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ABSTRACT

Temperature profiles of the hot galaxy cluster intracluster medium (ICM) have a complex non-linear structure that traditional parametric modelling
may fail to fully approximate. For this study, we made use of neural networks, for the first time, to construct a data-driven non-parametric model
of ICM temperature profiles. A new deconvolution algorithm was then introduced to uncover the true (3D) temperature profiles from the observed
projected (2D) temperature profiles. An auto-encoder-inspired neural network was first trained by learning a non-linear interpolatory scheme to
build the underlying model of 3D temperature profiles in the radial range of [0.02–2] R500, using a sparse set of hydrodynamical simulations from
the Three Hundred Project. A deconvolution algorithm using a learning-based regularisation scheme was then developed. The model was
tested using high and low resolution input temperature profiles, such as those expected from simulations and observations, respectively. We find
that the proposed deconvolution and deprojection algorithm is robust with respect to the quality of the data, the morphology of the cluster, and
the deprojection scheme used. The algorithm can recover unbiased 3D radial temperature profiles with a precision of around 5% over most of
the fitting range. We apply the method to the first sample of temperature profiles obtained with XMM-Newton for the CHEX-MATE project and
compared it to parametric deprojection and deconvolution techniques. Our work sets the stage for future studies that focus on the deconvolution
of the thermal profiles (temperature, density, pressure) of the ICM and the dark matter profiles in galaxy clusters, using deep learning techniques
in conjunction with X-ray, Sunyaev Zel’Dovich (SZ) and optical datasets.
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1. Introduction

Galaxy clusters are ideal probes of the large-scale structure of the
Universe (Holder et al. 2001; Planck Collaboration XXIV 2016;
Bocquet et al. 2015; Sereno et al. 2017; Abbott et al. 2022).
X-ray observations of the hot gas in the ICM, which constitutes
the dominant baryonic component in galaxy clusters, provide
us with a useful tool for identifying and studying these objects.
Shallow, wide-field X-ray surveys by ROSAT (ROentgen SATel-
lite) and eROSITA (extended ROentgen Survey with an Imag-
ing Telescope Array) have now discovered thousands of clus-
ters (e.g. Piffaretti et al. 2011; Klein et al. 2022, and references
therein). In recent years, the detailed X-ray follow-up of samples
extracted from these surveys has exploited the high spatial reso-
lution of Chandra and the large field of view and sensitivity of
X-ray Multi-Mirror Mission (XMM-Newton) to investigate the
morphological, structural, and scaling properties of the cluster
population (e.g. Lovisari & Maughan 2022; Kay et al. 2022, and
references therein).

The X-ray-derived radial temperatures and density profiles
are key ingredients to derive the thermodynamic properties of
the ICM, and, under the assumption of hydrostatic equilibrium,
the total mass profile in galaxy clusters (Böhringer et al. 2007;
Pratt et al. 2010; Ettori et al. 2010, 2013; Eckert et al. 2022).
These X-ray studies have revealed the presence of two distinct
types of clusters: cool cores (CCs), characterised by dense and
the low-temperature cores, and non-cool core (NCCs), which
exhibit a relatively flat central density and temperature. Vari-
ous morphological parameters have been introduced to analyse
X-ray images and to link these to the dynamical behavior of

galaxy clusters and to the presence or absence of a low tempera-
ture cores, providing insights into their structural characteristics,
internal dynamics, and evolutionary stages (Rasia et al. 2013;
Campitiello et al. 2022). Although it is now well-established that
Active Galactic Nuclei (AGN) feedback plays a major role in
suppressing the ICM cooling in cluster cores, the reason for the
CC and NCC dichotomy is still not fully understood (Rasia et al.
2015; Barnes et al. 2018).

X-ray observations give access to the projected (2D) density
and temperature profiles of the ICM. The latter is obtained from
fitting a thermal model to the spectra extracted in concentric
annuli about a given centre (usually the X-ray peak or centroid).
For further scientific applications, these must then be depro-
jected to obtain the 3D profiles. If needed, the effect of the instru-
mental point spread function (PSF) can be taken into account in
the deprojection step. While the deprojected (3D) gas density
in shells can be easily estimated from the X-ray surface bright-
ness (Croston et al. 2006; Bartalucci et al. 2017; Ghirardini et al.
2019a), the deprojection of ICM temperature profiles is not triv-
ial. This is partly due to the need for sufficient photon counts
to build and fit the spectrum, leading to the temperature profiles
having significantly coarser angular resolution than the density.

The relationship between the observed 2D temperature pro-
file, T2D, and the originating 3D temperature profile, T3D, can be
expressed in matrix form as

T2D = CPSF ⊗ Cproj ⊗ T3D = C ⊗ T3D, (1)

where ⊗ denotes the matrix product. Assuming a cluster is spher-
ically symmetric and that the 3D temperature profile is defined
in concentric spherical shells, the (i, j)th element of the matrix
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Cproj encodes the projection effect of the jth 3D shell onto the ith
2D annulus on the plane of the sky. The 2D annuli may have the
same or different radii to the 3D shells. We note that CPSF is a
second matrix that describes the effect of the finite instrumental
PSF. Its (k, i)th element contains the fraction of counts from the
ith 2D annulus that are redistributed by the telescope into the kth
observed 2D annulus. If there are n-model 3D shells, and corre-
spondingly n-model 2D annuli, plus m-observed annuli, then the
dimensions of Cproj and CPSF are n×n and m×n, respectively. If
the PSF is ignored, then the dimensions of Cproj should change
to m × n.

The fitting of projected parametric models of the 3D tem-
perature profiles to both observed and simulated 2D data has
been widely used in the literature (De Grandi & Molendi 2002;
Pizzolato et al. 2003; Ascasibar & Diego 2008; Bulbul et al.
2010; Gaspari et al. 2012; Ghirardini et al. 2019b). Initially,
these were polytropic models that assumed a simple relationship
between the density and the temperature distribution (T ∝ ργ−1),
but this does not fully capture all the complexities of real galaxy
clusters, especially the central regions of CCs clusters. The qual-
ity of recent data has necessitated more complicated models to
be proposed, perhaps the most widely used being that proposed
by Vikhlinin et al. (2006):

T3D(r) = T0 × (x + τ)/(x + 1) ×
(r/Rt)−a

(1 + (r/Rt)b)c/b , (2)

where x = (r/Rcool)acool and {T0, τ,Rt,Rcool, acool, a, b, c} are
the model parameters. In the framework of the Repre-
sentative XMM-Newton cluster structure survey (REXCESS;
Böhringer et al. 2007) and Following the most massive galaxy
clusters over cosmic time (M2C; Bartalucci et al. 2019) projects,
Démoclès et al. (2010) and Bartalucci et al. (2018) developed a
non-parametric-like deconvolution approach. For this study the
Vikhlinin et al. (2006) parametric model was used to perform the
PSF correction and deprojection in order to estimate the temper-
ature at the weighted radii of the 2D annular binning scheme.
The 3D uncertainties were then computed consistently from the
2D errors, and random temperatures were drawn within these
uncertainties to compute the temperature derivatives which were
used in the hydrostatic equilibrium total mass computations.

However, parametric approaches are not fully satisfactory
since, with a limited number of parameters, they could fail to
capture features in the temperature profile due to shock fronts,
edges, mergers and the presence of cool cores with one sin-
gle model. Moreover, a high degree of degeneracy between
the parameters could be present. The Vikhlinin et al. (2006)
parametric temperature model, which was developed for cool
core systems, is a complex eight-parameter model, four of
which correspond to the cool-core component. It is therefore
not well-suited to highly disturbed NCC clusters, which have
flatter central temperature profiles instead of declining cool
cores. Furthermore, for typical X-ray data quality, it exhibits
a high degree of degeneracy between its parameters, leading
to poorly constrained model parameters and the results that
depend on the prior choices in MCMC fitting schemes. Recently,
Gianfagna et al. (2021), using a sample drawn from high resolu-
tion numerical simulations, found that the Vikhlinin et al. (2006)
parametric model could only fit well to 50% of their sample in
the range [0.1–1] R500

1.

1 The scaled radius R∆ is defined such that R∆ is the radius at which
the mean matter density is ∆ρc, where ρc = 3H2(z)/8πG is the critical
density of the universe at redshift z.

Model-independent direct spectral deprojection methods
offer an alternative and are commonly used to deconvolve the 3D
temperature profiles. This can involve the onion-skin technique
(Fabian et al. 1981; David et al. 2001; Johnstone et al. 2005;
Russell et al. 2008; Lakhchaura et al. 2016), where the 3D lay-
ers are successively built up from the outside in. However, this
approach is strongly dependent on the choice of the outermost
bin because it is necessary to take into account the contribution
to the emission from the shells outside the outermost annulus
used for the analysis. Alternatively, isothermal models can be
fitted to each annular spectrum and then the matrix method (i.e.
Eq. (1)) can be used to deproject (e.g. Ettori et al. 2002). Ignor-
ing the PSF effect, the equation for temperature profiles assum-
ing that the observed projected spectra consist of a linear combi-
nation of isothermal emission models weighted by the projected
emission measure simplifies to

T2D,k =

n∑
j=1

wk, j∑n
j=1 wk, j

T3D, j. (3)

Here, T3D, j and T2D,k are the 3D and 2D temperatures at the
jth 3D spherical shell and kth 2D observed annulus, respec-
tively, and the weights, wk, j, consist of the emission measure
contribution of the spherical shells onto the observed annuli (e.g.
Mathiesen & Evrard 2001).

However, such model-independent approaches are often
unstable if the data are noisy because Eq. (1) is an inverse prob-
lem, meaning that any noise becomes greatly amplified by the
deconvolution procedure. In addition, the simplistic emission
measure weighting has been found to be inaccurate when applied
to X-ray observations. In particular, it has been demonstrated
that in the presence of a multi-temperature components gas, w
is more appropriately expressed as a non-linear combination of
density and temperature (Mazzotta et al. 2004; Vikhlinin 2006),
further complicating the deconvolution procedure.

Machine Learning (ML) techniques have emerged as a pow-
erful technique for predicting key features of data and for solving
inverse problems to reconstruct (deconvolve) signals, images,
etc, from observations. ML techniques have been applied to
study galaxy clusters too. Ntampaka et al. (2015) developed an
ML algorithm based on Support Distribution Machines to recon-
struct dynamical cluster masses using the velocity distribution of
cluster members from simulations, achieving a reduction in the
scatter between the predicted and true mass by a factor of two
compared to standard methods. More complex ML approaches
have led to similar significant improvements in the mass esti-
mates (Armitage et al. 2019; Calderon & Berlind 2019).

Using deep learning techniques, Convolutional Neural Net-
work (CNN) models have also been used to infer the dynamical
mass of galaxy clusters (Ho et al. 2019; Ramanah et al. 2020;
Ho et al. 2021; de Andres et al. 2022). In particular, Yan et al.
(2020) used mock datasets of stellar mass, soft X-ray flux,
bolometric X-ray flux, and Compton y-parameter images as
input to train a CNN model to infer the mass of galaxy
clusters, and Gupta & Reichardt (2020, 2021) trained CNN
models to estimate cluster masses used mock SZ, cosmic micro-
wave background (CMB) lensing maps. Ferragamo et al. (2023),
using a combination of an auto-encoder and a random forest
regression technique on a sample of 73 138 mock Compton-
y parameter maps from the hydrodynamical simulations of the
Three Hundred Project (Cui et al. 2018), and were able to
reconstruct the 3D gas mass profile and total mass in galaxy
clusters with a scatter of about 10% with respect to the true
values. de Andres et al. (2022) and Ho et al. (2022) have used
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real observations to estimate the total mass profiles of galaxy
clusters using deep learning models trained on mock simula-
tions. While de Andres et al. (2022) used the Planck SZ maps
(Planck Collaboration XXVII 2016) to determine the masses
of Planck clusters, Ho et al. (2022) used relative line-of-sight
velocities and projected radial distances of galaxy pairs from
Sloan Digital Sky Survey (SDSS) data (Alam et al. 2015) to
determine the mass of the Coma cluster.

In this work, we show the first use of neural networks, trained
on numerical simulations, to deproject the X-ray temperature
profiles of galaxy clusters. Our technique is based on that pro-
posed by Bobin et al. (2019, 2023) where a so-called Interpo-
latory Autoencoder (IAE) neural network is built to model the
3D temperature profiles by learning a non-linear interpolatory
scheme from a limited set of example profiles called ‘anchor
points’. The main advantage of the IAE neural network is that
it is able to capture the intrinsic low-dimensional, non-linear
nature of the profiles even when the training sample is not large
in size. This is crucial as a small sample size can otherwise pose
several challenges to the effectiveness of a deep learning algo-
rithm. The model is trained and tested with a set of 315 simu-
lated temperature profiles, in the radial range of [0.02–2] R500,
from the three hundred project (Cui et al. 2018). A robust
temperature deconvolution scheme is then introduced to fit the
trained IAE model, that makes use of an efficient regularisation
term in the likelihood, along with Markov chain Monte Carlo
(MCMC) sampling. The technique is then applied to a pilot sam-
ple of X-ray temperature profiles from the CHEX-MATE project
(Cluster HEritage project with XMM-Newton: Mass Assembly
and Thermodynamics at the Endpoint of structure formation;
CHEX-MATE Collaboration 2021).

The paper is organised as follows. Section 2 discusses in
detail the simulations used in training the IAE model for temper-
ature profiles. In Sect. 3 we present the IAE model, and Sect. 4
deals with model training and the learning-based deconvolution
technique. The performance of the deconvolution algorithm is
tested with simulations in Sect. 5, while in Sect. 6, we apply
our approach for the first time to a representative sample of
28 galaxy clusters from the first data release (DR1 hereafter,
Rossetti et al., in prep.) in the CHEX-MATE sample. Finally, in
Sect. 7, we summarise our work. Throughout this work, we adopt
a flat ΛCDM model with H0 = 70 km s−1 Mpc−1, Ωm = 0.3 and
ΩΛ = 0.7. Further, E(z) is the ratio of the Hubble constant at
redshift z to its present value, H0 and h70 = H0/70 = 1.

2. Simulations

In this work, training of the neural network is undertaken
using the gas mass-weighted 3D temperature profiles, T3D, of
galaxy clusters from the Three Hundred Project (Cui et al.
2018; Ansarifard et al. 2020). These simulations are based on
the 324 Lagrangian regions centred on the z = 0 most
massive galaxy clusters selected from the MultiDark dark-
matter-only MDPL2 simulation (Klypin et al. 2016), carried out
with the cosmological parameters from the Planck mission
(Planck Collaboration XIII 2016). MDPL2 is a periodic cube of
comoving size equal to 1.48 Gpc containing 38403 dark matter
particles. The selected regions were resimulated with the inclu-
sion of baryons and were carried out with the code GADGET-X
(Beck et al. 2016). To treat the baryonic physics several pro-
cesses were included such as: metallicity-dependent radiative
cooling, the effect of a uniform time-dependent UV background,
a sub-resolution model for star formation from a multi-phase
interstellar medium, kinetic feedback driven by supernovae,

metal production from SN-II, SN-Ia and asymptotic-giantbranch
stars, and AGN feedback (Rasia et al. 2015).

