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Autism spectrum disorder (ASD) is a neurodevelopmental disorder, which affects 1
in 44 children and may cause severe disabilities. Besides socio-communicational
difficulties and repetitive behaviors, ASD also presents as atypical sensorimotor function
and pain reactivity. While chronic pain is a frequent co-morbidity in autism, pain
management in this population is often insufficient because of difficulties in pain
evaluation, worsening their prognosis and perhaps driving higher mortality rates.
Previous observations have tended to oversimplify the experience of pain in autism
as being insensitive to painful stimuli. Various findings in the past 15 years have
challenged and complicated this dogma. However, a relatively small number of studies
investigates the physiological correlates of pain reactivity in ASD. We explore the
possibility that atypical pain perception in people with ASD is mediated by alterations
in pain perception, transmission, expression and modulation, and through interactions
between these processes. These complex interactions may account for the great
variability and sometimes contradictory findings from the studies. A growing body of
evidence is challenging the idea of alterations in pain processing in ASD due to a
single factor, and calls for an integrative view. We propose a model of the pain cycle
that includes the interplay between the molecular and neurophysiological pathways
of pain processing and it conscious appraisal that may interfere with pain reactivity
and coping in autism. The role of social factors in pain-induced response is also
discussed. Pain assessment in clinical care is mostly based on subjective rather than
objective measures. This review clarifies the strong need for a consistent methodology,
and describes innovative tools to cope with the heterogeneity of pain expression in
ASD, enabling individualized assessment. Multiple measures, including self-reporting,
informant reporting, clinician-assessed, and purely physiological metrics may provide
more consistent results. An integrative view on the regulation of the pain cycle offers a
more robust framework to characterize the experience of pain in autism.
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INTRODUCTION

“On the one hand, some people with autism can tolerate
extreme heat, cold or pressure and seem relatively insensitive
to pain. On the other hand, they may experience intense pain
from idiosyncratic sources but struggle to communicate it.”
Citation from Spectrum Autism Research News (1).

Autism Spectrum Disorder (ASD) is a neurodevelopmental
disorder, affecting around one birth out of 150 worldwide (2).
According to new report from Centers for Disease Control
and Prevention, the incidence is as high as 1 in 44 children,
leading to a prevalence estimated at 2.3% (3), a male-to-female
ratio around 3:1 (4). ASD significantly decreases the person’s
educational, social and employment opportunities. Among other
comorbidities, pain is frequent, sometimes undiagnosed or
diagnosed with delay in children with ASD (5–8). Children
with autism are about twice as likely as their typical peers to
experience chronic or recurrent pain (9). Various co-morbidities
in ASD, such as epilepsy (10, 11), joint hypermobility-related
disorders (12), gastrointestinal disorders (13), anxiety (14), and
sleep problems (15) may be additive sources of pain. Individuals
with ASD face significant inequities in healthcare, despite
their high rate of medical comorbidities. They tend to have
poorer health outcomes (16) and higher mortality rates (10,
17, 18) than their neurotypical peers. Aside from other core
symptoms, such as socio-communicational difficulties, repetitive
activities and/or interests and atypical sensory modulation, some
individuals may present high levels of Self-Injury Behaviors
(SIB; 19) which may be related to pain reactivity in ASD
(20, 21).

The paradox of pain perception in ASD has attracted
the attention of researchers for many years. Atypical pain
perception, expression and difficulties in pain assessment in
people with ASD have been described (22–27). On one hand,
some studies report a decrease or absence of pain reactivity
in daily life mostly based on reports from self or others and
clinical observations (22, 28). On the other hand, various
results show equal or greater responsiveness to painful stimuli
in experimental conditions (29–31). Atypical pain sensations,
like allodynia (extreme sensitivity to usual non-painful tactile
stimulation causing intensive pain), paradoxical heat sensation
(gentle cooling perceived as hot or burning), and hypoesthesia
(decreased pain sensitivity) are also reported for ASD (32).
Various hypotheses attempted to explain observed alterations.
However, none of these hypothesis by themselves were able to
reconcile these apparently contradictory findings.

The International Association for the Study of Pain defines
pain as “an unpleasant sensory and emotional experience
associated with, or resembling that associated with, actual or
potential tissue damage” (33). On one hand, pain is a universal
“alert sign,” considered to be an instinct to prevent chronic
and repetitive injuries. On the other hand, pain is a subjective,
personal, and multifaceted construction that may be modulated
by various biological, psychological, and social (cultural and
contextual) factors. It may be provoked by physical, emotional, or
social triggers (e.g., evoked by the observation of the suffering of

others; 34). Pain regulation is essential for successful adaptation
to life events, development of social interactions skills and
empathy (35, 36) and has been implicated in social difficulties in
autism (37).

The physiological mechanisms and both peripheral and
central pathways of pain processing are well documented.
Following activation of specific nociceptors, pain signals are
transmitted via the peripheral nervous system (PNS) to the
central nervous system (CNS), composed of the spinal cord and
the brain. The CNS is responsible for processing, integrating,
and interpreting the information sent from the PNS, ultimately
elaborating into a complex sensory experience (Supplementary
Table 1). The subcortical and cortical centers in the brain
coordinate all the motor responses produced to diminish or avoid
painful input. Both thresholds and intensity of pain perception
may be modulated by internal mechanisms. Endogenous pain
modulation includes the “endogenous analgesia” which refers
to the pain-inhibiting pathway originating in the brainstem and
terminating in the spinal cord. Another mechanism, “descending
pain modulation system,” consists of a large network in the brain
which regulates pain sensory input to the CNS and behavioral
reactivity. The internal mechanisms can change the meaning
of pain based in previous exposure and pain expectancy, its
influence on our emotional state, and its relevance to our
survival. However, these processes may be affected by mood,
neurological disorders, environmental and genetic factors (36,
38, 39).

