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Abstract: 

Fluoroform (CF3H), a large-volume industrial by-product and potent greenhouse gas, has 

emerged as an attractive CF3 source for the development of trifluoromethylation reagents and 

reactions. This article highlights the recent reports since 2017 on the use of fluoroform in 

organic synthesis. Topics include direct trifluoromethylation facilitated by organic and 

inorganic bases, preparation of trifluoromethylation reagents based on transition metals and 

borazine, and radiolabelled fluoroform.  

 

1. Introduction 

 

Reaction of chloroform (CHCl3) and hydrogen fluoride (HF) in the presence of antimony 

pentachloride (SbCl5) as a catalyst produces chlorodifluoromethane (CHClF2 or HCFC-22) 

that is a gas employed in refrigeration and air conditioners, in foam manufacturing as a 

blowing agent (dispersive uses), and in synthetic polymer manufacture, in particular Teflon, 

(non-dispersive use). An unavoidable by-product generated by over-fluorination of 

chloroform is fluoroform (trifluoromethane, CHF3 or HFC-23), which is produced in various 

amounts depending on plant-specific conditions and, until recently, mostly vented to the 

atmosphere. Fluoroform is a non-flammable and non-toxic gas, it is not an ozone depleting 

substance but is a very potent greenhouse gas with the highest global warming potential 

(GWP) of hydrofluorocarbons (HFCs) (12690, 100-year GWP) and an approximatively 228 

years atmospheric lifetime [1]. An estimate of global HFC-23 emission in 2018 was 15.9 ± 

0.9 Gg yr
-1

 (Gg yr
-1

 = 1000 tonnes/year) [1] and it corresponds to an average of 4% by-

product in the manufacturing of HCFC-22 [2]. In rare cases, fluoroform is captured, purified 

and commercialized but so far remains a small market speciality chemical; it is clearly 

considered as a waste. Efforts are directed toward reduction of HFC-23 emissions that include 

incineration or recycling through a fluorine-chlorine exchange reaction to afford HCFC-22; 

however, these processes are costly because highly energy demanding [3]. Besides, there is a 

large upsurge in demand to transform this waste into high-value chemicals [4]. Achieving this 

goal will reduce the negative environmental impacts and create great opportunities in 

organofluorine chemistry. In this highlight, we present the most recent works from 2017 to 

present dedicated to the valorisation of fluoroform. The direct trifluoromethylation is 

presented in section 2 followed by fluoroform-derived MCF3 (section 3) and other 

trifluoromethylation reagent (section 4). Finally, radiolabelled fluoroform is discussed 

(section 5). 

 

 

2. Direct trifluoromethylation using fluoroform 

 

Fluoroform is the simplest CF3-containing synthon with only a H atom attached, the most 

straightforward way to utilize it is to deprotonate it and generate CF3
–
 anion. However, 

fluoroform is only weakly acidic with a pKa of 25–28 and rather inert. In addition, due to the 

instability of CF3
–
 anion, it can easily go through -fluoride elimination with alkali metal 

cation and generate CF2 carbene [5], which is not the desired pathway for 

trifluoromethylation. Therefore, the exploration of suitable reaction conditions is crucial for 



the direct trifluoromethylation using fluoroform, including base, solvent, temperature, 

additive, etc. In fact, several studies on base-promoted deprotonation of fluoroform have been 

reported since 1990s, including the use of potassium tert-butoxide (t-BuOK) or potassium 

dimsylate [5-9], silicon-containing bases [10, 11], phosphazene bases, [12-14] and 

electrogenerated bases from 2-pyrrolidinone [15] and iodobenzene [16]. 

 

In 2013, Shibata and co-workers [12] discovered that 1-tert-butyl-4,4,4- tris(dimethylamino)-

2,2-bis[tris(dimethylamino)phosphoranylidenamino]-2
5
,4

5
-catenadi(phosphazene) (P4-tBu) 

could be a suitable organo-superbase for the deprotonation of fluoroform at low temperature 

to generate "naked" CF3
–
 anion due to the demanding steric hindrance of the cation. This 

reagent was applied to the trifluoromethylation of aldehydes, ketones and sulfonyl fluorides, 

even with catalytic amounts of the superbase [14]. Later, the same group extended the 

reaction scope to the trifluoromethylation of N-sulfinimines [9, 17]. By using (Ss)-tert-

butanesulfinyl group as a chiral auxiliary, stereodivergent trifluoromethylation of aldimines 

with fluoroform was achieved with either P4-tBu or potassium bis(trimethylsilyl)amide 

(KHMDS) as base, from which both enantioenriched (R)- or (S)--CF3 amines (ee up to 

>99%) could be obtained in good yields upon acidic hydrolysis (Scheme 1). 

 

 

Scheme 1. Stereodivergent trifluoromethylation of N-sulfinylimines. 

