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Abstract: (1) Background: Ulcerative colitis (UC) is an inflammatory bowel disease that causes
inflammation of the intestines, which participates in human cytomegalovirus (HCMV) reactivation
from its latent reservoir. CMV-associated colitis plays a pejorative role in the clinical course of UC. We
took advantage of a model of chemically induced enteritis to study the viral reactivation of murine
CMV (MCMV) in the context of gut inflammation. (2) Methods: Seven-week-old BALB/c mice were
infected by 3 × 103 plaque-forming units (PFU) of MCMV; 2.5% (w/v) DSS was administered in the
drinking water from day (D) 30 to D37 post-infection to induce enteritis. (3) Results: MCMV DNA
levels in the circulation decreased from D21 after infection until resolution of the acute infection. DSS
administration resulted in weight loss, high disease activity index, elevated Nancy index shortening
of the colon length and increase in fecal lipocalin. However, chemically induced enteritis had no
impact on MCMV reactivation as determined by qPCR and immunohistochemistry of intestinal
tissues. (4) Conclusions: Despite the persistence of MCMV in the digestive tissues after the acute
phase of infection, the gut inflammation induced by DSS did not induce MCMV reactivation in
intestinal tissues, thus failing to recapitulate inflammation-driven HCMV reactivation in human UC.

Keywords: murine cytomegalovirus; mouse model; viral reactivation; DSS-induced enteritis

1. Introduction

Inflammatory bowel diseases (IBD) include Crohn’s disease and ulcerative colitis (UC),
both associated with inflammation of the digestive tract [1]. UC incidence and prevalence
is increasing worldwide, which results in a major public health issue [2–4]. UC is clinically
characterized by the succession of acute inflammatory flares and remission phases with
major consequences on the socio-professional life of patients [5]. Despite UC incurability,
the administration of anti-inflammatory and/or immunosuppressive therapies allows, in
most cases, the control of acute phases and broadening of remission periods [6].

Human cytomegalovirus (HCMV) is an opportunistic pathogen of the Betaherpesvirinae
subfamily. A meta-analysis published in 2019 estimated the global seroprevalence of
HCMV in adults at 83% [95% CI (confidence interval): 78–88] [7]. HCMV primary infection
is characterized by viremia followed by systemic dissemination. HCMV can replicate
in many cell types, including endothelial cells, epithelial cells, fibroblasts, and mono-
cytes/macrophages [8]. After control of the acute phase, HCMV enters into a latency
state in hematopoietic progenitors and other cells disseminated in various tissues [9] that
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serve as viral reservoirs from which new viral particles are produced following viral reac-
tivation, notably in the course of an inflammation process. Although HCMV infection is
most often contained by the immune system, disease can occur with severe impairment
on the functions of targeted organs including brain, lungs and digestive tract, especially
in immunocompromised patients [8]. Viral reactivation also occurs in patients suffering
from UC, which mainly results in HCMV-associated colitis [10]. HCMV gut reactivation
aggravates the course of UC [11] with an increased risk of colectomy [12–14] and mor-
tality [12,15] for these patients. We and others have documented the deleterious effect
of HCMV reactivation in the context of corticoids and immunosuppressive therapies in
the course of UC flare-ups [16–18]. To date, the pathophysiology of viral reactivation is
poorly understood in UC patients, and animal models are lacking to contribute to this
characterization [19,20].

The aim of the present study was to establish a mouse model of murine cytomegalovirus
(MCMV) reactivation in the context of chemically induced enteritis mimicking HCMV re-
activation in human colitis flare-ups. BALB/c mice were first infected by MCMV. After
resolution of the acute phase, gut inflammation was induced by the oral administration of
dextran sodium sulfate (DSS) that acts as a trigger for acute enteritis [21].

2. Materials and Methods
2.1. Mice, Viral Strain and Stock

BALB/c mice were hosted at the PLEXAN (Platform for Experiments and Analysis,
Faculty of Medicine, University of Saint-Etienne, France) which is a conventional animal
facility with infectious sector P2. MCMV Smith strain (ATCC-VR-1399) was amplified by
infecting 7-week-old mice with 1 × 104 plaque-forming units (PFU) administered by the
intraperitoneal (IP) route. Salivary glands were collected 3 weeks post-infection (p.i.), and
the viral titration was performed on M2-10B4 cells (ATCC® CRL-1972™) [22]; viral titre
was determined as PFU/mL. The viral stock was aliquoted and stored frozen at −80 ◦C
until use.

