
HAL Id: hal-04234792
https://hal.science/hal-04234792

Submitted on 10 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Branch Target Buffer Organizations
Arthur Perais, Rami Sheikh

To cite this version:
Arthur Perais, Rami Sheikh. Branch Target Buffer Organizations. 56th IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO 2023), IEEE; ACM, Oct 2023, Toronto, Canada.
�10.1145/3613424.3623774�. �hal-04234792�

https://hal.science/hal-04234792
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Branch Target Buffer Organizations
Arthur Perais

Univ. Grenoble Alpes, CNRS, Grenoble INP*, TIMA
38000 Grenoble, France

arthur.perais@univ-grenoble-alpes.fr

Rami Sheikh
Arm

Raleigh, NC, USA
Rami.AlSheikh@arm.com

ABSTRACT
To accommodate very large instruction footprints, modern high-
performance processors rely on fetch directed instruction prefetch-
ing through huge branch predictors and a hierarchy of Branch
Target Buffers (BTBs). Recently, significant effort has been under-
taken to reduce the footprint of each branch in the BTB, in order
to either minimize the storage occupied by the BTB on die, or to
increase the number of tracked branches at iso-storage. However,
designing for branch density, while necessary, is only one dimen-
sion of BTB efficacy. In particular, BTB entry organization plays a
significant role in improving instruction fetch throughput, which is
a necessary step towards increased performance. In this paper, we
first revisit the advantages and drawbacks of three classical BTB
organizations in the context of multi-level BTB hierarchies. We
then consider three possible improvements to increase the fetch
PC throughput of the Region BTB and Block BTB organizations,
bridging most of the performance gap with the impractical but
highly storage-efficient Instruction BTB organization, thus paving
the way for future very high fetch throughput machines.

CCS CONCEPTS
• Computer systems organization → Superscalar architec-
tures.

KEYWORDS
Branch Target Buffers, BTB, Instruction fetch

ACM Reference Format:
Arthur Perais and Rami Sheikh. 2023. Branch Target Buffer Organizations.
In 56th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO ’23), October 28-November 1, 2023, Toronto, ON, Canada. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3613424.3623774

1 INTRODUCTION
Code size has steadily increased over the years, especially in typical
datacenter workloads (e.g., web server, databases, etc.) [19, 32]. This
has caused a noticeable shift in hardware design philosophy since
instruction caches, which were once large enough to contain most
of the active code, are now direly under-provisioned for monolithic
server-side workloads. Modern designs therefore rely on instruction
prefetching to retrieve instructions from memory in advance.

∗Grenoble Institute of Engineering

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00
https://doi.org/10.1145/3613424.3623774

Because instruction prefetching is control-flow speculation,many
designs leverage the existing branch prediction infrastructure to
perform fetch-directed instruction prefetching (FDIP) [47, 48]. A
key aspect of FDIP is that while the instruction cache does not need
to fit the entire code working set, the branch prediction structures,
and especially the Branch Target Buffer [40] (BTB), do. In the CVP-
1 [41, 43] 100M instruction traces used in this work, an average
of 138KB is required to store the cache lines covering 90% of the
dynamic instructions (resp. 319KB for 100%). This has caused BTBs
to grow to hundreds of KBs [1, 23, 29]. For example, IBM’s Telum
core [29] stores more than 270k branch targets in the last level BTB.
Such large structures have a significant silicon footprint. Therefore,
several works have focused on improving information density in
the BTB, both to reduce the number of entries as well as the bit
count of each entry [4, 10, 24, 36, 38, 58].

Nevertheless, with or without density-improving techniques,
BTBs with so many entries cannot provide 0-cycle taken branch
turnaround, which is important to achieve high performance. In
the CVP-1 traces used in this work, a 1-cycle taken branch penalty
costs 0.8% geomean IPC (up to 2.2%) on an Intel Icelake-like config-
uration using a very large 512K-entry BTB. The reason is that high
IPC code sections require high instruction fetch throughput to keep
the backend fed, and the large cost of branch mispredictions makes
restarting the pipeline a key performance limiter. BTB design plays
a key role in both cases, and modern designs thus employ a hierar-
chy of BTB, where a small first level provides 0-cycle turnaround,
while a second larger level incurs a taken branch penalty. Providing
true 0-cycle turnaround severely limits the number of entries of
the first level BTB and similarly works against the use of density
improving techniques. For instance, indirection-based compression
[53, 58] puts another table access on the next BTB index genera-
tion path, and encoding targets as offsets [4] puts an adder in the
BTB index generation loop. In this paper, we choose to sidestep the
question of actual storage requirements and to rather focus on BTB
entry organizations and the properties they provide to facilitate or
hinder high instruction fetch throughput. Concretely, we revisit
three existing BTB organizations and highlight their respective
advantages and drawbacks. We then argue that while highly effi-
cient in the way it maps branch metadata to physical storage, the
"classical" Instruction BTB organization where one entry tracks
one branch is structurally not adapted to high performance designs.
Unfortunately, we show that in a constrained setting, the other BTB
organizationswe cover, althoughmore adapted to high performance
designs as they tie branch information to instructions regions or
blocks, do not achieve the same level of performance as Instruction
BTB. As a result, we suggest microarchitectural improvements to
bridge the gap with Instruction BTB while addressing its scalability
challenges through tying entries to regions or blocks of instructions
rather than individual branches.

https://orcid.org/0002-5757-2507
https://orcid.org/0003-1365-1921
https://doi.org/10.1145/3613424.3623774
https://doi.org/10.1145/3613424.3623774

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Arthur Perais and Rami Sheikh

Fetch
Branch
Target
Buffer

BPred

Decode

Correct
Target

Fetch Target
Queue

PC,
length

Misfetch

+BlkSizeNext PC

PC

Figure 1: Decoupled PC generation flow using a BTB.

2 BACKGROUND
Taken branches are a well-known performance limiter in pipelined
designs. The latency cost of such branches can be divided into a
direct cost and an opportunity cost.

The former stems from the fact that the branch target is com-
puted directly from the instruction bytes (register for indirect
branches). The target is therefore available after 𝑐 cycles, with
𝑐 being the sum of the I-Cache access latency, decode latency and
actual (direct) address computation latency. The opportunity cost
is only relevant in superscalar designs. From the 𝑛 (fetch width)
instructions being fetched from the I-Cache, 𝑛 − 𝑥 (with 𝑥 in {1, 𝑛})
must be discarded if instruction 𝑥 is a taken branch.

To address the direct cost, the Branch Target Buffer was proposed.
The BTB is a cache for branch targets [40] that is accessed con-
currently with the instruction cache, allowing fast branch target
retrieval in the presence of a bigger and slower pipelined instruc-
tion cache. However, as the instruction footprint keeps growing,
the BTB reach needs to extend accordingly, which inevitably leads
to larger hence slower structures. To minimize the cost of taken
branches, a hierarchy of BTBs can be considered [45]. This is the
approach used in many modern designs [1, 8, 14–17, 23], although
there remains recent designs where even hitting the first level BTB
incurs bubble(s) on a taken branch [8, 11, 16, 29, 51].

A first key property of the BTB is that, like other branch predic-
tion structures, it is not required to contain correct information. This
is an important difference with the instruction cache and its sibling
the trace cache [49], who must provide a consistent (and coherent,
if the ISA mandates it) view of actual instructions stored in main
memory. To the best of our knowledge, BTBs are not kept coherent
with memory and must therefore employ a reactive scheme where
predictions are checked e.g., by comparing them to information
being fetched from the I-Cache [44, 47, 48]. This is the design we
assume in the remainder of the paper.

The second key property of the BTB is that never taken condi-
tional branches do not require BTB storage [9, 27, 28, 46]. In the
CVP1 [43] server traces used in this work, an average of 34.8% of
the dynamic branches are never taken conditional direct branches.
This has implications on the management of the Global Branch His-
tory used by branch predictors. These implications are thoroughly
discussed by Ishii et al. [27, 28].

2.1 Decoupled Fetching (DCF)
In older and/or less aggressive designs, the BTB and I-Cache are
accessed concurrently with the current fetch PC. Therefore, if the I-
Cache access misses, the whole fetcher is stalled. This is suboptimal
because the branch prediction structures (predictors and BTB) are

sufficient to autonomously generate fetch addresses: The I-Cache
only serves the purpose of retrieving the actual instruction bytes to
feed the rest of the pipeline. Consequently, Reinman et al. suggest
decoupling fetch address generation from actual instruction retrieval
with a queue [47]. This provides a natural instruction prefetching
effect as multiple I-Cache misses can now be in flight concurrently.

A diagram of DCF is shown in Fig. 1: Each cycle, the PC genera-
tion stage enqueues into the Fetch Target Queue (FTQ) information
that is later consumed by the Fetch stage to retrieve instructions
bytes. The exact format of the information pushed to the FTQ de-
pends on the BTB organization, but Fetch requires i) Where to
start fetching and ii) How many instructions to fetch while Decode
requires i) If instructions were predicted taken and if so ii) What
the predicted targets are, to be able to validate them. In the remain-
der of this paper, we assume a decoupled fetcher organization as
it is now the industry standard for high performance processors
[1, 8, 14–17, 29]. Additional details on the pipeline stages imple-
menting decoupled fetching in our simulation infrastructure are
given in Section 4.

The main benefits of DCF come from the ability of the FTQ to
fill up because of backpressure (e.g., narrow Fetch stage, I-Cache
miss or full Reorder Buffer). First, as previously mentioned, multi-
ple cache misses can overlap, which provides a prefetching effect.
Second, the direct taken branch penalty can be hidden if there is
enough backpressure. Third, in the presence of a bank-interleaved
I-Cache, fetching past a taken branch by consuming two sequential
FTQ entries that fall into different I-Cache interleaves becomes
possible, mitigating the opportunity cost of taken branches. These
benefits are structural and do not depend on the particular BTB
entry organization, at least for those considered in this work. How-
ever, they rely on backpressure: fetching past a taken branch is not
possible if the fetcher consumes FTQ blocks at the rate they are
produced. The main drawback of this organization is the lengthen-
ing of the pipeline, which increases the misfetch1 and the branch
misprediction penalty.

2.2 Region BTB (R-BTB)
This BTB organization stores information for an aligned region
of memory (e.g., 32B, 64B, etc.) in a single BTB entry [9, 23, 33].
This information includes metadata for several branches (referred
to as branch slots in this work). The number of branch slots is
decided at design time. If the region covered by an entry is a single
instruction (e.g., 4 bytes in ARMv8 or RISC-V, 1 byte for x86), this
organization degenerates into an Instruction BTB (I-BTB) in which
each entry caches metadata for one branch. The R-BTB is accessed
with a region aligned PC and provides i) How many sequential
instructions to fetch in this region and ii) The type of branches
to be fetched and if relevant, the target of the first taken branch
(predicted taken or unconditional).

