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ABSTRACT: A regio- and diastereoselective carbometalation of easily accessible CF3-substituted cyclopropenes is developed with 

a diastereoselectivity of the addition opposite to the CF3 group. This simple strategy allows the preparation of polysubstituted (up to 

penta-) cyclopropyl rings possessing two adjacent quaternary carbon stereocenters with excellent diastereoselectivities. 

The unique properties of fluorine atoms incorporated into 

organic molecules have created a lot of interests from the 

synthetic, physical and biological communities.
1,2

 Similarly, 

cyclopropyl ring is a basic structural subunit, widespread both 

in natural and synthetic bioactive molecules.
3
 It was therefore 

natural that combining cyclopropane and fluorine moieties 

(CH2F, CHF2 or CF3) in the same molecular structure would 

attract the curiosity of chemists.
4
 Indeed, extensive studies 

have appeared in the last few years,
5
 leading to several bioac-

tive approved drug candidates such as Glecaprevir,
6 

Petesicatib
7 
and VX-659

8
 (Scheme 1a). It became rapidly clear 

that CF3-substituted cyclopropanes as synthetic scaffold is of a 

constant interest giving rise to several powerful stereoselective 

approaches.
9 

Among the most prominent strategies reported in 

the literature (Scheme 1a),
10

 the metal-catalyzed (Fe, Ru, Rh, 

Co)
9a, 11

 and the bioengineered myoglobin-catalyzed
12

 addi-

tion of diazo compounds to variously substituted alkenes rep-

resent certainly the best routes to these important potential 

drugs subunits. In recent years, we have developed several 

approaches to the synthesis of polysubstituted cyclopropanes 

by diastereoselective carbometalation reaction of 

cyclopropenyl ester and achiral cyclopropenes.
13 

In this vein, 

we questioned if we could use this strategy for the 

diastereoselective preparation of these important 

polysubstituted trifluoromethyl cyclopropyl cores. Although 

the synthetic scheme looks straightforward, several important 

questions arise such as the effect of the CF3 group as potential 

chemical handle to control (or not) the diastereoselectivity of 

the addition
14

 as well as the stability of a cyclopropyl metal 

species towards ring-fragmentation containing a CF3 group 

(Scheme 1b). Trifluoromethyl-substituted cyclopropenes 1 

have already been described in the literature
15

 and are there-

fore easily accessible, even in enantiomerically enriched form 

(see supporting information for all details).
16 

Having in hand 

various cyclopropenes 1, we started our study by performing 

the copper-catalyzed carbomagnesiation on our model com-

pound 1a (R= Bu, R
1
 = Ph). 

 

  

Scheme 1. CF3-containg cyclopropanes: state-of-the-art and 

research proposal. 
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When the reaction was performed in Et2O at low temperature, 

we were gratified to realize that the addition proceeded very 

rapidly but an instantaneous ring-fragmentation occurred to 

provide the diene 3 (Scheme 2).
17

 Interestingly, from the ste-

reochemistry of 3, it appeared that the carbometalation reac-

tion proceeded from the opposite face of the CF3 moiety, syn 

to the aryl group.  

 

 

Scheme 2. Copper-catalyzed carbomagnesiation of 

trifluoromethyl cyclopropene 1a 

 