 

The stereodivergent outcome was explained by the distinction of open or chelated transition 

states under organic or metallic base system, which could generate a "naked" or chelated CF3
–
 

anion. More recently, they extended the number of stereogenic centers from one to two in 

similar reactions by applying enantiopure amino sulfinimines as substrates to obtain chiral 

CF3-containing diamines (Scheme 2) [18]. Also, 1-CF3 isoindolines could be synthesized in 

high dr values through a tandem nucleophilic addition/intramolecular aza-Michael sequence 

(Scheme 3) [18]. 

 

 

Scheme 2. Stereodivergent diastereoselective synthesis of enantioenriched 

trifluoromethylated ethylenediamines. 
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Scheme 3. Diastereoselective synthesis of enantioenriched isoindolines. 

 

In addition to the use of phosphazene and potassium hexamethyldisilazide as bases, the use of 

t-BuOK was further investigated by Shibata’s group. Prakash and co-workers had previously  

reported that using 18-crown-6 with t-BuOK could help to stabilize the coordination of K
+
 

and CF3
–
 thus preventing the decomposition of the latter via -F elimination [5]. 

(Poly)glymes were found to be as useful in base-promoted trifluoromethylation with 

fluoroform following similar principle (Scheme 4) [19, 20]. Under this protocol, nucleophilic 

trifluoromethylation of aldehydes, ketones and esters could be achieved even at room 

temperature, and the C2F5 version was also applicable using pentafluoroethane (HC2F5, HFC-

125) as the Rf source (Scheme 4) [21, 22]. Analogous stereodivergent trifluoromethylation 

and pentafluoroethylation of N-sulfinylimines were realized using the additive triglyme, in 

which the key differentiation was whether the Rf
–
 anion was generated in a "naked" or 

chelated manner (Scheme 5) [22]. 

 

 

Scheme 4. Glymes and crown ethers to generate naked CF3
–
 anion. 

 

 

Scheme 5. KHMDS/triglyme cryptate as an alternative to P4-tBu. 

 

Combining KHMDS with triglyme was found to be effective for synthesizing 

trifluoromethylketones from esters using fluoroform under continuous flow by Shibata and 

co-workers [23]. The sodium cation was also compatible, as demonstrated in the use of 

sodium diisopropylamide (NaDA) with trialkylamine and tetramethylethylenediamine 

(TMEDA) to achieve base-promoted trifluoromethylation of aromatic esters with fluoroform 

by Han, Lian and co-workers (Scheme 6) [24]. This cationic chelating system was in situ 
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generated by sodium metal and stabilized with bulky amine ligands at low temperature. Such 

stabilization effect suggested the existence of the reactive NaCF3 species besides previously 

mentioned KCF3, despite the strong Na-F interaction which could lead to decomposition of 

CF3
–
 anion. However, the protocol was not applicable to aldehydes or enolizable ketones due 

to chemoselectivity issue (Scheme 6). 

 

 

Scheme 6. NaCF3 species in trifluoromethylation of aromatic esters. 

 

 

3. Transition metal-based trifluoromethylation reagents derived from fluoroform 

 

In 2011, Grushin and co-workers developed the first direct cupration of fluoroform to 

generate a "ligandless" [CuCF3] reagent [25]. The utility and versatility of this reagent have 

been subsequently showcased in a multitude of trifluoromethylation reactions [26-32]. Tsui 

and co-workers [33] have explored new reactivities of Grushin's fluoroform-derived [CuCF3], 

particularly in oxidative processes, to broaden its applications towards the preparation of 

valuable CF3-containing building blocks and heterocycles under aerobic conditions. Quite 

recently, the trifluoromethylation of alkenyl iodide with fluoroform-derived [CuCF3] was 

developed by Boutureira and co-workers [34]. This process allowed several types of glycals, 

nucleoside, nitrogenous bases and benzo-fused heterocycles to be trifluoromethylated at 

specific positions enabled by well-established selective iodination of the alkene (Scheme 7). 

This method showed an alternative strategy for selective trifluoromethylation of substituted 

alkenes in biomolecules that can be useful for late-stage functionalization. 

 

 

Scheme 7. Trifluoromethylation of alkenyl iodides from biomolecules. 

 

Besides [CuCF3], Qing and co-workers described the direct argentination of fluoroform in 
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the gaseous HCF3 into the reaction, a stoichiometric or slightly excess amount of HCF3 could 

already give [AgCF3] in good yield. Notably, the [AgCF3] solution was quite stable without 

the stabilizer TREAT-HF, although it was still sensitive to light due to the property of silver. 

Nevertheless, unlike previously reported [AgCF3] solution prepared from AgF and TMSCF3, 

this [AgCF3] generated from fluoroform showed greater stability towards air and heat due to 

the effect of t-BuOK. 