2.3 Block BTB (B-BTB)
Another BTB organization relies on the notion of block, which is
a sequence of at most 𝐼 instructions (or bytes), 𝐵 of which can be
observed taken before branches. So far always taken branches cause
a block to end before 𝐼 instructions. This is the definition used by
1BTB miss for a direct taken branch, which is resolved at Decode.

Branch Target Buffer Organizations MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Amd in their recent designs [17]. The Block BTB is accessed using
an instruction address and produces the number of instructions to
fetch from that address as well as the next address to query the
BTB with. If only one branch is tracked, then a BTB block is a basic
block, as introduced by Yeh and Patt [63] and used with minor
variations in [38, 39, 44, 46, 47]. A key detail is whether a sometimes
taken conditional branch ends a block [63], or falls through until 𝐼
instructions are reached [44] In this work, we assume the latter for
our baseline, as it allows to compute the address of the sequential
block in parallel with the BTB access, facilitating 0-cycle non taken
branch penalty. The former trades off additional performance (Sec-
tion 6.3) for storage as the fall-through target or block size has to
be stored in the BTB entry.

3 CONTRASTING I-, R- AND B-BTB
3.1 Next PC Generation
To generate multiple fetch PCs2 per cycle, the I-BTB needs to be
accessed multiple times, which entails either multiporting, which
is costly, or bank-interleaving, which still has timing overhead as
information from 16 interleaves (in this work) need to be correctly
arranged [13]. In the context of variable length ISAs, the indexes
with which to access the different interleaves are unknown as
they depend on instruction length. The index used to access the
I-BTB must be aligned on the lowest instruction alignment, which
is 1 byte in x86. Therefore, to cover the same number of bytes,
x86 would require four times as many accesses as ARMv8 (4-byte
instructions with 4-byte alignment). Conversely, R-BTB and B-BTB
provide multiple fetch PCs from a single BTB entry, i.e., with a
single access. We note, however, that none of these organizations
are able to provide multiple basic blocks worth of fetch PCs with
a single access. Since the average dynamic basic block size is 9.4
instructions in the studied traces, this suggests that single basic
block throughput will limit overall performance in high IPC phases.
In fact, even older organizations such as the Alpha EV8 [54] were
able to provide two basic blocks each cycle, by relying on a fast
next line predictor to provide the address of the second basic block
to fetch. However, the EV8 did not use a BTB and would therefore
fare poorly given modern codesizes, as it relied on a comparatively
small I-Cache to store targets. Moreover the next line predictor
already had limited accuracy at the time. This encourages us to
focus on alternative BTB organizations that can support multiple
block throughput.

3.2 Alignment
Each R-BTB entry caches information for an aligned region, which
entails that a single access will only provide fetch PCs up to the
end of the region. This is particularly limiting if the region size
is small and suggests that to match B-BTB or I-BTB, the R-BTB
should be dual-ported or interleaved in order to be able to generate
instruction PCs from two sequential regions in the same cycle.

2In this context, a fetch PC is the PC of a single instruction, not the start PC of a
sequence of instructions.

foo:
 00 add
 04 bz foo_mid
 08 shl
 0C sub
foo_mid:
 10 add
 14 sub
 18 add
 1C bnz foo_mid
 20 mul
 24 div
 28 sub
 2C bz foo_mid
 30 add
 34 ld
 38 sub
 3C add
 40 ret

B-BTB

0x0, 8 insts, 2 branches

0x10, 8 insts, 1 branch

Entry 0

Entry 4

Entry 12

Entry 1
...

...

0x20, 8 insts, 1 branchEntry 8
...

0x30, 5 insts, 1 branch

Entry 16

...

0x40, 1 inst, 1 branch

Figure 2: Redundancy in a 8-instruction Block BTB.

3.3 Tag Overhead
Assuming the same tag width in all organisations, I-BTB has the
highest tag overhead because a single branch target is cached in
each entry. R-BTB and B-BTB amortize the tag bits over multiple
branch slots.

3.4 Redundancy
I-BTB and R-BTB cannot cache redundant information since each
branch information may reside in at most one entry. Conversely,
in B-BTB, multiple dynamic blocks may contain the same branch
information, as shown in Fig. 2, for an 8-instruction B-BTB. The
initial trace cache proposal [49] suffers from the same issue. The
Figure first shows that Entry 0 and Entry 4 overlap. Both track
branch 0x1C because label foo_mid is both the fall-through of foo
and the target of branches 0x04, 0x1C and 0x2C. Redundancy is
not limited to two entries. For instance, if 0x4 was the target of
a branch, then branch 0x1C would be tracked by three entries (0
from 0x0 to 0x1C, 1 from 0x4 to 0x20, and 4 from 0x10 to 0x2C).

Redundancy will propagate until the next unconditional (or al-
ways taken conditional) branch. For instance, if any instruction
from 0x10 to 0x1C were an unconditional branch, then Entry 0 and
Entry 4 would both stop at that instruction and be followed by the
same next BTB entry. However, because 0x1C is not unconditional
(assumed not always taken in this example), a new block has to be
allocated as the fall-through of Entry 0. This block, tracked by Entry
8, overlaps with Entry 4 and both track branch 0x2C. This pattern
continues as no instruction between 0x20 and 0x2C and 0x30 and
0x3C are unconditional (or always taken conditional) branches,
causing the allocation of Entry 12 and Entry 16. Both entries ter-
minate at the unconditional branch 0x40, forcing the “synonym”
paths to merge and preventing further redundancy. Generally, any
two overlapping BTB blocks that are not terminated by an uncondi-
tional (or always taken conditional) branch will cause the allocation
of two fall-through blocks that are also overlapping.

The only structural mitigation to these phenomena is when
there are no branches to cache in the blocks, since only blocks
with at least taken once branches allocate entries in the BTB. To
prevent “synonym” paths, blocks can be forced to terminate at
region boundaries (e.g., 64B). However, this defeats the purpose of
B-BTB as it prevents generating fetch PCs from different regions

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Arthur Perais and Rami Sheikh

in a single access while not even entirely preventing redundancy:
Entry 0 would still overlap with Entry 4 if blocks were terminated
at 32B boundaries (0x1C).

3.5 Allocation Behavior
Taken branches always allocate in the BTB, regardless of the orga-
nization. The main difference between I-BTB and both R-BTB and
B-BTB is that in I-BTB, allocating a new branch displaces another
one. This is not necessarily the case in R- and B-BTB: if there exists
an entry tracking the block with a free branch slot, no other branch
gets displaced.

While seemingly an advantage for R- and B-BTB, this actually
makes these organizations much less agile. Indeed, since not all
instructions are branches, it would be hugely inefficient to provi-
sion as many branch slots per entry as the maximum number of
instructions covered by a block or region. As a result, a region or
block with more taken branches than number of branch slots will
see branches competing for storage, leading to BTB hit branch slot
miss cases, which have the same penalty as regular BTB misses.
Conversely, blocks or regions with fewer branches than branch
slots in each BTB entry will make poor use of the available storage.

This limitation can be addressed in two fashions: First, by increas-
ing the number of branch slots per entry, at the cost of increasing
inefficiency for regions that have few taken branches. Second, by
providing decoupled but shared “overflow” storage to the BTB en-
tries, allowing to dynamically extend the number of branch slots as
needed. This is the path chosen by some industry designs e.g., IBM
z16 [29], AMD Bobcat [11], Samsung Exynos [23], as well as Con-
fluence [33]. “Overflow” branches incur extra latency [11, 23]. For
B-BTB, an alternative is to keep the number of branch slots limited
but proactively split entries to prevent a new taken branch from
displacing the metadata pertaining to another branch, at the cost
of increased pressure on the BTB. This is one of the improvements
we study in Section 6.3.

3.6 BTB Hierarchy
So far, the discussion has focused on the functional behavior of three
different BTB organizations. However, similar to caches, modern
processors employ a hierarchy of BTBs, with lower level BTBs
being faster at the cost of being smaller, and higher level BTBs
being bigger at the cost of being slower e.g. [8, 14–16, 23, 29, 51].
Organizing BTBs in a hierarchy was first suggested by Perleberg
and Smith [45].

3.6.1 Fast Next BTB Index Generation. If one aims to fully hide the
taken branch penalty, the BTB should be able to provide the next
BTB index in a single cycle. In other words, BTB indexing, tag check,
data access and processing (e.g., selecting which targets to use based
on branch predictions), as well as capturing this next BTB index in
the flip-flop that drives BTB access should fit in one cycle. Onemight
argue that the average IPC observed on real machines is generally
well below the maximum IPC achievable by said machines. As a
result, there will generally be backpressure and the taken branch
penalty will often be hidden through queuing, hence there is no
need to spend circuit design effort on a fast first level BTB. Such a
design philosophy would overlook the fact that providing 0-cycle
turnaround remains valuable to maximize the pipeline refill rate

on pipeline flushes, as well as high IPC phases. In our limit study
using the processor configuration depicted in Table 1 but a very
large 512K-entry I-BTB, a 1-cycle taken branch penalty reduces the
geomean IPC by 0.8% (up to 2.2%) compared to no penalty.

Providing 0-cycle turnaround puts stringent limits on the BTB
size as well as the amount of entry “post processing” that can be
done. Density techniques such as encoding the target as an offset
to the entry PC and compressing tags may not be viable given the
latency constraint. This naturally leads to a tiered BTB organization
where the lower level is kept small and gives up on the density
techniques mentioned above to limit access latency. Conversely,
higher levels tradeoff access time for significantly higher density
that comes from encoded and/or compressed target and tag repre-
sentation, deduplication, and indirections [53, 58]. Consequently,
minimizing the time required to provide the next BTB index is com-
paratively more important than improving density for the lower
level BTBs, and especially the first level BTB. To further illustrate
this concern, we provide two examples.

First, consider that in R-BTB, the next BTB index is not just
a selection between the targets in the branch slots and the fall-
through based on the branch predictions. Rather, the next BTB
index also depends on what is the unaligned fetch PC the entry is
being accessed through. For instance, assume a 32B-region entry
that has two branch slots caching information for a branch at 0x4
and at 0x1C, respectively. If the entry is accessed through PC 0x0,
then the possible next BTB indices are i) The target of 0x4 ii) The
target of 0x1C and iii) The region fall-through. Conversely, if the
entry is accessed through PC 0x10, then only two next BTB indices
are possible i) The target of 0x1C and ii) The region fall-through. In
other words, the offset of each branch slot must be compared to the
unaligned PC used to access the entry, and the result participates in
target selection. Assuming the branch predictor is the critical path,
this adds at least one AND gate to the critical path: each branch
prediction is now AND’ed with the result of the comparison before
driving the selection lines of the next fetch PC multiplexer. If the
BTB access is already the critical path, then the offset comparison is
added to it. While this may be inconsequential depending on how
much slack is available, neither the I-BTB nor the B-BTB have to
perform such an offset comparison.