2.2. Experimental Design

Four groups of mice (n = 5, 7-week-old females per group) were distributed as follows:
negative controls (group 1), mice undergoing dextran-sodium-sulfate (DSS) treatment
(group 2), MCMV-infected mice (group 3), and MCMV-infected mice challenged by DSS
treatment (group 4). At day 0 (D0), groups 3 and 4 were infected (IP) with 200 µL of a
suspension of MCMV containing 3 × 103 PFU; groups 1 and 2 were injected (IP) with
200 µL of phosphate buffered saline (PBS). DSS (36–50 KDa, MP Biomedicals™, Irvine, CA,
USA) was diluted at 2.5% (w/v) in PBS and filtered < 0.22 µm before administration; DSS
was administered in the drinking water of groups 2 and 4 from day (D) 30 to D37 and
renewed daily from D30 to D37 as previously described [19]. The experimental design is
summarized in Figure 1. Blood samples were collected by the submandibular route at D0,
D7, D14, D21, D30 and D37 p.i. On D37, the mice were euthanized; blood and samples of
the salivary glands, small intestine and colon were collected. To assess the macroscopic
impact of DSS administration on the colon, its length was measured from the cecum to the
rectum [23].



Viruses 2022, 14, 2595 3 of 12
Viruses 2022, 14, 2595  3  of  12 
 

 

 

Figure 1. Flowchart of the study. Seven‐week‐old female BALB/c mice were divided into four 

groups (5 animals per group): group 1 = negative controls; group 2 = mice treated by dextran so‐

dium sulfate (DSS) in the drinking water from D30 to D37; group 3 = mice infected by murine cy‐

tomegalovirus (MCMV) at D0; and group 4 = mice infected by MCMV at D0 then treated by DSS 

in the drinking water from D30 to D37. 

2.3. Clinical Score 

Each animal was examined daily from D30 to D37 and evaluated by a validated score 

called the Disease Activity Index (DAI) [23], including weight loss scored from 0 to 4 from 

baseline (0 < 2%, 1 = [2–5%], 2 = [5–10%], 3 = [10–20%], and 4 > 20%), stool consistency 

scored from 0 to 4 (0 = normal stools; 2 = loose stools and 4 = acute diarrhoea), and the 

presence of fecal blood scored from 0 to 2 (0 = no blood, 1 = moderate blood, and 2 = gross 

bleeding and/or blood clots), on total scale of 10 points 

2.4. Measure of Fecal Lipocalin 

Mouse stools were collected, weighed and stored with a protease inhibitor (Halt Pro‐

tease  Inhibitor Cocktail, Thermo Fisher Scientific, Waltham, MA, USA). They were ho‐

mogenized for 1 h and centrifuged at 10,000 g for 10 min. The supernatant was decanted 

and stored at −20 °C until analysis. The fecal lipocalin, recognized to assess intestinal in‐

flammation  by  non‐invasive manner  [24], was measured  by  enzyme‐linked  immuno‐

sorbent assay (ELISA) using the Mouse Lipocalin‐2/NGAL DuoSet ELISA kit (Bio‐Techne, 

Minneapolis, MN, USA) according to the supplier’s recommendations.   

2.5. Collection of Organ Samples 

On  the day of euthanasia  (D37), organs mentioned above were dissected and  im‐

mersed in PBS. The endoluminal part of the small intestine and colon were washed with 

PBS. The tissues were fixed  in 4% paraformaldehyde (PFA),  including an injection  into 

the endoluminal part of the small intestine and colon. Specimens of salivary glands, small 

intestine and colon were included in optimal cutting temperature (OCT) (Sigma Aldrich, 

St. Louis, MO, USA) and stored at −20 °C. Eight micrometer sections were made with a 

cryostat (Leica CM1950) and mounted on SuperFrost™ slides (Thermo Fisher Scientific, 

Waltham, MA, USA). 

