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INTEGRATION BY PARTS FORMULA FOR EXIT TIMES OF ONE DIMENSIONAL DIFFUSIONS

In line with the methodology introduced in [13] for formulating probabilistic representations of integration by parts involving killed diffusion, we establish an integration by parts formula for the first exit time of one-dimensional diffusion processes. However, our approach diverges from the conventional differential calculus applied to the associated space Markov chain; instead, we employ calculus techniques that focus on the underlying time variables.

Introduction

In this article, we consider the process denoted as X, which is defined as the unique strong solution to the following one dimensional stochastic differential equation (SDE for short) with the following dynamics:

X t " x `ż t 0 bpX s q ds `ż t 0 σpX s q dW s , (1) 
where the coefficients b, σ : R Ñ R are smooth and bounded functions and pW t q tě0 denotes a standard one-dimensional Brownian motion within a given filtered probability space pΩ, F, pF t q tě0 , Pq.

The aim of the present paper is to derive an integration by parts (IBP) formula for the first hitting time of a given level L by the process X. To elaborate further, for a fixed starting point x ě L, we define τ as the first time X crosses the level L: τ " inftt ě 0 : X t " Lu. For any given finite time horizon T ą 0, our focus here is on establishing a explicit probabilistic representation for the IBP formula pertaining to the quantity:

Erf 1 pτ ^T qs where f is a real-valued smooth function defined on R `.

Numerous theoretical properties concerning these exit times have been documented. While not exhaustive, one can refer, for instance, to [START_REF] Kent | Eigenvalue expansions for diffusion hitting times[END_REF] and [START_REF] Kent | The spectral decomposition of a diffusion hitting time[END_REF]. Nonetheless, as mentioned in [START_REF] Pitman | Hitting, occupation and inverse local times of one-dimensional diffusions: martingale and excursion approaches[END_REF]: "The distribution of the exit time can be expressed using the sum of an infinite sequence of independent exponential variables. While such expansions are of interest in a number of contexts, the corresponding representations of the density or cumulative distribution function of the exit time can be difficult to work with".

The application of Malliavin Calculus to random variables associated with exit times remains somewhat fragmented. In [START_REF] Bismut | Last exit decompositions and regularity at the boundary of transition probabilities[END_REF] and [START_REF] Arous | The Poisson kernel for certain degenerate elliptic operators[END_REF], the authors establish certain regularity properties of the stopped diffusion process at the boundary of a general smooth domain. In contrast, in [START_REF] Airault | Smoothness of stopping times of diffusion processes[END_REF], the authors prove that, in general, exit times can not be Malliavin differentiable even once. Therefore, to the best of our knowledge, the pursuit of an integration by parts formula for exit times using Malliavin Calculus appears to be a daunting task.

In this article, we first establish a probabilistic representation formula in the following format Erf pτ ^T qs " Erf pτ ^T q

N T `1 ź i"1 θ i s.
Here τ is an approximation of the exit time τ and the sequence of random variables pθ i q 1ďiďN T `1 is derived from a Markov chain that approximates the trajectory of the underlying diffusion process. Additionally, pN t q 0ďtďT represents a Poisson process, and f is a bounded measurable function. The proof employs similar arguments as those utilized in [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF].

Our starting point in establishing our IBP formula is based on the probabilistic representation formula mentioned earlier. The representation proposed in this context is associated with a general perturbation theory of Markov processes, commonly employed for investigating the smoothness properties of probability density functions. This theory, which can be seen as an intermediate step between approximations and their limits, has been extensively developed in various directions. without being exhaustive, references to this theory can be found in works such as [START_REF] Fournier | Absolute continuity for some one-dimensional processes[END_REF], [START_REF] Bally | Stochastic Integration by Parts and Functional Itô Calculus[END_REF] and [START_REF] Frikha | On the first hitting times of one dimensional elliptic diffusions[END_REF][START_REF] Frikha | Weak uniqueness and density estimates for SDEs with coefficients depending on some pathfunctionals[END_REF][START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF][START_REF] Chen | Probabilistic representation of integration by parts formulae for some stochastic volatility models with unbounded drift[END_REF][START_REF] De Raynal | Well-posedness for some non-linear sdes and related pde on the wasserstein space[END_REF][START_REF] De Raynal | From the backward kolmogorov pde on the wasserstein space to propagation of chaos for mckean-vlasov sdes[END_REF].

To derive IBP formulas in our context, we initially observe that the problem bears a certain 'dual' relationship with the one pertaining to one-dimensional killed diffusion processes. In a loose sense, space and time variables undergo an interchange. With this perspective in mind, our approach involves considering the conditional distribution of the underlying time variables with respect to the space variables. Subsequently, we apply the IBP formulas with respect to the time variables. Given that these formulas involve differentiation of the time random variables, we also anticipate that the degree of degeneracy will be more pronounced compared to the case of killed diffusion.

When we carry out the conditioning process with respect to the space variables as described above, the distribution of the jump times undergoes a transformation from exponential to generalized inverse Gaussian. This change occurs because, in addition to the exponential density, the spatial Gaussian transition densities must also be taken into account as components of the conditional distribution of the jump times. Consequently, based on the preceding discussion, it becomes necessary to introduce dual operators that are associated with the jump times of Poisson processes conditioned on space variables.

The literature regarding integration by parts formulas concerning the jump times of a Poisson process is extensive. In all cases known to the authors, the general approach involves employing IBP formulas with respect to exponential distributions, which may inherently introduce boundary conditions. Dealing with these terms can pose difficulties, necessitating the use of localization techniques centered around the boundary values of these time random variables to address this technical challenge. For further insights into this topic, please consult references such as [START_REF] Denis | Malliavin calculus for Markov chains using perturbations of time[END_REF], [START_REF] Bally | Integration by parts formula for locally smooth laws and applications to sensitivity computations[END_REF], and [START_REF] Bally | Integration by parts formula and applications to equations with jumps[END_REF].

In the current configuration, we do not seek to circumvent these boundary terms; rather, we include them in our calculations. Since the calculation is carried out conditionally, based on the values of space variables, within a random partition of the time interval-assumed, without loss of generality, to be all distinct-we ascertain that all boundary terms will ultimately disappear.

Lastly, following a similar approach to our companion paper [START_REF] Frikha | On the first hitting times of one dimensional elliptic diffusions[END_REF], where we employed a time stabilization argument for stopped processes, in this article, we employ a spatial stabilization technique. This approach leads to a Malliavin variance quantity that relies on the squares of distances between points within the underlying Markov chain structure. The central result of this paper is presented in Theorem 14, where we establish the IBP formula for the first hitting time of X. We achieve this using the probabilistic representation derived in Theorem 6

Notations: We use A E " B to denote that ErAs " ErBs. We will be working on a Wiener space with all necessary additional independent r.v.'s added to it. Products ś k j"i θ j are defined to be 1 when i ą k. We also use N " N Y t0u and Nn`1 " t0, ..., n `1u.

Preliminaries

2.1. Assumptions. Throughout the article, we work on the filtered probability space pΩ, F, pF t q tě0 , Pq which is assumed to be rich enough to support all random variables that will be considered in what follows. In addition, we will suppose that the following assumptions on the coefficients are in force:

Assumption (H).

