

Initial results from the near-ultraviolet survey of Col-OSSOS trans-Neptunian objects

Nicole Tan, Michele Bannister, Wesley Fraser, Susan Benecchi, J. J. Kavelaars, Stephen Gwyn, Todd Burdullis, Mike Alexandersen, Laura Buchanan, Ying-Tung Chen, et al.

▶ To cite this version:

Nicole Tan, Michele Bannister, Wesley Fraser, Susan Benecchi, J. J. Kavelaars, et al.. Initial results from the near-ultraviolet survey of Col-OSSOS trans-Neptunian objects. DPS 2021, DPS, Oct 2021, Virtual conference, United States. hal-04234857

HAL Id: hal-04234857 https://hal.science/hal-04234857

Submitted on 10 Oct 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Bulletin of the AAS • Vol. 53, Issue 7 (DPS53 Abstracts)

Initial results from the near-ultraviolet survey of Col-OSSOS trans-Neptunian objects

Nicole Tan¹, Michele Bannister¹, Wesley Fraser², Susan Benecchi³, J.J. Kavelaars², Stephen Gwyn⁴, Todd Burdullis⁵, Mike Alexandersen⁶, Laura Buchanan⁷, Ying-Tung Chen⁸, Brett Gladman⁹, Mathew Lehner⁸, Michael Marsset¹⁰, Nuno Peixinho¹¹, Jean-Marc Petit¹², Rosemary Pike¹³, Megan Schwamb⁷, Kathryn Volk¹⁴, Shiang-Yu Wang⁸

¹University of Canterbury, ²NRC-Herzberg Astronomy and Astrophysics, ³Planetary Science Institute, ⁴Canadian Astronomy Data Centre, ⁵Canada-France-Hawaii Telescope Corporation, ⁶Center for Astrophysics | Harvard & Smithsonian, ⁷Queen's University Belfast, ⁸Institute of Astronomy and Astrophysics, Academia Sinica, ⁹University of British Columbia, ¹⁰Massachusetts Institute of Technology, ¹¹CITEUC — Centre for Earth and Space Science Research of the University of Coimbra, ¹²CNRS / Observatoire De Besançon, ¹³Smithsonian Astrophysical Observatory, ¹⁴Lunar and Planetary Laboratory, University of Arizona

Published on: Oct 03, 2021

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

The outer Solar System contains trillions of small objects made of ice and rock; yet, few have been explored in near-ultraviolet wavelengths. The surface composition of trans-Neptunian objects (TNOs) is a relic of the early planetesimal disk, and studying them provides insight into the evolutionary history of the Solar System. In particular, the far to near ultraviolet holds potential for understanding how the ices and organic materials of minor planet surfaces are modified under the effect of UV and charged particles. Furthermore, carbonaceous materials are spectrally active in the ultraviolet as compared to in the traditional visible and near-infrared wavelengths; observing TNOs in the near-ultraviolet offers a unique avenue to study the composition of carbon-bearing surfaces.

Using data from the Canada-France-Hawaii Telescope (CFHT), we are studying TNOs in the first major near-UV survey of the outer Solar System. 165 objects spanning the full TNO population range have been observed in u ($\lambda \sim 370$ nm) from August 2014 to July 2019. The CFHT data has been acquired simultaneously with g, r, and J photometry from the Gemini-North telescope as part of the Colours of the Outer Solar System Origins Survey (Col-OSSOS). Our u-band survey is the first to have routine simultaneous photometry by two major observatories, yielding two-telescope data on 63 objects. Col-OSSOS has already shown that the cold classical Kuiper belt population occupy a unique colour space in the r- and z-band; further photometry of the Col-OSSOS sample enables expansion to a full set of pan-chromatic surface reflectance measurements. With Col-OSSOS data implying two separate surface classes of TNOs in the optical-IR region (Fraser et al., this meeting), the near-UV survey affords the opportunity to investigate if this bimodal classification continues in the u-band, or if additional colour classes are needed. Here, we present preliminary results from our analysis of this near-UV survey.