 

Figure 1. Flowchart of the study. Seven-week-old female BALB/c mice were divided into four groups
(5 animals per group): group 1 = negative controls; group 2 = mice treated by dextran sodium sulfate
(DSS) in the drinking water from D30 to D37; group 3 = mice infected by murine cytomegalovirus
(MCMV) at D0; and group 4 = mice infected by MCMV at D0 then treated by DSS in the drinking
water from D30 to D37.

2.3. Clinical Score

Each animal was examined daily from D30 to D37 and evaluated by a validated score
called the Disease Activity Index (DAI) [23], including weight loss scored from 0 to 4 from
baseline (0 < 2%, 1 = [2–5%], 2 = [5–10%], 3 = [10–20%], and 4 > 20%), stool consistency
scored from 0 to 4 (0 = normal stools; 2 = loose stools and 4 = acute diarrhoea), and the
presence of fecal blood scored from 0 to 2 (0 = no blood, 1 = moderate blood, and 2 = gross
bleeding and/or blood clots), on total scale of 10 points

2.4. Measure of Fecal Lipocalin

Mouse stools were collected, weighed and stored with a protease inhibitor (Halt
Protease Inhibitor Cocktail, Thermo Fisher Scientific, Waltham, MA, USA). They were
homogenized for 1 h and centrifuged at 10,000× g for 10 min. The supernatant was
decanted and stored at −20 ◦C until analysis. The fecal lipocalin, recognized to assess
intestinal inflammation by non-invasive manner [24], was measured by enzyme-linked
immunosorbent assay (ELISA) using the Mouse Lipocalin-2/NGAL DuoSet ELISA kit
(Bio-Techne, Minneapolis, MN, USA) according to the supplier’s recommendations.

2.5. Collection of Organ Samples

On the day of euthanasia (D37), organs mentioned above were dissected and immersed
in PBS. The endoluminal part of the small intestine and colon were washed with PBS.
The tissues were fixed in 4% paraformaldehyde (PFA), including an injection into the
endoluminal part of the small intestine and colon. Specimens of salivary glands, small
intestine and colon were included in optimal cutting temperature (OCT) (Sigma Aldrich,
St. Louis, MO, USA) and stored at −20 ◦C. Eight micrometer sections were made with a
cryostat (Leica CM1950) and mounted on SuperFrost™ slides (Thermo Fisher Scientific,
Waltham, MA, USA).
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2.6. Histopathology

The hematoxylin and eosin (H&E) stained sections of the small intestine and colon
were used to measure the histological activity of DSS-induced enteritis using the Nancy
index as previously described for humans and mice [25,26]: grade 0 = healthy mucosa,
grade 1 = moderate to severe, increased number of infiltrating cells and the absence of
inflammatory elements, grade 2 = mucosa with rare neutrophils in the lamina propria
and/or in the epithelium and the absence of ulceration, grade 3 = mucosa with moderate
to severe infiltration by neutrophils in the lamina propria and/or in the epithelium and the
absence of ulceration, grade 4 = presence of ulceration.

2.7. Immunohistochemistry

Active replication of MCMV was detected as follows. Active replication of MCMV
was detected in the colon and small intestine by staining Immediate-early-1 MCMV protein
(IE1) using Primary monoclonal mouse anti-m123/ IE1 antibody (IgG2a kappa, CAPRI
HR-MCMV-12, Rijeka, Croatia). Anti-m123/IE1 was diluted 1:500 in PBS and incubated
on sections for 1 h at 37 ◦C f. Primary monoclonal antibody against alpha smooth muscle
actin (anti-αSMA) (IgG2a kappa, Abcam, Cambridge, UK) was diluted 1:200 in PBS and
incubated for 1 h at 37 ◦C for actin labelling as positive control. The primary antibodies
were biotinylated using Amicon® kit (Millipore, Burlington, MA, USA). After washing
steps, staining was achieved by adding horseradish peroxidase-conjugated streptavidin
(Pharmingen™, Becton Dickinson, Franklin Lakes, NJ, USA) for 30 min at room temperature
away from light. Sections were further washed, and chromogenic diaminobenzidine
substrate (Pharmingen™) was added for 5 min at room temperature away from light.
The immunostaining protocol was validated using the salivary glands of BALB/c mice
infected with 3 × 103 PFU of MCMV by the IP route and dissected on D21 (Figure S1);
the negative control of the experiment (performed without primary antibody) showed no
unspecific labeling.