In the present work, we ignore the redshift dependence of
the profiles, if any, and only consider the simulated sample at
a fixed redshift of z = 0.33, which is the average redshift of
the CHEX-MATE sample. However, we consider a mass range
of M500 > 1014 M� allowing us to build a library covering the
full mass range of the CHEX-MATE sample. This left us with
314 clusters in the simulated sample.

The temperature profiles were derived in 48 fixed log-
arithmically spaced radial bins in the range [0.02–2] R500
(Ansarifard et al. 2020). The lowest radial limit of 0.02 R500 was
chosen since it encloses approximately 100 gas particles for the
simulated sample, which we call the precision threshold con-
dition, thus ensuring that the analysis is statistically robust and
that the results are not affected by numerical fluctuations in the
gas properties at small radii (Rasia et al. 2015). The 3D mass-
weighted temperature in a given shell i, T3D,i (i.e the ith element
of the T3D vector), was calculated by weighting the temperature
of the pth gas particle (Tp) using its gas mass (mp) as a weighting
function w,

T3D,i =

∑
Tpmp∑

mp
. (4)

In this calculation, no attempt was made to exclude low-
temperature sub-clumps in the outskirt regions of the clusters,
however, only particles with temperature >0.3 keV were consid-
ered.

We estimated the projected 2D temperature profiles (T2D)
along the line of sight (l) using the 3D gas density (ρ) and tem-
perature profiles (T3D). The 2D temperature profiles were esti-
mated in pre-defined logarithmically spaced annular bins by first
considering the classical emission-measure weights (C = Cproj,
see Eq. (3)):

T2D =

∫
wT3Ddl∫

wdl
= C ⊗ T3D, (5)

where w = ρ2 (e.g. Mathiesen & Evrard 2001). We produced
several versions of the T2D profiles: First the T2D profiles were
first estimated in the same radial bins as those of the T3D
(48 bins) by using a matrix C of dimension 48 × 48 (C48,48). We
also estimated T2D in a coarser binning scheme to reproduce typi-
cal radial sampling from present-day X-ray observatories such as
XMM-Newton and Chandra. These have either twelve or six log-
arithmic bins reaching only up to R500, corresponding to matrices
of dimension 12 × 48 (C12,48) and 6 × 48 (C6,48) respectively.

We also considered a more complex case where we use
the spectroscopic-like weighting proposed by Mazzotta et al.
(2004) to generate the 2D temperature profiles using the binning
schemes discussed above. In this case, apart from the normalisa-
tion, the matrix elements of C simply change to Ci, j = Ci, jT

3/4
3D, j

(or equivalently, the weights change to w = ρ2T−3/4
3D ), where

T3D, j is the mass-weighted 3D temperature profile in the jth bin.
In many clusters in the simulated sample, the temperature

profiles in the first few inner bins (typically 0–13 radial bins cor-
responding to radii between ≈[0.02–0.07] R500) were noisy (i.e
having <100 gas particles). For such systems, the 2D profiles
were estimated without considering such bins.

Figure 1 shows the observed scaled 2D temperature profiles
of the Planck SZ sample (Planck Collaboration XI 2011) and the
XMM-Newton DR1 sample (Rossetti et al., in prep., described in
detail in Sect. 6.2). These are compared to 50 randomly drawn
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Fig. 1. Comparison of the observed 2D temperature profiles, scaled as a function of R500 and TX , the temperature in the [0.15–0.75] R500 region. The
thin grey lines show 50 randomly selected simulated 2D temperature profiles from the Three Hundred Project, extracted with an observation-
like annular binning resolution, derived using emission measure (left panel) and spectroscopic-like (right panel) weighting schemes. The thin red
lines show individual profiles in the Planck Collaboration XI (2011) sample. For better visibility, the error bars corresponding to the observed
profiles are not shown. The regions enclosing thick black and red lines show the 1-σ dispersion (16th–84th percentile range) of the temperature
profiles of the full simulated sample and the Planck sample respectively. The regions enclosing the thick blue lines show the 1-σ dispersion of the
CHEX-MATE DR1 sample. Scaled by R500 and TX , both the emission measure and spectroscopic-like derived 2D simulated temperature profiles
become somewhat self-similar.

2D temperature profiles from the Three Hundred Project
using emission measure (left panel) and spectroscopic-like (right
panel) weighting schemes and an observation-like convolution
matrix, C12,48. Both observational and simulated temperature
profiles were scaled by the average 2D temperature (TX) in the
radial range of [0.15–0.75] R500. Figure 2 shows the distribu-
tion of the clusters in the simulated sample, Planck sample and
DR1 sample on the basis of TX . These two figures illustrate three
points that will be critical for the following study:
1. In common with a number of works over the last 20 yr

(e.g. De Grandi & Molendi 2002; Vikhlinin et al. 2006;
Pratt et al. 2007; Leccardi & Molendi 2008; Ghirardini et al.
2019a), the structural similarity in the observed temperature
profiles are clearly visible in Fig. 1. The central regions are
characterised by a large spread, due to a mixed population
of cool core and disturbed systems, while beyond the central
0.15 R500 the profiles all decline in a similar fashion.

2. The simulated profiles follow the same general trend as
the observed profiles. The average trend and 1-σ disper-
sion of the simulations is very consistent with that of the
CHEX-MATE DR1 sample. The simulated temperature pro-
files on average are slightly hotter in the centre compared
to the Planck SZ sample. This may be related to the fact
that there are more low mass clusters in the simulated sam-
ple compared to the Planck SZ sample. Such low mass
clusters are expected to be more strongly affected by AGN
feedback, potentially leading to higher temperatures in the
central region (Iqbal et al. 2018). Alternatively, the higher
central temperatures in the simulations may simply be due to
the fact that the sample has a large number of NCC clusters.

3. Overall, the observed temperature profiles are well repre-
sented by the simulated sample. This fact will be key to a
successful training stage of the IAE model, which relies on
identifying underlying trends in the data that would not oth-
erwise be found. We note that the simulated profiles do not
have to precisely match the observed data: as we will see, the
most important point is that they reproduce the overall struc-
ture and diversity of the observed profiles, which is what our
IAE model learns.

2 4 6 8 10 12 14
TX (keV)

0

20

40

60

80

N

Simulated (spectroscopic-like)
Simulated (emission measure)
Planck sample
DR1 sample

Fig. 2. Number of clusters as a function of TX in the Three Hundred
Project sample, the Planck SZ sample and the DR1 sample.

We further classified the simulated clusters using three
schemes. This is important to quantify how well the IAE model
reconstructs the radial temperature distribution for different
types of objects and profile shapes.

2.1. CC and NCC classification

Firstly, we classify the profiles as CC and NCC by visual inspec-
tion. The objective here is simply to select simulated profiles
that mimic those of observed cool-core-like clusters with a cen-
tral temperature drop, and non cool-core clusters that display an
almost isothermal central temperature profile. The profiles which
show a decreasing trend towards the cluster centre (positive tem-
perature gradient) were classified as CC clusters. We identify
about one-third of the clusters as belonging to the CC class. In
Fig. 3, grey lines in the left panels and right panels show the 3D
temperature profiles (T3D) of CC and NCC clusters respectively.
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Fig. 3. Classification of temperature profiles in the Three Hundred Project. Left panel: Grey line shows the visually classified CC clusters.
Cyan and green lines show the 20 most relaxed clusters (top panel) and 20 most smooth profiles (bottom panel). Right panel: Grey line shows the
visually classified NCC clusters. Magenta and orange lines show the 20 most disturbed clusters (top panel) and irregular profiles (bottom panel).

2.2. Dynamical classification

Clusters in these simulations were classified on the basis of their
intrinsic dynamical state (relaxed or disturbed) using a variety of
estimators (Rasia et al. 2013). The two important intrinsic esti-
mators are fs = Msub/Mtot, the fraction of cluster mass (Mtot)
included in substructures (Msub), and ∆r = |rδ − rcm|/Rap, which
is the measure of the offset between the central density peak (rδ),
and the centre of mass (rcm) of the cluster normalised to aperture
radius Rap. Both of the estimators were computed at R500. Both
fs and ∆r are expected to be lower than 0.1 for relaxed objects
(Cialone et al. 2018; De Luca et al. 2021). These two dynamical
parameters can be combined (Rasia et al. 2013) to give the so-
called relaxation parameter χD

χD =
1
2
×

(
∆r − ∆r,med

|∆r,quar − ∆r,med|
+

fs − fs,med

| fs,quar − fs,med|

)
. (6)

Here ∆r,med and fs,med are the medians of the ∆r and fs distri-
butions, respectively, and ∆r,quar and fs,quar are the first or the
third quartiles, depending on whether the parameters of a spe-
cific cluster are smaller or larger than the median. According to
this definition, clusters with χD < 0 are classified as relaxed,
and clusters χD > 0 are classified as disturbed. The left panel of
Fig. 4 shows the histogram of χD values. The cyan and magenta
hatched regions represent the 20 most relaxed clusters and 20
most disturbed clusters, respectively. We will refer to these sub-
samples as MR20 and MD20 hereafter. In the top panel of Fig. 3,

we show the corresponding temperature profiles of the MR20
clusters (left panel) and the MD20 clusters (right panel) with
cyan and magenta lines, respectively. It is interesting to note
that only a few of the most relaxed objects are also categorised
as CC clusters. Visual inspection of emissivity maps shows, as
expected, that χD is clearly linked to the overall gas morphology,
as also found in Campitiello et al. (2022).

2.3. Structural classification

To enable a better assessment of the performance of the IAE
model for temperature profile reconstruction, we also classi-
fied the 3D temperature profiles based directly on their smooth-
ness. Bumps in the temperature profiles are usually associated
with complex astrophysical processes such as merger shocks,
gas condensation, the presence of cold substructures, sloshing,
and turbulence, all of which affect the temperature in a given
annulus. To measure the degree of the bumpiness of the 3D tem-
perature profiles, we used the starlet wavelet transform, which
is widely used in component separation in astrophysical images
(Starck et al. 2007), to split each profile into its smooth and non-
smooth components. Using this technique, the 3D temperature
profile T3D(r) can be decomposed into a J + 1 coefficient set
W = {w1, . . . ,wJ ,TJ}, as a superposition of the form

T3D(r) = TJ(r) +

J∑
j=1

w j(r) , (7)
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Fig. 4. Distribution of clusters in the Three Hundred Project as a function of the χD (Eq. (6)) and χS (Eq. (8)) criteria. The hatched cyan and
magenta regions show the 20 most relaxed clusters and the 20 most disturbed clusters respectively based on χD criterion. The hatched green and
orange 20 most show the 20 most regular profiles and the 20 most irregular profiles respectively based on χS criteria.
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Fig. 5. Smooth (coarse) component of a complex temperature pro-
file derived from the application of the Starlet transform with J = 2.
The bottom panel shows the corresponding difference between true and
smooth temperature profiles.

where TJ is a smooth (coarse resolution) version of the original
temperature profile and w j represents the structure in the tem-
perature profile on scale 2− j.

Figure 5 shows the starlet decomposition for one of the clus-
ters in the Three Hundred Project which exhibits a complex
shape in the range [0.5–1] R500. The cluster is experiencing a
major merger and there is an enhancement of the temperature
due to the propagation of a shock in this region. We use the star-
let transform with J = 2, which we have found to be the optimal
configuration to measure the non-smoothness, yielding a decom-
position into a smooth temperature component and two addi-
tional non-smooth components, w1(r) and w2(r). We then define
the root mean square deviation, χS of the difference between the
true and smooth temperature profiles in the radial range of [0.08–
1] R500 as a measure of the non-smoothness of the temperature

profiles.

χS =

√√
1
u

u∑
i=1

(T3D,i − TJ,i)2 , (8)

where u is the number of data points in the range of [0.08–1]
R500, and the lower limit of 0.08 R500 corresponds to the radius
at which all clusters satisfy the precision threshold condition.
The temperature profiles were first scaled (normalised) by the
average mass-weighted temperature in the radial range of [0.15–
0.75] R500 before applying the decomposition operator to calcu-
late χS . The right hand panel of Fig. 4 shows the distribution
of χS for the full sample, which follows an approximately log-
normal distribution. The green and orange hatched regions repre-
sent the 20 most smooth profiles and 20 most irregular profiles,
respectively, based on the χS criterion. We will refer to these
sub-samples as MS20 and MI20 henceforth. In the bottom panel
of Fig. 3, we show the corresponding temperature profiles of the
MS20 (left panel) and MI20 profiles (right panel) with green and
orange lines respectively. Here also, only a few of the clusters
with the most smooth profiles are categorised as CC clusters.
The correlation between χD and χS is shown in Fig. A.1. They
are moderately correlated, with a Spearman’s correlation coeffi-
cient of 0.42 and a P value of 5 × 10−15.

3. Neural network model for learning 3D
temperature profiles

The deconvolved temperature profile can in principle be obtained
by solving the following classical inverse problem

T2D = C ⊗ T3D + N, (9)

where C is a non-linear operator (matrix) which represents the
observational and instrumental effects (projection, PSF, etc) and
N represents the statistical properties of the noise. The standard
way of solving Eq. (9) is to consider least squares regression
with some regularisation R

Tfit
3D = min

T
R(T) + ‖T2D − C ⊗ T‖2 , (10)

where Tfit
3D is the best-fitting model profile for T3D, which is

obtained by optimising the above relation with respect to T.
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Fig. 6. Design of the neural network used in this work. Left Panel: Neural network used in the training stage. Φ and Ψ represent the encoder and
decoder respectively. Ti are the elements of the training set and Te

a are the elements of the anchor set. Φ(Ti) and Φ(Te
a) are the representations of

Ti and Te
a, respectively, in the encoder (feature) space. Θ(Λi) = Θ([λi

1, . . . , λ
i
d]) is the Euclidean barycentric representation of Φ(Ti) in terms of d

anchor points Φ(Te
a), which is fed to the decoder. Ψ(Θ) is the reconstructed output of the decoder. The network is trained by minimising the error

between the input Ti and output Ψ(Θ) temperature profiles. Right panel: Neural network (IAE model) of temperature profiles, where λ1, . . . , λd
are the input parameters and IAE([λ1, . . . , λd]) is the output temperature profile. The decoder is not required in any step here.