The second example relates to the number of accesses that need
to be performed to provide multiple fetch PCs in a single cycle. Ide-
ally, the first level BTBmust remain small to meet timing.While cur-
rent commercially available AMD designs use a 1K+-entry L1BTB
incurring 0 bubbles3 on taken branches (except calls) [14, 17], the
previous generation design did use a tiny L0BTB with only eight en-
tries to provide 0-cycle turnaround. This L0BTB was backed up by
a 256-entry L1BTB (1-cycle penalty) and a 4K-entry L2BTB (4-cycle
penalty) [16]. In both cases, we understand the BTBs to be B-BTBs
that feature 2 branch slots. However, to fill both slots, the branches
must belong to the same cache line. The Samsung Exynos line of
processors also used three levels of BTBs with two levels of 128B
R-BTBs with 8 branch slots in each entry and a 0-cycle turnaround
“graph based” µBTB, which we understand to be an embodiment of
the B-BTB organization with a specific training algorithm.

3The low latency combined to the structure size suggests the use of ahead pipelining
[55].

Branch Target Buffer Organizations MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

The number of fetch PCs per access is of particular interest if
a non ahead pipelined design were chosen for the first level BTB,
i.e., true 0-cycle taken branch penalty on L1BTB hit. To achieve this,
the number of entries would be limited in order to meet timing.
As a result, the L1BTB would likely be built as a fully associative
structure to maximize the amount of code patterns that can be
cached concurrently. If this BTB is organized as an I-BTB, however,
this entails multiple associative searches per cycle, hence multiple
search ports. As a result, I-BTB is not well adapted for a small first
level BTB, even in the context of a fixed length ISA. Conversely,
R-BTB or B-BTB can provide many fetch PCs with a single access,
although to maximize performance, implementing two search ports
would be needed to handle code blocks spanning two consecutive
regions in R-BTB. Set interleaving is also an option although it
will likely suffer from imbalance if the first level BTB is small. To
summarize, we argue that for such designs, the B-BTB organization
is better suited for the first level BTB.

3.6.2 Heterogeneous BTB Hierarchies. Although this work focuses
on homogeneous BTB hierarchies, we note that the organization
best suited for the L2 and L3 BTBs may not be the one most suited
for the L1 BTB. Due to information redundancy in the B-BTB or-
ganization, a given B-BTB level may require more entries to store
the same number of distinct branches compared to an R-BTB. In
absolute terms, this means that choosing the B-BTB organization
for large BTBs can waste a significant amount of storage. This
hints that a heterogeneous hierarchy may conceptually be advan-
tageous (this was previously suggested by Perleberg and Smith
[45], although in a context where the BTB also provides direction
predictions). We leave the study of heterogeneous hierarchies for
future work.

4 EXPERIMENTAL FRAMEWORK
This work first aims to compare existing BTB organizations in
terms of fetch PC throughput. While the different organizations
can be swapped in a straightforward manner, it is not obvious
what a fair comparison is, since the different organizations have
different storage and design tradeoffs. Moreover, techniques such
as tag compression using an indirection [53, 58] will mechanically
favor organizations that have fewer tags per targets, i.e., R-BTB and
B-BTB. As a result, we choose to sidestep the question of storage
and to keep the number of cacheable branch targets the same across
organizations. This favors the I-BTB organization as it does not tie
multiple branch slots to a region or a block.

4.1 Simulator
In this study, we use the ChampSim [22] cycle-level, trace-based
simulator. The pipeline was modified to model a decoupled fetcher
using two levels of BTBs. All changes are added on top of themaster
branch of the ChampSim repository, commit 29f568c. The frontend
pipeline stages are depicted in Fig. 3. Note that in the examples
depicting L2BTB hit, the fetch PC misses L1BTB, but this does not
prevent sequential instructions (or region or block) from moving
on to Fetch speculatively: There are no bubbles between BP and
FTQ for the missing fetch PC. When the L2BTB hit is resolved, any
over-fetch is corrected. The next fetch PC, however, does observe
the taken branch penalty. Our experiments are performed with

BP I$1 I$2FTQ ITLB DEC
L1 *BTB Hit

(taken/not taken
direct or return)

OR
*BTB Miss (non taken

cond)

BP

L2 *BTB Hit
(taken direct or return)

BP FTQ ITLB

BPBubbleBubbleBubble

I$3

I$1 I$2 I$3 DEC

BP FTQ ITLB

BP

I$1 I$2 I$3 DEC

BubbleBubbleBubbleBubbleBubbleBubble

BP FTQ

BP

I$3 DEC

Bubble BubbleBubbleBubbleBubble

Alloc Issue Exec

Bubble

ITLB I$1 I$2

BubbleBubbleBubble

L2 *BTB Miss (Misfetch,
taken direct

uncond branch)

L2 *BTB Miss (Mispred,
taken indirect or

taken conditional direct)

Figure 3: Frontend pipeline timing diagram of the decoupled
fetcher organization considered in this work. All indirect
branches except returns incur an additional 1-cycle bubble.

immediate update of the BTBs and branch predictors. Moreover,
the latency to fill (resp. evict) entries from higher (resp. to higher)
BTB levels is not modeled. The FTQ is bypassed when empty.

We further augment Fetch by allowing it to read multiple FTQ
entries each cycle if they map to different I-Cache set interleaves.
In other words, all organizations can fetch any 16 instructions
across any number of taken branches from at most 8 different cache
lines if i) The FTQ has information about these instructions ii) The
cache lines map to different I-Cache set interleaves iii) The decode
queue has space. The branch predictor can provide as many branch
predictions per cycle as required by the specific BTB organization.

We consider a processor model with an aggressive superscalar
width of 16. Since the average dynamic basic block size is 9.4 in the
traces, fetching across a taken branch is necessary to achieve ideal
throughput. Table 1 summarizes the main simulation parameters.

4.2 Workloads
In this study, we use “secret” server traces from the First Champi-
onship Value Prediction (CVP-1) [41, 43]. The traces were generated
from ARMv8 datacenter class workload binaries. We first consider a
subset of traces that have > 1 I-Cache misses per kilo instruction as
our goal is to be representative of workloads with large instruction
footprints. Of this subset of 783 traces, we use only 147, as most of
the traces are sensitive to the accuracy with which ARM-specific
addressing modes are modeled, and support for pre/post increment
indexing is currently not present in ChampSim. We therefore focus
on the traces that are not sensitive4 to this simulator abstraction.
The pipeline structures are warmed up for 50M instructions, and
statistics are collected during the next 50M instructions.

5 GAUGING THE POTENTIAL OF I-BTB,
R-BTB AND B-BTB

This initial experiment aims to delineate the potential of the three
organizations, assuming the processor depicted in Table 1 and a
huge (8K sets, 32-ways) BTB that has a 0-cycle taken branch penalty.
We harmonize the width of the organizations by considering R- and
B-BTB with 16-instruction regions/blocks (64B) and I-BTB with
16 banks. A larger region size (128B) was considered but proved
significantly less appealing for R-BTB in realistic configurations:
4IPC does not vary by more than 5% when addressing mode support is enabled in the
CVP-2 [42] infrastructure.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Arthur Perais and Rami Sheikh

Table 1: ChampSim Pipeline Configuration

Branch
Prediction

◦ 64KB Hashed Perceptron (16 4K-entry tables, 0-232 bit histories
8-bit weights, ChampSim commit 29f568c) [30, 60],
as many prediction per cycle as needed per cycle
◦ 64-entry Return Address Stack (RAS) [31]
◦ 4K-entry gshare-like indirect target predictor

BTB Sizes

◦ ideal: 512K-entry BTB, 0c bubble*
◦ real: 3K-entry L1BTB: 512 sets/6 ways,
full tag, LRU, 0c bubble*
◦ real: 13K-entry L2BTB: 1024 sets/13 ways,
full tag, LRU, 3c bubble*
*Non-return indirect branches cause an additional bubble

I-BTB
R-BTB
B-BTB

◦ 1 Br/entry
◦ 64B regions, 𝑛 Br/entry
◦ 64B blocks, 𝑛 Br/entry, one block per entry

Fetch Target
Queue ◦ 64-entry, one entry relates to a single cache line

Frontend
◦ 16-wide Fetch, 64-entry Decode Queue
◦ 16-wide Decode, 64-entry Allocate Queue
◦ 16-wide Allocate

Backend
◦ 352-entry ROB, 128-entry LQ, 72-entry SQ, 128-entry IQ
◦ 16-wide execute (11 Misc. + 3 Ld + 2 St)
◦ 16-wide Commit

Memory

◦ 32KB L1I$: (64 sets/8 ways), 8-way set interleaved,
3c lat., 16 MSHRs, LRU
◦ 48KB L1D$: (64 sets/12 ways) 5c ld-use, 16 MSHRs,
LRU, IPStride prefetcher
◦ 512KB L2: (1024 sets/8 ways), 15c load to use., 32 MSHRs,
LRU, NextLine prefetcher
◦ 2MB LLC: (2048 sets/16 ways), 35c load to use., 64 MSHRs, LRU
◦ 64-entry ITLB: (32 sets/4 ways), 1c lat.
◦ 64-entry DTLB: (32 sets/4ways), 1c lat.
◦ 1536-entry L2TLB: (128 sets/12 ways), 8c lat.
◦ 32GB DRAM: 3200 MHz, quad-channel

R-BTB 1BS
0.59 gmean

Figure 4: Performance of different BTB organizations relative
to I-BTB 16. Idealistic 512K-entry L1BTB, CVP-1 server traces.
The cross is the geometric mean, the box horizontal lines
are 1𝑠𝑡 quartile, median and 3𝑟𝑑 quartile. Whiskers span any
point within𝑄1− (1.5× (𝑄3−𝑄1)) (resp.𝑄3+ (1.5× (𝑄3−𝑄1))).
Dots are any point that are further than 1.5 × (𝑄3 −𝑄1) from
Q1 and Q3 respectively.

As the region size grows, the number of branch slots per entry
must grow accordingly, implying structures with fewer entries at
iso-branch slots. B-BTB, however, can benefit from larger blocks
without increasing the number of branch slots. In fact, 128B and
256B regions with the same number of branch slots as 64B regions
provide slight performance advantages in specific configurations,
as we will show in further experiments.