2.8. MCMV qPCR in Mouse Blood and Tissues

Blood was collected in EDTA coated tubes, and Halt Protease Inhibitor Cocktail
(Thermo Fisher Scientific) was added to the blood samples. MCMV DNA extraction was
performed using NUCLISENSTM EasyMAG® (bioMérieux, Craponne, France) as previously
described for human whole blood [27]. MCMV qPCR assay was performed according
to the supplier’s recommendations (Applied Biosystems 7500, Thermo Fisher Scientific).
A fragment of the gene encoding MCMV glycoprotein B (gB) was amplified by using
the Platinum® SYBR®Green Quantitative PCR SuperMix-UDG (InvitrogenTM, Thermo
Fisher Scientific) and the sequence of primers were the following: 5′-AGG-CCG-GTC-GAG-
TAC-TTC-TT-3′(forward primer) and 5′-GCG-CGG-AGT-ATC-AAT-AGA-GC-3′ (reverse
primer) [28]. The MCMV plasmid was used for the development of the qPCR calibration
curves and for the absolute quantification of the MCMV viral load, which was kindly
provided by Dr. Julie Dechanet-Merville (CNRS UMR 5164, University of Bordeaux,
France). The limit of detection in mouse blood was of 1.42 MCMV DNA copies (cp)/µL
(95% CI: [1.26–1.61]), and the limit of quantification was 10 cp/µL of blood.

On the day of euthanasia (D37), the small intestine and colon were dissected, homoge-
nized and then filtered (100 µm filter) in a protective agent for nucleic acids (RNAprotect
Cell Reagent, Qiagen, Hilden, Germany). DNA extraction was performed as previously
described for human biopsies [16]. To verify tissue integrity and relate the viral load to
a cell count, a fragment of the gene encoding the murine glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was also amplified using the following primers: 5′-GCT-TGC-
TGA-TGA-ATG-AGT-TC-3′ (forward primer) and 5′-CCT-GGG-AAG-TTT-GTT-CCA-3′

(reverse primer). M2-10B4 cells were used for cell count calibration. The tissue viral load
was expressed in number of copies by 100,000 cells as used in humans diagnosis [29]. The
limit of detection in mouse tissue was of 1 MCMV DNA cp/100,000 cells, and the limit of
quantification was 5 cp/100,000 cells.
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2.9. Statistics

Statistical analysis was performed with GraphPad Prism 5.03 software. A two-way
ANOVA test with Bonferroni correction or a one-way ANOVA test with Bonferroni cor-
rection was used for the comparison of means between the groups of mice. p < 0.05 was
considered statistically significant.

2.10. Ethical Considerations

Animal experiments were conducted according to the European Union rules on animal
welfare. Prior to starting the experiments, the protocol was approved by the local ethical
committee (CEEA-Loire) and the Animal Welfare Committee of the PLEXAN (agreement
2017011315316714).

3. Results
3.1. Monitoring of MCMV Systemic Infection

Systemic dissemination of MCMV was controlled by measuring the blood viral load
over time. Blood samples were analyzed at D7, D14, D21, D30, D37 p.i. (Figure 1). As
expected, groups 1 and 2, which were not infected, tested negative for blood MCMV DNA
at D7 (data not shown). Groups 3 and 4 that were infected with MCMV exhibited blood
MCMV DNA with a maximum viral load at D14 (2 × 104 cp/µL) followed by a progressive
resolution of the infection after D21, until the lowest viral loads were observed from D30
(150 cp/µL). No significant difference in viral load or kinetics was observed between groups
3 and 4 regardless of exposure to DSS at D30. (Figure 2).
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Figure 2. Kinetics of blood MCMV DNA load measured by qPCR for infected mice. Group 3 (red
curve, (A)) and group 4 (purple curve, (B)). D0 corresponds to the time of infection with MCMV
and D37 represents the time of sacrifice. The arrow denotes the beginning of dextran sodium sulfate
(DSS) treatment in group 4. The limit of PCR quantification is represented by the horizontal line. The
statistical test that was used was a two-way ANOVA with Bonferroni correction for panels. Standard
variations are too low to be seen in the figures.