However, Eq. (9) is an ill-posed (non-linear) problem, and using
standard non-parametric methods does not result in a unique and
stable solution. Therefore, one has to resort to advanced decon-
volution techniques. In this work, we propose one such algo-
rithm that makes use of neural networks to model the tempera-
ture profiles, and whose framework will be explained below. A
learning-based regularisation procedure for direct deconvolution
using the trained neural network is discussed in Sect. 1.

Our approach is based on manifold learning, which stems
from the manifold hypothesis, that suggests the existence of
a lower dimensional manifold on which real-world data lies
(Fefferman et al. 2013). This is evidently the case for galaxy
cluster temperature profiles, which clearly display some degree
of regularity, as seen in Fig. 4. The goal is then to find the lower
dimensional manifold by learning the underlying structure of the
data. When one has access to a large training set (from obser-
vations and/or simulations), it may be possible to make use of
machine learning (deep learning) methods to build an underlying
manifold. However, this becomes quite difficult when available
training samples are sparse, as is the case for cluster tempera-
ture profiles. In such cases, rather than learning the underlying
manifold structure, Bobin et al. (2023) proposed the Interpolator
AutoEncoder (IAE), that learns to travel on a manifold by way
of interpolation between a limited number of anchor points that
belong to it.

We assume that any temperature profile in a training set
{Ti}i=1,...,n, where n represents the total number of elements in
the set, can be interpolated from a small set of d anchor points
{Te

a}
e=1,...,d using an appropriate metric Π

Θ(Λi) = min
Λi

d∑
e=1

λi
eΠ(Ti,Te

a) , (11)

where Θ is called the barycentre. The elements of vector Λi =
[λi

1, . . . , λ
i
d] are the barycentric weights (

∑d
e=1 λ

i
e = 1) which are

optimised in the above equation. If we consider the metric Π to
be Euclidian, then

Θ(Λi) = min
Λi

d∑
e=1

λi
e||T

i − Te
a||

2. (12)

The above equation reduces Θ(Λi) to an orthogonal projection
onto the span of anchor points Te

a, that is

Ti ≡ Θ(Λi) =

d∑
e=1

λi
eTe

a. (13)

The problem then reduces to finding (optimising) barycentric
weights such that the barycentre Θ accurately reconstructs any
input temperature profile in the training sample.

However, if the profiles are non-linear, with varying ampli-
tudes and shapes, as is the case with the temperature profiles
in galaxy clusters, the standard metric Π may not reconstruct
an appropriate barycentric representation. Our method, there-
fore, uses the approach proposed by Bobin et al. (2019, 2023),
in which a data-driven metric is constructed using a deep learn-
ing neural network that is well adapted to build physically
relevant barycentres of anchor points. We introduce an auto-
encoder (Vincent et al. 2010) inspired neural network model
which learns to transport points (temperature profiles in our case)
onto the underlying manifold using a non-linear interpolation
scheme between the anchor points.

The structure of the neural network we are considering is
shown in the left hand panel of Fig. 6. It consists of an encoder
(Φ), that takes an input, and a decoder (Ψ), that generates the
desired output. The role of the encoder is to transform the input
data into a lower-dimensional representation, while the decoder
is responsible for mapping the lower-dimensional data back into
the original space. By performing these mappings, auto-encoders
are able to learn the underlying structure of the data. In contrast to
standard auto-encoders, our model training is performed by min-
imising the error between the input and the reconstructed train-
ing sample according to the Euclidean distance onto the manifold
spanned by the anchor points in the encoder (feature space).

More precisely, for the encoder Φ, the representation of the
input profile Ti (belonging to the training setΦ(Ti)) is expressed
in terms of the barycentre, Θ, in feature space, as an orthogonal
projection onto the span of the anchor points Φ(Te

a) given in
Eq. (13):

Φ(Ti) ≡ Θ(Λi) =

d∑
e=1

λi
eΦ(Te

a). (14)
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The barycentric weights are constrained to sum to one so as to
avoid certain scaling indeterminacies, and are not necessarily
constrained to be positive like actual barycentric weights, which
potentially allows us to extrapolate beyond the affine hull of the
encoded anchor points. More precisely, the barycentric weights
for the n elements in the training sample are computed as fol-
lows:

min
Λi

n∑
i=1

∥∥∥∥∥∥∥Φ(Ti) −
d∑

e=1

λi
eΦ(Te

a)

∥∥∥∥∥∥∥
2

s.t.
∑

e

λi
e = 1, (15)

which can be approximated by taking the solution to the least-
squares problem followed by a rescaling of the barycentric
weights in order to make them sum to one.

Once the optimal barycentric weights (Λi) are computed for
each element Ti of the training sample, the approximations (i.e.
the barycenters) go back through the decoder Ψ to reproduce
the input as T̃i = Ψ(Θ) = Ψ(

∑d
e=1 λ

i
eΦ(Ta

e)). The learning stage
reduces to estimating the weights and biases of layers of Φ and
Ψ using an appropriate cost function that minimises the error
between the input, Ti and the output, Ψ(

∑d
e=1 λ

i
eΦ(Te

a)), so that

min
Φ,Ψ

µ

n∑
i=1

∥∥∥Ti − T̃i
∥∥∥2

+

n∑
i=1

∥∥∥Φ(Ti) −Θ(Ti)
∥∥∥2
. (16)

In the training stage, we thus learn the non-linear interpolation
scheme that best approximates the training samples in feature
space, and the mapping between the barycentres and real space.
The parameter µ controls the trade-off between these two objec-
tives. In the evaluation phase only the decoder Ψ(Θ), which
embeds the mapping between the barycentric weights and 3D
temperature profiles, is used. As shown in the right panel of
Fig. 6, the decoder is used as a generative model that is param-
eterised by the barycentric weights, Λ (for convenience we drop
the subscript ‘i’ from now on). This model can easily be con-
volved to fit the observed 2D temperature profile so as to recover
the true (3D) temperature profile. From now on, we refer to the
decoder as the IAE model. The number and choice of anchor
points and the model training will be discussed in the following
Section.

4. Model training and fitting

4.1. Model training

We use a JAX (Bradbury et al. 2018) implementation to develop
and train the IAE model. As a training sample, we use 200 ran-
domly drawn T3D profiles from the full sample of 315 extracted
from the Three Hundred Project simulations.

Each profile in the training sample is first normalised to
entries that sum to 1. The model is trained at the same fixed
radial binning as that of T3D profiles in the [0.02–2] R500 radial
range. For the training stage, several configurations were tested,
among which the following choices were found to perform the
best:

– Network architecture: Both the encoder and the decoder are
multi-layer perceptron (MLP) neural networks, which are
composed of 2 layers, each of which has a number of hidden
units equal to the input signal dimension (i.e. 48). We employ
a smooth and non-monotonic Mish2 activation function to
introduce non-linearity and enhance the learning capacity
of our deep neural network model. Since the IAE model

2 Mish(x) = x × tanh(ln(1 + ex)).

employs a barycenter transformation of the training sample
in encoder space to achieve dimensionality reduction, in this
work, we only focus on a specific architecture with a fixed
number of neurons per layer, corresponding to the dimen-
sion of the input samples. Further exploration of more gen-
eral architectures is left for future work. For both encoder
and decoder, the output Zl+1 of layer l can be expressed as

Zl+1 = Mish(Wl ⊗ Zl + bl) + εlZl. (17)

Here, the first term represents the standard output of the neu-
ral network, with W and b defined as weight matrix and
bias vector respectively. The second term represents skip
connections (He et al. 2015; Huang et al. 2016), also known
as residual connections. The skip connection acts by par-
tially re-injecting Z up to a layer-dependent scalar factor ε.
In general, the residual injection factors are typically cho-
sen to be small for low-level layers and larger for deeper
layers. This approach helps mitigate the vanishing gradient
phenomenon, which is commonly encountered during the
training of deep networks. For each layer l of encoder and
decoder, we consider following the functional form of εl as
used in Bobin et al. (2023)

εl = ε0

(
21/l − 1

)
, (18)

where ε0 is a constant factor. By using skip connections
with re-injection and layer-dependent scaling, the model can
leverage both the direct information flow from earlier lay-
ers and the higher-level abstractions learned by the deeper
layers, which can lead to improved performance and better
training in deep neural networks.

– Cost function: The cost function defined in Eq. (16) is com-
posed of two terms. The first term measures the reconstruc-
tion error in real space, and the second term defines the error
in feature space. The parameter µ allows one to tune the
trade-off between these two terms. An accurate IAE model
relies on both a low reconstruction error (i.e. first term of
the training loss), and an efficient interpolation scheme in
feature space. It has been emphasised in Bobin et al. (2023)
that the second term helps improve the training process by
constraining the feature space. In addition, depending on the
problem and data at stake, it can help to increase the model
accuracy by reducing the interpolation error in feature space,
which in turn can reduce noise propagation at inference. In
the present case, we noted that the trained model is not par-
ticularly sensitive to µ, which we set to 10 000 to minimise
the reconstruction error in real space.

– Training hyper-parameters: The batch size (the number of
training profiles processed together before updating the neu-
ral network weights) is fixed to 32. The optimisation is per-
formed by back-propagation using the standard Adam solver
(Kingma & Ba 2014) with a step size of 10−3 and a num-
ber of epochs equal to 25 000. It is customary to further reg-
ularise the model by adding noise to the training samples,
which limits over-fitting effects. To do that, Gaussian noise
with mean zero and standard deviation of 2 × 10−3 is added
to the samples at the training stage. The batch normalisation
was achieved by normalising the input batch using a global
mean of 0 and a standard deviation of 1. Finally, we fix the
residual parameter (ε0) to 0.1.

– Number of anchor points: Anchor points serve as the basis on
which temperature profiles are reconstructed using barycen-
tric weights. Training with a small number of anchor points
results in smoother (more regular) profiles; conversely, a
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Fig. 7. Five anchor points (example profiles), Te
a, where e runs from 1

to 5 used in the IAE model.

large number of anchor points increases the model-to-data
fidelity. Thus, the choice of the number of anchor points used
during the training stage is essentially equivalent to choos-
ing a regularisation parameter. For our study, the number of
anchor points is fixed at five. These are generated by first
dividing the training sample into five groups using a k-means
clustering algorithm. The anchor points are then assumed
to be the central points (centroids) of these five groups. By
using five anchor points, we can ensure that the model-to-
data residual remains below 10% over the observable radial
range of ≈[0.02–1] R500, as shown in Sect. 5, and at the same
time, we can avoid any possible biases that could be intro-
duced if the observations were shallow (bias-variance prob-
lem). Figure 7 shows the anchor points used in the neural
network model. In Sect. 5.1.2, we will discuss the effect of
increasing the number of anchor points.

Table 1 provides a comprehensive summary of our neural net-
work architecture, along with the optimal hyper-parameters used
in the study. For our implementation, we used publicly available
source code hosted on a GitHub repository3 (Bobin et al. 2019,
2023).

Since our simulated sample is small, we use the term ‘val-
idation’ to refer to testing of the model performance on simu-
lated data (Sect. 5) before using it on real-world data, where the
3D temperature profiles are not directly available. We therefore
used the training sample itself to evaluate the convergence of
the cost function. Specifically, we monitored the cost function
during training and found that after approximately 25 000 itera-
tions, the cost function reached a point where it became flat. At
this stage, we considered the training process to be sufficiently
converged, and we terminated the training.

4.2. Model fitting

The IAE model is tested/fitted on the validation sample consist-
ing of the remaining 115 galaxy clusters in the sample which
were not used in the training stage. We have verified that the
validation sample is representative of the full sample: about one-
third of the validation clusters have cool cores, and the fractions
of relaxed/disturbed clusters and smooth/irregular profiles are
similarly distributed in the training and validation samples.

3 https://github.com/jbobin/IAE

We employ Markov chain Monte Carlo (MCMC) analysis
to estimate the parameters of the IAE models and use the pub-
licly available emcee python package (Foreman-Mackey et al.
2013) for this purpose. The parameter estimation is undertaken
on all the IAE parameters: the five anchor point weights Λ =
[λ1, λ2, λ3, λ4, λ5], and the amplitude (normalisation) parameter
α.

The deconvolved temperature profile can be obtained from
the trained non-parametric IAE model by minimising the fol-
lowing log-likelihood:

L(Λ, α) = Γ × Tr
(
(Λ − Λ̄)> ⊗ Σ−1

t ⊗ (Λ − Λ̄)
)
+

1
2
× Tr

(
(Tval − TIAE)> ⊗ Σ−1

o ⊗ (Tval − TIAE)
)
, (19)

where Tval is a temperature profile (2D or 3D) in the valida-
tion sample to be fitted, Σo is the error covariance matrix and
TIAE = C⊗IAE(Λ, α) is the corresponding convolved IAE model
predicted profile. Tr and > represent the trace and transpose
of the matrix respectively. The first term represents the mean
proximity term, with Γ controlling its overall contribution to the
likelihood. This enforces the solution to be a barycentre of the
example profiles (i.e. it searches for the best approximation of
the input signal with respect to the learned model/network). We
find that Γ in the range 0.1–1 generally provides good results,
and we, therefore, fix it to 1. Λ̄ (the mean value of the Λs) and Σt
(the covariance matrix of the Λs) are computed from the training
set by generating 100 Monte Carlo simulations for each cluster
with log-normal noise, which are then subsequently fitted to the
IAE model using the Adam optimiser. This cost-effective regular-
isation strategy is introduced to avoid model extrapolation (phys-
ically unrealistic results), and enables us to have a robust and
effective deconvolution algorithm. The second term is the stan-
dard likelihood related to some additive Gaussian noise perturba-
tion. We have used flat prior distributions and Table 2 shows the
prior ranges of all parameters. We used Getdist (Lewis 2019)
with the chains generated by emcee to produce 2D contours and
marginal posteriors.

The IAE model testing was undertaken by fitting it to the
T3D profiles and T2D profiles built in Sect. 2. For simplicity, we
ignore the PSF in the testing phase. We tested and validated our
model by considering three fitting cases:
1. 3D–3D fit with fine binning: the T3D profiles are directly

fitted to recover the best-fitting 3D profiles from the IAE
model. The goal, in this case, is to assess the ability of the
IAE model to reproduce the input 3D temperature profile
shape. In this case, as there is no projection, C in Eq. (19)
is simply an identity matrix of size 48 × 48 (C48,48).

2. 2D–3D fit with fine binning: we fitted the 2D projected tem-
perature profiles with the IAE model convolved with a pro-
jection matrix C. In this case, we wish to assess how well
the IAE model recovers the intrinsic 3D temperature pro-
file when only 2D projected data are available. We used the
same 2D radial logarithmic binning as that of the T3D pro-
files, meaning that C has dimensions of 48 × 48 (C48,48).
For this testing phase, we assume standard emission measure
weighting to calculate the elements of C.