Fig. 4 reports whisker plots of the IPC achieved by the simulated
processor given the different BTB organizations, relative to I-BTB
16.5 Aswe consider a huge BTB that covers thewhole code footprint,
the performance is limited by the structural constraints of the
different BTB organizations during phases where the backend does
not apply backpressure, such as pipeline fills. The first two whiskers
relate to I-BTB that can only provide up to 8 fetch PCs per cycle
(I-BTB 8) and I-BTB that always provides 16 fetch PCs per access
regardless of taken branches (I-BTB 16 Skp). These configurations
are used to gauge performance sensitivity to fetch PC throughput
of the selected trace on the simulated microarchitecture. The key
takeaway is that once a high enough fetch PC throughput it attained,
additional throughput does not provide significant performance
improvement, unless the pipeline flushes often, as we will show
in Section 6.5.2. In this context, “high enough” relates to the ILP
that the backend is able to extract as providing more fetch PC
throughput than usable ILP eventually leads to microarchitectural
instruction buffers filling up. Specifically, while I-BTB 8 degrades
IPC by up to 2.2% (0.2% geomean), I-BTB Skp improves it only by
up to 1.4% (0.1% geomean). This is despite the large difference in
average number of fetch PCs generated per access: 5.6 (I-BTB 8),
7.7 (I-BTB 16) and 15.9 (I-BTB 16 Skp).

For R- and B-BTB, a first structural limitation is the number of
branch slots per region or block: In R-BTB and B-BTB, the IPC
diminishes with the number of branch slots per entry because
additional misfetches and mispredictions are caused by untracked
branches. In this dataset, 2 branch slots per entry are sufficient
for B-BTB, but R-BTB still sees slight improvement when going
to 4 and even 16 branch slots. However, the average occupancy of
the branch slots (sampled on the entire BTB structure every 1M
instructions) is only 1.60 (16-slot R-BTB) and 1.06 (16-slot B-BTB):
Provisioning 2 branch slots per entry is storage inefficient for both
organizations.

The second structural limitation is that R-BTB cannot generate
fetch PCs past the region boundary. Therefore, even with 16 branch
slots per entry and –close to– nomisses, it is not able to always keep
up with I-BTB and B-BTB. In this idealistic case (huge BTB and 16
branch slots), each I-BTB and B-BTB accesses generate an average
of around 7.7 fetch PCs, while each R-BTB access generates only an
average of 6.2, translating to up to 1.4% IPC loss (0.2% geomean).

We further investigate metadata redundancy within the L1 B-
BTB. To gather this information, we inspect the BTB every 1M
simulated instructions. For each branch PC tracked by at least one
BTB entry, we count the total number of entries tracking that PC.
I-BTB and R-BTB have a ratio of 1, while B-BTB has a ratio of
1.06 entries on average, indicating that 6% of the branch slots are
lost to redundancy. The ratio vary only slightly as the number of
branch slots changes. One could argue that the BTB is quite large
(512K entries), such that some entries may remain lingering forever
without being used, artificially increasing the redundancy ratio.
However, we found comparable ratios when more reasonably sized
structures were used. Nevertheless, this suggests that to attain the
same reach as I-BTB and R-BTB in the non-ideal case, the B-BTB
should have more branch slots in total.

5All performance numbers reported in this paper are normalized to 512K-entry I-BTB
16 to keep the baseline consistent

Branch Target Buffer Organizations MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Figure 5: IPC of realistic I-, R- and B-BTB configurations
normalized to the IPC of idealistic I-BTB 16.

6 BUILDING AN EFFICIENT BTB HIERARCHY
The next step of our analysis is to determine if the performance
advantage of B-BTB over R-BTB endures the switch to a realistic
BTB hierarchy. Further experiments use the BTB sizes reported
in Table 1. Although the first level BTB is a large structure, it is
heavily contented: On the traces used in this study, the 3K-entry L1
I-BTB (resp. 13K-entry L2 I-BTB) has an average hitrate6 of 76.3%
(resp. 99.9%).

6.1 Performance of Realistic BTB Hierarchies
We study a 3K-entry (512 sets/6 ways) L1 I-BTB with 0-cycle taken
branch penalty, backed-up by a 13K-entry L2 I-BTB (1024 sets/13
ways) with a 3-cycle taken branch penalty. These sizes reflect the
number of branch slots in Amd Zen 4 [17]. For R-BTB and B-BTB,
the structures are resized to account for the fact that each entry
provisions 1 (1x I-BTB), 2 (0.5x I-BTB), 3 (1K-entry 256 sets/4 ways
L1BTB, 4.5K-entry 256 sets/18 ways L2BTB) or 4 (0.25x I-BTB)
branch slots. Fig. 5 reports the IPC of realistic I-, R- and B-BTB
normalized to idealistic (512K-entry) I-BTB 16.

First, the different organizations behave differently as the num-
ber of branch slots per entry changes. With a single branch slot
per entry, R-BTB behaves poorly as cache lines generally feature
more than one taken branch. B-BTB performs comparatively well,
closer to the realistic I-BTB organization (1.74 vs. 1.79 geomean
IPC). The IPC difference can be attributed to redundancy as well
as misfetches and mispredictions caused by untracked branches. A
branch is cached in 1.04 (L1) and 1.05 (L2) entries on average for 1
branch slot per entry, translating to lower hitrates than I-BTB: 60.8%
vs. 76.3% (L1) and 97.8% vs. 99.9% (L2), leading to more misfetches
and mispredictions. This compounds with blocks having multiple
taken branches that yield BTB hit branch slot misses. Combined
branch mispredictions and misfetches per kilo-instructions is 5.91
MPKI compared to only 0.84 for realistic I-BTB.

Second, using more branch slots to prevent misfetches and mis-
predictions caused by untracked branches is detrimental for B-BTB.
Instead of branches contending for branch slots within entries,
blocks now contend for entries. The trend applies for R-BTB after 3
branch slots per entry, although the performance decrease is largely
6Taken branches hitting the BTB over total taken branches.

flatter. The reason for the different slope is that several blocks can
be cached in a single R-BTB entry, amortizing the reduced number
of entries.

The main conclusion we draw from the Figure is that in a context
where the BTB is oversubscribed, making good use of branch slots
is paramount. In terms of branch slot utilization, the most efficient
R- and B-BTB configurations are those with a single branch slot per
entry. However, they are not able to achieve the geomean IPC of
the realistic I-BTB configuration (I-BTB 16). For R-BTB, 3 slots per
entry actually achieve the highest IPC, despite suboptimal branch
slot use (1.57/1.55 slot used per L1/L2BTB entry, on average). In
the next Section, we introduce possible techniques to bridge the
remaining gap, which are necessary to provide high performance
as a wide I-BTB organization requires the number of BTB banks to
scale with the expected branch prediction width.

6.2 Even/Odd Set Interleaving the L1 R-BTB
The main structural limitation of R-BTB is that it cannot generate
fetch PCs past a region boundary. To address this limitation, the
structure can be set-interleaved. This is a known technique [13, 46]
that permits generating up to 32 fetch PCs (from 16) from two con-
secutive regions with single ported arrays. The cost of doing so is
additional hardware to rearrange fetch PCs (even or odd interleave
information first) as well as doubling the number of tag checks and
branch predictions each cycle. We refer to this configuration as
2L1 R-BTB. In designs featuring a small, fully associative L1BTB,
interleaving entries across two banks when only tens of entries are
available is likely to suffer from imbalanced use of the two banks.
As a result, those designs would have to rely on dual porting the
L1BTB, which is costlier than interleaving. Regardless, this design
hides latency only if both sequential entries are found in the L1BTB
during lookup. Furthermore, it still does not permit generating fetch
PCs over a taken branch.

6.3 Splitting Entries in B-BTB
In the baseline B-BTB, or in the R-BTB, when all branch slots of
an entry are used, a newly taken branch has to overwrite existing
information to be tracked. While many replacement policies can
be devised (LRU, unconditional direct first, etc.), the key is that
information is lost, potentially causing amisfetch or amisprediction
down the line. Alternatively, some form of supplemental branch
slots can be dynamically allocated to entries [11, 23, 29, 33], at a
latency cost.

However, with B-BTB, there exists a third option, used in [44, 46,
63]. An entry with 𝑛 branch slots needing to cache 𝑛 + 1 branches
can be split into two distinct entries. Conceptually, the update logic
may insert the new branch in a staging block local to the update
logic that has 𝑛 + 1 slots, and then split the entry at the instruction
following the 𝑛𝑡ℎ branch slot, assuming branch slots are ordered
by offset of the branch in the block. By construction, the 𝑛𝑡ℎ slot in
the staging block is a sometimes taken conditional branch.

A drawback of splitting is that a split entry does not have a
default fall-through anymore. Typically, with 16-instruction blocks
and 4-byte instructions, the fall-through of the current entry can
be computed by adding 64 to the current access PC in parallel with
the BTB access. However, when a block is split, the fall-through

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Arthur Perais and Rami Sheikh

I-BTB entry

Tag br_type br_target

R-BTB entry

Tag
br0_type br0_targetbr0_offset

brn_type brn_targetbrn_offset

B-BTB entry

Tag
br0_type br0_targetbr0_offset

brn_type brn_targetbrn_offset

MB-BTB entry

Tag

br0_type br0_targetbr0_offset
br0_cnt_at_target

brn_type brn_targetbrn_offset
brn_cnt_at_target

br0_stabl_ctr

brn_stabl_ctr
brn_follow

br0_followbr0_blk_id

brn_blk_id

Split

Split

Figure 6: Possible entry layout ofMB-BTB, contrasted against
I-, R- and B-BTB. Dashed boxes are optional fields depending
on required B/MB-BTB features.

depends on the block offset of the last branch slot, hence it cannot be
computed in parallel with the BTB access. If this addition prevents
the first level BTB access from meeting timing, split entries will
incur a bubble. To avoid paying this cost for non-split entries, a bit
may be added in each entry to inform whether an entry is split or
not.

6.4 MultiBlock BTB
6.4.1 Leveraging Unconditional Control Flow. As previously dis-
cussed in Section 2, the BTB contains speculative information that
is eventually checked against the ground truth: instruction bytes
for direct branches or calculated targets for indirect branches. This
key property allows organizing the BTB as a MultiBlock BTB (MB-
BTB) where each entry caches information about a chain of blocks,
much like the trace cache [49], without suffering from one of its
main drawbacks: Maintaining coherence with the rest of the cache
hierarchy. Regardless of whether this is done in hardware (e.g., x86)
or software (e.g., ARMv8), this is highly problematic for a trace
cache as a single instruction may be part of many traces, hence
many entries. As a result, if a cached instruction is modified, the
whole trace cache must be searched and all entries containing that
instruction must be invalidated. This has led to trace cache imple-
mentations such as the Pentium 4’s, where writes to instruction
memory could cause the invalidation of the whole trace cache, no-
tably lowering the performance of self-modifying code [26]. Since
the BTB is speculative, it is not problematic for it to cache incorrect
information. Therefore, fully leveraging the block organization and
making it multiblock will not require hardware to support writes
to instruction memory.