Whatever the medical condition or the noxious input,
individuals can use a large number of cognitive or behavioral
strategies for coping with pain. These reactions include cognitive
self-instruction; visual imagery and distraction; body relaxation
training; seeking for social support or, alternatively, withdrawing
from social contact; worrying or even catastrophizing; each
of which can either decrease or increase pain sensation (40).
Therefore, pain perception and pain responses form dynamic
feedback loops (41–43). Interruptions in this “pain cycle”
(Figure 1) may cause long-term plasticity in pain perception
and regulation mechanisms which can be responsible for
increased or decreased pain sensitivity, or even allodynia
(44).

When one considers the perspectives of pain research in
ASD, one may ask what would be the origins of altered pain
sensitivity and reactivity in ASD? In other words, where and
when did the circle of pain start to go wrong, and for whom?
Another important question, what should be done to overcome
that issue?

To address this, we will review in the second section, the recent
literature on pain processing and regulation in individuals with
ASD, from initial stages to brain response in the “pain matrix.”
We will propose that altered cognitive and emotional control of
pain may also contribute to the altered pain response in ASD, in
line with the chronic pain disorders hypothesis (42).

In the third section, pain responses in individuals with
ASD and clinical methods for pain assessment (self-
reports and reports by others, physiological measures, body
responses) will be synthesized, highlighting the need for
objective and multimodal approaches. The significance of an
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FIGURE 1 | The simplified view of the cycle of pain (for illustrative purposes)
with the numbers of corresponding pages of the paper.

individualized approach for pain assessment and management
will be highlighted.

Thereafter, the altered pathophysiological pathways and brain
circuits involved in the emergence of ASD will be reviewed
and discussed with regard to their possible involvement in the
pain regulation. We will conclude by proposing an integrative
view of the pain cycle, which, along with existing mechanisms
of pain alterations in ASD, defines key targets for further pain
research in ASD.

Introduction Highlights. Individuals with ASD demonstrate
a wide range of alterations in pain reactivity. However,
the question of pain perception in autism is understudied.
Processing of pain includes several stages with feed-back and
feed-forward interactions, forming “a pain modulation circle.”
Reactivity to and coping with pain in autism may be altered
because of various interruptions of this cycle; these can be
configured differently in each individual with ASD.

NEUROPHYSIOLOGICAL PROCESSING
OF PAIN IN AUTISM SPECTRUM
DISORDER

Initial Stages of Pain Signaling: From
Nociceptors to the Central Axis
While pain perception arises from the combination of different
somatosensory modalities (45), processing of a painful stimulus
starts from nociceptors (Supplementary Table 1), which
are specialized for perception of painful stimuli of different
modalities, detecting potential thermal, mechanical, and
chemical tissue damage. The signal is transmitted to the CNS
via more rapid, myelinated Aδ (A-delta) fiber axons responsible
for acute pain transmission and slow, non-myelinated C-fibers
(small fibers). The combination of these signals creates two
phases of pain perception; fast and intense, followed by diffuse
and dull pain (36). In individuals with ASD, atypical small fiber
density was recently described (46, 47). These alterations were
associated with autistic symptoms, and may also contribute
to hypoesthesia (already explained above) and allodynia in
autism (47). However, increased pain and touch sensitivity
were observed specifically in areas innervated by C-fibers,

providing a candidate mechanism for atypical avoiding behaviors
or hypersensitivity in ASD. Another hypothesis could be a
pathological activation of silent nociceptors, which are normally
unresponsive to noxious stimuli, but become responsive to
mechanical stimulation (30).

The initial stages of noxious signaling are usually characterized
by the so-called nociceptive “thresholds,” i.e., the lowest intensity
at which noxious stimuli are perceived to be painful. The
thresholds may be different depending on whether noxious
stimuli are thermal, mechanical, or due to compression. Studies
in individuals with ASD have reported contradictory findings
on pain thresholds depending of the type of stimuli (24, 25,
29, 31, 32, 48). No difference between neurotypical subjects and
individuals with ASD was reported for electrocutaneous pain
(48) and thermal pain (14, 49) thresholds. Lower thresholds
(i.e., higher sensitivity) were observed for pressure-induced pain
(29, 30) and heat-induced pain (31). By contrast, subjects with
ASD displayed hyposensitivity to pinprick-induced mechanical
pain (32).

In addition to these inconsistent results, individuals with
ASD may display hypersensitivity to stimuli usually considered
painless. These responses may be accompanied by absence of
reactivity to potentially hazardous and noxious stimuli (1). Such
stimulus overselectivity, when an individual responds only to
a limited category/amount of incoming sensory information,
was not confirmed on group level, however, (50). Furthermore,
sensory processing patterns are known to change with time,
depending on the context in which they are estimated (51). Both
hyper- and hyposensitivity to the same type of stimuli may exist
in the same person with ASD, challenging the suggestion that
only the PNS is implicated in the observed alterations (52). In
addition, the results of such psychophysical evaluation of pain
detection and discrimination may be confounded by other factors
like attentional resources, levels of anxiety or task performance
capacities which may be different in autism.

At the level of the spinal cord, complex interactions between
excitatory and inhibitory interneurons have been shown to
modulate pain signal transduction. According to the “gate
control” theory (53), concurrent activation of large sensory
afferents from the skin (Aβ-fibers) could suppress transmission
in small unmyelinated C-fiber afferents and therefore block pain
perception. As a consequence, tactile stimulation of a painful area
may relieve pain (54).

The relation between self-stimulation and self-injuring
behavior and response to pain in autism has been discussed (20).
A study measured SIBs and pain signs in non-verbal individuals
with ASD (55) revealed increased behavioral signs of pain in
adults with chronic self-injury. That suggests that the SIBs might
be a coping strategy to manage chronic pain. Children with ASD
showed a significantly reduced pain sensitivity and increased
tactile sensitivity after somatosensory- directed therapeutic
manipulations (with touch, proprioception, vibration, and
stereognosis; 56); this effect was not find in the control group. The
authors suggested that repetitive somatosensory distraction, by
an increase of affective-motivational input affects pain processing
and alleviates pain sensation, in line with findings in various
chronic pain conditions (57–59). Although the effects of these
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therapeutic manipulations may be ascribed to central pain
processing and top-down regulation, normalization and integrity
of peripheral sensory perception likely also contributes. However,
the causal relations between SIB and altered pain perception in
ASD is far from understood.