3. 2D–3D fit with coarse binning: the 2D projected temperature
profiles having coarse logarithmic radial binning of twelve
or six points up to R500 were fitted to the IAE model con-
volved with matrix C. Here, the goal is to assess the abil-
ity of the IAE model to recover the intrinsic 3D tempera-
ture profile when only a coarse 2D projected profile, similar
to that obtained from present-day observations, is available.
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Table 1. Details on the neural network architecture and hyper-parameters used in this work.

Layer type Layer Activation Neurons

Encoder

Input – 48
Layer 1 Mish 48
Layer 2 Mish 48
Output – 48

Baycenter representation in Λ

Decoder

Input – 48
Layer 1 Mish 48
Layer 2 Mish 48
Output – 48

Parameters Values

Optimiser Adam
Step size 10−3

Batch size 32
Batch normalisation Yes

Iterations 25 000
Residual parameter (ε0) 0.1

Noise Gaussian
Cost function Mean squared error

Dropout None

Notes. The output of the encoder is first transformed into the barycenter of the anchor points using Eq. (14).

Table 2. Flat priors used for the IAE model parameters.

Parameter Range

λ1 −14; +22
λ2 −10; +15
λ3 −30; +17
λ4 −3; +8
λ5 −15; +10
α 100; +530

In this case C has a dimensions of 12×48 (C12,48) and 6×48
(C6,48) for the 2D temperature profiles with twelve and six
bins respectively. As above, we use standard emission mea-
sure weighting to calculate the elements of C. In Sect. 5.4,
we will also consider the Mazzotta et al. (2004) temperature-
dependent spectroscopic-like weights.

For case 3, which seeks to mimic the typical characteristics
of 2D temperature profiles measured with current X-ray satel-
lites, we assume that the uncertainties increase linearly with
radius. Based on our previous experience with XMM-Newton and
Chandra observations, we assume temperature profile uncertain-
ties that increase from 5% to 25% in the [0.02–1] R500 radial
range for the 12-bin profiles, and from 10% to 30% for the
6-bin profiles. We built a diagonal error covariance matrix, i.e.
Σo, using this approximation. This was then incorporated in the
likelihood and acts as a weighting function, giving more weight
to the inner regions in the fit. In general, regardless of whether
the errors increase monotonically, the inclusion of errors in the
likelihood leads to an overall improvement in the fit. For cases 1
and 2 (fine binning), we do not consider errors in the likelihood
and as such Σo is a unit matrix. Both model training and fitting a
single profile with MCMC can be completed within a few min-
utes on a 16-core CPU.

In the objects where the temperature profiles in the first few
inner bins were not reliable (i.e. having <100 gas particles), these
bins were not considered in the fitting. However, no such con-
straint was applied during the training stage, as one expects the
network to learn only the fundamental structure of the data rather
than the noise.

5. Model evaluation

In this Section, we discuss the robustness of the non-parametric
IAE model reconstruction using different schemes. We check the
performance of our model with respect to the radial binning,

which is important since the number of radial bins correspond-
ing to the observations is much lower compared to the resolution
of the temperature profiles in the simulated sample. We also con-
sider different weighting schemes in the fit. The model is tested
with the 115 temperature profiles in the validation sample.

The performance of the model was evaluated by comparing
the original 3D and 2D temperature profiles with those recovered
from the IAE model. For each case, we calculated the median frac-
tional residual and its associated 1-σ dispersion (16th–84th per-
centile range) at three scaled radii (0.02 R500, R500, and 2 R500),
and over the full radial range.

5.1. 3D-3D reconstruction of temperature profiles

5.1.1. Overall performance

We first consider the simplest case, corresponding to the 3D–3D
fit with fine binning, where we directly fitted the IAE model to
the intrinsic 3D gas mass-weighted temperature profiles (T3D),
ignoring projection effects. The left hand panel of Fig. 8 shows
the fractional residuals (∆T3D/T3D) between the input (true) and
recovered temperature profiles for all the individual clusters in
the validation sample. The median fractional residual profile
along with 1-σ dispersion (16th–84th percentile range) are also
plotted.

The median fractional residual profile is found to be close
to zero throughout the radial range: at radii, 0.02 R500, R500,
and 2 R500, the values are −0.010 ± 0.060, 0.010 ± 0.051 and
−0.020 ± 0.120 respectively. Moreover, the median fractional
residual over the full radial range is found to be −0.001 ± 0.042.
The 1-σ dispersion in the fractional residuals is nearly constant
at around ±5%, except beyond 1.5 R500.

Within the validation sample, the fractional residuals of
the 20 most relaxed/disturbed clusters (MR20/MD20) are dis-
played at the top in the right panel of Fig. 8, while the 20 most
smooth/irregular profiles (MS20/MI20) are shown at the bottom.
In all cases, the median fractional residuals are again consistent
with zero. The 1-σ dispersion in fractional residuals over all radii
for the MD20 (MI20) sub-sample is ±0.045 (±0.053), which
is larger, as expected, compared to the dispersion of ±0.032
(±0.029) found in the MR20 (MS20) sub-sample. This conclu-
sion is supported by the fact that the histogram of the residuals of
the MR20 (MS20) sub-sample is more peaked at zero, and hence
is narrower compared to the MD20 (MI20) sub-sample. In gen-
eral, we find that for disturbed clusters and for irregular profiles,
the IAE model smooths out the sharp small scale variations in
the 3D temperature profiles.
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Fig. 8. Fractional residuals for 115 clusters in the validation sample with IAE for the 3D–3D fit. The three horizontal dashed black lines represent
zero and ±5% fractional residuals; the vertical dashed black lines represent R500. Left panel: The grey lines show the individual fractional residuals
of all the clusters. The solid black line and shaded black region show the median and 1-σ dispersion of the fractional residual distribution,
respectively. The histogram shows the distribution of fractional residuals over all radii. Right panel: The cyan and magenta lines in the top
panel show the fractional residuals of MR20 and MD20 sub-samples, respectively. The green and orange lines in the bottom panel show the
fractional residuals of the MS20 and MR20 sub-samples respectively. Shaded regions show the corresponding 1-σ dispersion of the fractional
residual distribution. The histograms show the distribution of fractional residuals over all radii. Regions enclosed by the solid black lines show the
1-σ dispersion of the fractional residual of the full validation sample. The IAE model can reconstruct 3D temperature profiles with a fractional
difference of about 5% across nearly the full radial range.
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Fig. 9. Results for the most relaxed/disturbed clusters and for the most
smooth/irregular profiles with IAE for the 3D-3D fit. Left panel: Dashed
cyan and magenta lines show the true 3D temperature profiles of the
most relaxed and disturbed clusters respectively in the validation sam-
ple. Similarly, dashed green and orange lines show the most smooth and
irregular true 3D temperature profiles respectively. The solid lines and
the corresponding shaded regions show the median and 1-σ dispersion
of the reconstructed temperature profile obtained from the IAE model
using MCMC.

5.1.2. Anchor point weights, λi

We have shown above that the IAE model is able to recover the
average shape of the 3D profiles with high accuracy. In this con-
text, it is interesting to consider how the anchor point weights, λ,

change according to the characteristics of the profile under con-
sideration. Figure 9 shows the temperature profiles of the most
relaxed/disturbed clusters in the validation sample, classified
according to the χD criterion discussed in Sect. 2.2, and of the
most regular/irregular profiles in the validation sample, classi-
fied according to the χS criterion introduced in Sect. 2.3. The
reconstructed median temperature profile and fractional residu-
als obtained with the IAE using MCMC are also shown. The IAE
model produces smoother profiles on small scales by ignoring
the fluctuations on such scales. At large scales, the IAE model is
able to reproduce the underlying structure of the input temper-
ature profiles. The bottom left hand panel shows the fractional
residuals, which can be seen to be less than 5% over most of
the radial range. The top panel of the Fig. A.2 shows the cor-
responding posterior distribution of the parameters of the IAE
model obtained using MCMC. The parameters are seen to be
well-constrained, and as anticipated the relaxed cluster profile
(or the most regular profile) has tighter constraints compared to
the most disturbed cluster (or the most irregular profile) which
has relatively larger contour levels. Figure A.3 shows the com-
parison of temperature profiles and the reconstructed tempera-
ture profiles of 20 example clusters in the validation sample.

We also tested the effect on the IAE model of increas-
ing the number of anchor points. We found that the model
fidelity can be improved by increasing the number of anchor
points and that the choice of 20 anchor points reduces the
residuals significantly. Figure A.4 shows the recovered ensem-
ble plot of fractional residuals using the IAE model with
20 anchor points for the full validation sample, and for the differ-
ent sub-samples. There is a significant improvement in the aver-
age fractional residual in all the cases. The median of the frac-
tional residuals for the full sample over the entire radial range is
found to be 0.002 ± 0.030, about 25% smaller compared to the
fiducial IAE model obtained with five anchor points. However,
the usefulness of this higher dimensional model is limited to
simulations only. The temperature profiles that can be obtained
from current X-ray satellites generally have temperature data at
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Fig. 10. Fractional 2D and 3D residuals for 115 clusters in the validation sample with IAE for the 2D–3D fit (fine binning). The three horizontal
dashed black lines represent zero and ±5% fractional residuals; the vertical dashed black lines represent R500. Left panel: Grey lines show the
individual 2D (top panel) and 3D (bottom panel) residuals of all the clusters. The solid black line and shaded black region in the left panels
show the median and 1-σ dispersion of the 2D (top panel) and 3D (bottom panel) residual distribution, respectively. The histogram shows the
distribution of residuals over all radii. Right panel: The cyan and magenta lines show the 2D (top panel) and 3D (bottom panel) residuals of the
MR20 and MD20 sub-samples respectively. Green and orange lines show the 2D (top panel) and 3D (bottom panel) residuals of the MS20 and
MI20 sub-samples respectively. Shaded regions show the corresponding 1-σ dispersion of the residual distribution. Regions enclosed by the solid
black lines show the 1-σ dispersion of the median residual of the full validation sample. The histograms show the distribution of residuals over
all radii. When given 2D profiles as input, the IAE model can reconstruct 3D temperature profiles with a fractional difference of about 5% across
nearly the full radial range.

around 8–15 points for typical deep observations. Use of the IAE
model with 20 anchor points in cases such as this would result
in over-fitting and/or large variance.

5.2. 2D–3D reconstruction of temperature profiles with fine
2D binning

We now discuss the efficiency of the IAE model when fitting the
2D (projected) temperature profiles, defined at the same radial
grid as in the previous case and at which the IAE model is
defined (2D–3D fit with fine binning case). Here, the 3D IAE
model is convolved with the standard emission-measure weight-
ing matrix. The resulting projected model is then fitted to the
input 2D temperature profiles, in order to reconstruct the 3D tem-
perature profiles.

Since projection results in smoother 2D temperature pro-
files, washing out fluctuations at small scales, one expects the
3D reconstruction obtained from the 2D profile to be more regu-
lar compared to what was found in the previous section. It is also
important to note that projection effects are dominant in the inner
regions (especially in CC clusters), which can introduce degener-
acy into the reconstructed 3D temperature profiles in the central

region. However, both the 2D and 3D profiles of CC clusters will
always display a central temperature dip. Thus one can expect a
larger scatter in the 3D reconstructed temperature profiles in the
central regions, as compared to the 3D-3D fitting case.

In Fig. 10, we show the ensemble plot of fractional residuals
of the 2D (top panel) and 3D (bottom panel) temperature pro-
files for the validation sample (left panel) and sub-samples (right
panel). The fractional residuals in 2D space (where the fitting is
actually performed) are smaller compared to the 3D temperature
residuals, as expected.

For the 2D fit, we find median fractional residuals at radii
0.02 R500, R500, and 2 R500 to be 0.009±0.027, 0.004±0.040 and
−0.018 ± 0.095 respectively. The median of fractional residuals
for the full sample and over the entire radial range is found to be
−0.002± 0.027. Unlike in the 3D–3D case, where the dispersion
around the median was slightly larger in the outer regions only,
here, it also increases towards the centre, as expected from the
arguments given above. The dispersion is about ±10% at the first
bin.

For the 3D reconstruction, we find median fractional residu-
als at 0.02 R500, R500, and 2 R500 of 0.021 ± 0.110, 0.014 ± 0.052
and −0.018 ± 0.095, respectively. The median of fractional
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Fig. 11. Results for the most relaxed/disturbed clusters and for the most
smooth/irregular profiles with IAE for the 2D–3D fit (fine binning). Left
panel: Dashed cyan and magenta lines show the true 3D temperature
profiles of the most relaxed and disturbed clusters in the validation sam-
ple, respectively. Dashed green and orange lines show the most smooth
and irregular true 3D temperature profiles, respectively. The solid lines
and the corresponding shaded regions show the median and 1-σ dis-
persion of the reconstructed temperature profile obtained from the IAE
model using MCMC. The dotted lines show the 2D temperature profiles
actually used in the fitting.

residuals for the full sample and over the entire radial range is
found to be −0.003 ± 0.045. Moreover, as in the 3D-3D case,
here too, the histogram of the fractional residuals over all radii of
MR20 and MS20 sub-samples are narrowly peaked compared to
the MD20 and MI20 sub-samples, indicating again that the pro-
files of more relaxed clusters, or intrinsically smoother tempera-
ture 2D profiles, are reconstructed with higher fidelity in general.

In the left panel of Fig. 11, we show the recovered tempera-
ture profiles for the extreme cases of the most relaxed/disturbed
cluster and the most smooth/irregular profiles in the validation
sample. As in the 3D–3D case, the difference between the input
and recovered temperature profiles is less than 5% over most of
the radial range. The bottom panel of Fig. A.2 shows the cor-
responding posterior distribution of the IAE model parameters.
Here also, all the parameters are well constrained. The compar-
ison to the equivalent parameters contours for the 3D–3D case,
also shown on the plot, show that, understandably, the 2D–3D
reconstruction has slightly larger contour intervals compared to
the 3D–3D.

5.3. 2D–3D reconstruction of temperature profiles with an
observation-like binning

So far we have tested the IAE model only with high resolution
simulated temperature profiles. However, real observed 2D tem-
perature profiles are of much lower spatial resolution, have fewer
data points, and are generally detected up to R500 only. In this
section, we test the accuracy of the IAE model to recover simu-
lated temperature profiles with resolutions similar to those found
with the current X-ray observations (2D–3D fit with coarse bin-
ning case).

First, we consider a case where we fitted 2D temperature
profiles having resolutions similar to that expected with mod-
erately deep X-ray observations. In such observations, we nor-
mally expect around twelve annular data points limited up to
R500. We also impose more realistic errors in the 2D tempera-
ture profiles: They are assumed to increase linearly with a radius
from 5% in the innermost bin to 25% in the outermost bin. Later
in this Section, we will also consider a fitting case with 2D tem-
perature profiles defined at only six radial points within R500,
with errors ranging from 10% to 30% from the innermost to the
outermost radial bin.