The key idea behind MB-BTB is that all B-BTB entries that ter-
minate with an unconditional direct branch are always followed
by the same entry. Therefore, instead of occupying a second entry,
the block at the target of the unconditional direct branch can be
“pulled” into the entry tracking the unconditional branch. Up to
#𝐵𝑟𝑎𝑛𝑐ℎ𝑆𝑙𝑜𝑡𝑠 + 1 blocks can be chained in this fashion (although
the last block cannot be terminated by a taken branch). This is the
approach used in Amd Zen 4 (2 branch slots), with two limitations:
direct calls are not eligible and the second branch must be in the
64-byte aligned region containing the target of the first branch [17].

A possible layout for an MB-BTB entry is provided in Fig. 6
and contrasted against I-, R- and B-BTB. First, each branch slot
is associated with the block they belong to through the br_blk_id
field. Second, each branch that pulls its target block in needs to

provide the instruction count of said block. This is done through the
br_cnt_at_target field. Lastly, optional fields can be added: br_follow
and br_stabl_ctr are provided to enable always taken (and almost
always taken) conditional branches and indirect branches with a
single target to pull their target block in.

For instance, consider an MB-BTB entry with 2 branch slots,
containing 2 unconditional direct branches. This means that the
entry may cache up to three blocks. The br_offset field (blue) of the
first unconditional direct branch informs of the number of bytes
in the first block. The br0_cnt_at_target field (blue) informs of the
number of bytes between the target of the first unconditional branch
(br0_target) and the second unconditional branch (i.e., the second
block of the entry). Finally, the br1_cnt_at_target field (orange)
informs of the number of bytes between the target of the second
unconditional branch (br1_target) and the end of the block (i.e.,
the third block of the entry). MB-BTB entries may also be split if
needed, which requires the brX_offset fields to be actual offsets of
the branches in their respective blocks (given by brX_blk_id). MB-
BTB suffers from the same drawback as B-BTB with entry splitting:
Entry information is needed to compute the fall-through if a block
has been split at a sometimes taken conditional branch.

6.4.2 Categorizing Conditional and Indirect Branches. While we
initially consider MB-BTB for direct unconditional branches only
(including calls), the same idea can be used for always –or almost
always– taken conditional branches aswell as indirect branches that
always jump to the same target. Those respectively represent 15.0%
and 9.1% of the dynamic branches on average in CVP-1 server traces
[43]. However, after a taken conditional branch or indirect branch
is first encountered, its future behavior is unknown. Therefore, it
may not be ideal to immediately pull the target block of this branch
into the MB-BTB entry. Rather, this should be done only after the
behavior repeats enough times. In this work, we experimented with
several thresholds and found that immediately pulling the target of
conditional branches while requiring the same target 63 times in a
row for indirect branches works well enough. This improves density
while limiting the number of times a multiblock entry is quickly
broken down because e.g., a branch thought to be always have
the same target changes target. Note that for conditional branches,
implicit filtering is already applied since a conditional branch that
is not taken at the time the BTB block is allocated will not be always
taken, and is therefore not eligible for pulling its target into the
block.

Practically, we keep one 6-bit counter per branch slot in the MB-
BTB entries, brX_stabl_ctr in Fig. 6. This counter is incremented at
update time if the branch is indirect and the target matches the one
in the MB-BTB. If not, the counter is reset. The counter is always
kept at the threshold and brX_follow remains set for unconditional
direct branches and always taken conditional branches. Once the
counter reaches the threshold for an indirect branch, the corre-
sponding brX_follow bit is set, and the fall-through of the branch
(if present) is replaced by the target block during block update.
Should the branch change behavior, the bit and counter would
be reset, and the target block replaced by the fall-through (direct
branch) or removed (indirect branch). Note that counters may only
be implemented in the L1BTB while other levels only record the
brn_follow bit. In a hierarchy with an L1BTB with only few tens

Branch Target Buffer Organizations MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

of entries [15, 16, 44], this would greatly limit the overall storage
footprint required to pull the target blocks of indirect branches.
Further tuning of the heuristic determining which conditional and
indirect branches are eligible is left for future work.

We also found that there is a slight performance advantage in
disallowing the last7 branch of a block from pulling its target. This is
advantageous due to the tendency of (M)B-BTB to cache redundant
information, as was discussed in 3.4. For instance, if there are two
call sites for a function, and the two call instructions occupy the last
branch slots of their respective MB-BTB entry, then allowing them
to pull their target may lead to two different fallthrough blocks.
Conversely, preventing them from pulling their target will ensure
both will share the same successor block, reducing redundancy. The
same applies to other types of eligible branches.

6.4.3 Entry Update and Splitting Entries. Splits in MB-BTB work
like in B-BTB. Updates are also similar, although the update logic
needs to be augmented to handle conditional or indirect branches
that reach or leave the “pull target” threshold.

Interestingly, when an always taken conditional branch has
pulled its target information but becomes not taken, there is a
choice to make: Should the MB-BTB entry be amended so that the
target block of the branch and any subsequent blocks are removed
from the entry, or should it be kept as is? In theory, this choice boils
down to whether the branch will be mostly taken or not. Indeed,
by “pulling” the target block of a conditional branch into the MB-
BTB entry of the branch, we have introduced a non-taken branch
penalty. Reversing the behavior of the branch to that of a normal
conditional branch in the BTB entry would make that non-taken
penalty disappear but would reintroduce the taken branch penalty.
As a result, in practice, it is not obvious whether the correct choice
is to keep the entry as is or to update it, especially if the first level
BTB hides the penalty in both cases. In this work, we immediately
downgrade the always taken branch to a normal conditional branch
and remove its target block (and potential followers) from the entry.
The same applies to indirect branches that were previously treated
as always jumping to the same target.

6.5 Impact of R- and B-BTB Improvements on
Performance

6.5.1 R-BTB. Fig. 7 presents the gain brought by accessing two
sequential R-BTB entries through interleaving (R-BTB 2L1 2/3BS),
along with two R-BTB configurations that have the number of sets
and ways (i.e., geometry) depicted in Section 6.1 for 2/3 branch
slots per entry, but actually feature 16 branch slots per entry (R-
BTB 2/3Geo 16BS), as well as four R-BTB configurations with 128B
regions with 2, 3, 4 and 6 branch slots per entries (R-BTB 128B
2/3/4/6BS).

The first takeaway is that being able to get fetch PCs from two
sequential entries has limited impact, providing up to 1.4% (0.5%
geomean) IPC improvement with 2 branch slots per entry, and up to
1.2% (0.2% geomean) with 3 branch slots, over similar configurations
with a single interleave.

The second takeaway is that the performance degradation of
R-BTB compared to I-BTB comes from pressure on branch slots

7Branch slot 𝑛 if entries feature 𝑛 branch slots.

Figure 7: IPC of R-BTB, interleaved R-BTB and 128B region
R-BTB configurations normalized to the IPC of idealistic I-
BTB 16.

rather than entries, at least for 2 and 3 branch slots per entry.
Indeed, by keeping the same number of entries but providing 16
branch slots, performance significantly increases from 1.60/1.76
(2BS/3BS) geomean IPC to 1.79/1.78 (2Geo 16BS/3Geo 16BS), with
realistic I-BTB 16 at 1.79. This could be seen as an upper bound
of the performance achievable with shared overflow branch slots
for regions that have more than 2/3 taken branches. Nevertheless,
once the number of entries gets low enough, e.g., 4BS geometry
with 16 slots per entry (not shown in the Figure), the trend inverts
and BTB contention starts becoming the major bottleneck.

The last takeaway is that increasing the region size does not
provide significant performance advantage for R-BTB, although the
average number of fetch PCs generated by access increases from 6.2
(R-BTB 2/3BS) to 6.8 (2L1 R-BTB 2BS) and 6.7 (2L1 R-BTB 3BS), and
finally 7.4 (R-BTB 128B 4/6 BS). However, while this is a clear win for
128B R-BTB 4BS over R-BTB 2BS, the reduction in number of BTB
entries in 128B R-BTB 6BS causes additional misfetches and branch
mispredictions due to BTB misses, such that 2L1 R-BTB 3BS remains
the best performer of the realistic R-BTB configurations. Much like
when the region size is 64B, at iso-branch slots, there is an optimal
number of branch slots per entry that balances BTB misses with
misfetches/mispredictions caused by untracked branches. From the
Figure, that number is 3 for 64B regions, and 4 for 128B regions,
given the workloads and BTB sizes considered in this work.

6.5.2 B-BTB and MB-BTB. Fig. 8 shows the IPC of the various
B-BTB proposals, normalized to that of an idealized I-BTB 16, for re-
alistically sized structures. The first two boxes relate to the realistic
I-BTB 16 configuration, and the best realistic R-BTB configuration
from Fig. 7. The Figure then presents various B- and MB-BTB con-
figurations with 1, 2 and 3 branch slots per entry. For MB-BTB,
UncndDir means that only target blocks of unconditional direct
branches (excluding calls) are pulled, CallDir adds direct calls, and
AllBr adds conditional branches and indirect branches that met the
conditions discussed in Section 6.4.2 (63).

In general, R-BTB and MB-BTB still lag behind I-BTB due to
the heavily contended L1BTB. In fact, the highest performing MB-
BTB scheme (MB-BTB 2BS AllBr) is behind B-BTB 1BS Splt at 1.74
vs. 1.78 geomean IPC, suggesting that in a context where the L1BTB

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Arthur Perais and Rami Sheikh

Figure 8: IPC normalized to ideal I-BTB 16 for the proposed
B-BTB improvements and MB-BTB.

is contented, more entries featuring a single branch slot is the
best tradeoff, as long as entries can be split. Indeed, for 1 branch
slot, splitting brings 2.6% geomean IPC improvement, from 1.75
to 1.78. I-BTB 16 achieves 1.79 geomean IPC, while the idealistic
I-BTB 16 configuration achieves 1.80 (0.3% speedup). Despite being
considered in [44], splitting is not needed with 2 and 3 branch slots
as branches do not compete for branch slots within blocks as much,
enabling parallel fall-through computation and BTB access.

Nevertheless, with more than one branch slot per entry, the rela-
tive potential of MB-BTB is quite high, especially when the target of
unconditional direct branches and calls are pulled into their prede-
cessor entries. Pulling call targets is comparatively more important:
for 2 (resp. 3) branch slots, pulling targets of unconditional direct
branches increases performance by 2.7% (resp. 9.1%) geomean, and
pulling targets of direct calls further increases performance by 2.2%
(resp. 16.5%) geomean. Pulling the target of always taken condi-
tional branches as well as indirect branches with a single target in
their predecessor block has a more modest impact: up to 1.8% (0.3%
geomean) for MB-BTB 2BS AllBr and up to 4.1% (2.6% geomean) for
MB-BTB 3BS AllBr, over similar MB-BTB CallDir configurations.