Initial stages of neurophysiological processing of pain in ASD
highlights. The evidence for alterations in pain transduction
at the level of peripheral receptors in ASD is limited to reports
of decreased nociceptor density. That question needs to be
more robustly corroborated, given that pain thresholds in
individuals with ASD and the control groups weren’t different
in most studies. However, peripheral nerve alterations may
partly explain sensory dysfunctions like allodynia – painful
atypical response to touch, and hypoesthesia – hyposensitivity
to injurious stimuli, but also paradoxical heat sensation
documented in the battery of sensory tests in autism.

Atypical Brain Activity for Pain
Processing in Autism Spectrum Disorder
The Pain Matrix: First Level of Response
“The Nociceptive Matrix” (Thalamus, Somatosensory
Cortex)
The Thalamus
The thalamus, a regulatory hub for sensory inputs from different
modalities, is involved in pain processing (60). It can be
reorganized following chronic pain, altering maps of noxious
and innocuous stimulation and leading to the perception of
innocuous stimuli as nociceptive (61). In individuals with ASD,
both structural and functional deviations in the thalamus have
been found (62–66; Figure 2). The available studies on the resting
state or anatomical connectivity yielded heterogeneous results.
Both hypo-(64, 67) and hyperconnectivity (65, 68) between
thalamus and cortical areas were demonstrated in ASD. During
an aversive sensory stimulation, thalamocortical connectivity
was attenuated, while connectivity between thalamus and
subcortical areas (putamen, hippocampus, and amygdala) was,
in contrast, enhanced in individuals with ASD when compared
to controls (69). This hyper-connectivity in response to aversive
stimuli could indicate a lack of cortical inhibition. Additionally,
connectivity between thalamus and amygdala is thought to play
a role in directing attention to emotionally salient information.
This suggests that modified thalamus connectivity may be
responsible for over-attribution of “pain” salience to benign
tactile stimuli (allodynia).

In a recent study investigating different stages of pain-
induced brain responses, Failla et al. (62) showed that processing
of noxious stimuli in the brain differs between subjects with
ASD and neurotypicals, with regard to the duration and type
of pain. In this study, adults with ASD showed significantly
less brain activation in the thalamus compared with controls
during sustained pain stimulation (62). In contrast, acute
brain responses to pain were similar across groups. That
reorganization of thalamocortical and thalamosubcortical pain-
processing pathways may be responsible for reduced pain
awareness due to attenuated thalamocortical signaling. In
addition, increased unspecified distress due to upregulated

signaling between thalamus and sub-cortical structures noxious
may result in possible perception of neutral stimuli as in ASD.

The Somatosensory Cortex
The functional and structural modifications in one of the
earliest brain areas activated by noxious stimuli, the primary
somatosensory cortex, S1 have been detected in subjects with
ASD (73, 74) along with altered sensitivity profiles (32, 75).
In addition, reduced gray matter volume in somatosensory
brain areas and possible disruptions in thalamocortical white
matter fiber pathways were associated with higher SIB scores in
autism (76). In the above-mentioned study (62) sustained painful
stimulation (heat stimuli administered to a right lateral calf),
was associated with significantly less activation in the left S1 and
bilateral secondary somatosensory cortices S2 in the group of
participants with ASD than in their neurotypical peers. Again,
brain activation during the initial stage of stimulation was not
different across these groups.

The Pain Matrix: Salient Encoding of Pain Stimuli
“The Salience Matrix” (The Cingulate Cortex,
Prefrontral Cortex and Insula), and Their Interactions
With Third Order Areas
Activation of “salience matrix” regions is not specific to painful
stimulation. These circuits may be activated by any sensory
stimulus that rises above the sensory threshold. Such co-
activation adds the “salience” meaning of noxious stimuli and
triggers attentional control of pain-evoked response (70). The
coordinated response within the sensory-specific and second-
order networks (Supplementary Table 1 and Figure 2) is crucial
to create links between pre-conscious nociception and conscious
pain (36, 43).

The cingulate cortex: Besides its role in the attentional
component of pain stimulus processing (Supplementary
Table 1), the cingulate cortex plays a role in the brain response
related to negative affect and goal-directed behavior, resulting in
“urgency to act” (77). The alterations in cingulate cortex function
have already been documented in ASD (78, 79). Decreased
engagement of the anterior cingulate cortex in participants
with autism was also observed in the above-mentioned study of
sustained pain responses (62). In addition, during a heat-induced
pain, both amplitudes and latencies of evoked potentials in
the cingulate gyrus were found to be lower in adults with ASD
compared to controls, while pain scores were not significantly
different between groups (71). Such results suggest that the
cingulate cortex seems to be less implicated in general, but
may have a specific role at the latest stages of pain processing
in ASD, contributing to the motor hyporesponsiveness of
individuals with autism.