5.3.1. Twelve bin case

In Fig. 12, we show the ensemble plot of the 2D and 3D frac-
tional residuals for the 2D–3D fit with the coarse binning case, by
considering twelve 2D temperature data points within R500. Even
with the lower resolution, we find that within the 2D fitting range
(i.e. up to R500), the 3D fractional residuals are still close to zero,
with a 1-σ dispersion of about ±5%, as in the previous cases. The
median 3D fractional residuals at radii 0.02 R500, R500, and 2 R500
is found to be 0.003± 0.071, −0.010± 0.064 and −0.070± 0.185
respectively. The median of fractional residuals for the full sam-
ple and over the entire radial range is found to be −0.006±0.051.
Beyond R500, where no 2D temperature data were available to fit,
and thus where the constraints on the 3D reconstruction are only
due only to projection effects, the scatter increases with radius,
reaching a 1-σ dispersion of ±20% at the last bin (2 R500). More-
over, beyond 1.5 R500, 3D temperature profiles are underestimated
by about 7%. However, it is important to mention that the true
3D temperature profiles mainly lie within the 1-σ dispersion of
reconstructed temperature profiles. As before in the fine binning
case, the dispersion in the 2D fractional residual is much smaller
compared to the 3D reconstruction.

For the 2D fit, we find median fractional residuals at radii
0.02 R500 and R500 to be 0.001 ± 0.008, −0.026 ± 0.073 respec-
tively. The median of fractional residuals for the full sample and
over the entire radial range is found to be −0.002± 0.026 for the
2D profiles, similar to that found in the 2D–3D fit with the fine
binning case. Since we assumed that the errors increase radially
outwards such as in real observations, putting more weight on
the inner regions in the fit, the constraints in the inner region are
better compared to the 2D–3D fit with the fine binning case. For
comparison, Fig. A.5 shows the 3D fractional residuals for the
case where we do not consider error bars in the fit. Here, we find
that the scatter is increased in the inner regions as compared to
both 2D–3D fit with fine binning case (previous case) and coarse
binning case (present case).

As in the previous cases, the histogram of the residuals
of the MR20 (MS20) sub-sample has a stronger peak around
zero and reduced wings compared to the MD20 (MI20) sub-
sample. For example, the 1-σ dispersion in 3D fractional
residuals over all radii for MD20 (MI20) sub-sample is found
to be ±0.055 (±0.065) and for MR20 (MS20) sub-sample it is
±0.041 (±0.036).

In the left hand panel of Fig. 13, we show the IAE recovered
temperature profiles of the most relaxed and disturbed cluster
and of the most regular and irregular profile in the validation
sample. As in previous cases, here also the difference between
the input and recovered temperature profiles is less than 5% in
the 2D fitting range of [0.02–1] R500. Beyond R500, as expected,
the residuals can be high. The top panel of Fig. A.6 shows the
corresponding posterior distribution of the parameter. One finds
that the confidence intervals for the IAE model parameters are
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Fig. 12. Fractional residuals for 115 clusters in the validation sample with IAE for the 2D–3D fit (coarse binning) using 2D temperature profiles
defined at twelve radial bins up to R500. Colour coding is the same as in Fig. 10. When given 2D temperature profiles with a binning scheme
typical for moderately deep X-ray observations, the IAE model can still reconstruct 3D temperature profiles with fractional differences of about
5% throughout the 2D fitting range (i.e. [0.02–1] R500.)

larger compared to fine binning cases (i.e. cases 1 and 2). How-
ever, we were still able to put relatively good bounds on the
parameters, which are represented by nearly Gaussian poste-
rior distributions. Figure A.7 shows the comparison of true 2D
and 3D temperature profiles and the reconstructed temperature
profiles of 20 example clusters in the validation sample for the
twelve bin case.

5.3.2. Six bin case

The 2D and 3D fractional residuals for a fit considering only
six data points with errors linearly increasing from 10% in
the innermost bin to 30% in the outermost bin in the range
[0.2–1] R500 are shown in Fig. 14. We find that the median 2D
and 3D fractional residuals are still consistent with zero in the
2D fitting range. However, as expected, the 1-σ dispersion is
larger compared to the previous cases and temperature profiles
are underestimated by about 8% beyond 1.5 R500 (where there
are no 2D data). We find median 2D fractional residuals at
radii 0.02 R500 and R500 to be −0.006 ± 0.022, −0.022 ± 0.070
respectively. For the 3D reconstruction, we find median frac-
tional residuals at 0.02 R500, R500, and 2 R500 to be 0.05 ± 0.128,
−0.004 ± 0.090 and −0.080 ± 0.235 respectively. The median of
fractional residuals for the full sample and over the entire radial
range is found to be −0.008 ± 0.038 and −0.014 ± 0.075 for the
2D and 3D profiles respectively. In the right panel of Fig. 13, we

show the temperature profiles of the most relaxed and disturbed
cluster and of the most regular and irregular profile in the vali-
dation sample. We find that even with only six data points in the
fit, the IAE is still able to recover the 3D temperature profiles
with residuals less than 10% over most of the cluster region.
However, the confidence intervals of the reconstructed profiles
and IAE parameters, shown in the bottom panel of Fig. A.6,
are larger compared to previous cases. Finally Fig. A.8 shows
the comparison of true 2D and 3D temperature profiles and the
reconstructed temperature profiles of 20 clusters in the validation
sample for the six bin case.

For comparison, Table 3 provides the median fractional
residuals obtained for the different cases of fitting schemes
discussed in this Section. Similarly, Table 4 shows the
best-fitting parameters of IAE model for different cases obtained
with MCMC. One can see that as we go from the high reso-
lution simulated profiles to lower resolution observational-like
profiles, the dispersion in fractional residuals and parameter esti-
mates increases.

We also checked the performance of the model with other
binning schemes and found the performance of the IAE model to
be robust. In particular, we checked the performance by consid-
ering five 2D data points up to 0.5 R500 in the fit. We find that the
IAE model is able to reproduce the results with an average frac-
tional difference of about 5% up to 0.5 R500 which then increases
with radius and becomes about 10% at R500 and 25% at 2 R500.
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Fig. 13. Results for the most relaxed and disturbed clusters and for the most smooth and irregular profile with the 2D–3D fit (coarse binning) using
2D temperature profiles defined at twelve (left panel) and six radial bins (right panel) up to R500. Errors in the 2D temperature profiles are assumed
to increase linearly with a radius from 5% (10%)in the innermost bin to 25% (30%) in the outermost bin for the twelve (six) bin case. Colour
coding is the same as in Fig. 11.
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Fig. 14. Fractional residuals for 115 clusters in the validation sample with IAE for the 2D–3D fit (coarse binning) using 2D temperature profiles
defined at six radial bins up to R500. Colour coding is the same as in Fig. (10). For simplicity, we have not shown the sub-sample cases. Even when
input 2D temperature profiles with a binning scheme typical for shallow X-ray observations, the IAE model can still reconstruct 3D temperature
profiles with fractional differences of about 5% throughout the 2D fitting range (i.e. [0.02–1] R500).

We also considered an IAE model with 20 anchor points, applied
to the two observation-like cases, and found that its performance
is very similar to that of our fiducial five-parameter IAE model,
unlike in the 3D-3D case where it is found to have better perfor-
mance. This implies that increasing the number of anchor points
does not necessarily increase the model fidelity for these cases,
as one must also have higher resolution input 2D temperature
profiles for the model to be fitted against.

5.4. 2D–3D reconstruction of temperature profiles with
spectroscopic-like weighting

In the previous Sections, we have only focused on 3D temper-
ature reconstruction from the IAE model using 2D tempera-

ture profiles derived using standard emission-measure weights
(Mathiesen & Evrard 2001). In this Section, we consider more
complex spectroscopic-like weighting (Mazzotta et al. 2004),
which has a stronger dependence on the 3D temperature pro-
files. This makes deconvolution a more complicated problem
and, therefore, it is important to check the accuracy of the IAE
model in this case.

In Fig. 15, we show the fractional residual for 2D and 3D
temperature profiles between the input and IAE recovered tem-
perature profiles in 2D–3D fit with twelve data points in the
range [0.02–1] R500. We find the median fractional residuals at
radii 0.02 R500 and R500 to be 0.002 ± 0.008, −0.027 ± 0.065
respectively for the 2D profiles. For the 3D reconstruction, we
find median fractional residuals at 0.02 R500, R500, and 2 R500 to
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Fig. 15. Fractional residuals for 115 clusters in the validation sample with IAE for the 2D–3D fit (coarse binning) using spectroscopic-like 2D
temperature profiles defined at twelve radial bins up to R500. For simplicity, we have not shown the sub-sample cases.

be 0.040 ± 0.072, −0.003 ± 0.065 and −0.060 ± 0.180 respec-
tively. We see that on average there is a small but noticeable 4%
over-estimation in the 3D temperature profiles in the first 4 radial
bins. This could be caused by the presence of dense and cold
substructures that in the simulated objects could lower the cen-
tral value of the 3D spectroscopic-like temperature in the inner-
most region, where the impact of this formulation is the strongest
(see e.g. Fig. 3 of Rasia et al. 2014). Similarly, beyond R500 the
temperature profiles are underestimated by 8% on average. This
effect could also play a role for the central mismatch, since the
convolution is temperature dependent, the slight overestimation
in the first few innermost bins may be also linked to the under-
estimation of temperature profiles in the outermost bins. This
suggests the importance of deriving accurate estimation of the
temperature profiles beyond the 2D fitting range. More detailed
treatment in this regard is beyond the scope of this paper and we
propose possible explanations as an important future direction.
However, we do find the median residual is consistent with zero
over all the radial range of [0.02–2] R500 and as in the previous
cases, for the majority of the clusters the true 3D temperature
profiles lie within 1-σ dispersion of the IAE recovered tempera-
ture profiles. The median of fractional residuals for the full sam-
ple and over the entire radial range is found to be −0.003±0.038
and −0.003 ± 0.075 for the 2D and 3D profiles respectively.

5.5. Comparison of IAE model to a parametric model

In this Section, we use the validation sample of 115 clusters to
compare the non-parametric results from IAE model to those
obtained from a parametric temperature model. We first obtain
the best-fitting 3D temperature from the Vikhlinin et al. (2006)
model (Eq. (2)) considering the prior range on each parameter
given in Table 5, and using the same binning schemes as used for
the IAE model in previous sections, assuming a spectroscopic-
like weighting scheme. Temperature profiles were first scaled by
TX before fitting them to the parametric model, so as to bring
the parameter T0 to a comparable scale. We find that in the
2D–3D (or 3D–3D) fine binning case, the 3D reconstruction is
poor compared to the observational-like cases where the fitting is
weighted according to the errors, which increase with radius. We
also tried to fit the temperature profiles in log space, which could
effectively address any heteroscedasticity issues and stabilise the
variance over the large radial range. However, this still did not

improve the model reconstruction in the 2D–3D (or 3D–3D) fine
binning case. This indicates that such a parametric model strug-
gles to accurately capture the true underlying patterns in the
noiseless data, or when the noise covariance is negligible. By
weighting the fitting according to the errors, which reflect the
inherent uncertainties in the data and which increase with radial
distance, the model can better adapt to the complexities of the
noiseless data, resulting in improved performance. The signif-
icant improvement achieved by incorporating error covariance
can be visually observed in Fig. 16. Even with coarse resolution,
as discussed in the next paragraph, the fit shows a remarkable
enhancement when realistic error covariance is considered dur-
ing the fitting process. Another reason for the sub-optimal per-
formance of the parametric model can be attributed to its highly
non-linear nature and the strong degeneracy between the param-
eters. This results in poor constraints on the parameters, and the
reconstructed 3D temperature profiles could depend strongly on
the choice of fitting priors.

The arguments discussed above can be explained with
Fig. 16. The top panel of the Fig. 16 shows the dispersion for
the 2D–3D fine and coarse binning cases with prior ranges of
parameters a = 0 − 0.6 and c = 0 − 4, which have a signifi-
cant effect on the profiles in the central and outer regions respec-
tively. We find, for the 2D–3D fine binning case, that the 3D
reconstructed temperature profiles obtained from this paramet-
ric fitting have a large bias in both the central and outer regions,
with median fractional residuals of values about 30% and 11% at
the first and last bin respectively. For observational-like binning,
having a weighted fitting, the bias in the central regions becomes
consistent with zero, however, there is still a bias beyond the
R500 which increases with the median fractional residual of val-
ues about 18%. We find that the optimal priors for parameters
a and c are a = 0 − 0.1 and c = 1 − 4 respectively, leading
to a minimal bias in the central and outer regions respectively.
This is shown in the bottom panel of Fig. 16, where one finds
a median consistent with zero, but with slightly larger disper-
sion compared to the IAE model for the observational-like cases.
In the outer regions, however, the dispersion in the 2D–3D fine
binning case is barely consistent with zero for the parametric
model.

Considering the optimal priors for the a and c parameters
discussed above, the left panel of Fig. 17 shows the reconstruc-
tion of the 3D temperature profiles with the IAE and parametric
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Table 3. Median fractional 3D and 2D residuals obtained at 0.02 R500 (third column), R500 (fourth column), 2 R500 (fifth column), and over the full
radial range (sixth column) for the fitting schemes and samples in Sects. 5.1–5.3.