(i) The coefficients of SDE (1) are smooth, bounded with bounded derivatives. That is, b P C 8 b pRq and a :" σ 2 P C 8 b pRq. (ii) The function σ is uniformly elliptic and bounded. That is, there exist a, a ą 0 such that for any

x P R, a ď apxq ď a.

A reflection principle.

As in [START_REF] Frikha | On the first hitting times of one dimensional elliptic diffusions[END_REF], our probabilistic representation involves the following approximation process Xs,x t " Xs,x t pρq " ρx `p1 ´ρqp2L ´xq `σpxqpW t ´Ws q, (2

)
where ρ is a Bernoulli random with parameter 1{2, independent of W , namely Ppρ " 1q " Ppρ " 0q " 1{2. This random variable is related to a reflection principle. We may use the simplified form Xt for X0,x t . The above approximation process X is the main building block in the forthcoming probabilistic representation formula of the couple pτ ^T, X τ ^T q. The next lemma follows from the reflection principle, see e.g. Karatzas and Shreve [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF], or from the explicit density of the Brownian motion killed at level L given for x, y ą L by

1 ? 2πσ 2 T ˆexp ˆ´py ´xq 2 2σ 2 T ˙´exp ˆ´py ´p2L ´xqq 2 2σ 2 T ˙˙.

Lemma 1. Consider the process

Ȳt " x `σpxqW t , x ě L, together with its hitting time τ :" inf t ě 0 : Ȳt " L ( . Then, for any bounded and measurable function f , it holds that

E " f p ȲT q1 tτ ąT u ‰ "E " f p ȲT q1 t ȲT ěLu ‰ ´E " f p2L ´Ȳ T q1 t ȲT ăLu ‰ " 2E " p2ρ ´1qf p XT q1 t XT ěLu ‰ . (3) 
2.3. The underlying Markov chain and associated simplified Malliavin Calculus. This section serves as an introduction to the foundational Markov chain that will underpin our probabilistic representation and facilitate the development of our IBP formulas. Furthermore, we shall present the essential material required for our differential calculus computations. It is noteworthy that a substantial portion of this section has been drawn directly from [START_REF] Frikha | On the first hitting times of one dimensional elliptic diffusions[END_REF] for reference.

We consider a Poisson process with parameter λ ą 0, independent of the one-dimensional Brownian motion W with jump times T i and we set ζ i :" T i ^T , for i P N, with the convention that ζ 0 " T 0 " 0. We let π be the partition of r0, T s given by π :" t0 ": ζ 0 ă ¨¨¨ă ζ N T ď T u. Associated with this set, we define the simplex A n :" tt P p0, T s n ; 0 ă t 1 ă ¨¨¨ă t n ď T u. For instance, on the set tN T " nu, n P N, we have pζ 1 , . . . , ζ n q P A n and ζ n`1 " T . In particular, for the set tN T " 0u (i.e. n " 0), we let π :" t0, T u and A 0 " H. In this sense, we will use through the rest of the paper the index n P N without any further mention of its range of values.

Let X :" p Xi q iP N be the discrete time Markov chain starting at time 0 from X0 " x and evolving according to Xi`1 :

"ρ i`1 Xi `p1 ´ρi`1 qp2L ´X i q `σi Z i`1 , i P NN T , (4) 
where for simplicity we set σ i :" σp Xi q, Z i`1 :" W ζi`1 ´Wζi " σ ´1 i `X i`1 ´ρi`1 Xi ´p1 ´ρi`1 qp2L ´X i q ȃnd tρ i ; i P Nu is an i.i.d. sequence of Bernoullip1{2q random variables such that W, N and tρ i ; i P Nu are mutually independent. In what follows, we use the notation h i " hp Xi q, i P Nn`1 for any function h : R Ñ R. In particular, the reader may have noticed that we already used this notation in the above formula for h " σ. We also associate to the Markov chain X the following sets [START_REF] Bally | Integration by parts formula and applications to equations with jumps[END_REF] D i,n :" t Xi ě L, N T " nu, for i P Nn`1 .

Instead of using an infinite dimensional calculus as it is usually done in the literature, the approach developed below is based on a finite dimensional calculus for which the dimension is given by the number of jumps of the underlying Poisson process involved in the Markov chain X.

We now introduce the following space of smooth random variables.

Definition 2. For i P Nn , we let S i`1,n p Xq be the subset of random variables H P L 0 such that there exists a measurable function h : R 2 ˆt0, 1u ˆA2 Ñ R satisfying

1. H " hp Xi , Xi`1 , ρ i`1 , ζ i , ζ i`1
q on the set tN T " nu.

2. For any ps, tq P A 2 and r P t0, 1u, hp¨, ¨, r, s, tq P C 8 p pR 2 q.

For a r.v. H P S i`1,n p Xq, i P Nn , we may sometimes simply write

(6) H " Hp Xi , Xi`1 , ρ i`1 , ζ i , ζ i`1 q,
that is the same symbol H may denote the r.v. or the function in the set S i`1,n p Xq. Also note that S n`1,n p Xq is well defined. One can easily define the flow derivatives for H P S i`1,n p Xq as follows:

B Xi`1 H :"B 2 hp Xi , Xi`1 , ρ i`1 , ζ i , ζ i`1 q, B Xi H :"B 1 hp Xi , Xi`1 , ρ i`1 , ζ i , ζ i`1 q `B2 hp Xi , Xi`1 , ρ i`1 , ζ i , ζ i`1 qB Xi Xi`1 , (7) 
B Xi Xi`1 :"p2ρ i`1 ´1q `σ1 i Z i`1 .
We now define the derivative and integral operators for H P S i`1,n p Xq, i P Nn , as

I i`1 pHq :"H Z i`1 σ i pζ i`1 ´ζi q ´Di`1 H, D i`1 H :" B Xi`1 H. ( 8 
)
Note that due to the above definitions and Assumption pHq, we also have that I i`1 pHq, D i`1 H P S i`1,n p Xq so that we can define iterations of the above operators, namely I `1 i`1 pHq " I i`1 pI i`1 pHqq and similarly D `1 i`1 pHq " D i`1 pD i`1 Hq, P N, with the convention I 0 i`1 pHq " D 0 i`1 pHq " H. We define the filtration G :" pG i q iP N where G i :" σpZ i , ζ i , ρ i q with the notation a i :" pa 1 , . . . , a i q for a " Z, ζ, ρ, i P N. We let G 0 be defined as the trivial σ-field. We assume that the σ-fields G i are complete. Throughout this article, we will use the following notation for a certain type of conditional expectation that will appear frequently. For any X P L 1 and any i P Nn ,

E i,n rXs :" ErX | G i , T n`1 , ρ n`1 , N T " ns.
Here again we have used the vector notation S n`1 " pS 1 , ...., S n`1 q for S " T , ρ. Having the above definitions at hand, the following duality formula 1 is satisfied for any f P C 1 p pRq and any pi, q P Nn ˆN:

E i,n " D i`1 f p Xi`1 qH ‰ "E i,n " f p Xi`1 qI i`1 pHq ‰ . (9) 
In order to obtain explicit norm estimates for random variables in S i`1,n p Xq, it is useful to define for H P S i`1,n p Xq, i P Nn and p ě 1

}H} p p,i,n :" E i,n r|H| p s .
1 This duality is obtained using the Gaussian density of Xi`1 while in classical Malliavin calculus it is based on the density of the Wiener process. Therefore the derivative and integral, D i`1 and I i`1 , i P Nn defined in the formula [START_REF] Chen | Probabilistic representation of integration by parts formulae for some stochastic volatility models with unbounded drift[END_REF] are renormalizations of the usual duality principle in Malliavin calculus. In our case this notation simplifies greatly many equations.

