0) while the matrix F and the vector L are defined by

F =     A 0 + B 0 K e A0hio LC 0 0 e A0hio L C1 0 A 0 -LC 0 0 -L C1 B1 K 0 A 1 0 0 0 0 A 1     , L =     e A0hio L -L 0 0     .
Defining X(t) = col (X(t), ζ(t -h o )), we have u(t) = KX(t) and v(t) = u(t) = K ŻN0 A (t) for all t ≥ 0 where K = K 0 0 0 . Moreover, we also have ŻN0

A (t) = E X(t) for all t ≥ h o with E = A 0 + B 0 K e A0hio LC 0 0 e A0hio L C1 e A0hio L .
Combining now the approaches developed in this paper and in [START_REF] Lhachemi | Predictor-based output feedback stabilization of an input delayed parabolic PDE with boundary measurement[END_REF] to handle the output delay h o > 0 appearing in ( 46) and the input delay h i > 0 occurring in (40), respectively, we arrive at the following theorem. Theorem 6.1. Let θ 1 ∈ (0, π/2], θ 2 ∈ [0, π/2], p ∈ C 2 ([0, 1]) with p > 0, and q ∈ C 0 ([0, 1]). Let q ∈ C 0 ([0, 1]) and q c ∈ R be such that (5) holds. Let δ > 0 and N 0 ≥ 1 be such that -λ n + q c < -δ for all n ≥ N 0 + 1. Let K ∈ R 1×N0 and L ∈ R N0 be such that A 0 + B 0 K and A 0 -LC 0 are Hurwitz with eigenvalues that have a real part strictly less than -δ < 0. Let h i , h o > 0 be given. For a given N ≥ N 0 + 1, assume that there exist P 0, Q 1 , Q 2 0, α > 1, and β, γ > 0 such that

Θ 1 0, Θ 2 ≤ 0, R 1 0, R 2 0 ( 47 
)
where

Θ 1 = F P + P F + 2δP + Q1 P L L P -βe -2δho + E Q 2 E (48a) 
Θ 2 = 2γ -1 -1 α λ N +1 + q c + δ + βM φ (48b)

R 1 = -e -2δhi Q 1 + αγ R N a 2 L 2 K K (48c) R 2 = -e -2δhi Q 2 + αγ R N b 2 L 2 K K (48d)
where Q1 = diag(Q 1 , 0, 0, 0) and M φ = n≥N +1 |φn(0)| 2 λn < +∞. Then there exists a constant M > 0 such that for any initial condition z 0 ∈ H 2 (0, 1) and ẑn (0) ∈ R so that c θ1 z 0 (0) -s θ1 z 0 (0) = 0 and c θ2 z 0 (1) + s θ2 z 0 (1) = 0, and any Lipschitz continuous y 0 ∈ C 0 ([-h o , 0]) so that y 0 (0) = z 0 (0), the trajectories of the closed-loop system composed of the plant (35), the delayed Dirichlet measurement (36), and the controller (42-44) with zero control in negative time and zero initial condition for the observer (u(τ ) = 0 for τ < 0 and ẑn (0) = 0) satisfy

z(t, •) 2 H 1 + N n=1 ẑn (t) 2 ≤ M e -2δt z 0 2 H 1 + y 0 2 ∞ ( 49 
)
for all t ≥ 0. Moreover, for any given h i , h o > 0, the constraints (47) are always feasible for N selected large enough.

Conclusion

This paper solved the problem of output feedback stabilization of 1-D reactiondiffusion PDEs in the presence of an arbitrary output delay. The proposed setting embraces general Dirichlet/Neumann/Robin boundary condition/control along with Dirichlet/Neumann boundary measurement. While the output feedback stabilization of general 1-D reaction-diffusion PDEs was reported in [START_REF] Lhachemi | Predictor-based output feedback stabilization of an input delayed parabolic PDE with boundary measurement[END_REF] for an arbitrary input delay and in (Lhachemi & Shorten, 2021) for an arbitrary state delay in the reaction term, the results presented in this paper complete the full picture by addressing the case of an arbitrary output delay. Furthermore, we showed how the combination of the techniques developed in this paper with the ones reported in (Lhachemi & Prieur, 2021c) allows to address the case of simultaneous input and output delays.

It is worth noting that the main results of this paper can be extended in a straightforward manner to any θ 1 , θ 2 ∈ [0, π). This can be achieved by 1) selecting q in (5) sufficiently large positive so that (1) holds true; 2) adapt the change of variable formula (6) to avoid a possible division by 0 by using w(t, x) = z(t, x) -

x α cθ 2 +αsθ 2 u(t)
where α > 1 is selected such that c θ2 + αs θ2 = 0.

Figure 1 .

 1 Figure 1. Time evolution of the closed-loop system for Dirichlet measurement y D (t) = z(t -h, 0) with delay h = 2 s

n≥1 f, φ n φ n (0) and f (0) = n≥1 f, φ n φ n (0). In the sequel, we define for any integer N ≥ 1 and any f ∈ L 2 (0, 1) the quantityR N f = n≥N +1 f, φ n φ n .
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Appendix A. Technical lemma

The following Lemma is an immediate generalization of the result presented in [START_REF] Katz | Constructive method for finite-dimensional observer-based control of 1-D parabolic PDEs[END_REF].

, and

We assume that there exist constants C 0 , κ 0 > 0 such that e M N 33 t ≤ C 0 e -κ0t and e M N 44 t ≤ C 0 e -κ0t for all t ≥ 0 and all N ≥ 1. Moreover, we assume that there exists a constant C 1 > 0 such that M N 14 ≤ C 1 , M N 24 ≤ C 1 , and M N 31 ≤ C 1 for all N ≥ 1. Then there exists a constant C 2 > 0 such that, for any N ≥ 1, there exists a symmetric matrix P N ∈ R n+m+2N with P N 0 such that P N F N + (F N ) P N = -I and P N ≤ C 2 .