 

 

Scheme 8. Preparation of [CuCF3] and [AgCF3] reagents from fluoroform. 

 

Despite being a more precious metal than copper, the [AgCF3] reagent showed unique 

reactivities such as hydrotrifluoromethylation of non-activated alkenes, which had not been 

achieved by [CuCF3]. Since [AgCF3] was too stable to go through spontaneous homolysis 

under air, an extra oxidant PhI(OAc)2 (PIDA) was needed to promote the generation of CF3 

radical. By using 1,4-cyclohexadiene (1,4-CHD) as H source and AcOH as additive, the anti-

Markovnikov hydrotrifluoromethylation products were obtained in 63–90% yields from non-

activated terminal alkenes (Scheme 9a). An internal alkene was also demonstrated albeit with 

a lower yield (Scheme 9b). Besides hydrotrifluoromethylation, C-H trifluoromethylation of 

electron-rich (hetero)arenes could also be achieved with moderate yields, although 

overreaction was a potential problem (Scheme 9c). This protocol could be extended to 

pentafluoroethylation by using gaseous HCF2CF3 to generate [AgCF2CF3], and the 

hydropentafluoroethylation products were obtained at 68–84% yields under similar conditions 

(Scheme 9d). 
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Scheme 9. Applications of [AgCF3] and [AgCF2CF3] reagents. 

 

4. Other trifluoromethylation reagents derived from fluoroform 

 

Direct use of fluoroform or using fluoroform-derived MCF3 reagents for trifluoromethylation 

can be limited by functional group tolerability and reagent stability/reactivity, thus new routes 

for preparing stable yet reactive trifluoromethylation reagents from fluoroform is worth 

exploring. It was not until 2012 that Prakash and co-workers developed the method of using 

fluoroform to synthesize several commonly used trifluoromethylation reagents including 

TMSCF3 and CF3BF3K, which can serve as nucleophilic, electrophilic and radical CF3 

sources [36]. 

 

In 2017, Szymczak and co-workers investigated the CF3
–
 affinity of boron-based Lewis acids 

(LAs) by DFT calculations, followed by experimental studies of various boron-based LAs 

reacting with fluoroform using in situ generated dimsyl potassium as a base [37]. They 

discovered that a suitable LA should be weak enough to avoid irreversible coordination to the 

base but strong enough to stabilize the CF3
–
 generated from fluoroform before decomposition, 

which meant its CF3 adduct’s (1-3) pKCF3 value should be between 6 and 11. 

Hexamethylborazine (B3N3Me6) was found to give the highest yield of CF3 adduct 1, as well 

as the best reactivity towards CF3
–
 transfer (Scheme 10). Compared with other methods of 

trapping CF3
–
 from fluoroform by LA [36], this protocol was performed at ambient 

temperature with much shorter reaction time. More importantly, the free borazine LA was 

regenerated after the reaction and could be separated almost quantitively, which meant 

B3N3Me6 could be recycled for the reagent preparation. 
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Scheme 10. Trifluoromethylation reagents from boron-based Lewis acids and fluoroform. 

 

Besides nucleophilic trifluoromethylation, the CF3 group of adduct 1 could be efficiently 

transferred to precursors of various popular trifluoromethylation reagents, such as Ruppert-

Prakash reagent (TMSCF3), K
+
 version of Langlois reagent (CF3SO2K) and Togni reagent 

(Scheme 11a). A catalytic version of borazine-promoted synthesis of TMSCF3 was also 

investigated albeit with low yields and turnovers (Scheme 11b) [37]. 

 

 

Scheme 11. Synthesis of Me3SiCF3, KSO2CF3, and Togni reagent from HCF3. 

 

Later on, the same group further expanded the reaction scope of the borazine-CF3 reagents 

[38]. By employing halides of transition metals (groups 10-12) and main-group elements 

(groups 13-15) as electrophiles, a series of inorganic E-CF3 compounds were obtained in 

moderate to excellent yields except for Au(I) (Scheme 12). 
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Scheme 12. Reactions of borazine-CF3 reagent with inorganic electrophiles. 

 

Moreover, the borazine-CF3 reagent could react with elemental chalcogens to generate F3CX
–
 

species in good yields, which were then trapped in situ by benzyl bromides to give 

ArCH2XCF3 products (Scheme 13a). The ArXCF3 products could also be obtained using 

phenyl dichalcogenides as substrates. Carbonyl compounds, including aldehydes, non-

enolizable ketones, acyl chlorides, esters, carbonates and isocyanates, were suitable substrates 

in the reaction with the borazine-CF3 reagent without activators (Scheme 13b) [38]. 

 

Scheme 13. Reactions of borazine-CF3 reagent with (a) organic and inorganic chalcogens (b) 

carbonyl compounds. 