We will also use at several places the following extraction formula for H 1 , H 2 P S i`1,n p Xq :

I i`1 pH 1 H 2 q " ÿ j"0 p´1q j ˆ j ˙I ´j i`1 pH 1 qD j i`1 H 2 , (10) 
whose proof follows by induction. By iteration, one also obtains that I i p1q P S i,n p Xq and it satisfies I `1 i p1q " I i p1qI i p1q ´ I i p1q which, in particular, implies:

I i p1q " p´1q H pa i´1 pζ i ´ζi´1 q, σ i´1 Z i q, ( 11 
)
where H stands for the Hermite polynomial of order , P N, defined by H pt, xq " pgpt, xqq ´1B x gpt, xq.

Here, gpt, xq denotes the density of the Gaussian law N p0, tq. Using ( 10) for H 1 " 1 and H 2 " H as well as [START_REF] De Raynal | Well-posedness for some non-linear sdes and related pde on the wasserstein space[END_REF], the following norm bound for stochastic integrals is clearly satisfied for i P N and any measurable set

A P F › › 1 A I i`1 pHq › › p,i,n ď C ,p ÿ j"0 pζ i`1 ´ζi q j´ 2 }1 A D j i`1 H} p,i,n . (12) 
We will frequently use the following Hölder inequality for smooth random variables H 1 , H 2 P S i`1,n p Xq: for any i P N, any p, p 1 , p 2 ě 1 satisfying p ´1 " p ´1 1 `p´1 2 and any A P F:

}1 A H 1 H 2 } p,i,n ďC}1 A H 1 } p1,i,n }1 A H 2 } p2,i,n . (13) 
Quantities such as E i,n rδ L p Xi`1 qHs for H P S i`1,n p Xq have a clear meaning due to the IBP formula [START_REF] Chen | Probabilistic representation of integration by parts formulae for some stochastic volatility models with unbounded drift[END_REF] (see also the theory introduced in Chapter V.9 [START_REF] Ikeda | Stochastic differential equations and diffusion processes[END_REF] for a much more general framework) or in the sense of conditional laws

E i,n rδ L p Xi`1 qHs "E i,n r1 Di`1,n I i`1 pHqs " E i,n rH| Xi`1 " Lsgpa i pζ i`1 ´ζi q, L ´X i q,
where the set D i,n is defined by [START_REF] Bally | Integration by parts formula and applications to equations with jumps[END_REF]. We finally introduce the following space of random variables which satisfies certain time (ir)regularity estimates. Definition 3. For P Z, i P Nn , the space M i`1,n p X, {2q is the set of random variables H P L 0 satisfying the property (1) in Definition 2 and such that

1 Di,n }1 Di`1,n H} p,i,n ď Cpζ i`1 ´ζi q {2 ,
for some deterministic constant C independent of pp, i, nq.

Again we remark that the definition of the space M i`1,n p X, {2q uses the conditional norm E i,n r.s and property (1) in Definition 2, so that this property is always stated on tN T " nu, n P N.

A straightforward consequence of equation ( 10) and ( 12) is the following property.

Lemma 4. For j P t0, 1u, i P N, and k P N, if

H 1 P M i`1,n p X, j{2q X S i`1,n p Xq with }D k i`1 H 1 } p,i,n ď C then I k i`1 pH 1 q P M i`1,n p X, pj ´kq{2q. Furthermore, if H 2 P M i`1,n p X, k{2q then the product H 1 H 2 P M i`1,n p X, pj `kq{2q. Lemma 5. Let H " Hp Xi , Xi`1 , ρ i`1 , ζ i , ζ i`1 q P S i`1,
n p Xq with i P N, then the following chain rule type formula holds

B Xi I i`1 pHq " I i`1 pB Xi Hq ´σ1 i σ i I i`1 pHq.
Proof. From the extraction formula [START_REF] Denis | Malliavin calculus for Markov chains using perturbations of time[END_REF], the usual chain rule and the fact that B Xi I i`1 p1q " ´σ1 i σi I i`1 p1q, we have that

B Xi I i`1 pHq " ´σ1 i σ i I i`1 p1qH `Ii`1 p1qB Xi H ´B Xi D i`1 H I i`1 pB Xi Hq " I i`1 p1qB Xi H ´Di`1 B Xi H.
Note that B Xi and D i`1 do not commute. Indeed, by the usual chain rule, one has

B Xi D i`1 h ´Di`1 B Xi h " B 1 B 2 h `B2 2 h B Xi`1 B Xi ´Di`1 pB 1 h `B2 h B Xi`1 B Xi q " ´B2 h σ 1 i σ i
where in the last equality we used the fact that D i`1

B Xi`1 B Xi " σ 1 i σi
. By combining the above computations we obtain

B Xi I i`1 pHq ´Ii`1 pB Xi Hq " ´σ1 i σ i pI i`1 p1q ´Di`1 Hq " ´σ1 i σ i I i`1 pHq.
3. The probabilistic representation for the first hitting time 3.1. Preliminaries. The probabilistic representation formula for the first hitting time τ of X is obtained in a similar way as in the case of the killed process treated in [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF]. We briefly explain the main arguments and deliberately omit some technical details.

In order to introduce the associated semigroup, we let τ s,x :" inftt ě s : X s,x t " Lu where X s,x stands for the unique solution to (1) starting from x at time s and for any real-valued bounded and measurable function f defined on R `ˆR, we let

P t f pu, xq " E " f pu `τ u,x ^t, X u,x u`τ u,x ^tq
‰ . We will sometimes omit the dependence of pτ, Xq with respect to pu, xq when there is no confusion and simply write P t f pu, xq " Erf pu `τ ^t, X τ ^tqs.

Under Assumption pHq, for f a smooth function, we will assume for the sake of the argument that P f P C 1,2 pR `ˆpR `ˆrL, 8qqq with sup 0ďtďT |B x P t f | 8 ď C, for " 1, 2, for some positive constant C :" CpT, f, a, bq and that it satisfies B t P t f " LP t f on rL, 8q, t ą 0, where the differential operator L is given by

Lf pu, xq " B u f pu, xq `bpxq B x f pu, xq `1 2 apxq B 2 x f pu, xq.
Removing the above hypothesis requires some technical arguments which can be found in Proposition 3.1 in [START_REF] Frikha | On the first hitting times of one dimensional elliptic diffusions[END_REF].