To avoid the ring-fragmentation, we surmised that a more 

covalent cyclopropyl metal species should be less prone to-

wards this -elimination reaction. We therefore considered 

that the addition of an organocopper, easily prepared by addi-

tion of alkyllithium or alkylmagnesium bromide to a stoichio-

metric amount of copper salt, would lead to a stable 

cyclopropyl copper species.
18

 Indeed, when 1 equiv. of 

alkylmagnesium bromide (or alkyllithium) was added to 1 

equiv. of CuBr•Me2S in THF at -40 ºC, the resulting 

organocopper reacted smoothly with 1a to provide after hy-

drolysis, the expected trifluoromethyl cyclopropane 2a in 73% 

yield with an excellent diastereoselectivity (dr 97:03, Scheme 

3). The opposite diastereomer can easily be prepared by simp-

ly permuting the nature of the alkyl groups on the 

organocopper and cyclopropene. In this case, the opposite 

diastereomer 2b was obtained with a similar diastereomeric 

ratio (Scheme 3). The organocopper could similarly be gener-

ated from an alkyllithium instead of the alkylmagnesium hal-

ide with similar diastereoselectivity; a subscript (Li) is indi-

cated in those cases after the compound numbers to indicate 

the nature of the initial organocopper. The formation of a 

discrete organometallic species was proved by reaction with 

DCl (2c, Scheme 3). The reaction proceeds with various R
2
 

group on the organocopper as well as various R group on the 

cyclopropene (2d-l, Scheme 3). The electronic nature of the 

aromatic group can also be varied as shown for the examples 

2m and 2n. The resulting configurationally stable cyclopropyl 

copper could react with various carbon electrophiles such as 

allyl and propargyl bromide or acyl chlorides to provide 

pentasubstituted cyclopropanes (2o-2ac respectively) pos-

sessing two adjacent quaternary carbon stereocenters including 

the desired trifluoromethyl group with excellent 

diastereomeric ratios (Scheme 3). The relative configuration 

was established by X-ray analysis of 2ab and the configura-

tions of all other products were assigned by analogy. It is 

interesting to note that the CF3 group is not coordinating to the 

copper complex, and therefore the latter reacts anti to the 

trifluoromethyl group. The diastereoselectivity of the addition 

diverges completely from all the additions on cyclopropene 

that has a methyl group instead of the CF3.
19 

Following the 

positive results for the diastereocontrol of the carbometalation 

reaction of sp
3
-disubstituted 1 (possessing an aryl group gemi-

nated to the CF3 unit), we then further continued our investiga-

tion on the diastereoselectivity of sp
3
-monosubstituted 

trifluoromethyl cyclopropenes (R
1
 = H, Scheme 1). The syn-

thesis of the starting material was again performed by using 

reported procedures (see supporting information for all de-

tails)
15a

 and two sp
2
-monosubstituted cyclopropenes 1g,h were 

easily prepared (Scheme 4). Having in hand, these two sp
2
-

substituted cyclopropenes 1g,h, the same experimental condi-

tions as above were tested for the carbometalation reaction.  

 

 

 

Scheme 3. Diastereoselective carbocupration of sp
3
-

disubstituted CF3-cyclopropenes 1a-f 

 

We were again pleased to observe a smooth addition of the 

organocopper to the strained double bond of trifluoromethyl 

cyclopropene but surprisingly, final acidic hydrolysis needed 

to be performed with 1 M HCl to get reproducible results 

(most probably MeOH or H2O were not acidic enough to 

quantitatively quench the copper salt leading to potential side 

reactions). We then generalized this reaction to our two sub-

strates and in all cases, the carbometalation proceeds with an 

anti diastereofacial preference towards the CF3 group (Scheme 

4). The relative configurations were assigned by analysis of 

the coupling constants (observed value J = 5.8 - 6 Hz, litera-
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ture values for Jtrans = 4 - 7.5 Hz and for Jcis = 7.5 - 9 Hz).
20 

It is 

interesting to note that although one of the two diastereotopic 

faces of the cyclopropenes 1g,h is now unshielded as com-

pared to 1a-f, the level of diastereoselectivity of the 

carbometalation reaction for the formers are intriguingly lower 

than that the latter (compare 2f(Li) with 2ae(Li), 2l with 2ah or 

2o with 2ai, Schemes 3 and 4 respectively), underlining the 

positive influence of an aryl group on the diastereoselectivity 

of the carbometalation reaction.  

 

 

 

Scheme 4. Diastereoselective carbocupration of sp
3
-

monosubstituted CF3-cyclopropenes 1g,h 

 

An alternative group that would exert a strong diastereocontrol 

for a syn-addition reaction should be an ester. Indeed, when 

the easily accessible cyclopropenyl ester 1i possessing a CF3 

group,
21

 was treated with a methyl Grignard reagent in the 

presence of a substoichiometric amount of CuI, the 

carbometalation reaction proceeded at low temperature to give 

a thermally stable cyclopropyl metal species that could further 

react with carbon electrophile to provide the corresponding 

products 2aq-2as in excellent yields and diastereoselectivities 

(Scheme 5). It should be noted that although the stereochemis-

try at the carbinol center of 2as is formed in a 1:1 ratio, the 

cyclopropyl magnesium species is stable towards -

fragmentation, most probably due to the intramolecular chela-

tion from the ester. 

 

 

 

 

Scheme 5. Diastereoselective carbocupration of CF3-

cyclopropenyl ester 1i 

 

Finally, the use of chiral ligand in the cyclopropenation of 

alkynes provided the cyclopropenes 1a,b with high 

enantiomeric ratios (er 95:05, Scheme 6, see Supporting In-

formation).
16

 After carbocupration reaction and eventually 

reaction with an electrophile, the corresponding tetra- and 

penta-substituted cyclopropanes 2b and 2r, respectively, were 

obtained with excellent diastereomeric and enantiomeric ratios 

(Scheme 6). 

 

 

 

Scheme 6. Enantio- and diastereoselective preparation of 

trifluoromethyl cyclopropanes  

 

In conclusion, we have developed a regio- and 

diastereoselective carbometalation of easily accessible CF3-

substituted cyclopropenes. The diastereoselectivity of the 

addition is opposite to the CF3 group and the exact reasons still 

need to be fully clarified. This simple strategy allows the 

preparation of polysubstituted (penta-) cyclopropanes pos-

sessing two quaternary carbon stereocenters with excellent 

diastereoselectivities.  
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