The insula is involved both in the initial perceptual stage and
in the cognitive encoding of pain (80). Structural and functional
changes in the insula, as well as alterations in connectivity, were
observed in autism, as reviewed in Caria and de Falco (81), Uddin
and Menon (82). Decreased insula activation in participants with
autism was also observed during sustained pain (62). The insula
is considered as a hub for interoception, i.e., representation of
our own internal word, (83, 84); self-awareness and bodily self-
consciousness (85); which have generally been reported as atypical

Frontiers in Psychiatry | www.frontiersin.org 4 July 2022 | Volume 13 | Article 910824

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


fpsyt-13-910824 July 14, 2022 Time: 17:50 # 5

Bogdanova et al. Paradox of Pain in Autism

FIGURE 2 | Basic view of ascending pain processing, delineated on two brain sections, with emphasis on early, sub-conscious (1, “nociceptive matrix”: the posterior
operculo-insular cortex, the primary sensory areas, p-mid-cingulate cortex, supplementary motor area and the amygdala) and conscious pain perception (2,
“salience matrix”: the anterior cingulate cortex, the anterior insula, posterior parietal, prefrontal and orbitofrontal cortices), and (3, “areas of third-order brain
activation”: the hippocampus and the anterior and posterior cingulate). Nociceptive cortical processing is initiated in parallel in sensory, motor and limbic areas.
Some activation may last longer than voluntary motor reaction. Based on brain response dynamics and models described in Bushnell et al. (42), Garcia-Larrea and
Bastuji (70). The alterations in pain-induced responses in the brain of individuals with ASD are shown with gray arrows according to Failla et al. (62), Chien et al. (71),
and Gu et al. (72).

in population with ASD (86–92). Disrupted engagement of the
insula during pain processing may be responsible for altered pain
awareness and/or cognitive pain representation (49).

The (pre-)frontal cortex participates in top-down cognitive
and anti-nociceptive short- and long-term controls over pain
perception and reaction (93, 94). Less prefrontal cortex
engagement may be related to reduced antinociceptive feedback
(Supplementary Table 1 and Figure 2). Even if pain-related
prefrontal cortex activation does not seem to differ between
individuals with and without ASD (62), it is negatively correlated
with levels of perceived pain in participants with ASD. Another
recent results reported a reduced prefrontal cortex response to
painful stimulation in participants with ASD (95).

The reciprocal connections between prefrontal cortex,
hippocampus, and amygdala are known to be implicated in
different stages of pain processing (96). It has been reported that
noxious stimuli modulate prefrontal-hippocampal connectivity
and impact behavioral performance (97). Chronic pain causes
neuroplastic changes in these regions of the brain, resulting
in aversive states and memory deficits (98, 99). In ASD,
structural and functional alterations have been observed in the
hippocampus-prefrontal cortex-amygdala network (100–102).
The interruption of maturation of these brain areas caused by
chronic pain in early life has been proposed as a predisposing
factor for ASD (103). Taking into account recent theories about

reorganization of pain processing pathways during the transition
from acute to chronic pain proposed by De Ridder et al. (104),
one may speculate that such a reorganization during perinatal
development could explain alterations observed in ASD. Further
research on this topic may provide a more unified account of how
sensory and social peculiarities impact together the perception
and processing of pain in subjects with ASD (37).

Default mode network (DMN) may also be related to pain
processing in autism. According to recent models (104), chronic
pain results in reorganization of pain networks in the brain and
also implicates the DMN (the medial prefrontal cortex, posterior
cingulate cortex, inferior parietal cortex and the precuneus; 105–
107). That leads to integration of pain into body schema and
changes in its appraisal. Little is known about DMN activity
during pain processing in subjects with autism, but numerous
alterations of DMN activity and in its connections with other
brain areas have been described in subjects with ASD (108).

By referring to the model of chronic pain, we may suggest
reorganization of thalamocortical and thalamosubcortical pain-
processing pathways in ASD. That plasticity could be partly
responsible for reduced pain awareness due to attenuated
thalamocortical signaling. Second, reduced activation of the
second-order brain areas may lead to deviant pain consciousness
and hypo- or delayed activation of structures implicated in
goal directed behaviors and motor responses. Finally, increased
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unspecified distress due to upregulated signaling between
thalamus and sub-cortical structures, might lead to perception of
neutral stimuli as nociceptive.

The “pain matrix” in ASD highlights. Results of neuroimaging
studies of pain processing in ASD are limited but suggest atypical
brain activation patterns. Decreased activation in most of the
areas of the pain matrix, starting from earliest cortical and
sub cortical structures, during sustained pain stimulation in
contrast to acute pain, supports the hypothesis of “feedback
default” or “atypical top-down pain regulation” in ASD. Possible
re-organization of pain processing pathways in early stages of
development in ASD may be responsible for such alterations.
Taken together, available information on central pain processing
in ASD may explain the paradoxical dissociation between (near
to-) intact low-level perceptive abilities in pain detection tasks
and altered salience and awareness of pain and its affective
components.

Pain Perception Modulation in Autism
Spectrum Disorder
The Descending Pain Control Pathways
The descending pain modulatory system involves connections
between the (pre-)frontal cortex, the thalamus, the
periaqueductal gray (PAG) and the amygdala (Supplementary
Table 1 and Figure 2). Among these brain structures, the
amygdala appears as a key component of top-down regulation.
The amygdala allocates attention and assigns emotional value –
either positive or negative – to sensory information, thus
leading to adaptive behavioral and affective responses and
also contributing to emotional memory. Under short-term
aversive conditions, such as stress or fear, amygdala activation
induces hypoalgesia. Contrary to this, during chronic pain
caused by various medical conditions, long-lasting functional
plasticity of amygdala activity is related to enhanced nociceptive
responses, including hyperalgesia, aversive behavioral reactions
and anxiety-like states (109, 110). The amygdala has received
considerable attention in ASD studies (111). For example, the
amygdala in individuals with ASD show both microscopic (112)
and macroscopic structural regional abnormalities. Recently,
in a large sample of 1,571 participants with ASD, increased
thickness in the frontal cortex and reduced subcortical amygdala
volumes were reported (113) as well as connectivity atypicalities
(114). In line with the so-called “weak amygdala’s emotional
modulation hypothesis in ASD” (115), such deviant regulation
may yield atypical behavioral and social/psychological responses
(116). Reduced connectivity between the prefrontal cortex
and the amygdala during unpleasant stimulus processing was
recently observed in children with ASD (117). That suggests
that alterations in the interconnectivity of these structures
may play a role in the blunted behavioral responses to pain
in autism. Importantly, the amygdala is activated by pain as
early as the first-order cortical areas (118). Thus if prefrontal
networks are unable to exert inhibitory modulation, it may
remain over-activated, producing a cascade of autonomic and
behavioral reactions.