The argument used to obtain the probabilistic representation formula starts by applying Itô's formula to pP T ´tf pu `t ^τ , Ȳt^τ qq tPr0,T s , recalling that Ȳt " x `σpxqW t and τ is its associated exit time from rL, 8q. Hence, from Itô's rule and Lemma 1, it holds

f pT ^τ , ȲT ^τ q E " P T f pu, xq `ż T 0 ˆ´B r P r f pu `s, Ȳs q ˇˇr "T ´s `Bu P T ´sf pu `s, Ȳs q `1 2 apxqB 2 x P T ´sf pu `s, Ȳs q ˙1tτąsu ds E " P T f pu, xq `ż T 0 ˆ1 2
`apxq ´ap Ȳs q ˘B2

x P T ´sf pu `s, Ȳs q ´bp Ȳs qB x P T ´sf pu `s, Ȳs q ˙1tτąsu ds

E " P T f pu, xq `2p2ρ ´1q ż T 0 ˆ1 2
`apxq ´ap Xs q ˘B2

x P T ´sf pu `s, Xs q ´bp Xs qB x P T ´sf pu `s, Xs q ˙1t XsěLu ds.

We now rewrite the previous representation using the Markov chain p Xi q 0ďiďN T `1 defined by (4) together with the Poisson process N . From the previous identity, we get

P T f pu, xq E " f pu `T ^τ , ȲT ^τ q `2p2ρ ´1q ż T 0 ˆ1 2 `ap Xs q ´apxq ˘B2
x P T ´sf pu `s, Xs q `bp Xs qB x P T ´sf pu `s, Xs q ˙1t XsěLu ds ( 14)

E " f pu `T ^τ , ȲT ^τ qe λT 1 tN T "0u `eλT λ ´12p2ρ N T ´1q ˆ" 1 2 pap X1 q ´apxqqB 2 x P T ´ζ1 f pu `ζ1 , X1 q `bp X1 qB x P T ´ζ1 f pu `ζ1 , X1 q * 1 t X1ěLu 1 tN T "1u .
We now apply the IBP formula [START_REF] Chen | Probabilistic representation of integration by parts formulae for some stochastic volatility models with unbounded drift[END_REF] with respect to the random variables X1 for the last term appearing in the right-hand side of the above expression. The IBP formula is applied once to the terms associated with the drift coefficient b and two times with respect to the terms related to the diffusion coefficient a. In order to do that one first has to take the conditional expectation E 0,1 r.s. However, one must be cautious insofar as these IBPs involve the indicator function 1 t X1ěLu . Hence,

P T f pu, xq E "f pu `T ^τ , ȲT ^τ qe λT 1 tN T "0u `eλT λ ´12p2ρ N T ´1q ˆˆ1 2 I 1 ``ap X1 q ´apxq ˘1t X1ěLu ˘Bx P T ´ζ1 f p X1 q `I1 `bp X1 q1 t X1ěLu ˘PT ´ζ1 f p X1 q ˙1tN T "1u E "f pu `T ^τ , ȲT ^τ qe λT 1 tN T "0u `eλT 2λ ´1p2ρ N T ´1q ˆˆ1 2 I 1 ``ap X1 q ´apxq ˘˘B x P T ´ζ1 f pu `ζ1 , X1 q `I1 `bp X1 q ˘PT ´ζ1 f pu `ζ1 , X1 q ˙1t X1ěLu 1 tN T "1u ,
where we used the extraction formula [START_REF] Denis | Malliavin calculus for Markov chains using perturbations of time[END_REF] applied to the r.v. 1 t XsěLu and Lemma 10.5 [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF] (taking first the conditional expectation w.r.t ζ 1 ) for " 1, k " 0 for the last equality.

We apply again the IBP formula (9) in order to remove the first order derivative on P T ´ζ1 f . We then use again the extraction formula [START_REF] Denis | Malliavin calculus for Markov chains using perturbations of time[END_REF]. We obtain

P T f pu, xq E " f pu `T ^τ , ȲT ^τ qe λT 1 tN T "0u `eλT 2λ ´1p2ρ N T ´1q ˆˆ1 2 I 2 1 `ap X1 q ´apxq ˘PT ´ζ1 f pu `ζ1 , X1 q `I1 `bp X1 q ˘PT ´ζ1 f pu `ζ1 , X1 q ˙1t X1ěLu 1 tN T "1u (15) 
´eλT 2λ ´1p2ρ N T ´1q 1 2 I 1 1 `ap X1 q ´apxq ˘PT ´ζ1 f pu `ζ1 , X1 qδ L p X1 q1 tN T "1u .
Using the extraction formula and then Lemma 10.5 in [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF], we get e λT 2λ ´1Erp2ρ N T ´1qI 1 1 `ap X1 q ´apxq ˘PT ´ζ1 f pu `ζ1 , X1 qδ L p X1 q1 tN T "1u s " e λT λ ´1Erp2ρ N T ´1qpapLq ´apxqqI Plugging the above identity into (15), we get ( 16)

P T f pu, xq E " f pu `T ^τ , ȲT ^τ qe λT 1 tN T "0u `eλT θ1 1 t X1ěLu P T ´ζ1 f pu `ζ1 , X1 q1 tN T "1u
`apLq ´apxq apxq f pu `τ , Lq1 tτ ďT u ,

where for i " 1, ¨¨¨, n (17) 
θi :" 2λ ´1p2ρ i ´1q `I2 i pc i 2 q `Ii pc i 1 q ˘, with (18) 
c i 1 :" b i , c i 2 :" 1 2 pa i ´ai´1 q,
recalling that a i " ap Xi q and b i " bp Xi q. Let us emphasize that, under assumption (H), the following time estimates hold: for all p ě 1, there exists C :" Cpa, b, T, pq such that

}1 t X1ěLu I 1 pap X1 q ´apxqq} p,0,1 ď C, ( 19 
)
}1 t X1ěLu I 2 1 pap X1 q ´apxqq} p,0,1 `}1 t X1ěLu I 1 pbp X1 qq} p,0,1 ď Cζ ´1{2 1
, which in turn, by using the fact that on PpN T " 1, ζ 1 P dtq " λe ´λT dt on r0, T s, lead to the integrability of the second term appearing in the right-hand side of ( 16).

The main idea to obtain the following result consists in iterating the identity ( 16) by following similar lines of reasoning as those employed in [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF][START_REF] Chen | Probabilistic representation of integration by parts formulae for some stochastic volatility models with unbounded drift[END_REF][START_REF] Frikha | On the first hitting times of one dimensional elliptic diffusions[END_REF]. Omitting the remaining technical details, we obtain the following result. Theorem 6. Let T ą 0 and suppose that Assumption (H) is satisfied. For any n P N, define on the set tN T " nu the following random variables

Γ n " " ś n i"1 θ i if n ě 1, 1 if n " 0, and 
Γn " apLq ´an a n Γ n ,
where,

θ i :"1 t XiąLu θi " 2p2ρ i ´1qλ ´1 `Ii pc i 1 q `I2 i pc i 2 q ˘1t XiąLu "1 t XiąLu 2p2ρ i ´1qλ ´1 c i 2 I 2 i p1q `pc i 1 ´2D i c i 2 qI i p1q `D2 i c i 2 `Di c i 1 ( . ( 20 
)
Then, for any bounded and measurable function f defined on R `ˆR, the following probabilistic representation holds

Erf pT ^τ, X T ^τ qs " e λT E " f ppζ N T `τ N T q ^T, Ȳpζ N T `τ N T q^T qΓ N T ı `eλT E " f pζ N T `τ N T , Lq1 tζ N T `τ N T ďT u ΓN T ı . (21) 
Importantly note that we have used the extraction formula in order to obtain [START_REF] Pitman | Hitting, occupation and inverse local times of one-dimensional diffusions: martingale and excursion approaches[END_REF]. For this, we refer the reader to [START_REF] Denis | Malliavin calculus for Markov chains using perturbations of time[END_REF] and to the proof of Lemma 2.5 [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF] to see how it is applied. In order to avoid long expressions in the above identity, we have used the shortened notation τ N T for τ ζ N T , XN T where we recall that τ s,x stands for the first hitting time of the level L associated to the approximation process Ȳ starting from x at time s. That is, τ s,x :" inftu ě s : Ȳ s,x u " Lu.