An inflection of the weight curves was observed in mice infected with MCMV, particu-
larly between D3 and D10, compared to uninfected ones (data not shown). Nevertheless,
the four groups exhibited no significant difference in weight loss at D30, just prior to the
administration of DSS. This is indicative of a good recovery in infected mice at this time,
which was expected.

3.2. Clinical Assessment of DSS Administration

After administration of DSS at D30 in groups 2 and 4, BALB/c mice were monitored
daily by longitudinal assessment of weight loss, stool consistency and fecal blood. A
statistically significant weight loss was recorded in mice exposed to DSS at D36 (group 2:
p < 0.05) and D37 (group 2: p < 0.001; group 4: p < 0.05) by comparison to non-exposed
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groups. However, no statistically significant difference in weight loss was observed between
groups 2 and 4 (Figure 3A).
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Figure 3. Monitoring of weight loss, clinical score and gut inflammation during DSS-induced colitis
of MCMV-infected mice. Monitoring of clinical, biological and histopathological parameters. Mice
were infected at D0 or not by murine cytomegalovirus (MCMV) and treated or not by dextran sodium
sulfate (DSS) from D30 to D37 post-infection (p.i.) before being euthanized. (A)—Longitudinal
weight loss assessment from D30 to D37. (B)—Evolution of the mean Disease Activity Index (DAI)
from D30 to D37 p.i. (C)—Length (in cm) of the colon at the time of sacrifice, expressed as a mean.
(D)—Longitudinal assessment of faecal lipocalin levels (in pg/mL) post treatment by DSS, values are
expressed as means. (E)—Determination of the Nancy histological score (from 0 to 4) of the small
intestine specimen from individual mice at sacrifice (D37 p.i.). (F)—Determination of the Nancy
histological score (from 0 to 4) of the colon specimen. Statistical tests that were used were a two-way
ANOVA with Bonferroni correction for panels (A,B,D), and a one-way ANOVA for panel (C,E,F). ns:
not statistically significant, * p < 0.05, ** p < 0.01, *** p < 0.001.

At D34, i.e., 4 days after the first administration of DSS, the mean of DAI in mice
exposed to DSS was significantly higher than in not exposed ones (p < 0.001). This difference
was maintained until the end of the experiment with an increase in the mean DAI from
2.2 at D34 to 5.2 at D37 (p < 0.001) (Figure 3B). However, no difference of DAI was observed
between the two groups exposed to DSS (Figure 3B), which suggests that a previous MCMV
infection did not worsen the DSS-induced enteritis.

3.3. Severe Intestinal Inflammation Is Induced by DSS, Regardless of MCMV Infection Status

As shown in Figure 3C, a significant decrease in colon length was observed in mice
treated by DSS (groups 2 and 4) by comparison to controls (group 1) (p < 0.01). The same
pattern was observed between MCMV-infected groups exposed or not to DSS (groups
3 and 4) (p < 0.05). No significant difference in colon length was observed between groups
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1 and 3, nor between groups 2 and 4. Together, these data suggest similar levels of intestinal
inflammation regardless of MCMV infection. Therefore, shortened colon length was solely
due to DSS exposure and not to MCMV infection.

In addition, the administration of DSS induced a significant increase in fecal lipocalin
concentration in mice exposed to DSS by comparison to non-exposed ones, both at D3
(p < 0.01) and D6 (p < 0.001) post-administration (Figure 3D). By contrast, no statistically
significant difference was observed between groups 2 and 4 at both times.

The Nancy index of each mouse is represented in Figure 3E (small intestine) and
Figure 3F (colon) at D37 (day of euthanasia). A Nancy index > 3 was observed in most
DSS-treated animals (groups 2 and 4), which corresponds to severe mucosal damage with
ulcerations. Interestingly, the mean Nancy index was not significantly different between
the two DSS-exposed groups, despite the fact that mice harbored different MCMV statuses
(Figure 3E,F). No mucosal inflammation was recorded in mice that were not exposed to
DSS, including those of group 3 that were MCMV-infected (Figure 3E,F).