Sample Case 0.02 R500 R500 2 R500 Full range

3D–3D fit with fine binning (48 data points)
Full sample 3D −0.010 ± 0.060 0.010 ± 0.051 −0.020 ± 0.120 −0.001 ± 0.042
MD20 3D −0.018 ± 0.017 0.014 ± 0.085 0.093 ± 0.128 0.000 ± 0.048
MR20 3D 0.035 ± 0.065 0.014 ± 0.035 −0.060 ± 0.045 −0.002 ± 0.032
MI20 3D 0.002 ± 0.060 0.027 ± 0.061 −0.125 ± 0.132 0.001 ± 0.052
MS20 3D −0.033 ± 0.048 0.002 ± 0.045 −0.037 ± 0.110 −0.001 ± 0.029

2D–3D fit with fine binning (48 data points)
Full sample 2D 0.009 ± 0.027 0.004 ± 0.040 −0.018 ± 0.095 −0.002 ± 0.027
Full sample 3D 0.021 ± 0.110 0.014 ± 0.052 −0.018 ± 0.095 −0.003 ± 0.045
MD20 2D −0.001 ± 0.037 −0.009 ± 0.065 0.067 ± 0.105 0.000 ± 0.033
MD20 3D −0.021 ± 0.120 0.021 ± 0.088 0.067 ± 0.105 −0.002 ± 0.058
MR20 2D 0.020 ± 0.035 0.016 ± 0.031 −0.050 ± 0.037 −0.003 ± 0.023
MR20 3D 0.089 ± 0.120 0.015 ± 0.035 −0.050 ± 0.037 −0.003 ± 0.035
MI20 2D 0.019 ± 0.015 0.014 ± 0.035 −0.106 ± 0.120 0.000 ± 0.038
MI20 3D 0.049 ± 0.135 0.025 ± 0.070 −0.106 ± 0.120 −0.001 ± 0.064
MS20 2D 0.010 ± 0.013 0.006 ± 0.040 −0.036 ± 0.065 −0.002 ± 0.018
MS20 3D 0.015 ± 0.080 0.012 ± 0.043 −0.036 ± 0.065 −0.002 ± 0.031

2D–3D fit with coarse binning (12 data points)
Full sample 2D 0.001 ± 0.008 −0.026 ± 0.073 – −0.002 ± 0.026
Full sample 3D 0.003 ± 0.071 −0.010 ± 0.064 −0.07 ± 0.185 −0.006 ± 0.051
MD20 2D −0.003 ± 0.010 −0.009 ± 0.065 – −0.004 ± 0.028
MD20 3D 0.006 ± 0.045 −0.010 ± 0.80 0.113 ± 0.243 −0.006 ± 0.058
MR20 2D −0.001 ± 0.007 −0.024 ± 0.056 - −0.003 ± 0.021
MR20 3D 0.069 ± 0.063 0.006 ± 0.50 −0.138 ± 0.101 −0.006 ± 0.042
MI20 2D −0.002 ± 0.007 −0.014 ± 0.051 – −0.003 ± 0.030
MI20 3D −0.014 ± 0.047 0.012 ± 0.50 −0.174 ± 0.175 −0.007 ± 0.065
MS20 2D −0.000 ± 0.006 −0.025 ± 0.060 – 0.000 ± 0.018
MS20 3D 0.034 ± 0.055 0.005 ± 0.60 −0.08 ± 0.165 0.000 ± 0.036

2D–3D fit with coarse binning (6 data points)
Full sample 2D −0.006 ± 0.022 −0.022 ± 0.070 – −0.008 ± 0.038
Full sample 3D 0.050 ± 0.128 −0.004 ± 0.090 −0.080 ± 0.235 −0.014 ± 0.075
MD20 2D −0.008 ± 0.027 −0.016 ± 0.070 – −0.009 ± 0.040
MD20 3D 0.005 ± 0.060 0.002 ± 0.115 0.101 ± 0.255 −0.016 ± 0.082
MR20 2D −0.016 ± 0.015 −0.018 ± 0.062 – −0.009 ± 0.032
MR20 3D 0.073 ± 0.130 0.009 ± 0.075 −0.131 ± 0.140 −0.016 ± 0.060
MI20 2D −0.004 ± 0.0175 −0.040 ± 0.055 – −0.009 ± 0.040
MI20 3D 0.024 ± 0.035 0.000 ± 0.070 −0.194 ± 0.225 −0.017 ± 0.090
MS20 2D −0.008 ± 0.0150 −0.008 ± 0.065 – −0.003 ± 0.025
MS20 3D 0.102 ± 0.110 0.011 ± 0.95 −0.072 ± 0.200 −0.006 ± 0.050

Notes. The errors are given at 1-σ level. The reconstructed 2D and 3D temperature profiles at the last point (i.e 2 R500) are by construction
identical for the 2D–3D fit with fine binning case. The fine binning cases represent high resolution simulated temperature profiles, and the coarse
binning cases represent lower resolution observational-like temperature profiles. The constraints on the residuals become weaker with decreasing
resolution. Even in the coarse binning cases, the residuals remain consistently below 5% within the fitting range (i.e. [0.02–1] R500). In all the
cases, MS20 and MR20 sub-samples provide the tightest constraints across the full radial range.

models for typical CC and NCC clusters in the simulated sample
with observational-like binning having twelve bins. While the
CC profile is recovered well by both models, the reconstruction
is poor in the central region for the parametric fit to the NCC
case, and would require larger values of a to improve the fit in
the central region. Similarly, in the right panel of Fig. 17, we
show the 3D reconstruction of two complex profiles. These two
clusters are experiencing ongoing merger shocks. Here one sees
that, in such scenarios, the parametric model performs poorly
compared to the IAE model, being unable to capture the true
underlying structure of the data. We find that even increasing the
priors on a and c did not have any significant improvement in

the parametric fit for such complex profiles. The accurate esti-
mation of the shape of the temperature profile is vital since the
estimation of total mass profiles depends on it.

6. First application to CHEX-MATE X-ray data

6.1. Modifications to the IAE model

Although the Three Hundred Project provide us with one
of the highest resolution hydrodynamical simulation samples to
date, due to numerical issues, the thermal profiles could only
reliably be estimated above 0.02 R500 for most of the galaxy clus-
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Table 4. Best fit results for the IAE parameters derived with the MCMC for the fitting schemes and samples considered in Sects. 5.1–5.3.

Case λ1 λ2 λ3 λ4 λ5 α

3D–3D fit with fine binning (48 data points)
Most disturbed cluster 0.0 ± 1.1 0.03 ± 0.77 −0.2 ± 1.4 0.34+0.28

−0.32 0.91 ± 0.69 380.9 ± 7.0
Most relaxed cluster 3.0 ± 2.2 2.2 ± 1.5 −2.7 ± 2.9 0.54+0.63

−0.78 −2.0 ± 1.5 143.6 ± 9.4
Most irregular profile 1.8 ± 1.0 1.43 ± 0.71 −1.3 ± 1.4 0.14 ± 0.33 −1.08 ± 0.66 284.5 ± 7.1
Most smooth profile 3.2+2.6

−2.4 2.6 ± 1.8 −4.0 ± 3.5 0.81 ± 0.79 −1.5 ± 1.7 129+11
−12

2D–3D fit with fine binning (48 data points)
Most disturbed cluster 0.2 ± 1.2 0.16 ± 0.82 −0.5 ± 1.6 0.40+0.35

−0.49 0.78 ± 0.78 381.7 ± 8.0
Most relaxed cluster 2.8+2.5

−2.2 2.1+1.6
−1.4 −2.4 ± 3.2 0.40+0.66

−0.81 −1.8 ± 1.5 144+12
−15

Most irregular profile 2.4+1.3
−1.5 1.78 ± 0.93 −2.0 ± 2.0 0.44+0.46

−0.66 −1.58+1.1
−0.79 289 ± 11

Most smooth profile 3.0+2.8
−2.5 2.5+2.0

−1.7 −3.6+3.5
−3.9 0.69+0.76

−0.89 −1.6 ± 1.7 130+12
−21

2D–3D fit with coarse binning (12 data points)
Most disturbed cluster −0.6+3.0

−2.6 −0.4+2.2
−1.9 0.5 ± 3.6 0.20 ± 0.77 1.3+1.7

−2.0 378 ± 16
Most relaxed cluster 0.99+3.6

−2.9 0.8+2.5
−2.0 −0.3+3.8

−4.5 0.15+0.81
−0.92 −0.6+2.0

−2.3 141.2+9.8
−11

Most irregular profile 0.5+3.2
−2.8 0.4+2.3

−2.0 0.3+3.7
−4.1 0.01 ± 0.87 −0.1 ± 2.1 282 ± 13

Most smooth profile 1.9+3.4
−2.8 1.9+2.4

−1.8 −2.6+3.7
−4.3 0.56+0.75

−0.91 −0.8 ± 2.0 131+11
−15

2D–3D fit with coarse binning (6 data points)
Most disturbed cluster −0.6+2.9

−2.5 −0.5+2.1
−1.7 0.5+3.2

−3.7 0.31+0.74
−0.84 1.3+1.7

−2.0 380 ± 16
Most relaxed cluster 0.6+3.9

−3.5 0.5+2.7
−2.4 0.0 ± 4.7 0.08 ± 0.96 −0.3+2.2

−2.5 141+15
−22

Most irregular profile −0.3 ± 3.7 −0.1 ± 2.7 1.0 ± 4.7 0.0 ± 1.0 0.4 ± 2.5 281 ± 24
Most smooth profile 0.8+3.8

−3.4 0.97+2.8
−2.4 −1.0+4.4

−4.9 0.34 ± 0.96 −0.1 ± 2.4 129+12
−20

Notes. The errors are given at 1-σ level. As in Table. 3, the constraints decrease in strength as we go from the fine binning cases to observation-like
coarse binning cases.

Table 5. Flat priors used for the Vikhlinin et al. (2006) model
parameters.

Parameter Range

T0 0; +4
τ +0.2; +1
log(Rcool/R500) −2.5; 0
acool 0; +4
log(Rt/R500) −1; +1
a 0; +0.6 (0; +0.1)
b +1; +4
c 0; +4 (+1; +4)

Notes. Numbers in the brackets represent the optimal priors found in
this work.

ters in the sample. The number of available 2D annular temper-
ature data points and their radial distribution will depend on the
object mass and luminosity, the presence or absence of a cool
core, and the depth of the observation4. From our experience of
X-ray analysis of typical observations of local (z < 0.5) mas-
sive (M500 > 1014 M�) galaxy clusters available in the XMM-
Newton or Chandra archives, we find that for many objects, one
is generally able to obtain some temperature data points interior
to 0.02 R500 (corresponding to 20−40′′ at z = 0.05 and 5−10′′ at
z = 0.3 for typical cluster masses).

Therefore, in order to make the best use of the available
data, one needs to look for an optimal extrapolation of the IAE

4 See Chen et al. (2023) for a discussion of an optimal binning method.
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Fig. 16. The 1-σ dispersion in the 3D fractional differences obtained
with MCMC for priors provided in Table 5 for the Vikhlinin et al.
(2006) parametric model (Eq. (2)). In the figure, we consider the 2D–
3D fine binning case and 2D–3D observational-like coarse binning
cases with twelve and six bins. The top panel shows the results with
prior ranges for a = 0−0.6 and c = 0−4, while the bottom panel
presents the results with priors ranges for a = 0−0.1 and c = 1−4.
The regions enclosed by cyan and magenta lines in the bottom panel
show the corresponding dispersion recovered with the IAE model for
the observational-like cases with twelve and six bins respectively.

model that is able to reconstruct the temperature profiles robustly
even in the very central regions. To build an IAE model that is
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Fig. 17. CC and NCC model recover comparison. Left panel: Comparison of the 3D temperature profiles of typical CC and NCC clusters in the
Three Hundred Project sample recovered with the IAE and parametric models using twelve 2D annuli within R500 (points with error bars).
The dashed line shows the true 3D temperature profiles. The solid lines and shaded regions show the reconstructed 3D temperature profiles with
1-σ dispersion obtained with the IAE model. The dotted lines are the 3D temperature profiles recovered with the Vikhlinin et al. (2006) parametric
model. For better visibility, the 1-σ dispersion for the parametric model is not shown. Right panel: 3D temperature profile reconstruction with the
IAE and parametric models for two complex cases in the Three Hundred Project. For better visibility, 2D profiles and the 1-σ dispersion are
not shown. For both figures, the bottom panel shows a fractional difference between the true and recovered 3D profiles. For NCC and CC clusters,
both the IAE model and parametric model reconstruction with optimal priors are comparable, but the former exhibits slightly better performance.
For the complex cases, the IAE model is more accurate in uncovering the profile shapes.

suitable for application to such observations, we first extrapo-
lated the simulated temperature profiles to 0.005 R500 by fitting
a Vikhlinin et al. (2006) parametric model in the inner regions
(up to 0.5 R500). We then re-trained the IAE model in the full
radial range of [0.005–2] R500 with the simulated dataset, aug-
mented by the parametric model extrapolation in the very central
regions.

6.2. Observed sample

We then use this updated IAE model on the latest CHEX-MATE
Data Release 1, DR1 sample (Rossetti et al., in prep.) to decon-
volve the temperature profiles. The DR1 sample is a ‘techni-
cal but representative’ sub-sample, which was built to test our
pipeline for the extraction and reconstruction of the radial tem-
perature and density profiles. It is composed of 30 clusters,
whose distribution in mass, redshift, and Planck signal-to-noise-
ratio (S/N) reflect the properties of the CHEX-MATE parent
sample. Table A.1 provides the details of all the clusters in the
DR1 sample. For data reduction and analysis, we used the XMM-
Newton Science Analysis System (SAS), version 16.1. We refer
to Bartalucci et al. (2023) for details on the data reduction pro-
cedures (calibration, standard pattern cleaning, removal of noisy
MOS CCDs, and light-curve filtering) and on the detection of
contaminating sources. From the EPIC images in the 0.7–1.2
keV band, we extracted both mean and median surface bright-
ness radial profiles, centered on the peak and on the centroid
within R500. For the temperature profile, we extract spectra in
concentric annuli centered on the surface brightness peak, using
the MOS-spectra and PN-spectra ESAS tools (Snowden et al.
2008) embedded in SAS. For each region, we perform a joint fit
of the MOS1, MOS2, and PN spectra with an adsorbed thermal

model, to which we add a model for all the background com-
ponents (Galactic foregrounds, CXB, Cosmic-ray particle back-
ground, residual soft protons). We estimate priors for the param-
eters of this background model that are allowed to vary within
their uncertainty during the joint fit with the cluster parameters,
running the Markov chain Monte Carlo method within XSPEC
(see Rossetti et al., in prep., for more details). In this work, two
clusters (PSZ2 G046.88+56.48 and PSZ2 G057.78+52.32) that
require background treatments using off-set observations were
not considered in the analysis.

6.3. Method

For deconvolution of these observed profiles, we assume that the
3D temperature profiles can be represented by the IAE model,
convolved with a response matrix C = CPSF⊗Cproj, which simul-
taneously takes into account projection and PSF redistribution.

The projection matrix, Cproj, is built by using the DR1 den-
sity profiles from (Duffy et al., in prep.), derived using the non-
parametric deconvolution algorithm of Croston et al. (2006).
More details of the derivation of the density profiles can be
found in Croston et al. (2008) and Pratt et al. (2022). CPSF is
constructed as in Croston et al. (2006), which uses the paramet-
ric PSF model of Ghizzardi (2001) as a function of the energy
and angular offsets, the parameters of which can be found in
EPIC-MCT-TN-0115 and EPIC-MCT-TN-0126.

5 http://www.iasf-milano.inaf.it/~simona/pub/
EPIC-MCT/EPIC-MCT-TN-011.pdf
6 http://www.iasf-milano.inaf.it/~simona/pub/
EPIC-MCT/EPIC-MCT-TN-012.pdf
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Fig. 18. Comparison of the scaled 2D and 3D temperature profiles of a typical NCC (PSZ2 G050.40+31.17) and CC (PSZ2 G057.92+27.64)
cluster in the DR1 sample recovered with the IAE and parametric models. Solid lines and the associated shaded regions show the median and 1-σ
dispersion of the reconstructed 3D temperature profile obtained with MCMC. Regions enclosed by the dashed lines represent the corresponding
1-σ dispersion 2D temperature profiles fitted to the observed 2D data (black dots). In line with our results with simulations for observational-like
cases, we find that both the IAE model and parametric model with optimal priors generate comparable profiles for NCC and CC clusters.