In particular, τ N T is sampled independently of N and W . Similarly, we used the shorten notation Ȳpζ N T `τ N T q^T for Ȳ ζ N T , XN T pζ N T `τ N T q^T where Ȳ s,x t " x `σpxqpW t ´Ws q. We also recall that N is a λ-Poisson process with jump times T n , n P N, so that ∆T i " T i ´Ti´1 is a sequence of i.i.d. exponential random variables with parameter λ and that on the set tN T " nu, we have π " t0 "

ζ 0 ă ... ă ζ n ă ζ n`1 " T u recalling that ζ i " T i ^T .
The second term on the right-hand side of (21) containing Γ stems from the boundary terms appearing when one performs the integration by parts formulas in the expansion. In particular, this term does not appear in the case of the killed diffusion investigated in [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF].

Note that both terms appearing on the right-hand side of (21) have the same form if we assume that ζ N T `τ N T ă T in which case Ȳpζ N T `τ N T q^T " L. Also note that P `ζN T `τ N T " T ˘" 0. 4. IBP formulas with respect to the exit time 4.1. IBP with respect to generalized inverse Gaussian times. In this section, we shall introduce the general transfer formula employing IBP with respect to the interarrival times of the Poisson process. A transfer formula, as explained in reference [START_REF] Frikha | On the first hitting times of one dimensional elliptic diffusions[END_REF], is a formula that transfers the derivative from outside the expectation to inside, making it subsequently amenable to iterative procedures.

The principal difference lies in our current consideration of the conditional distribution of the random variables with respect to the spatial variables. Furthermore, given our perpetual focus on compact time intervals, it follows that test functions are bounded.

As our objective is to elucidate the technique, as opposed to pursuing utmost generality and for the sake of streamlining expressions, we restrict our consideration to f pt, xq " f ptq, subject to the simplifying condition that f pT q " 0, where T ą 0 is an arbitrary time horizon. In other words, the test function f solely relies on the time variable and vanishes at the time interval's boundary. As is customary, in more general circumstances, one may consider f ptq " f ptq ´f pT q instead of f .

The overarching structure of the IBP formula, when dealing with the stopped process X T ^τ , was derived through an initial conditioning on the Poisson process. Then, one performs IBP operations with respect to the spatial variables and eventually integrates with respect to the time variables. In this scenario, it becomes imperative to consider conditional expectations with respect to the spatial variables. Consequently, the entities that replace the time differences in this context are the spatialrelated quantities:

p∆ i Xq 2 :"p Xi ´X i´1 ρ i ´p1 ´ρi qp2L ´X i´1 qq 2 , i ď N T , p∆ N T `1 Xq 2 :"pL ´X N T q 2 .
The rationale behind introducing the aforementioned quantity is rooted in the fact that when the derivative operator is applied to each term in (21), it will diminish the time order by a factor of 1. Consequently, to maintain stability and balance in the analysis, we introduce a stabilization mechanism that relies on spatial variables possessing an equivalent order given by p∆ i Xq 2 . To achieve this equilibrium, we employ the square of the distance between points.

The subsequent result, which serves as the starting point of our analysis, stems directly from Theorem 6.

Corollary 7. Under the same conditions as in Theorem 6 and assuming that f does not depend on the space component, i.e. f ps, yq " f psq, y P R with f pT q " 0, we have

Erf pτ ^T qs " e λT E « f pζ N T `τ ζ N T q1 tτ N T ďT ´ζN T u p θ N T N T ź i"1 θ i ff , (22) 
with p θ N T :" 1 `apLq ´aN T a N T .

4.2.

Conditioning on the space variables. In this section, our objective is to state the conditional distribution of the jump times of the Poisson process, with respect to the spatial variables. In pursuit of this objective, we introduce the notations X :" t Xi ; i ď N T u and ρ :" tρ i ; i ď N T u. It is worth noting that, with probability one, ∆ i X ‰ 0 for all i ď N T `1. We will rely on this fact without reiterating it in the subsequent discussions. Additionally, it is pertinent to observe that the "weight" random variable ΓN T P σp Xi , T i ; i ď N T q.

In order to give proper definitions of how our differential operators will be defined, we first need to reconstruct the sequences of random variables Xi and T i , i P N, as follows.

Lemma 8. Let Zi be a sequence of identically and independently distributed symmetric exponential random variables with parameter 2 1{ ? 2λ. Inductively, define the following sequence of random variables:

Y i " ρ i Y i´1 `p1 ´ρi qp2L ´Yi´1 q `σpY i´1 q Zi , Y 0 " X0
Here tρ i ; i P Nu is assumed to be independent of t Zi ; i P Nu. Given tY i ; i P Nu, define τ i , i P N, to be an independently distributed sequence of random variables such that τ i follows a Generalized Inverse Gaussian distribution 3 with parameters a " 2λ, b " 2λµ 2 i , p " 1 2 , denoted by GIGp2λ, 2λµ 2 i , 1 2 q, where 2 That is Zi " p´1q η i F i , where F i " Expp1{ ? 2λq and η i " Berp1{2q. 3 We denote by GIGpa, b, pq the probabilistic distribution with density f pxq " pa{bq p{2

2Kpp

? abq

x pp´1q e ´pax`b{xq{2 , x ą 0, where a, b ą 0 and p P R. Here K denotes the modified Bessel functions of the second kind . For more information, see the Appendix.

with some abuse of notation, we let µ i " |∆Yi| σi´1 ?

2λ where σ i´1 " σpY i´1 q. Then, the following equality in law is satisfied tpρ i , Xi , ∆T i q : i P Nu L " tpρ i , Y i , τ i q : i P Nu where ∆T i " T i ´Ti´1 .

Proof. Let ρ be a Bernoulli random variable, independent of the exponential random variable T 1 and the Wiener process W which is also independent of T 1 . Note that the joint density of pρx `p1 ´ρqp2L ´xq σ0 W T1 , T 1 q conditioned to ρ is given by

λ a 2πσ 2 0 s exp ˆ´py ´ρx ´p1 ´ρqp2L ´xqq 2 2σ 2 0 s ´λs ˙1tsą0u . (23)
First, we compute the marginal density of ρx`p1´ρqp2L´xq`σ 0 W T1 . This is done using characteristic functions as follows. Using that T 1 is exponentially distributed and independent from W we have

Ere θW T 1 s " ErEre θWs |T 1 s ˇˇs"T1 s " Ere 1 2 θ 2 T1 s " ż 8 0 λe p 1 2 θ 2 ´λqs ds " λ λ ´1 2 θ 2 .
This corresponds to the Laplace transform of symmetric exponential distribution with parameter 1{ ? 2λ. From direct computation, the density of Z1 is given by

f W T 1 pyq " f Z1 pyq " 1 2 

?