A last improvement avenue for B- and MB-BTB specifically is
that contrarily to R-BTB, the reach (i.e., block size) of an entry can
be increased without necessarily having to increase the number of
branch slots in each entry, as entry splitting can gracefully handle
supernumerary taken branches. Conversely, in R-BTB, increasing
entry reach generally requires increasing the number of branch
slots per entry, as previously shown in Fig. 5, and does not provide
any performance advantage vs. a cache line size region (64B) in
our experiments. In I-BTB, wider fetch PC generation requires
additional banks.

In this experiment, we therefore consider the highest perform-
ing B-BTB (B-BTB 1BS Splt) and MB-BTB configurations (MB-BTB
2/3BS AllBr) and extend entry reach without changing the num-
ber of branch slots per entry. Fig. 9 reports the IPC normalized to
the idealistic I-BTB 16 configuration. For B-BTB 1BS Splt with a
single branch slot, we see negligible increase when moving from
16-instruction (B-BTB 16 1BS Splt) blocks to 32-instruction blocks
(B-BTB 32 1BS Splt). Further block size increase similarly did not
yield improvement.

ForMB-BTB 2BS AllBr, increasing reach from 16 to 32 instructions
has a noticeable impact on performance (up to 6.3% speedup, 1.3%
geomean), while increasing from 32 to 64 has negligible impact.

Finally, forMB-BTB 3BS AllBr, the impact of larger reach is more
significant. Although configurations with 3 branch slots per entry
have higher performance variability, using 64-instruction blocks
provides 1.73 geomean IPC while 16-instruction blocks only pro-
vides 1.61 IPC, which represent a 6.8% geomean IPC increase. Note
however that baseline B-BTB configurations with increased entry
reach remain at a comparable level of performance as their lower
reach counterparts, simply because the higher reach is often unused
due to an unconditional branch terminating the block.

Fig. 10 summarizes the number of average fetch PCs generated
per BTB access along geomean IPC for the realistic configurations.
Overall, MB-BTB is very efficient at improving block utilization,
which noticeably improves performance compared to plain B-BTB
when each entry provisions 2 and 3 branch slots. This improvement
comes from MB-BTB being able to partially compensate for B-
BTB misses by providing multiple blocks on hits. However, in a
constrained setting, and given the workloads used in this study, this
does not translate to competitive performance and a simple B-BTB
with a single branch slot per block and entry splitting is the best
tradeoff. Even if R-BTB does not suffer from metadata duplication,
its best configuration, 2L1 R-BTB 3BS, still lags behind B-BTB 1BS
Splt (1.4% higher geomean IPC). Nonetheless, we argue that MB-
BTB delivers as expected in terms of fetch PCs per access. Indeed,
MB-BTB can only improve performance over the idealistic I-BTB if
redundancy is absorbed by additional entries and the backend is
swift enough to expose the frontend bottleneck, which happens in
two cases: i) Program sections where extractible ILP is higher than
the dynamic basic block size (9.4 on average, in this work) and ii)
The pipeline often has to refill e.g. because of branch or memory
dependency mispredictions. Unfortunately, neither of these cases
are observed in our experimental framework, especially as branch
MPKI is only 0.84 on average (0.15 minimum, 3.55 maximum, 0.72
median) and ChampSim implements oracle memory dependency
prediction.

To illustrate this unrealized potential, we consider two final ex-
periments. In the first, we use the idealistic 512K-entry I-BTB 16
and MB-BTB 64 AllBr in combination with an ideal backend that
is limited only by ILP within an 8K instruction window.8 Figure
11a depicts the performance advantage of MB-BTB 64 AllBr over
I-BTB 16 along the average dynamic basic block size for all traces.
Speedups are significant (13.4% geomean, up to 15.6%) and correlate
well with the dynamic basic block size: since smaller blocks cannot
efficiently use the bandwidth of I-BTB 16 (or even B-BTB 16), the
highest speedups are obtained for smaller block sizes. Conversely, as
the average basic block size grows towards 16, the improvement di-
minishes, although the minimum speedup is still significant at 6.0%.
This confirms that MB-BTB does have a fundamental advantage
over I-BTB and B-BTB, but that this advantage cannot be realized
in current designs where the backend cannot extract enough of the
underlying ILP.

8All data dependencies are enforced but all instructions require a single cycle to
execute, with functional units always available. The whole window can be executed in
a single cycle if dependencies permit it. The whole window can be retired in a single
cycle.

Branch Target Buffer Organizations MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

I-B
TB

 1
6

B-B
TB
16

1B
S

Sp
lt

B-B
TB

 3
2

1B
S

Sp
lt

M
B-B

TB
 1
6

2B
S

AllB
r

B-B
TB

 3
2

2B
S

M
B-B

TB
 3
2

2B
S

Cal
lD

ir

M
B-B

TB
 3
2

2B
S

AllB
r

B-B
TB

 6
4

2B
S

M
B-B

TB
 6
4

2B
S

Cal
lD

ir

M
B-B

TB
 6
4

2B
S

AllB
r

M
B-B

TB
 1
6

3B
S

AllB
r

B-B
TB

 3
2

3B
S

M
B-B

TB
 3
2

3B
S

Cal
lD

ir

M
B-B

TB
 3
2

3B
S

AllB
r

B-B
TB

 6
4

3B
S

M
B-B

TB
64

3B
S

Cal
lD

ir

M
B-B

TB
 6
4

3B
S

AllB
r

2 Branch Slots 3 Branch Slots

Figure 9: IPC normalized to ideal I-BTB 16 for B- and MB-BTB when increasing block size.

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

0
2
4
6
8

10
12
14
16

ge
om

ea
n

IP
C

Av
er

ag
ef

Fe
tc

h
PC

s
pe

r a
cc

es
s

Figure 10: Average Fetch PCs provided by each BTB access and geomean IPC of various realistic BTB configurations.

Nevertheless, MB-BTB can still provide an advantage over I-BTB
and B-BTB with a realistic backend when programs show poor be-
havior in terms of branch –andmemory dependency– predictability.
Indeed, our second experiment increases branch MPKI by progres-
sively reducing the size of the conditional branch predictor, and
showcases that the performance uplift brought byMB-BTB 64 AllBr
directly correlates with branch MPKI, as illustrated in Figure 11b.
While artificial, this last experiment showcases that workloads with
high branchMPKI can benefit fromMB-BTB on pipeline refills, even
if the backend will eventually throttles the frontend.

7 RELATEDWORK
7.1 BTB Density
Yeh and Patt first consolidate basic block information in a BTB
entry [63], with improvements proposed by Reinman et al. [46] in
the Fetch Target Buffer. In both cases, an entry can track one taken
branch, limiting taken branch throughput.

PDede restructures the BTB to reduce redundancy through de-
composing the target address into region, page, and offset pieces
that are stored in different tables (address partitioning and dedupli-
cation) and optimized for the common case where the branch and
its target are in the same page [58]. Tag compression and address
partitioning were first proposed for the BTB in [53]. Kobayashi et
al. propose an alternative to tag compression where high order bits
of the target are taken from the access PC when the branch jumps
within a specific region of code (near branch) [36]. An embodi-
ment of this scheme is implemented in the SPARC T4 [56]. Another
variation proposed by Hoogerbrugge is to combine or mix entries

being able to store near or far targets in the same structure [25].
BTB-X similarly stores offsets defined as bits to be concatenated to
significant bits of the branch PC to form the address, rather than
performing an addition. The BTB has multiple ways, each able to
store a different offset size [4, 5]. Fagin suggests using partial tags
in the BTB as full tags are not cost effective [18]. Gupta et al. [24]
store branch targets as offsets only in the last level BTB and rec-
ommend the usage of skewed indexing [52]. Other works focus on
BTB replacement policies, either purely in hardware [2] or through
profiling and software hints [57]. Those techniques are generally
orthogonal to MB-BTB.

7.2 Instruction Prefetching
Reinman et al. first introduced decoupled fetching (DCF) that de-
couples branch prediction from instruction fetch using a queue
that stores the addresses to be fetched [46–48]. This allows branch
prediction to progress beyond instruction cache misses, exploit-
ing instruction memory level parallelism and performing Fetch
Directed Instruction Prefetching (FDIP). Ishii et al. revisit DCF
within modern processors and provide possible optimizations for
global history register management and early resteer on BTBmisses
[27, 28].

Confluence [33] recognizes that the I-Cache and FDIP leverage
the samemetadata. It uses an R-BTB operating at the cache line gran-
ularity and uses the same prefetch metadata to prefetch into both
the BTB and I-Cache using record-and-replay (temporal streaming).
Shotgun [38] observes that server workloads have global control
flow that consists of unconditional branches that jump between

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Arthur Perais and Rami Sheikh

1.06

1.08

1.1

1.12

1.14

1.16

1.18

8

9

10

11

12

13

14

IP
C

N
or

m
al

iz
ed

 to
 id

ea
lis

tic
 I-

BT
B

16

Av
er

ag
e

D
yn

am
ic

 B
as

ic
 B

lo
ck

 S
iz
e

Dyn. Basic Block Size Speedup

(a) Speedup of MB-BTB 64 AllBr over I-BTB 16 when an ideal
backend is used. Traces are sorted from shortest to longest
average dynamic basic block size.

0
2
4
6
8
10
12
14
16
18
20

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

64K BP 32KB BP 16KB BP 8KB BP 4KB BP 2KB BP

To
ta

l B
ra

nc
h

M
PK

I

IP
C

N
or

m
ai

ze
d

to
 Id

ea
lis

tic
 I-

BT
B

16

Total Branch MPKI Min Geomean Max

(b) Min/Avg/Max speedup of MB-BTB 64 AllBr over I-BTB 16
as the branch predictor size is decreased, thereby increasing
average branch MPKI.

Figure 11: Limit study of the potential ofMB-BTB 64 AllBr
over I-BTB 16. 512K-entry BTBs.

regions of code, and local control flow with high spatial locality
within each region, allowing for dense encoding. The BTB is thus
statically partitioned among the two to prevent collisions, and the
cache lines accessed for a given region are recorded and used to
issue prefetches. Shotgun performs instruction prefetching both
through the FTQ and through the dedicated information stored in
the BTB. Using a dedicated BTB for unconditional branches was
first proposed by Yeh and Patt [63]. Other instruction prefetching
work perform instruction prefetching through a dedicated structure
[3, 20, 21, 37, 59, 64] or through profiling and software prefetching
[6]. These works focus on improving fetch latency by maximizing
I-Cache hits, but do not tackle multiple block fetch.