3.4. Absence of MCMV Reactivation in DSS Model of Gut Inflammation

The results of previous experiments indicated that infected mice exhibited no dif-
ference with non-infected ones. Together, the data suggest that previous MCMV acute
infection had no influence on the level of inflammation induced by DSS administration.
Those findings could be explained either by the absence of MCMV reactivation after DSS
administration or by the absence of the role of MCMV reactivation in the DSS model of gut
inflammation. To address this question, the MCMV tissue viral load was quantified in the
small intestine (Figure 4A) and colon (Figure 4B) at D37.
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Figure 4. Exploration of MCMV reactivation in the gut of mice. (A)—Proportion of mice for
which murine cytomegalovirus (MCMV) DNA was detected in small intestine specimens by
PCR; positive mice are shown in black and negative ones in grey. (B)—For colon specimens.
(C)—Immunohistochemistry at D37 (day of euthanasia) on gut specimens of a mouse of group 3 (up-
per part) or of group 4 (lower part). Staining corresponds to positive zones marked by horseradish
peroxidase and revealed by diaminobenzidine substrate. The negative control was performed by
omitting the primary antibody. The positive control was performed by using anti-alpha smooth
muscle actin (anti-αSMA) as the primary antibody. The presence of a replicative virus was looked
for by using an anti-immediate early (IE) 1 protein of MCMV as primary antibody. The scale bar
on images corresponds to 50 µm. Photographs were taken at 20× objective in Zeiss Axioimager
Apotome 3 optical microscope with a Zeiss quadriCCD Axiocam camera.
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A detectable viral load was recorded in samples from the majority of mice from groups
3 and 4. Of note, the tissue viral load was always below the quantification threshold.
These results suggest the persistence of low levels of MCMV in digestive tissues after the
resolution of acute infection. Additional experiments were conducted on digestive tissues
for elucidating whether MCMV DNA that was detected by PCR was replicative, even at low
level. To achieve this goal, we tested the presence by immunohistochemistry of the IE1 early
protein of MCMV in small intestine and colon specimens collected on D37 from the mice of
each group. In addition, to show negative and positive controls, Figure 4C illustrates that
the small intestine and colon specimens of these animals were all negative for IE1 labeling,
which suggests an absence of MCMV expression in digestive tissues on D37 p.i., and finally
a failure of our model to reactivate MCMV in gut mucosa by DSS-induced enteritis.

4. Discussion

HCMV reactivation in the digestive tissues of UC patients is a significant cause of
severe colitis [11–14]. This study aimed to develop a mouse model of MCMV reactivation
following DSS-induced enteritis that could mimic UC flares and help to understand the
putative role of tissue inflammation in viral reactivation.

Mice are models used to explore the pathophysiology of CMV and the antiviral im-
mune response. Their natural susceptibility to MCMV allows studying viral latency, estab-
lishment of reservoirs and reactivation [30]. After resolution of the acute infectious episode
in BALB/c mice, the viral genome remains detectable in blood, lungs [31], spleen [32] and
kidneys [33]. Then, latent MCMV can be reactivated with systemic dissemination of the
virus, notably in an immunosuppressive context, such as SCID mice [34]. However, we
opted for an immunocompetent wild-type model because it was closer to the situation of UC
patients, at least at the early stage of disease. BALB/c mice were preferred over C57BL/6J
mice because of their Th2 immunological orientation [35] as found in UC patients [36]. In
addition, TCR-α-deficient mice, known to develop intestinal inflammation and chronic
colitis at 4–6 months of age [37], develop colitis with conflicting results regarding MCMV
reactivation. Indeed, the presence of viral proteins was detected in immunohistochemistry
(M40 protein), while viral titration and viral load in the tissue were both negative [38]. We
did not use this model because, as for SCID mice, it is not representative of UC patients
due to the significant immunosuppression induced by TCR-α deficiency.

In the DSS-induced enteritis model, intestinal inflammation results from the damage of
intestinal epithelium cells, allowing the entry of endoluminal bacteria into the mucosa [21].
DSS also induces histological changes, such as ulcerations and infiltration by granulocytes
of lamina propria and submucosa, all being found in UC patients [21]. Moreover, markers
of active expression (mRNA and protein) of tumor necrosis factor alpha (TNFα) were
shown to increase in the intestinal tract of mice after DSS administration [39,40], which is
of particular interest because of the major role of this cytokine in the MCMV and HCMV
reactivation [41]. All these findings pleaded for the relevance of this model for modeling
colitis flare-ups.