2λe ´?2λ|y| , y P R.

Then, the conditional density function of Y 1 given ρ is given by

f Y1 pyq " 1 2σ 0 ? 2λe ´|y´ρx´p1´ρqp2L´xq| σ 0 ? 2λ " 1 2σ 0 ? 2λe ´2λµ1 , y P R, with µ 1 " |y´ρx´p1´ρqp2L´xq| σ0 ? 2λ
. To obtain the conditional density of τ 1 given Y 1 and ρ, we see that By using the fact that K 1 2 pzq "

f τ1|Y1 ps|yq " λ a 2πσ 2 
a π 2 e ´z ?
z , where K ν pzq is a Bessel function of the second kind, we can deduce that the above is a Generalized Inverse Gaussian density with parameters pa, b, pq where a " 2λ, b " 2λµ 2 1 , p " 1 2 . In order to obtain the result, it is enough to do it by partitioning the expectation using 1 tT1ă...ăTnăT ăTn`1u which leads to the announced result. Actually, given the above result, it is not difficult to obtain

E " f p Xi , ∆T i q1 tN T ěiu ˇˇXi´1, ρ i´1 , ∆T j , j " 1 . . . i ´1ı " E " f `Yi , τ i ˘1tN τ T ěiu ˇˇYi´1 " Xi´1 , ρ i´1 , τ j " ∆T j , j " 1 . . . i ´1ı .
Here N τ denotes the renewal process generated from the times between jumps given by tτ i ; i P Nu.

On the set tN τ T " nu and for the last interval rζ n , τ n s, we remark that conditioning on the space variables does not imply any change in the law of τ n except that its parameter becomes p∆ n`1 Yq 2 :" pL ´Yn q 2 . That is, the law of τ n is a Lévy distribution with parameter |∆ n`1 Y|{σ n ą 0. In other words, the probability density of τ n is given by p τ n psq " |∆n`1Y| ? an2πs 3 expp´p ∆n`1Yq 2 2ans q, s ą 0 with p τ n p0q " 0 by continuity. Here, we abuse the notation slightly by letting ζ j " p ř j i"1 τ i q ^T . A similar comment applies to σ i , I i and E M,k,n r¨s which we define for a positive random variable M being measurable with respect to σpY, ζ, ρq as

E M,k,n rXs :" ErXM ´11 tN τ T "nu | F ζ k , Y, ρs.
Here, F ζ k :" σpζ i ; i ď kq. In the first part, we will use M " 1. Later, M will denote the Malliavin variance whose inverse moment properties are discussed in Section 5.1. This completes our set-up for the consideration of differential calculus on this space. Using this new set-up, one clearly has that the following basic IBP formula is satisfied for n P N 0 and f P C 1 b pRq with f pT q " 0:

E 1,n,n rf 1 pτ n q1 tζn`τ n ăT u s "E 1,n,n rf pτ n q p I n`1 p1q1 tζn`τ n ăT u s, (24) 
p I n`1 pGq :"G " 3 2τ n ´p∆ n`1 Yq 2 2a n pτ n q 2 * ´Dτ n G.
In the above formula, conditioned on Y and ρ, we assume that G " Gpτ n q for G P C 8 p pRq so that D τ n G " G 1 pτ n q. We also remark that the result is applicable if

f or G depend on ζ 1 , ¨¨¨, ζ n or X.
Due to Lemma 17 in the Appendix, we have that for a positive non-random constant C ą 0

E 1,n,n "ˇˇˇp I n`1 pGq ˇˇ1 tζn`τ n ăT u ı ď C sup tPr0,T s p|Gptq| `|G 1 ptq|q p∆ n`1 Yq 2 . ( 25 
)
It is worth noting that the inequality described above may be referred to as a spatial degeneration inequality, mirroring the circumstances encountered when examining IBP formulas in the context of stopped processes, where analogous estimates were denoted as time degeneration inequalities.

In order to give the IBP formula, we need to introduce the following operators. We define 4 for a function G P C 1 p pRq, the r.v. G " Gpτ i q. We define the operators to pI i , D i q for i ď n on the set tN τ T " nu. That is, for G " Gpτ i q,

I i pGq :"G ˆλ `p2τ i q ´1 `p∆ i Yq 2 2a i´1 τ 2 i ˙´D i G D i G :"G 1 pτ i q.
Remark 9. In the current framework, it is crucial to observe that, based on the construction outlined at the outset of this section, the random variables ∆ i Y exhibit no dependence on τ i . Consequently, it follows that D i ∆ j Y " 0 for any j P N.

We also have from Lemma 17, the space degeneration estimates for a non-random constant C ą 0 and k P t0, 1, 2u:

E 1,i´1,n " |I i pτ ´k i q| ‰ ďC ´1 `|∆ i Y| 2 `|∆ i Y| ´p2k`1q (26) 
It's important to note that in many situations, we may employ a function Gpτ 1 , ¨¨¨, τ n q defined on the event N τ T " n. In such cases, the definitions provided above are to be understood conditionally to all times between jumps except τ i , besides the conditioning involving spatial variables and all ρ i for i P N.

Furthermore, we will continue to use δ t pτ i q to denote the Dirac delta distribution function at the point t.

Similar to the approach taken in [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF], we anticipate that employing the symbol I i for the dual operator of the derivative operator D i will not result in confusion, as the context will consistently clarify the object under discussion. Additionally, the formulas for I i and D i which are used from now on are restated using Y instead of X. That is, we adopt the notation convention of using the same symbol, despite the possibility of being expressed with Y. Lemma 10. With the above definitions, we have the following IBP formula for 0 ď t 1 ă t 2 and f, G P C 1 p pRq:

E 1,i´1,n " f 1 pτ i qGpτ i q1 tt1ăτiăt2u ‰ "E 1,i´1,n " f pτ i qI i pGq1 tt1ăτiăt2u ‰ `E1,i´1
,n rf pτ i qGpτ i qpδ t2 pτ i q ´δt1 pτ i qqs . (27) 4 One may define the equivalent spaces S as in the case of stopped diffusions but we refrain to do it in order to simplify the presentation.

In the particular case that t 1 " 0, using that Y i´1 ‰ Y i a.s., the above formula reduces to

E 1,i´1,n " f 1 pτ i qGpτ i q1 t0ăτiăt2u ‰ "E 1,i´1,n " f pτ i qI i pGq1 t0ăτiăt2u ‰ `E1,i´1,n rf pτ i qGpτ i qδ t2 pτ i qs . (28)
Proof. The proof follows using the usual IBP formula for Lebesgue integrals.

The next result states the independence of the weight θ j with respect to the noise in τ i once they are rewritten using the set-up stated at the beginning of this section. This result simplifies calculations greatly.

Lemma 11. D i θ j " 0 for i ‰ j.

Proof. Note that as Zj " σ ´1 j´1 ∆ j Y, one obtains that θ j is only a function of pY, ρ, τ j q by observing (20). Using that j ‰ i, we get the result.