The descending pain modulation pathways can be both
facilitatory as well as inhibitory. Facilitatory pathways are the
ones which enhance pain perception, while inhibitory pathways
suppress pain perception. Endogeneous opioids are released
at synapses at multiple points in the PNS to block the
ascending pain transmission signal. Moreover, during chronic
pain, these pathways are plastic, resulting in pain sensitization or
other perceptual alterations such as allodynia or nocebo (119).
Alterations of the balance between descending controls, both
excitatory and inhibitory, are involved in some dysfunctional and
chronic pain states such as fibromyalgia (120–122) that has been
associated with higher rate of autistic traits (123).

Of the endogenous pain modulatory mechanisms, the Diffuse
Noxious Inhibitory Control (DNIC), is essential and often been
described as “pain inhibits pain.” That occurs when response
to a painful stimulus is inhibited by another, often spatially
distant, noxious stimulus. The DNIC is predominantly studied in
humans using the psychophysical paradigm of Conditioned Pain
Modulation (CPM; 124, 125). The most commonly investigated
test stimuli are pressure pain threshold (PPT) and cold water
immersion is the most frequently studied conditioning stimulus
(126). In ASD, recent results suggested a preserved CPM
effect. The measures of PPTs increase significantly after a cold
conditioning stimulus in both adults with and without ASD
(32, 127). Nevertheless, as the pain scores were very variable
in individuals with ASD, with a greater range of extreme
scores than in control group, results must be interpreted with
caution (127).

Anticipation of Painful Stimuli
Brain activity patterns accompanying pain anticipation and
processing were studied in high functioning adults with ASD
and matched neurotypical individuals (72). Stronger activation
in the anterior cingulate cortex was observed during the
anticipatory phase in the group of participants with autism,
while brain responses during painful stimulation were not
different from neurotypical peers, in line with (62). The increased
anticipatory brain response was paralleled by augmented
behavioral sensitivity to anticipated (expected) pain in individuals
with autism. This may seem to be contrary to previous
observations of decreased response to sustained pain stimuli.
This may be explained by the fact that in Gu et al. (72),
contrary to Failla et al. (62) a cued paradigm was used
to force participants to attend to incoming noxious stimuli
and concentrate on the sensory aspects of stimulation. It
should be noted that in this study, participants with ASD
pre-selected a lower level of painful stimulation than healthy
individuals, consistent with their hypothesized nociceptive
hypersensitivity. The idea being developed here is that one
may explain one of the paradoxes of pain perception in
autism: expected pain perception is enhanced due to stronger
attentional engagement.

Pain Resonance and Empathy
A growing body of evidence suggests that the ability to
understand and feel compassion for another’s pain, so called
“empathy for pain” (128) is underpinned by the same neural
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structures that are involved in the direct experience of pain.
Observing someone experiencing pain induces brain response
in the insula, anterior cingulate cortex, the brainstem and
the cerebellum, but also emotional and physiological responses
similar to those caused by a direct experience of pain (129–131).
Empathy for pain is hypothesized to be based on the subject’s own
experience of pain. It may be related to vicarious pain perception,
the sensation of pain on one’s own body while observing the
pain of others (132). Results from studies of vicarious pain
perception and empathy for pain in ASD are contradictory. Some
studies reported no difference from typical peers in behavioral
and neuronal signatures of empathy for pain, while others suggest
atypical brain activations and reactions in ASD (29, 109, 133–
135).

Observation of someone’s injured hand vs. non-injured
hand (from a first-person perspective) induced strong and
consistent activations of cingulate, somatosensory and insular
cortices both in participants in control and ASD groups
(109). These responses are accompanied by the same level
of pupil dilation, an estimator of physiological arousal.
Similarly, no group difference was found in the activation
of the insula during a task based on painful stimulation
applied to both the other’s hand and one’s own (48).
Similar results were obtained from the observation of facial
expressions of others experiencing painful stimuli (134, 135);
both neurotypical subjects and participants with ASD exhibited
activation in regions involved in pain processing (the insula,
somatosensory cortex, supplementary motor area, periaqueductal
gray, and prefrontal cortex), in affective reaction (orbito-
frontal cortex, the amygdala) and in face and body part
processing (fusiform face area, extrastriate body areas). These
results would suggest that typical brain processes involved
in shared representations of pain or emotional contagion are
intact in autism.

In contrast, other results revealed atypical brain activations
and physiological and behavioral responses to vicarious
pain in ASD. In the same study cited above (135), videos
of someone’s limbs in painful vs. non-painful situations
caused less activation in the inferior frontal gyrus, the
precentral gyrus, the frontal orbital cortex and the medial
prefrontal cortex in adults with ASD compared to neurotypical
controls. As these regions are known as important parts of
motor resonance and empathy for pain network (136) their
hyporesponsiveness may contribute to emotional resonance
alterations in autism.

In the study of Gu et al. (133), subjects observe images
of someone’s hands or feet (from first-person perspective)
in painful or non-painful situations. In that study subjects
with autism were less able to discern pain in others, but
demonstrated higher activation in the anterior insula and
extrastriatal body areas, and lower activation of right prefrontal
cortex compared to controls. In addition, participants with
ASD had augmented empathetic pain-related skin conductance
response. That response correlated with brain activation evoked
by images, suggesting higher level of physiological arousal
and sympathetic nervous system engagement, compared to
control participants.

In general, empathic responses are described as non-typical
in ASD (137). Although general empathy and empathy for
pain are distinct, they may share common neurological and
physiological mechanisms. It has been reported that in subjects
with ASD and their neurotypical peers, lower empathy is
correlated with greater anterior cingulate cortex and insula
activation in a pain anticipation task (72). Consistent with this,
empathy scores are negatively correlated with insula activation
only in participants with ASD during vicarious pain perception
(133). In addition to autonomic hyperarousal evoked by these
stimuli, it is plausible that alterations in the regulation loop
between central and peripheral responses during subjective and
vicarious pain experiences may be related to empathy modulation
in ASD. It is also possible that difficulties in recognizing and
reporting on one’s own (and others’) emotions, referred to as
alexithymia, may be more responsible for observed alterations
in empathy than core autistic features themselves (48, 110). For
example, it has been shown that higher levels of alexithymia
is related to increased arousal and diminished habituation
to negative emotional stimuli (138). However, this conjecture
remains unresolved (139).