The IAE model was then projected, taking into account the
spectroscopic-like weighting scheme proposed Mazzotta et al.
(2004), and fitted to the observed 2D profiles. In our future
work, we will examine the more complex Vikhlinin (2006)
weighting scheme, which is more robust for lower tempera-
ture clusters/groups, and compare the results to other weighting
schemes.

6.4. Results

6.4.1. Estimation of profiles

In Fig. 18, we show the 3D temperature profiles reconstructed
using the IAE model and the Vikhlinin et al. (2006) 8-parameter
parametric model for a typical NCC and a typical CC cluster in
the DR1 sample. In general, we find that with the annular res-
olution of the present 2D profiles, both models produce similar
reconstructed 3D temperature profiles. However, the parameters
of the Vikhlinin et al. (2006) model are poorly constrained, and
the final reconstructed temperature profiles (especially the inner
and outer regions) may depend on the chosen priors.

Figure 19 shows the 3D temperature profiles of the clusters
in the DR1 sample obtained with the IAE model, scaled by the
average temperature (TX) in the [0.15–0.75] R500 region. We find
that fractional dispersion is about 22% in the inner region which
first decreases with the radius and attains a minimum value of
3% at around 0.5 R500. It then starts to increase with radius,
achieving a maximum value of 22% in the outer regions. Also
plotted in the sub-panel is the ratio of the 3D temperature profiles
recovered with the IAE and parametric models. One finds that
within the radial range of [0.1–1] R500, the difference between
IAE and Vikhlinin et al. (2006) model is less than 10%. The dif-
ference between them can be as high as 25% in the inner and
outer regions. However, on average both models predict very
similar profiles with a difference of less than 2% over the entire
radial range of [0.005–2] R500.

As a consistency check, we compared the values of the aver-
age temperature in the [0.15–0.75] R500 region. Figure 20 shows
the observed TX compared to TX,model, the temperature derived
from a projection of the 3D non-parametric IAE and paramet-
ric models in the same annulus. Fitting a straight line to the
(TX,model,TX) one finds the slope for the IAE and parametric
model to be 1.01 ± 0.01 and 1.01 ± 0.02 respectively.
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Fig. 19. Scaled 3D temperature profiles of the DR1 sample recovered
with the IAE model. Also shown in the bottom panel is the ratio of 3D
temperature profiles recovered with the IAE model to the parametric
models. For better visibility, the error bars corresponding to the individ-
ual profiles are not shown. The black lines and grey shaded grey regions
represent the median and 1-σ dispersion of the sample. The difference
between the IAE model and the parametric model can be as high as
20%, although the average ratio between them remains close to unity.

6.4.2. Estimation of derivatives

While non-parametric models offer greater flexibility in mod-
elling complex patterns and relationships, one requires a large
amount of data to accurately estimate derivatives. Small irreg-
ularities in the profiles often amplify the noise in the deriva-
tives. Therefore, it is often desirable to apply some degree of
smoothing to the profiles to have accurate derivatives in the
non-parametric approaches. As can be seen from Fig. 19, the
reconstructed 3D temperature profiles from the IAE model have
a reasonably smooth underlying structure. We find that the
direct computation of numerical derivatives of individual profiles
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Fig. 20. Left Panel: Comparison of the observed TX and the
best-fit TX,model obtained with non-parametric IAE and parametric
Vikhlinin et al. (2006) models. Solid lines show the best fit for the data.
We see that both our non-parametric and parametric approaches provide
tight and accurate constraints on the average temperature of clusters.

derived from the MCMC chains using spline interpolation, with-
out applying any smoothing, usually provided a good estimate
of the logarithmic derivatives and corresponding 1-σ interval.
Nonetheless, we sometimes found the derivative estimates to
be noisy, particularly beyond the 2D fitting range. This noise
can be attributed to logarithmic binning, which can create spar-
sity in the outer regions. Another potential cause for the noise
is small spikes in the temperature profiles between consecutive
radii in the profiles inherited by the model from the simulations
itself in the inner regions due to the limited resolution there.
We, therefore, choose to apply a very minimal smoothing, such
that only the sharp discontinuities, if any (usually small in mag-
nitude), on local scales (2–3 radial bins) are affected/corrected
and the general non-linear structure is preserved. We use the
algorithm developed by Cappellari et al. (2013) which imple-
ments the one-dimensional locally linear weighted regression
Cleveland (1979)7. It uses a tri-cube weighting function with
weights (1 − u3)3 where u is a distance from the local point R
under consideration and a smoothing parameter f which is the
fraction of neighborhood points to be considered in the local fit
around R. Increasing the value of f increases the neighborhood
of influential points leading the smoother profiles. For our case,
we apply modest smoothing with f = 0.15.

Figure 21 shows the corresponding logarithmic derivatives
of the temperature profiles of the two clusters discussed in the
previous sub-section. Here also, both the IAE and the para-
metric models produce consistent profiles. Furthermore, for the
IAE model, the profiles obtained with and without applying the
smoothing on the temperature profiles are also consistent with
each other. This can be also seen in the bottom panel where the
ratio between reconstructed 3D temperature profiles with and
without applying smoothing is seen to be less than 1% over most
of the radial range. Figure 22 shows the logarithmic derivatives
of the 3D temperature profiles of the clusters in the DR1 sam-
ple obtained with the IAE model. Also, in the bottom panel, we
show the difference in logarithmic derivatives derived from IAE
and parametric models (∆). We find that, although dispersion in
the difference increases with the radius, the difference is consis-

7 https://pypi.org/project/loess/

tent with zero throughout the radial range. While it is difficult
to quantify this difference in the inner region, since logarithmic
derivatives are close to zero, in the range [0.5–2] R500 the differ-
ence in logarithmic derivatives between the IAE and the para-
metric model can be more than as 20%. The impact of this on
the total mass estimate is not straightforward but is expected to
be about 5%–30%.

7. Discussion and conclusions

Classical statistical modelling techniques can be sensitive to
inaccuracies and may lead to poor performance if the data
are complex (non-linear) and/or have a dynamic structure.
Data-driven (model-agnostic) deep-learning techniques are now
becoming increasingly popular. They make use of the topology
to learn the underlying structure of the data, and often have been
found to give superior performance in terms of accuracy and
precision when the underlying structure of data are non-linear.
However, one typically requires a massive dataset and vast com-
putational resources to train the neural network, limiting their
applicability for some scenarios. In this paper, we demonstrate
the first use of deep learning techniques to build a model of
galaxy cluster temperature profiles and apply this model to the
problem of temperature profile deprojection. Using a non-linear
interpolatory scheme with five anchor points (temperature pro-
files), allows us to have frugal learning with a sparse training set,
and the neural network is able to uncover the lower dimensional
non-linear manifold of data by way of mapping between latent
space and real space.

The resulting Interpolatory Auto-Encoder (IAE) model is
trained and evaluated in the radial range of [0.02–2] R500 using
a simulated dataset of 315 temperature profiles from the Three
Hundred Project. We then implement a new deconvolution
scheme using efficient and cost-effective learning-based regu-
larisation to achieve a stable and accurate reconstruction of
the 3D temperature profiles by optimising the latent parame-
ters (barycentric weights) of the anchor points using MCMC.
Moreover, the deconvolution algorithm can be easily extended
to include the instrumental PSF effect. We test the IAE with a
different set of deconvolution schemes with respect to the reso-
lution, projection, and quality of the data. We find that, in gen-
eral, the IAE model can recover unbiased 3D temperature pro-
files in the fitting range. The performance of the IAE model
to recover the true temperature profiles can be summarised as
follows:

– We first considered the simplest case, where we tested the
efficiency of the IAE model in directly fitting the high reso-
lution simulated 3D temperature profiles, defined in 48 fixed
radial bins in the range [0.02–2] R500, the resolution with
which the IAE model is trained. We find that in this case, the
reconstruction of temperature profiles from the IAE model is
robust, with the median fractional residuals centered around
zero and a 1-σ dispersion (determined by the 16th and 84th
percentile range of fractional residuals) of about ±5% over
most of the radial range. The dispersion in the outskirts is
somewhat larger (about ±10%). This can be interpreted as
being due to the complex nature of the ICM as a result of
merging/accretion processes that are dominant there. More-
over, dispersion in the fractional residuals for the sub-sample
of 20 most relaxed clusters (MR20) and smooth temperature
profiles (MS20) is about 35% smaller compared to the sub-
sample of 20 most disturbed clusters (MD20) and irregular
temperature profiles (MI20). We find that the model fidelity
can be further improved by increasing the number of anchor
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Fig. 21. Comparison of the logarithmic derivatives 3D temperature profiles of a typical NCC (PSZ2 G050.40+31.17) and CC (PSZ2
G057.92+27.64) cluster in the DR1 sample recovered with the IAE and parametric models. Solid lines and the associated shaded regions show the
median and 1-σ dispersion obtained with MCMC. The region enclosed by the dashed lines represents 1-σ dispersion, if no smoothing is applied
to the profiles derived from the MCMC chain. The bottom panel shows the ratio of the median 3D temperature profiles obtained using IAE with
and without smoothing.
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Fig. 22. Logarithmic derivatives of 3D temperature profiles of the DR1
sample recovered with the IAE model. Also shown in the bottom panel
is the difference between profiles recovered with the IAE model and the
parametric model. For better visibility, the error bars corresponding to
the individual profiles are not shown. The black lines and grey shaded
grey regions represent the median and 1-σ dispersion of the sample.

points in the IAE model. However, since observed tempera-
ture profiles are generally of much lower resolution, increas-
ing the complexity of the model is undesirable as it could
lead to overfitting.

– We then considered a case where we fitted the high reso-
lution simulated 2D temperature profiles to the IAE model
using classical emission measure weights. Here too we find

the median fractional residual is centered around zero with a
1-σ dispersion of about ±5% over most of the radial range. In
the first few innermost bins, however, we find that the disper-
sion is increased to about ±10%. This is understandable since
the projection operation introduces a degeneracy in the 3D
temperature profiles which is significant in the inner regions
i.e the mapping between input 2D temperature profiles and
IAE reconstructed 3D temperature profiles is not as strong
as compared to a mapping between input 3D temperature
profiles to IAE reconstructed 3D temperature profiles. How-
ever, this degeneracy can be mitigated to a large extent in the
observational-like cases since the 2D temperature profiles in
the inner bins have relatively smaller errors associated with
them as compared to the rest of the radial bins. Moreover, as
in the previous case, the distribution of the fractional resid-
uals over all radii for the MR20 (MS20) sub-sample is nar-
rowly peaked compared to the MD20 (MI20) sub-sample.

– We next considered observation-like fitting cases, with typ-
ical temperature profile data quality such as would be
obtained from the XMM-Newton or Chandra satellites. We
first considered a case where we fit 2D temperature profiles
defined at twelve radial points and up to R500 only, mim-
icking the profile expected from the moderately deep X-ray
exposures. We find that in the 2D fitting range i.e. [0.02–
1] R500, with the relatively low resolution input 2D tempera-
ture profiles, the performance of the IAE model is negligibly
degraded. However, beyond R500, where we do not consider
any 2D data in the fit, the 1-σ dispersion in the 3D recon-
struction increases with radius and becomes about ±20% in
the last bin. The 3D median fractional residual is found close
to zero over most of the radial range, except beyond 1.5 R500
where it is underestimated by about 7%. We also considered
a case where we only use only six 2D temperature data points
in the fit and find that the IAE is still able to provide an unbi-
ased estimate of the reconstructed temperature profile, albeit
with a slightly larger uncertainty.
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– We considered a more realistic temperature-dependent
spectroscopic-like weighting scheme (Mazzotta et al. 2004)
in the deprojection. We find that there is a small bias of about
4% excess in the fractional residual in the innermost few
bins, in addition to the underestimation in the outer regions
as in the previous case.

– We also compared the IAE model with a parametric temper-
ature model. With the high resolution hydrodynamical sim-
ulated temperature profiles, the parametric model based on
Vikhlinin et al. (2006) showed poor performance when the
realistic error covariance matrix is ignored in the fit. Includ-
ing the error covariance matrix improved the fit. The non-
linearity and parameter degeneracy of the parametric model
also contributed to sub-optimal performance, making the 3D
reconstruction dependent on the choice of priors. In con-
trast, the IAE model performed better, particularly in com-
plex cases with ongoing merger shocks, demonstrating its
superior adaptability to diverse data scenarios.

– Finally, in a first application to X-ray data, we built
an augmented version of the IAE model in the radial
range [0.005–2] R500. The data augmentation was neces-
sary because the simulated profiles did not have sufficient
resolution to probe the very core regions that are accessi-
ble to good quality X-ray data. The augmentation step was
achieved by extrapolating the simulated profiles to lower
radii (below ≈0.02 R500) by fitting them to the Vikhlinin et al.
(2006) parametric model in the range ≈ [0.02–0.5] R500. We
then used this updated IAE model to reconstruct the 3D
temperature profiles and logarithmic derivative of the rep-
resentative (DR1) sample galaxy clusters drawn from the
CHEX-MATE project. The resulting non-parametric IAE
profiles were compared to those derived from parametric
deprojection and deconvolution. We find that, in such obser-
vational cases where the typical number of annular data
points is much fewer compared to the simulations, the dif-
ference between the IAE and parametric model is less than
10% over most of the observed region. However, in the inner
and outer regions, the difference between them can be as
high as 25%. Moreover, the results from the Vikhlinin et al.
(2006) parametric model, especially inner and outer regions,
depends on the priors chosen on the parameters as they are
very poorly constrained during the fit.

It should be noted that the inner regions of the clusters, which
involve processes such as AGN feeding/feedback, gas conden-
sation, sloshing, etc., are complex and may not be accurately
represented by current state-of-art cosmological simulations.
Moreover, the augmentation of the central regions of the train-
ing set using the extrapolation of a parametric model could
potentially introduce bias in the underlying model recovered
from the IAE. Despite these limitations, we believe that the
IAE model provides higher-fidelity results compared to tradi-
tional parametric modelling, as demonstrated in this study. As
the size and quality of both X-ray observations and simulations
are set to improve in the coming years, the robustness of IAE
will also be enhanced resulting in a much lower scatter. Our
future plan is to perform network training and testing on differ-
ent sets of simulations so as to have a larger training and valida-
tion sample. This will potentially also help us to understand the
systematics, if any, in the IAE model inherited from the particu-
lar set of numerical simulations used for training. For example,
De Luca et al. (2021) showed that the dynamical state of clusters
in the Three Hundred Project clusters varies with redshift:
the relaxed clusters decrease in number from redshift z = 0 to
z = 1. It remains to be seen if issues such as possible redshift

dependence have any impact on learning. This effect, in princi-
ple, can be taken into account by training the model using simu-
lated clusters across a large redshift range.