Building upon the information provided in the preceding proof and in conjunction with (26) and Lemma 17, we can derive the following space degeneration estimates:

(29) E 1,i´1,n " |θ i | ‰ ďC `1 `|∆ i Y| 3 ˘, E 1,i´1,n " |I i pθ i q| ‰ ďC `1 `|∆ i Y| ´2 `|∆ i Y| 5 ˘.
In fact, using ( 20) and ( 8) twice, we see that by linearity it is enough to estimate and upper bound

E 1,i´1,n " |I i pI j i pc i j qq|
‰ for j " 1, 2. Now we apply [START_REF] Denis | Malliavin calculus for Markov chains using perturbations of time[END_REF], [START_REF] Fournier | Absolute continuity for some one-dimensional processes[END_REF] and the linearity of I i p¨q to obtain

E 1,i´1,n " |I i pI j i pc i j qq| ı ď j ÿ k"0 E 1,i´1,n " |I i ´Hj´k pa i´1 τ i , σpY i´1 q Zi q ¯Dk i c i j | ı .
Using explicit expressions for Hermite polynomials, the definition of I i and (26), we obtain the second estimate in (29).

4.3.

The transfer formula. The subsequent equalities are all stated with respect to conditional expectations involving the spatial variables. In particular, the symbol

E M,k,n
" denotes equality within the respective conditional expectation context.

With this notation established, we can express the formula for transferring derivatives in the final interval as follows: Lemma 12. Let f P C 1 p pRq with f pT q " 0 then, with Ð Ý θ e n`1 " θn , it holds E M,n,n rf 1 pζ n `τ n q1 tζn`τ n ăT u θn s " B ζn E M,n,n rf pζ n `τ n q1 tζn`τ n ăT u Ð Ý θ e n`1 s. (30) Also, we have that, on the set tζ n " T u, E M,n,n rf pζ n `τ n q1 tζn`τ n ăT u θn s " 0.

Proof. Given the conditioning we may assume without loss of generality that θn " 1. Recall that the IBP formula for the last interval is obtained using a Lévy distribution as stated in (24). Hence, by employing Leibniz's rule for interchanging derivatives and integrals, it can be deduced that the right-hand side of (30) is differentiable with respect to ζ n , and:

f 1 pζ n `τ n q1 tτ n ăT ´ζnu E M,n,n " f pζ n `τ n q1 tτ n ăT ´ζnu p I n`1 p1q.
For the second result, it is enough to note that E M,n,n rf pζ n `τ n q1 tζn`τ n ăT u s is a continuous function of ζ n .

We would like to mention that the notation Ð Ý θ e n`1 is adopted from Section 5.1 of [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF]. We have retained this notation to emphasize its significance within the tree structure, as explained in [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF].

Now, let's present the general transfer formula for the remaining intervals.

Lemma 13. Let f P C 1 b pR 0 q with f pT q " 0. It holds

E M,i,n rf 1 pζ i`1 q1 tζi`1ăT u θ i`1 s "B τi E M,i,n rf pζ i`1 q1 tζi`1ăT u Ð Ý θ e i`1 s. (31)
Here, Ð Ý θ e i`1 :" θ i`1 . Moreover, the following boundary condition is satisfied E M,i,n rf pζ i`1 q1 tζi`1ăT u Ð Ý θ e i`1 s ˇˇζi"T " 0, as well as the following time degeneracy inequality 5 : } Ð Ý θ e i`1 } 0,p ď Cpζ i`1 ´ζi q ´1{2 . Proof. The proof can be established through straightforward differentiation of the right-hand side of equation (31). In particular, note that θ i`1 does not depend on τ i . Concerning the boundary conditions, it's worth noting that we have f pT q " 0. Additionally, the time degeneracy estimate has been previously established in [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF].

4.4. The IBP formula. The concepts applied here bear a resemblance to those used in the case of stopped processes, albeit with a shift in the roles of time and space.

First, let's focus on the last interval. Without delving into technical details, we can derive the IBP formula on the set tN T " nu from Lemma 10:

p∆ n`1 Yq 2 f 1 pζ n `τ n q1 tτ n ďT ´ζnu θn E M,n,n " p∆ n`1 Yq 2 f pζ n `τ n q1 tτ n ďT ´ζnu θn p I n`1 p1q.
Furthermore, the above expression satisfies the following space degeneration estimate due to (25):

ˇˇp∆n`1Yq 2 f pζ n `τ n q θn p I n`1 p1q ˇˇ1 tζn`τ n ăT u E M,n,n ď C sup tPr0,T s |f ptq|.
Now, to make use of the transfer formula provided in Lemma 13 for all time intervals leading up to the interval where the IBP formula will be applied, we define, for k ě i

G k pζ k q " G k pn, ζ k , Y, ρq :" E M,k,n « f pζ n `τ n q1 tζn`τ n ăT u θn n ź j"k`1 θ j ff .
With the definition provided above and using (29), we can establish that G k pT q " 0, |G k pζ k q| ď C ś n`1 j"k`1 p1 `|∆ j Y| 3 q. Consequently, the application of the transfer formulas (30) and (31), along with Lemma 10, yields

p∆ i Yq 2 f 1 pζ n `τ n q1 tζn`τ n ăT u n ź j"i θ j E M,i´1,n " p∆ i Yq 2 G 1 i pζ i q1 tζiďT u θ i E M,i´1,n " p∆ i Yq 2 G i pζ i q1 tζiďT u I i pθ i q.
Again from (29), the space degeneration estimate in this case is

ˇˇp∆ i Yq 2 f pζ i q ˇˇ1 tζiďT u θn n ź j"i`1 |θ j ||I i pθ i q| E M,i´1,n ď C sup tPr0,T s |f ptq| n ź j"i`1 p1 `|∆ j Y| 3 qp1 `|∆ i Y| 7 q.
We can now leverage the fact that, as indicated by Lemma 8, |∆ i Y| " σpY i´1 q| Zi |, i " 1, ..., N τ T , where Zi represents an i.i.d. sequence of symmetric exponential random variables characterized by a parameter of 1{ ? 2λ. Hence, for any integer n,

E « |f pζ n `τ n q| 1 tζn`τ n ďT u | θn | ˜n ÿ i"1 p∆ i Yq 2 n ź j"i`1 |θ j ||I i pθ i q| i´1 ź k"1 |θ k | `p∆ n`1 Yq 2 | p I n`1 p1q| n ź k"1 |θ k | ¸M ´11 tN τ T "nu ff ďpn `1qC n sup tPr0,T s
|f ptq|PpN T " nq. 5 Recall that the norm } ¨}0,p is a norm on the Wiener space conditional to ρ and N τ .

Here, M :"

ř N τ T `1 i"1 p∆ i Yq 2 .
We remark here that once all the integration by parts have been performed, expressions for the weights can be written using the original formulation in (2) due to Lemma 8.

As it was done in [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF], we may give an algebraic structure to the the IBP formula. We therefore refer the reader to that reference for the notation and terminology that follows.