The role of embodiment, e.g., the integration of sensations
from one’s own bodily experience (in the present as well as
in the past) in the construction of conscious perception in
order to understand our own experience, and the experiences
of others (140) in ASD is discussed (92). Embodied cognition
is based on the same neurophysiological mechanisms which are
activated during observation of stimulation applied to others
as during perception by self (141–143). When participants
observed someone’s body parts being injured, participants with
ASD had increased activation in the somatosensory cortex
(S1/S2) and decreased activation in the medial prefrontal cortex
comparatively to controls (29). In addition, only participants
with ASD demonstrated that S1/S2 overactivation evoked
by vicarious pain was associated with lower pain pressure
thresholds (e.g., higher pain sensitivity) and, paradoxically, to
reduced unpleasantness rating scores. These results suggest
that atypical coupling between embodiment and atypical
sensory processing influences perception of vicarious pain in
ASD. Consistent with these findings, reduced embodiment
reaction in response to emotional stimuli is demonstrated
in autism (144). Interestingly, production of an empathic
response to other’s pain requires directed attention from
individuals with ASD (145), which is attenuated when the
individual is distracted.

The attentional demands required to detect others’ pain may
partially explain discrepancies in insular cortex responses in
subjects with ASD: overactivation of the insula demonstrated in
Gu et al. (133) or inhibition of its activity shown in Fan et al. (29).
While in the former study the images of different type (pain/no
pain) were counterbalanced and randomized, Fan et al. presented
stimuli in blocks of consecutive events, creating the possibility of
priming the subject to the valence (pain/no pain) of the upcoming
stimulus. This latter observation may be congruent with lower
insula activation for sustained pain stimulation observed in Failla
et al. (62). Taking into account the integrative role of the insula in
the perception of the self, these observations may demonstrate
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alterations in upper-level integrative processes in ASD during
vicarious pain perception.

In summary, results from the limited number of studies on
brain reactivity to vicarious pain in ASD need to be replicated
to clarify the patterns of activation of each area of the pain
matrix, compared to typical activation. Previous discrepancies
concerning somatosensory or insula activities during empathy for
pain may arise from differences in experimental paradigms, as
already described in similar studies of neurotypical development
(146). Nonetheless, these studies identified potential specific
alterations in brain activity, similar to those reported in studies of
direct pain stimulation, especially in the (pre-)frontal brain areas.
This suggests a possibility of shared origins between atypical
responses to pain stimuli and difficulties in empathy (at least
for pain) in ASD. According to embodiment theories, altered
perception of pain in oneself may be related to anomalous
reactions to signs of pain, and may be related to other socio-
cognitive deviations in ASD, such as attenuated distinction
between positive vs. negative emotions (124).

Social Touch and Down-Regulation of Pain in Autism
The social component of pain modulation must not be
underestimated in the global processing of pain, particularly in
ASD. The observation of someone’s pain induces a need for
action in observers, an urge to provide help or reassure the
person in distress. One of the most common ways to respond
to someone’s pain, to reassure and calm, is through the so called
“social,” or “soft,” “interpersonal,” or “affective” touch, a specific
type of tactile stimulation provided by others, promoting pleasant
feelings, approach-related behaviors and reductions in pain (125).
It has been reported that brain correlates of soft touch-induced
analgesia, included modification of pain-related activation in
“nociceptive” brain areas as well as secondary (“salience”) and
third-order pain perception areas, and in sub-cortical regions
such as amygdala, hypothalamus, and PAG (125). Affective touch
signals are conveyed to the brain via the specific variety of type
C nerve fibers, so called C-tactile, CT fibers (127). CT fibers
stimulation activates the insula, but not somatosensory areas S1
and S2 and underlies positive affective aspects of touch (147).
However, these types of interactions are often reported as stressful
by people with ASD, provoking unpleasant feelings or touch-
aversion behavior (148).

Recent studies demonstrated that brain correlates of social
touch are modified in ASD (149–151). These alterations in
brain activation were correlated with the autism severity (150).
Moreover, while activation of the insula and other socio–
emotional brain regions were reduced, social touch evoked
atypical hyper-reactivity in primary somatosensory cortex (151),
consistent with increased tactile sensitivity in areas innervated
by CT-fibers (30). This may explain the unpleasantness of social
touch and interruption of the mechanism of soft touch-induced
analgesia in autism.

Social touch promotes communication through oxytocin-
dependent mechanisms (152). Oxytocin, a neuropeptide receiving
increased attention because of its prosocial effects, has potential
in social interactions improvement in autism (153, 154). The
regulatory role of oxytocin on pain processing may be found

on various levels from peripheral antinociception to high-level
emotional pain, pain anticipation and pain memory (155). Some
studies demonstrated that oxytocin treatment potentiated social
brain connectivity and behavioral improvements in subjects with
ASD (156, 157) and reduced heat pain intensity ratings and
amygdala activation during painful stimulation (158, 159). This
suggests the therapeutic potential of oxytocin in modulation of
pain down-regulation by others in autism.

Formation of adequate top-down regulation of pain requires
conscious appraisal of it emerging from coordinated co-
activation of numerous brain areas. Decoupling between first and
second order brain areas of the pain matrix (for example, under
anesthesia) leads to nociceptive matrix-elicited physiological and
hormonal responses (160, 161), but absence of down-regulation
from upper brain areas (162). Such blunted reactions may
have long-term consequences such as anxiety, pain sensitization,
depression, or post-traumatic stress disorder (70, 163). In ASD,
an increase in SIB (21, 28) or other-injurious (164) behavior
after painful procedures, along with increased physiological and
hormonal responses (165) could be considered consequences of
such dysregulation.