Another important step in improving the deconvolution
scheme will be to force the neural network model to learn the
features shared between simulations and real data using trans-
fer/adversarial learning (Ganin et al. 2016). This will essentially
mitigate the biases inherited by the neural network model from
simulations. Moreover, we expect with an upgraded IAE model,
the reconstruction of 3D temperature profiles beyond the obser-
vational range of R500 will be significantly improved due to an
increase in the size of the training sample. We further plan to
implement a more robust model extrapolation technique in future
work.

The usefulness of the IAE is not only limited to the estima-
tion of the temperature of the galaxy clusters. We further plan
to use the IAE interpolatory technique to recover the underlying
density, pressure and hence dark matter profiles in the galaxy
clusters. An important extension of this will be to train a neural
network to estimate the total mass profiles of the galaxy clusters
directly from the thermal profiles of the ICM without consid-
ering the hydrostatic equation. Another interesting prospect for
our work will be to implement the deconvolution technique in SZ
and lensing data, to recover the robust model of the galaxy clus-
ters. This will further help us to understand the biases introduced
in calibrating the mass and scaling relations for cosmological
studies. Such studies might be also used to assess more robustly
relative density/temperature fluctuations, hence constraining tur-
bulence and relative parameters (Mach number, injection scale,
etc.). Our methodology can also be implemented in other areas
of astrophysics and cosmology. In fact, the IAE scheme has
already been implemented in the source separation algorithm to
tackle physical hyper-spectral data (Gertosio et al. 2023).

One of our immediate plans is to implement the proposed
deconvolution technique to the most recent high quality CHEX-
MATE X-ray sample of clusters (CHEX-MATE Collaboration
2021), and compare to other approaches such as those used
in Bartalucci et al. (2018; semi-parametric reconstruction) and
Eckert et al. (2022; multi-scale non-parametric reconstruction).
The comparison of the estimated logarithmic derivatives will be
instructive since these are highly related to the shape of mass
profiles of clusters. Our ultimate goal will be to test the ΛCDM
predictions on the total mass distribution in galaxy clusters using
a new and sophisticated fully non-parametric approach.
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Appendix A: Supplementary Material

A.1. Correlation between χD and χS

In Fig A.1, we present the correlation analysis between χD and
χS for the clusters in the Three Hundred Project. These
parameters serve to classify the clusters based on their intrinsic
dynamical state and the smoothness of their temperature profiles.
Specifically, small values of χD indicate relaxed clusters, while
small χS values suggest clusters with smooth temperature pro-
files. Our findings reveal a noteworthy correlation between χD

and χS , as evidenced by the calculated Spearman’s correlation
coefficient of 0.42 and a P value of 5 × 10−15.

A.2. Temperature profile reconstruction with IAE model for
the fine binning cases

Figure A.2 shows the posterior distribution of the parameters of
the IAE model obtained using MCMC for the 3D-3D and 2D-3D
fine binning cases for the most relaxed / disturbed clusters and of
the most regular / irregular profiles in the validation sample. The
parameters are found to be well-constrained, with the relaxed
cluster profile having tighter constraints than the disturbed clus-
ter profile, which has larger contour levels.

Figure A.3 illustrates the comparison of 20 randomly
selected 3D mass-weighted temperature profiles from the
Three Hundred Project validation sample with the corre-
sponding reconstructed 3D median temperature profiles obtained
from the IAE model (3D-3D fine binning case),. The analysis
covers the radial range of [0.02-2] R500 using 48 radial bins. As
shown, the discrepancy between the true and reconstructed pro-
files remains below 5% across most of the cluster radial range.
However, it is important to note that in certain cases, partic-
ularly in the outer regions (R > 1.5 R500), we observe larger
(generally less than 20%) discrepancies between the true
and reconstructed temperature profiles. This behaviour can be
attributed to the intricate interplay of complex physical processes
within the cluster, such as merger events, shocks, and interac-
tions between the ICM and accreting matter in the outskirts.
These processes can influence the temperature distribution, lead-
ing to local variations that the IAE model might encounter chal-
lenges in accurately capturing.

Figure A.4 shows the fractional residuals between the true
and reconstructed temperature profiles with IAE having 20
anchor points for all the individual clusters in the validation
sample considering 3D-3D fine binning case. The median frac-
tional residual profile is found to be close to zero throughout the
radial range: at radii, 0.02 R500, R500, and 2 R500, the values are
−0.008 ± 0.025, 0.008 ± 0.037 and −0.020 ± 0.074 respectively.

A.3. Temperature profile reconstruction with IAE model for
the observational-like binning cases

Figure A.5 illustrates the 3D fractional residuals obtained when
error bars (i.e. error covariance matrix, see Eqn. 19) are not con-
sidered to fit the 2D temperature profiles defined at twelve coarse
bins with IAE model. In this scenario, it is evident that the scatter
is amplified in the inner regions compared to the where the error

0.01 0.02 0.03 0.04
S

2

0

2

4

D

Most disturbed clusters
Most relaxed clusters

Most irregular profiles
Most smooth profiles

Fig. A.1. Correlation between χD and χS for the simulated clusters in
The ThreeHundred Project. Cyan circles and green triangles rep-
resent the 20 most relaxed clusters and smooth profiles respectively.
Magenta circles and orange triangles represent the 20 most disturbed
clusters and irregular profiles respectively.

covariance matrix is taken into account. The median 3D frac-
tional residuals at radii 0.02 R500, R500, and 2 R500 are determined
as 0.048±0.090, −0.005±0.063, and −0.080±0.175 respectively.
The median of fractional residuals across the entire radial range
for the complete sample is calculated to be −0.006 ± −0.062.

Figure A.6 illustrates the posterior distribution of the IAE
model parameters obtained via MCMC for 2D-3D cases binning
cases (both twelve as well as six bins). The analysis covers the
most relaxed and disturbed clusters, along with the most regular
and irregular profiles in the validation sample. While the param-
eters are well-constrained, the constraints are slightly weaker
compared to the fine binning cases.

Figures A.7 and A.8 present a comparison between 20 ran-
domly selected 3D and 2D profiles from The Three Hun-
dred Project validation sample with reconstructed 2D and 3D
median temperature profiles obtained from the IAE model using
observational binning of twelve and six respectively, which is
typical of X-ray observations. The analysis focuses on fitting
simulated 2D temperature profiles in the radial range of [0.02-1]
R500 with the convolved IAE model assuming errors in temper-
ature profiles increase linearly with radius. The results indicate
that the discrepancy between the true and reconstructed temper-
ature profiles remains around 5% in the 2D fitting range from
[0.02-1] R500.

A.4. DR1 sample used in this work

Table A.1 provides comprehensive details for all the clusters
included in the DR1 sample used in this work. The table encom-
passes information on cluster names and redshifts, and other rel-
evant properties, allowing for a comprehensive examination and
analysis of each cluster characteristics. The compilation com-
prises 30 clusters, reflecting the mass, redshift, and Planck S/N
distribution akin to the properties observed in the CHEX-MATE
parent sample.
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Fig. A.2. Two-dimensional joint posterior probability distributions and one-dimensional marginal posterior probability distribution of IAE model
parameters with 3D-3D fine binning (top panel) and 2D-3D fine (bottom panel) binning cases for the most relaxed cluster (smooth profile) and
most disturbed cluster (irregular profile). The shaded contours represent the 68% and 95% confidence regions. For comparison, 2D contours in the
3D-3D fit case are shown with the dashed red and blue lines for the 2D-3D fine binning case.
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Fig. A.3. Comparison of the 20 3D mass-weighted temperature profiles in the validation sample (dashed lines) and reconstructed 3D median
temperature profiles obtained from the IAE model (solid lines). The shaded regions represent the 1-σ dispersion (16th–84th percentile range) of
the recovered profile. Also shown, in the smaller subplots, are the residuals of the fit.
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Fig. A.4. Fractional residuals obtained with IAE model having 20 anchor points for 3D-3D fine binning case. Colour coding is the same as in
Fig. (8). There is a significant improvement of 25% in the average fractional residual compared to the IAE model with 5 anchor points.
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Fig. A.5. The fractional residuals for 115 clusters in the validation sample with IAE for the 2D-3D fit (coarse binning) using 2D temperature
profiles defined at twelve radial bins up to R500, without considering errors on the 2D temperature profiles. Colour coding is the same as in
Fig. (10). For simplicity, only the 3D temperature reconstruction is plotted.
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Fig. A.6. Two-dimensional joint posterior probability distributions and one-dimensional marginal posterior probability distribution of IAE model
parameters with 2D-3D coarse binning of twelve (top panel) six (bottom panel) radial bins for the most relaxed cluster (smooth profile) and most
disturbed cluster (irregular profile). The shaded contours represent the 68% and 95% confidence regions. For comparison, 2D contours for the
3D-3D binning case are shown with the dashed red and blue lines for the bottom panel.
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Fig. A.7. Left panel: Comparison of the 20 simulated 2D temperature profiles (solid points with errors) and reconstructed 2D temperature profiles
obtained using IAE model (solid lines), the fitting being performed in the range [0.02-1] R500 considering twelve 2D temperature bins. The shaded
regions represent the 1-σ dispersion of the reconstructed 2D temperature profiles. The smaller subplots show the residuals of the fit. Right panel:
Solid lines and the shaded regions show the corresponding reconstructed 3D temperature profiles and the 1-σ dispersion respectively. Also shown
in the dashed lines are the true 3D mass-weighted temperature profiles.
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Fig. A.8. Left panel: Comparison of the 20 simulated 2D temperature profiles (solid points with errors) and reconstructed 2D temperature profiles
obtained using IAE model (solid lines), the fitting being performed in the range [0.02-1] R500 considering six 2D temperature bins. The shaded
regions represent the 1-σ dispersion of the reconstructed 2D temperature profiles. The smaller subplots show the residuals of the fit. Right panel:
Solid lines and the shaded regions show the corresponding reconstructed 3D temperature profiles and the 1-σ dispersion respectively. Also shown
in the dashed lines are the true 3D mass-weighted temperature profiles.
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Table A.1. List of the clusters of the DR1 sample.

PSZ2 Name Redshift M500 Tx Tier∗ XMM obsid
1014M� (keV) center/offset

PSZ2 G008.31-64.74 0.312 7.42+0.41
−0.39 6.77 ± 0.170 2 0827010901

PSZ2 G041.45+29.10 0.178 5.41+0.35
−0.35 5.61 ± 0.088 1 0601080101

PSZ2 G042.81+56.61 0.072 4.22+0.18
−0.19 - 1 0202080201/0827361101∗∗

PSZ2 G046.88+56.48 0.115 5.10+0.22
−0.23 5.08 ± 0.094 1 0827010601

PSZ2 G050.40+31.17 0.164 4.22+0.34
−0.35 4.65 ± 0.056 1 0827040101

PSZ2 G056.77+36.32 0.095 4.34+0.18
−0.21 5.02 ± 0.063 1 0740900101

PSZ2 G056.93-55.08 0.447 9.49+0.43
−0.43 8.04 ± 0.121 2 0503490201

PSZ2 G057.78+52.32 0.065 2.32+0.21
−0.21 - 1 0827040301/0827041801∗∗

PSZ2 G057.92+27.64 0.076 2.66+0.21
−0.21 3.59 ± 0.054 1 0827030301

PSZ2 G066.41+27.03 0.575 7.69+0.51
−0.53 8.86 ± 0.215 2 0827320601

PSZ2 G072.62+41.46 0.228 11.43+0.25
−0.27 9.00 ± 0.231 2 0605000501

PSZ2 G077.90-26.63 0.147 4.99+0.26
−0.25 5.14 ± 0.086 1 0827020101

PSZ2 G083.86+85.09 0.183 4.74+0.32
−0.33 5.12 ± 0.113 1 0827030701

PSZ2 G113.29-29.69 0.107 3.57+0.26
−0.26 4.05 ± 0.069 1 0827021201

PSZ2 G113.91-37.01 0.371 7.58+0.53
−0.55 6.67 ± 0.165 2 0827021001

PSZ2 G114.79-33.71 0.094 3.79+0.22
−0.22 4.40 ± 0.075 1 0827320401

PSZ2 G149.39-36.84 0.170 5.35+0.44
−0.50 5.75 ± 0.101 1 0827030601

PSZ2 G195.75-24.32 0.203 7.80+0.40
−0.41 8.01 ± 0.232 2 0201510101

PSZ2 G207.88+81.31 0.353 7.44+0.43
−0.43 6.32 ± 0.184 2 0827020301

PSZ2 G224.00+69.33 0.190 5.11+0.35
−0.34 5.23 ± 0.098 1 0827020901

PSZ2 G238.69+63.26 0.169 4.17+0.35
−0.40 4.80 ± 0.093 1 0500760101

PSZ2 G243.15-73.84 0.410 8.09+0.48
−0.50 7.11 ± 0.151 2 0827011301

PSZ2 G243.64+67.74 0.083 3.62+0.20
−0.20 4.51 ± 0.053 1 0827010801

PSZ2 G277.76-51.74 0.438 8.65+0.36
−0.38 7.40 ± 0.183 2 0674380301

PSZ2 G287.46+81.12 0.073 2.56+0.22
−0.24 3.86 ± 0.105 1 0149900301

PSZ2 G313.33+61.13 0.183 8.77+0.33
−0.33 8.15 ± 0.129 2 0093030101

PSZ2 G313.88-17.11 0.153 7.86+0.26
−0.27 8.52 ± 0.210 2 0692932001

PSZ2 G324.04+48.79 0.452 10.58+0.56
−0.60 11.5 ± 0.295 2 0112960101

PSZ2 G340.94+35.07 0.236 7.80+0.45
−0.48 6.28 ± 0.153 2 0827311201

PSZ2 G349.46-59.95 0.347 11.36+0.34
−0.34 10.7 ± 0.257 2 0504630101

Notes: We quote: the PSZ2 name, the redshift, the nominal integrated mass from Planck data as derived from the mass with Eq. 9 in
Planck Collaboration V (2013) (M500), the average spectroscopic temperature measured in the [0.15-0.75] R500 range (Tx), the Tier to which each
cluster belongs (see CHEX-MATE Collaboration (2021) for details) and the XMM-Newton observations used in the analysis. ∗ Tier 1 comprises
a low redshift sample of clusters with a redshift range of [0.05-0.2] and mass values in the range of M500 = [2 − 9] × 1014 M�. Tier 2 represents
a sample of the massive clusters with M500 > 7.5 × 1014 M� in the [0.2–0.6] redshift range. ∗∗ Due to the need for background treatments using
off-set observations, these two clusters were excluded from the analysis in this work.
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