7.3 BTB Prefetching
Boomerang performs BTB prefetching by decoding the data re-
turned from the L2 on an I-Cache miss to proactively fill the BTB
[39]. Twig [35] profiles execution to identify critical BTB misses
offline and then inserts new BTB prefetch instructions into an opti-
mized version of the binary. The IBMz12 core performs L2 to L1BTB
prefetching ("preloading") upon encountering both an L1 BTB miss
and I-Cache miss. In that event, the L2BTB is searched to provide
the branch metadata for the whole 4KB code region to be loaded
into the L1BTB [8]. BTB prefetching can also be added on top of
MB-BTB, although decode-based prefetching may not always be

able to chain blocks, e.g. if the target of the prefetched block is
already in the BTB.

7.4 Fetching Multiple Blocks per Cycle
The works most closely related to MB-BTB are Zero-bubble Always
Taken and Zero-bubble Often Taken (Samsung’s M5 [23]), and the
Amd Zen 4 BTB [17]. The former embeds the target of always or
mostly taken branches in their predecessor BTB entries. This mech-
anism was only leveraged to remove the taken branch penalty in a
non-decoupled design, and not to fetch multiple blocks each cycle
as it did not consider embedding more than one additional target
in the BTB entry. A similar effect can be achieved with a Branch
Target Instruction Cache (BTIC) that stitches instructions at the
target of a branch with said branch after Fetch [34]. Regardless, it is
unclear if indirect branches were considered in the M5 mechanism,
when single target indirect branches make up an average of 9.1% of
the dynamic branches in the CVP-1 server traces [43]. The Zen 4
BTB, while even closer to the MB-BTB proposal, does not consider
“pulling” the target entry of single target indirect branches as well
as always taken conditional branches when they represent 9.1%
and 15.0% of the dynamic branches, respectively.

A second closely related work is the Branch Address Cache (BAC)
[61, 62]. Each BAC entry captures a subtree of the application’s
control flow graph (CFG), with each tree node corresponding to
a branch. Each node stores both the branch target and the fall-
through address, leading to significant duplication as the subtree
depth increases. The depth depends on the number of branches
predicted per cycle, with said predictions selecting the path to be
followed in the subtree, thereby generating multiple fetch blocks
each cycle. An MB-BTB entry can similarly provide the addresses
of multiple fetch blocks but does so by storing only one path of the
CFG.

Rotenberg et al. introduce the Trace cache, which records traces
made of multiple basic blocks [49, 50]. Like BAC, a trace is selected
using branch predictions. Like MB-BTB, each entry only caches
a single path in the CFG. Trace caches suffer from redundancy of
information, for which mitigations have been proposed [7], but
more importantly, from costly self-modifying code and invalidation
flows as invalidated instructions may reside in many entries [26].
The BTB, need not invalidate entries when instruction memory is
written.

Lastly, the Alpha EV8 can fetch up to two basic blocks each
cycle using a fast next line predictor [12] backed up by a complex
conditional branch predictor [54] and the I-Cache itself. This design
completely sidesteps the BTB but already suffered from limited
next line predictor accuracy even when the typical code footprint
was much smaller compared to that of modern datacenter class
workloads.

8 CONCLUSION
This work surveys and compares three BTB organizations in the
context of a BTB hierarchy and large instruction footprint work-
loads. We argue that Instruction BTB is not adapted to high per-
formance designs as it requires scaling the number of interleaves
with the fetch width. Unfortunately, more amenable organizations,
Region and Block BTB, are not able to provide the same level of

Branch Target Buffer Organizations MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

performance as I-BTB when realistically sized structures are used.
This paper considered one improvement to R-BTB and two im-
provements to B-BTB to bridge the gap. We found experimentally
that in a realistic setting, avoiding BTB misses is comparatively
more important than increasing the number of fetch PCs per access.
This makes B-BTB with a single branch slot per entry and entry
splitting the best performing practical organization. However, we
showed that MB-BTB significantly increases the number of fetch
PCs per BTB accesses, such that if the code footprint fits in the BTB,
the MultiBlock BTB can bring back the performance level to that
of I-BTB, and even modestly outperform it, on a subset of server
traces from CVP-1 [41, 43].

REFERENCES
[1] Narasimha Adiga, James Bonanno, Adam Collura, Matthias Heizmann, Brian R.

Prasky, and Anthony Saporito. 2020. The IBM z15 High Frequency Mainframe
Branch Predictor Industrial Product. In Proceedings of the International Symposium
on Computer Architecture. 27–39. https://doi.org/10.1109/ISCA45697.2020.00014

[2] Samira Mirbagher Ajorpaz, Elba Garza, Sangam Jindal, and Daniel A. Jiménez.
2018. Exploring Predictive Replacement Policies for Instruction Cache and
Branch Target Buffer. In Proceedings of the International Symposium on Computer
Architecture. IEEE, 519–532.

[3] Ali Ansari, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. 2020. Divide and
Conquer Frontend Bottleneck. In Proceedings of the International Symposium on
Computer Architecture. IEEE, 65–78.

[4] Truls Asheim, Boris Grot, and Rakesh Kumar. 2021. BTB-X: A Storage-Effective
BTB Organization. IEEE Computer Architecture Letters 20, 2 (2021), 134–137.

[5] Truls Asheim, Boris Grot, and Rakesh Kumar. 2023. A Storage-Effective BTB
Organization for Servers. In Proceedings of the International Symposium on High
Performance Computer Architecture. 1153–1167.

[6] Grant Ayers, Nayana Prasad Nagendra, David I August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley,
and Parthasarathy Ranganathan. 2019. Asmdb: understanding and mitigating
front-end stalls in warehouse-scale computers. In Proceedings of the International
Symposium on Computer Architecture. 462–473.

[7] Bryan Black, Bohuslav Rychlik, and John Paul Shen. 1999. The Block-based Trace
Cache. In Proceedings of the International Symposium on Computer Architecture.
196–207.

[8] James Bonanno, Adam Collura, Daniel Lipetz, Ulrich Mayer, Brian Prasky, and
Anthony Saporito. 2013. Two Level Bulk Preload Branch Prediction. In Proceedings
of the International Symposium on High Performance Computer Architecture. 71–
82.

[9] Brian K. Bray and Michael J. Flynn. 1991. Strategies for Branch Target Buffers.
In Proceedings of the International Symposium on Microarchitecture. 42–50.

[10] Ioana Burcea and Andreas Moshovos. 2009. Phantom-BTB: a Virtualized Branch
Target Buffer Design. In Proceeding of the International Symposium on Architec-
tural Support for Programing Languages and Operating Systems. 313–324.

[11] Brad Burgess, Brad Cohen, Marvin Denman, Jim Dundas, David Kaplan, and Jeff
Rupley. 2011. Bobcat: AMD’s low-power x86 processor. IEEE Micro 31, 2 (2011),
16–25.

[12] Brad Calder and Dirk Grunwald. 1995. Next Cache Line and Set Prediction. In
Proceedings of the International Symposium on Computer Architecture. 287–296.

[13] Thomas M. Conte, Kishore N. Menezes, Patrick M. Mills, and Burzin A. Patel.
1995. Optimization of Instruction Fetch Mechanisms for High Issue Rates. In
Proceedings of the International Symposium on Computer Architecture. 333–344.

[14] Advanced Micro Devices. 2020. Software Optimization Guide for AMD EPYC™
7003 Processors, Pub 56665, Rev 3. , 28-29 pages. [Online; accessed Nov.-2022].

[15] Advanced Micro Devices. 2020. Software Optimization Guide for AMD Family
15h Processors, Pub 47114, Rev 3.08. , 35 pages. [Online; accessed Nov.-2022].

[16] Advanced Micro Devices. 2021. Software Optimization Guide for AMD Family
17h Processors, Pub 55723, Rev 3.00. , 27 pages. [Online; accessed Nov.-2022].

[17] Advanced Micro Devices. 2023. Software Optimization Guide for AMD Zen4
Microarchitecture, Pub 57647, Rev 1. , 21 pages. [Online; accessed Apr.-2023].

[18] Barry Fagin. 1997. Partial Resolution in Branch Target Buffers. IEEE Trans.
Comput. 46, 10 (1997), 1142–1145.

[19] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the Clouds: a Study of Emerging
Scale-out Workloads on Modern Hardware. In Proceeding of the International
Symposium on Architectural Support for Programing Languages and Operating
Systems. 37–48.

[20] Michael Ferdman, Cansu Kaynak, and Babak Falsafi. 2011. Proactive Instruction
Fetch. In Proceedings of the International Symposium on Microarchitecture. 152–
162.

[21] Michael Ferdman, Thomas F. Wenisch, Anastasia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2008. Temporal Instruction Fetch Streaming. In Proceedings
of the International Symposium on Microarchitecture. 1–10.

[22] Nathan Gober, Gino Chacon, Lei Wang, Paul V. Gratz, Daniel A. Jimenez, Elvira
Teran, Seth Pugsley, and Jinchun Kim. 2022. The Championship Simulator: Ar-
chitectural Simulation for Education and Competition. https://doi.org/10.48550/
ARXIV.2210.14324

[23] Brian Grayson, Jeff Rupley, Gerald Zuraski Zuraski, Eric Quinnell, Daniel A.
Jiménez, Tarun Nakra, Paul Kitchin, Ryan Hensley, Edward Brekelbaum, Vikas
Sinha, and Ankit Ghiya. 2020. Evolution of the Samsung Exynos CPUMicroarchi-
tecture. In Proceedings of the International Symposium on Computer Architecture.
40–51. https://doi.org/10.1109/ISCA45697.2020.00015

[24] Vishal Gupta and Biswabandan Panda. 2022. Micro BTB: a High Performance
and Storage Efficient Last-level Branch Target Buffer for Servers. In Proceedings
of the International Conference on Computing Frontiers. 12–20.

[25] Jan Hoogerbrugge. 2000. Cost-efficient Branch Target Buffers. In European
Conference on Parallel Processing. 950–959.

[26] Intel. 2022. Intel® 64 and IA-32 Architectures Optimization Reference Manual,
Section 3.6.8.1. www.intel.com.

[27] Yasuo Ishii, Jaekyu Lee, Krishnendra Nathella, and Dam Sunwoo. 2020. Rebasing
Instruction Prefetching: An Industry Perspective. IEEE Computer Architecture
Letters 19, 2 (2020), 147–150.

[28] Yasuo Ishii, Jaekyu Lee, Krishnendra Nathella, and Dam Sunwoo. 2021. Re-
establishing Fetch-Directed Instruction Prefetching: An Industry Perspective. In
Proceedings of the International Symposium on Performance Analysis of Systems
and Software. 172–182.