In this case, the structure is easier and it follows the same graph as in the stopped case except that all terms with arrows corresponding to p Ð Ý θ c , Ð Ý θ B q do not appear in this case. 6 In conclusion, from the above calculations one understands that the algebraic structure in this case is formed only of components I n`1 i " p0, . . . , 0, I, e, . . . , eq, i ď N T `1. These components have exchange r.v.'s in all intervals rζ k , ζ k`1 s for k P ti, ..., N T u, denoted by e, an integration by parts on the interval rζ i´1 , ζ i s, denoted by I and no change in weight r.v.'s in all previous intervals rζ k , ζ k`1 s for k P t0, ..., i ´2u which is denoted by 0 in the component I n`1 i . Putting all the above reasoning together, one obtains the IBP formula for the exit time. For this, we need to define for i ď n `1 on the set tN T " nu

θ Ii :" θn n ź j"i`1 Ð Ý θ e j ˆIi pθ i q ˆi´1 ź l"1 θ l " θn n ź j"i`1 θ j ˆIi pθ i q ˆi´1 ź l"1 θ l θ In`1 :" θn În`1 p1q ˆn ź l"1 θ l .
Theorem 14. Let x ą L and f P C 1 b pRq such that f pT q " 0. Then, it holds

E " f 1 pτ ^T q ‰ "e λT E « M ´1 N T `1 ÿ i"1 p∆ i Xq 2 f pζ N T `τ N T q1 tτ N T ďT ´ζN T u θ Ii ff .
The random variable which appear within the expectation on the right-hand side above is integrable.

The proof of the above result is similar to the case of stopped processes given in Theorem 5.1 of [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF]. Algebraically, the proof essentially follows from applying the recursive relation given in (5.2), the transfer formula and the iteration step given in (5.4) of Theorem 5.1 [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF]. The structure given here is much simpler compared to [START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF] since all boundary terms are zero. Furthermore, the necessary inequalities and estimates are provided at the beginning of this section. It is important to note that integrability can be inferred from the space degeneration estimates outlined in Lemma 17. Lastly, the assumption f pT q " 0 can be readily eliminated by introducing the function gptq " f ptq ´f pT q. We remark here that an equivalent definition using pρ, Y, τ q, instead of pρ, X, T q is possible and the study of the inverse moments is equivalent due to Lemma 8 which states the equality in law. We prefer this version as we will be using geometrical properties of the path of X. The derivation of the IBP formula necessitates the existence of inverse moments of the Malliavin variance on the set τ N T ď T ´ζN T . The reason for the inverse integrability is that each space increment ∆ i X has a positive probability of being close to L´x N T . This provides a lower bound for the variable M , ensuring that its inverse is integrable in any L p pPq norm. This result is established in the following section. Note that PpA c , Xi ą L, i " 1, ¨¨¨, N T q " 0 because the following inequality is satisfied

N T `1 ÿ i"1 ˇˇ∆ i Xˇˇě L ´x,
on the set Xi ą L, i " 1, ¨¨¨, N T ( . The proof of the above inequality can be explained easily in geometrical terms. In the case that ρ i " 1 then |∆ i X| stands for the distance between the two points Xi and Xi´1 . In the case that ρ i " 0 then the value Xi´1 is reflected with respect to the line y " L but it also has to finish at a point Xi ą L and therefore | Xi ´p2L ´X i´1 q| is larger than | Xi ´X i´1 | . As the initial point and final point of the process X are fixed at x and L respectively, the above inequality follows.

Then, using Chebyshev's inequality, one obtains: The above equals ´T ´1Erf pτ x q1 tτ x ďT u s because the density function of τ x is explicitly known and given by x´L σpxqs g s px, Lq . Lemma 17. For k P N and 1 ď i ď n P N, E 1,n,n rpτ n q ´k1 tζn`τ n ďT u s " Erpτ n q ´k1 tζn`τ n ďT u 1 tN T "nu | F ζn , Y, ρs ď Cp∆ n`1 Yq ´2k ,

E » - ˜NT `1 ÿ i"1 `∆i X˘2 k ¸´q 1 tζ N T `τ N T ăT u N T `1 ź i"1
E 1.i´1,n " τ ´k i ‰ " E " τ i ´k1 tN T "nu | F ζi´1 , Y, ρ ‰ ď C `1 `|∆ i Y| 1´2k ˘.
The proof of the above statement is done using explicit integral expressions of inverse moments related to the Lévy distribution and generalized inverse Gaussian distributions on R `. In fact, the first inequality follows using the explicit density of τ n together with the inequality x 2k e ´cx 2 ď `k 2c ˘k e ´k. Therefore, applying this inequality to Erpτ n q ´k1 tζn`τ n ďT u | N T " n, F ζn , Y, ρs " one obtains the result in the first case using the inequality for c " p4a n sq ´1.

The second inequality follows using the explicit form of the GIG distribution. The expectation of τ ´k i can be reinterpreted using the GIG distribution with parameters p " ´k `1 2 , a " 2λ, b " 2λµ 2 i or, in other words, the GIGp2λ, 2λµ 2 i , ´k `1 2 q distribution. This introduces a change of normalization constant

5 . Appendix 5 . 1 .

 551 The Malliavin variance. Define the Malliavin variance as

Lemma 15 ."

 15 For any q ą 0, k P N and x ą L, we have thatE Di P t1, ..., N T `1u; ˇˇ∆ i Xˇˇě L ´x N T `1 * .

5 . 2 .Lemma 16 .

 5216 Auxiliary lemmas for Lévy and generalized inverse Gaussian distributions. Let f : R `Ñ R be a measurable and bounded function. Then, it holdsE " p2ρ 1 ´1qI 1 p1qδ L p X1 qf pζ 1 q | N T " 1 ‰ " ´T ´1Erf pτ x q1 tτ x ďT u s.Proof. The proof consists of explicit calculations. In fact,E " p2ρ 1 ´1qI 1 p1qδ L p X1 qf pζ 1 q | N T " 1 ‰ " T ´1 ż T 0 L ´x σpxqsg s px, Lqf psq ds.

  1 1 p1q P T ´ζ1 f pu `ζ1 , X1 qδ L p X1 q1 tN T "1u s

	"	ż T 0	Erp2ρ ´1qpapLq ´apxqq	pL ´xq apxqs	δ

L p Ȳs qP T ´sf pu `s, Lqs ds " ´apLq ´apxq apxq Erf pu `τ , Lq1 tτ ďT u s.

We refer the reader for details on this "path algebraic structure" to Section 5.1 in[START_REF] Frikha | Integration by parts formula for killed processes: a point of view from approximation theory[END_REF] 
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which gives the inequality. When doing these calculations, one uses the following facts about modified Bessel functions of the second kind K 3{2 pxq " p1 `x´1 qK 1{2 pxq " p1 `x´1 q a π 2x e ´x. In general, one may write for ν ´1 2 P Z, (see, for example, page 925 in [START_REF] Gradshteyn | Table of integrals, series, and products[END_REF])

In fact, the GIG density multiplied by x ´k is given by

ff .

Here ? ab " 2λµ i and a{b " 1{µ 2 i . Hence, recalling that p " 1 2 , the previous quantity is upper-bounded by

ff .

Note that as |ν| ´1 2 " k ´1, the second inequality in the statement of the lemma follows using the fact that |∆ i Y| ´j´k ď Cp1 `|∆ i Y| ´2k`1 q for all j " 0, ..., t|ν| ´1 2 u.