To conclude, a body of evidence suggests atypical neuronal
processing of pain in ASD. Although some recent results indicate
possible alterations in nociceptors (46) or suggest possible
excitatory/inhibitory imbalance in the spinal cord level (5), most
of the findings focus on atypical brain processing. Together
with evidence of hypoactivation in areas of the second and
third order brain areas, more consistently in (pre-)frontal cortex,
scientific findings support the hypothesis of a “feed-back defect”
or “altered top-down regulation” in pain processing, in ASD (62).
In addition, the crucial role of attentional engagement in resulting
pain-evoked response may be proposed. In many studies these
alterations correlated with participants’ assessment of direct pain,
linking central mechanism dysfunction with atypical expression
of pain in ASD. This section emphasizes the linkages between
deviations in social regulation and pain perception in ASD.

Pain perception modulation in ASD highlights. Pain
processing in the brain relies on coordinated activation of
multiple brain areas. Reorganization of that response may
decrease or increase levels of perceived pain. Affective and
cognitive aspects of pain perception, as well as in vicarious
pain experience and down-regulation of pain response by
social touch seem to be modified in people with ASD. Observed
alterations should be taken into account when considering the
role of social reciprocity in pain regulation in autism.

ATYPICAL PAIN REACTIONS IN AUTISM
SPECTRUM DISORDER

Emotional expressions (bodily, verbal, and facial) have an
important social function in communicating one’s own feelings
to others to receive adequate responses. Pain is a complex
socio-communicative experience which includes biological,
physiological and cognitive but also social determinants.
Expressions of pain can be enhanced or suppressed by the
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presence of others and social context, as well as by the personal
history of reassurance and support, in reference to the “social
communication model of pain” (166). Displays of pain command
the attention of observers and provoke reflexive behaviors that
facilitate down−regulation by various mechanisms of distraction,
reassurance or social referencing (36). Alternatively, individuals
with autism may mask or camouflage their feelings (167),
which may be associated with adverse mental health outcomes.
Alterations of any of the top-down modulation steps including
clear pain communication (Figure 1) may lead to aggravation of
painful experience (168).

Different levels of pain communication exist. They include
more or less volitionally regulated facial and body expressions,
vocalizations, withdrawal from the source of the pain and
also visible physiological signs of distress, like increased
pupil diameter, sweating, pale skin, increased heart and
respiratory rate, mediated by specific changes in hormonal and
neurochemical responses (36). It is still debated (24, 27) whether
atypical patterns of pain expression in ASD are mostly attributed
to alterations in pain processing and regulation itself, or in the
motor response realization, as alterations in motor skills are
frequent in autism (169).

Challenges of pain assessment in ASD. Historically, hypo-
responsiveness to painful stimuli was included as one of the
symptoms of ASD as “apparent indifference to pain” (19), also
largely reported by clinicians and relatives of the patient (22,
25, 170). During evaluation of every-day pain reactivity, among
several types of behaviors rated as “very often occurred” after
a painful incident in people with ASD, some were similar to
individuals without ASD (“seeking comfort,” “crying”) and some
were atypical (“being difficult to distract,” “jumping around,”
“agitated,” and “fidgety”; 171). However, despite the higher
incidence of pain-evoking accidents (172), missing, delayed or
aberrant reactions to painful stimuli are often reported in daily
observation of subjects with ASD.

Observer-rated pain assessment may provide a long-term
profile, and thus is well-suited for chronic pain conditions.
Various scales have been specifically adapted for pain assessment
in populations with communication and cognitive alterations,
as a function of the age and global mental functioning of the
person. We can cite the short-form McGill Pain Questionnaire,
SF-MPQ (49, 173); the Non-communicating Children’s Pain
Checklist, NCCPC-R (174, 175), the Pre-Linguistic Behavioral
Pain Reactivity Scale, PL-BPRS (21, 165); the Faces, Legs,
Activity, Cry and Consolability – Revised (FLACC-R) or the
Faces Pain Scale-Revised and a Numeric Rating Scale (176).
These scales are focused on behavioral signs, extracted from
body language and facial expression, in particular on visible
signs of agitation, stress and discomfort. Importantly, in ASD
many signs of emotions including stress, anxiety, discomfort,
but also pain are considered as “idiosyncratic.” Thus these
methods of pain evaluation in individuals with ASD, who
are known to express atypical responses, should be applied
with caution. Parents and observers must be familiar with
the “common behavior” of the person, in order to catch the
new “signal” and to recognize it as the response to pain (24,
26, 177).

Self-assessment of pain gives direct, but subjective
information and requires familiarization with the scales.
Tools that obtain quantified self-reports of pain intensity
usually allow the individual to state a number or point to
a face that correlates with a number, such as the Wong-
Baker Faces Pain Rating Scale (178) or the Pain-O-Meter, a
plastic tool with a moveable marker (179). Self-evaluation
could be difficult in an acute pain situation, even more so
if the person has intellectual and conceptual difficulties and
cannot follow instructions for self-reporting or has limited
understanding of concepts necessary for tool utilization. Ely
et al. promoted an alternate interactive approach to pain
assessment in ASD based on individualized consideration
and estimation of pain assessment methods. Utilizing the
help and knowledge of parents appeared to be essential in
identifying the presence of pain and accurately estimating its
intensity (177). More research must be completed to advance
knowledge and practice for assessing the pain of the individual
with ASD. Researchers developing new tools should recruit
parents for assistance.

Global motor response. Based on the use of these various
scales, some studies have reported a reduced behavioral
reactivity to pain in children with autism, whether at home
(parental assessment), in institutions or during a venipuncture
(professional assessment; 165, 180, 181), but hyper-reactivity was
also suggested in similar experimental conditions as well as in
other clinical settings, such as during dental cleaning (182, 183).
In addition to behavioral observations with traditional scales,
delayed or aberrant reactions to painful stimuli are often reported
in daily observations by parents and clinical reports (171). These
are: lack of protective body position or withdrawal reactions (7);
a wide range of deviant pain-evoked responses like: hyperactivity,
paradoxical laughs, aggressiveness, stereotyped behaviors and
SIB (20, 22, 165, 184); a general expression of discomfort
without localization of the source of pain, as well as other
variations (171).