However, if the DSS administration induced a severe inflammation at the intestinal
level with important clinical and biological consequences, no difference was seen between
groups 2 (DSS only) and 4 (DSS + MCMV), as if the previous MCMV infection had no
influence on the DSS-induced inflammation. In addition, the impact of the DSS exposition
on the colon length and the fecal lipocalin level, in relation with TNFα synthesis [24],
was comparable between the two groups, which supports solely the involvement of DSS
in the induction and severity of enteritis without any detectable role for MCMV. The
histological assessment by the Nancy index confirmed that MCMV did not aggravate the
DSS-induced enteritis in group 4. Despite a persistent viral load in digestive tissues at the
end of DSS exposition, we observed viral loads below the qPCR quantification threshold
and the absence of IE1 expression, which evidences that the model did not favor MCMV
reactivation during DSS-induced enteritis. Perhaps a lower dose of DSS and repeated
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cycle of DSS induction might have been used to decrease tissue damage caused by DSS
exposition and to get closer to a chronic model of inflammation.

Our results are in discordance with the work of Onyeagocha et al., who showed that
MCMV infection, whether it be in an acute or latent state, exacerbated the severity of
colitis induced by DSS [19]. They used C57BL/6 mice that are less sensitive to MCMV
than BALB/c mice because of the expression of the Ly49H lectin receptor on NK cells [42];
consequently, they applied a dose of 105 PFU of MCMV to generate viral infection by IP
route [19]. Of note, this high MCMV dose killed the BALB/c mice very fast in our hands
(data not shown); we determined the dose of 3 × 103 PFU according to the criteria of
lethality, animal welfare and good infectivity. A higher dose would perhaps have allowed
greater intestinal dissemination but with an increased risk of mortality and animal suffering.
These authors found also more severe colitis with weight loss, shortened colon length,
intestinal crypt damage, and inflammatory cell infiltration. However, they did not find a
significant difference in tissue viral load in the MCMV/DSS group compared to the MCMV
group [19], which raises doubts about the impact of MCMV located in digestive tissues
on the exacerbation of colitis. In another study, Brunson et al. infected C57BL/6J mice
with 3 × 104 PFU and added DSS diluted at 3% in the drinking water [20]. They showed
an accelerated development of DSS-induced colitis with an early onset of gross bleeding
in mice of the MCMV/DSS group compared to the DSS group. However, they did not
monitor the viral load in gut specimens, which did not allow to assess MCMV reactivation
in digestive tissues.

Models of digestive tract inflammation in wild-type mice are induced with other chem-
ical agents, such as trinitrobenzene sulfonic acid (TNBS) or oxazolone [43]. TNBS-induced
colitis mimics CD patients [44], which does not fit our UC-like model. Oxazolone appears
to be an interesting chemical agent for modeling UC-like colitis, even if this colitis was
shown to be essentially dependent on Interleukin-13-producing NKT cells [45], certainly
involved in the pathophysiology of UC, but without being the only ones. Additionally,
histone deacetylase inhibitors known to transiently induce viral lytic gene expression of
HCMV [46] might be useful to induce MCMV reactivation [47], although it remains to be
tested in the context of UC-like colitis. More globally, are wild-type mouse models infected
with the Smith strain of MCMV the best ones for studying viral reactivation? The use
of humanized mice, permissive to HCMV infection [48], or of non-human primates [49]
would probably offer more appropriate models for studying the role of HCMV reactivation
in the pathophysiology of UC flares.

5. Conclusions

Our results have shown that the model proposed in this study is characterized by
a systemic MCMV infection allowing dissemination of the virus in the digestive tissues.
However, DSS-induced acute enteritis 30 days after the primary MCMV infection failed to
induce viral reactivation in the digestive tract. Although the inflammation was significant
and the tissue damages were important, the model failed to document any role of MCMV in
the occurrence of the gut lesions. More research is needed to set up pertinent animal models
that could help to understand more clearly the involvement of HCMV reactivations in the
course of UC and to evaluate therapeutic approaches that could improve the long-term
evolution of this incurable disease.
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salivary gland.
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