 

Nucleophilic aromatic substitution (SNAr) was also tested, in which aromatic C-F and C-NO2 

bonds were converted to C-CF3 without the help of transition metals, albeit in low to 

moderate yields. Oxidative trifluoromethylation of electron-deficient heteroaryl C-H bonds 

N

B
N

B

N
B

CF3
  K (18-crown-6)

E-X

THF or DMSO
25°C, 5-30 min

E CF3

transition-metals

Pd(TMEDA)(p-tol)–CF3 Cu–CF3 Ag–CF3

98% 83% 44%

Zn(TMEDA)–(CF3)2

74%

Au(iPr)–CF3

group 13-15 elements

15%

(MeO)3B–CF3 Me3Si–CF3 Me3Sn–CF3

Me3Pb–CF3 Ph2P–CF3 ClBi–(CF3)2

80% 99% 73%

99% 99% 42%

N

B
N

B

N
B

CF3

K (18-crown-6) S/Se/Te

then ArCH2Br

ArCH2SCF3   (52%)
ArCH2SeCF3 (39%)
ArCH2TeCF3 (57%)

Ph2S2 or Ph2Se2 PhSCF3   (79%)
PhSeCF3 (69%)

N

B
N

B

N
B

CF3

K (18-crown-6)

R R'(H)

O

R

OH

R'(H)

CF3

Ar Cl

O

Ar OMe

O

Ar CF3

O

Ar

OH

CF3

CF3

PhO OPh

O

Ph NCO

(iPr)3SiCl
PhO

OSi(iPr)3

CF3

CF3

Ph
N
H

CF3

O

42 - 87%

84%

29%

61%

61%

(a)

(b)



and geminal bis-trifluoromethylation/dearomatization of chloroheteroarenes were also 

achieved (Scheme 14) [38]. 

 

Scheme 14. Reactions of borazine-CF3 reagent with (hetero)aryl substrates. 

 

 

5. Radiolabeled fluoroform 

 

Radiolabelled fluoroform is a versatile reagent for constructing radiolabelled trifluoromethyl 

compounds, which are widely used in clinical positron emission tomography (PET) imaging 

applications. While [
18

F]fluoroform has been well investigated [39], the [
11

C]fluoroform was 

less discussed. Despite the shorter half-life of 
11

C (t1/2 = 20 min) compared to 
18

F (t1/2 = 110 

min), CF3-containing compounds labelled by 
11

C have higher molar activity (>200 

GBq/mol) than those with 
18

F (<32 GBq/mol). Unlike those methods using 
18

F
–
 as 

radioactivity source through nucleophilic substitution to generate the [
18

F]fluoroform 

(Scheme 15a) [40-43], the synthesis of [
11

C]fluoroform must start from a synthon with 
11

C as 

its carbon center. This challenge was overcome by Pike and co-workers in 2017 who 

developed a synthetic route of [
11

C]fluoroform from [
11

C]methane [44]. By controlling the 

temperature and flow rate of purified [
11

C]methane in its reaction with CoF3, [
11

C]fluoroform 

could be produced at the yield of 53±4% within only 7 min (Scheme 15b). 

 

Scheme 15. Preparation of [
18

F] and [
11

C]fluoroform. 
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C]CF3 (Scheme 16c,d). To avoid the use of unstable diazonium salts, a Sandmeyer-type 

[
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C]trifluoromethylation was achieved with in situ generated aryl diazonium from various 

substituted anilines, which significantly broadened the substrate scope (Scheme 16e) [45]. By 

employing a stronger nucleophile phenyliodonium tosylate as substrate, -[
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could be synthesized in high radiochemical yield (Scheme 16f) [46]. Importantly, all these 

reactions were completed in relatively short periods of time, thus allowing the products to be 

applied in PET before losing their radioactivity. 

 

Scheme 16. Applications of [
11

C]fluoroform. 

 

6. Conclusion 

 

The past decade has witnessed tremendous progress in utilizing fluoroform, an industrial 

waste and greenhouse gas, for the synthesis of valuable trifluoromethyl compounds in organic 

transformations. Creative approaches have been developed to activate fluoroform and 

stabilize the trifluoromethyl species thus generated. The use of organic and inorganic bases 

with additives allowed the efficient generation of CF3
–
 anion from fluoroform towards 

nucleophilic trifluoromethylation of carbonyl compounds and imines. The preparation of 

copper-, silver- and borazine-based trifluoromethylation reagents from fluoroform enabled an 

array of novel trifluoromethylation reactions that were previously impossible with other 

reagents. Radiolabelled [
18

F]- or [
11

C]fluoroform can now be synthesized for the preparation 

of radiolabelled compounds towards PET applications. The next big challenge would be the 

"catalytic" activation of fluoroform which is yet to be seen in the future chapters of this 

important field. 
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