[29] Christian Jacobi. 2021. The > 5GHz Next Generation IBM Z Processor
Chip. https://research.ibm.com/publications/the-greater5ghz-next-generation-
ibm-z-processor-chip

[30] Daniel A. Jiménez and Calvin Lin. 2001. Dynamic Branch Prediction with Per-
ceptrons. In Proceedings of the International Symposium on High-Performance
Computer Architecture. 197–206.

[31] David R. Kaeli and Philip G. Emma. 1991. Branch History Table Prediction
of Moving Target Branches due to Subroutine Returns. In Proceedings of the
International Symposium on Computer Architecture. 34–42.

[32] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a Warehouse-
scale Computer. In Proceedings of the International Symposium on Computer
Architecture. 158–169.

[33] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2015. Confluence: Unified Instruc-
tion Supply for Scale-out Servers. In Proceedings of the International Symposium
on Microarchitecture. 166–177.

[34] A. Richard Kennedy, Mike Alexander, Eric Fiene, Jose Lyon, Belli Kuttanna, Rajesh
Patel, Mydung Pham, Michael Putrino, Cody Croxton, Suzanne Litch, et al. 1997.
A G3 PowerPC/sup TM/superscalar low-power microprocessor. In Proceedings of
COMPCON, Digest of Papers. 315–324.

[35] Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K Soundarara-
jan, Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney, Gilles A. Pokam,
Heiner Litz, and Baris Kasikci. 2021. Twig: Profile-guided BTB Prefetching for
Data Center Applications. In Proceedings of the International Symposium on Mi-
croarchitecture. 816–829.

[36] Ryotaro Kobayashi, Yuji Yamada, Hideki Ando, and Toshio Shimada. 1999. A cost-
effective Branch Target Buffer with a two-level Table Organization. In Proceedings
of the International Symposium of Low-Power and High-Speed Chips.

[37] Aasheesh Kolli, Ali Saidi, and Thomas F Wenisch. 2013. RDIP: Return-address-
stack Directed Instruction Prefetching. In Proceedings of the International Sympo-
sium on Microarchitecture. 260–271.

[38] Rakesh Kumar, Boris Grot, and Vijay Nagarajan. 2018. Blasting Through the
Front-end Bottleneck with Shotgun. In Proceeding of the International Symposium
on Architectural Support for Programing Languages and Operating Systems. 30–42.

[39] Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Nagarajan. 2017.
Boomerang: A Metadata-free Architecture for Control Flow Delivery. In Proceed-
ings of the International Symposium on High Performance Computer Architecture.
IEEE, 493–504.

[40] Johnny K. F. Lee and Alan Jay Smith. 1984. Branch Prediction Strategies and
Branch Target Buffer Design. Computer 17, 01 (1984), 6–22.

[41] Arthur Perais. 2018. First Championship Value Prediction Secret Traces. https:
//doi.org/10.18709/perscido.2023.02.ds384

[42] Arthur Perais, Rami Sheikh, Milind A. Choudhary, Chris Wilkerson, and Alaa R.
Alameldeen. 2021. Second Championship Value Prediction. https://microarch.org/
cvp1/cvp2/rules.html

[43] Arthur Perais, Rami Sheikh, Eric Rotenberg, Vinesh Srinivasan, Mikko Lipasti,
Chris Wilkerson, and Alaa R. Alameldeen. 2018. First Championship Value Pre-
diction. https://www.microarch.org/cvp1/cvp1online/contestants.html

https://doi.org/10.1109/ISCA45697.2020.00014
https://doi.org/10.48550/ARXIV.2210.14324
https://doi.org/10.48550/ARXIV.2210.14324
https://doi.org/10.1109/ISCA45697.2020.00015
www.intel.com
https://research.ibm.com/publications/the-greater5ghz-next-generation-ibm-z-processor-chip
https://research.ibm.com/publications/the-greater5ghz-next-generation-ibm-z-processor-chip
https://doi.org/10.18709/perscido.2023.02.ds384
https://doi.org/10.18709/perscido.2023.02.ds384
https://microarch.org/cvp1/cvp2/rules.html
https://microarch.org/cvp1/cvp2/rules.html
https://www.microarch.org/cvp1/cvp1online/contestants.html

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Arthur Perais and Rami Sheikh

[44] Arthur Perais, Rami Sheikh, Luke Yen, Michael McIlvaine, and Robert D. Clancy.
2019. Elastic Instruction Fetching. In Proceedings of the International Symposium
on High Performance Computer Architecture. IEEE, 478–490.

[45] Chris H. Perleberg and Alan Jay Smith. 1993. Branch Target Buffer Design and
Optimization. IEEE transactions on computers 42, 4 (1993), 396–412.

[46] Glenn Reinman, Todd Austin, and Brad Calder. 1999. A Scalable Front-End
Architecture for Fast Instruction Delivery. In Proceedings of the International
Symposium on Computer Architecture (Atlanta, Georgia, USA). 234–245. https:
//doi.org/10.1145/300979.300999

[47] Glenn Reinman, Brad Calder, and Todd Austin. 1999. Fetch Directed Instruction
Prefetching. In Proceedings of the International Symposium on Microarchitecture.
16–27.

[48] Glenn Reinman, Brad Calder, and Todd Austin. 2001. Optimizations Enabled by
a Decoupled Front-end Architecture. IEEE Trans. Comput. 50, 4 (2001), 338–355.

[49] Eric Rotenberg, Steve Bennett, and James E. Smith. 1996. Trace Cache: a Low
Latency Approach to High Bandwidth Instruction Fetching. In Proceedings of the
International Symposium on Microarchitecture. 24–34.

[50] Eric Rotenberg, Steve Bennett, and James E. Smith. 1999. A Trace Cache Microar-
chitecture and Evaluation. IEEE Trans. Comput. 48, 2 (1999), 111–120.

[51] Anthony Saporito. 2020. The IBM z15 Processor Chip Set. In Proceedings of the
Hot Chips Symposium. 1–17. https://doi.org/10.1109/HCS49909.2020.9220508

[52] André Seznec. 1993. A Case For Two-way Skewed-associative Caches. In Pro-
ceedings of the International Symposium on Computer Architecture. 169–170.

[53] André Seznec. 1996. Don’t Use the Page Number, but a Pointer to it. In Proceedings
of the International Symposium on Computer Architecture. 104–104.

[54] André Seznec, Stephen Felix, Venkata Krishnan, and Yiannakis Sazeides. 2002.
Design Tradeoffs for the Alpha EV8 Conditional Branch Predictor. In Proceedings
of the International Symposium on Computer Architecture. 295–306.

[55] André Seznec and Antony Fraboulet. 2003. Effective Ahead Pipelining of Instruc-
tion Block Address Generation. In Proceedings of the International Symposium on
Computer Architecture. 241–252.

[56] Manish Shah, Robert Golla, Gregory Grohoski, Paul Jordan, Jama Barreh, Jeffrey
Brooks, Mark Greenberg, Gideon Levinsky, Mark Luttrell, Christopher Olson,

Zeid Samoail, Matt Smittle, and Thomas Ziaja. 2012. Sparc T4: A Dynamically
Threaded Server-on-a-Chip. IEEE Micro 32, 2 (2012), 8–19. https://doi.org/10.
1109/MM.2012.1

[57] Shixin Song, Tanvir Ahmed Khan, Sara Mahdizadeh Shahri, Akshitha Sriraman,
Niranjan K Soundararajan, Sreenivas Subramoney, Daniel A. Jiménez, Heiner
Litz, and Baris Kasikci. 2022. Thermometer: profile-guided btb replacement for
data center applications. In Proceedings of the Annual International Symposium
on Computer Architecture. 742–756.

[58] Niranjan K. Soundararajan, Peter Braun, Tanvir Ahmed Khan, Baris Kasikci,
Heiner Litz, and Sreenivas Subramoney. 2021. Pdede: Partitioned, Deduplicated,
Delta Branch Target Buffer. In Proceedings of the International Symposium on
Microarchitecture. 779–791.

[59] Viji Srinivasan, Edward S. Davidson, Gary S. Tyson, Mark J. Charney, and
Thomas R. Puzak. 2001. Branch History Guided Instruction Prefetching. In
Proceedings of the International Symposium on High-Performance Computer Archi-
tecture. 291–300.

[60] David Tarjan and Kevin Skadron. 2005. Merging Path and gshare Indexing
in Perceptron Branch Prediction. ACM transactions on architecture and code
optimization 2, 3 (2005), 280–300.

[61] Tse-Yu Yeh, Deborah T Marr, and Yale N. Patt. 1993. Increasing the Instruction
Fetch Rate via Multiple Branch Prediction and a Branch Address Cache. In
Proceedings of the International Conference on Supercomputing. 67–76.

[62] Tse-Yu Yeh, Deborah T. Marr, and Yale N. Patt. 2014. Author Retrospective for
Increasing the Instruction Fetch Rate via Multiple Branch Prediction and a Branch
Address Cache. In Proceedings of the International Conference on Supercomputing,
25th Anniversary Volume. 24–25.

[63] Tse-Yu Yeh and Yale N. Patt. 1992. A Comprehensive Instruction Fetch Mech-
anism for a Processor Supporting Speculative Execution. In Proceedings of the
International Symposium on Microarchitecture. 129–139.

[64] Yi Zhang, Steve Haga, and Rajeev Barua. 2002. Execution History Guided Instruc-
tion Prefetching. In Proceedings of the International Conference on Supercomputing.
199–208.

https://doi.org/10.1145/300979.300999
https://doi.org/10.1145/300979.300999
https://doi.org/10.1109/HCS49909.2020.9220508
https://doi.org/10.1109/MM.2012.1
https://doi.org/10.1109/MM.2012.1

	Abstract
	1 Introduction
	2 Background
	2.1 Decoupled Fetching (DCF)
	2.2 Region BTB (R-BTB)
	2.3 Block BTB (B-BTB)

	3 Contrasting I-, R- and B-BTB
	3.1 Next PC Generation
	3.2 Alignment
	3.3 Tag Overhead
	3.4 Redundancy
	3.5 Allocation Behavior
	3.6 BTB Hierarchy

	4 Experimental Framework
	4.1 Simulator
	4.2 Workloads

	5 Gauging the Potential of I-BTB, R-BTB and B-BTB
	6 Building an Efficient BTB Hierarchy
	6.1 Performance of Realistic BTB Hierarchies
	6.2 Even/Odd Set Interleaving the L1 R-BTB
	6.3 Splitting Entries in B-BTB
	6.4 MultiBlock BTB
	6.5 Impact of R- and B-BTB Improvements on Performance

	7 Related Work
	7.1 BTB Density
	7.2 Instruction Prefetching
	7.3 BTB Prefetching
	7.4 Fetching Multiple Blocks per Cycle

	8 Conclusion
	References