Very few tools to capture atypical signs that are not listed
in traditional scales have been tested or adapted for individuals
with autism. Only one adaptative scale: the “Simplified Pain
Evaluation Scale for Dyscommunicative Autism Spectrum
Disorders: ESDDA” has been proposed, but it currently lacks
psychometric validation (185). The development of reliable and
validated assessment tools remains challenging, because of the
high heterogeneity of ASD clinical features but also because pain
is defined as a highly subjective experience that varies among
individuals in general.

Facial expression of pain in ASD. Facial expressions of pain
are a crucial component of social signaling (186–188), even in
non-communicative or unconscious patients (189).

Facial emotion recognition and the ability to convey emotion
through facial expression has been a topic of interest in autism
research for more than three decades. In people with ASD, facial
expressions are often perceived as awkward or atypical for a
review, see (190). The idea that people with ASD spontaneously
express less frequent and shorter emotional expressions and of
lower quality (less accurate and intense) than their neurotypical
peers is widely accepted (191, 192), described as “amimia”
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in clinical reports (191). Many screening and diagnostic tools
for ASD include the items: “range of facial expression” or
“inappropriate facial expressions,” as one of the early signs of
ASD (e.g., the Social Communication Questionnaire, Modified
Checklist for Autism in Toddlers, Childhood Autism Rating
Scale, Autism Diagnostic Interview).

Studies examining pain expression in autism have generally
documented mixed results that have failed to provide a
consensus. For example, during a venipuncture, some authors
reported more facial expressions in children with ASD than
in their neurotypical peers (175) whereas no differences were
identified in another sample (193). To note, the existing
methodologies based on manual scoring of facial expression
are strongly dependent on the abilities of the observer (194–
196). To minimize the impact of subjective bias and context,
several studies were designed to explore facial expressions
accompanying pain through standardized conditions and
tools and to compare observational rating scores with
physiological markers of pain perception during routine
clinical procedures, such as venipuncture (165, 175, 193, 195) or
dental procedures (183).

Nader et al. (175) has analyzed facial expressions in children
using the most frequently used tool in traditional research
on facial emotion expressions: the Child Facial Action Coding
System for children (FACS) during a venipuncture. The study
demonstrated that participants with ASD had greater facial
response during the needle insertion phase than the children
in the control group. However, other results indicated a lack
of concordance between the observer and parental scores of
pain evaluations (193). In addition to this, facial reactivity was
compared with the motor and physiological responses (heart
rate) in children with ASD, children with developmental delay
and neurotypical controls.

Only children with ASD demonstrated elevated facial and
motor reactivity after the end of the venipuncture, and authors
indicated that the age-dependent decrement of pain-induced
facial reactions was not observed in this group (193). To
avoid observer-related subjectivity, automated facial emotion
recognition technologies based on FACS were developed and
tested in experimental settings (197–205), however, they need
to be adapted to individual features of a person with ASD.
To our knowledge, currently no experimental design has been
proposed to test and refine algorithmic detection of pain in
individuals with ASD.

Physiological correlates of pain perception in ASD. The
experience of pain evokes numerous physiological responses
driven by the sympathetic and parasympathetic nervous system
(206–208). The acute experience of pain causes an increase
in heart and respiratory rate, skin conductance response,
blood pressure, and pupil diameter, all features of sympathetic
nervous system activation. Painful stimuli also provoke heart
rate variability changes, mostly an increase in low frequency
vs. high frequency ratio (209), muscle tension and a decrease
in skin temperature see for review (210). Most of the
existing results reported similar physiological responses in
individuals with and without ASD, with regard to skin
conductance responses (72) and heart rate (193). Only one

study indicated increased heart rate in children with ASD
compared to children without ASD, after a venipuncture (165).
After venipuncture, the low-functioning autism participants
demonstrated increased rates of injurious behavior directed
toward others (164). Importantly, prediction models based on
the integration of various physiological signals (electrodermal
activity and cardiovascular activity) with motor response
measured by accelerometry may be applied to anticipate
the behavioral outcome in non-verbal patients with autism
(211), and, potentially, to prevent negative affect and pain
after manipulation.

Several limitations, related to the medical manipulation itself,
should be mentioned. As venipuncture or dental care include
not only painful stimulation, but also different manipulations
of the subject’s hand or mouth (a tourniquet placement,
numerous touches to find the vein, disinfection of the skin, or
mixed sensory stimulations – lights, odors. . .), these procedures
may generate certain level of stress. Taking in mind high
unpleasantness of touch or odors for some individuals with
ASD and possible impact of other psychological issues (increased
anxiety, for example), these stressors may obscure the response
to pain. Therefore, it would be optimal to disentangle several
factors of such manipulation to characterize the specific pain-
induced reactions.

To conclude, more research is needed to address the broad
heterogeneity of pain expression in ASD. Experimental and
clinical assessment of pain expression in ASD should be
addressed by a multimodal approach, combining data from
self-assessed pain, as well as the assessment of pain by an
observer, with an effort to adapt and validate the traditional
scales. In addition, pain reactions should be assessed via the
automated analysis of facial expressions and body movements,
as well as skin temperature and conductance; vocalizations,
and other physiological signals, to create a complete profile
of pain-evoked response (212, 213). Moreover, during studies
that exploit the analysis of pain-evoked responses in clinical
settings, efforts should be made to minimize anxiety and
distress due to novelty and anticipation of pain as it may
undesirably magnify pain perception in individuals with ASD
(168). Paradoxically, in a recent study (175), the children
who were the most reactive to pain were those who were
described as the least sensitive and reactive to pain by
the parents. To explain these results, the authors propose
that the expression of pain differs according to the type
of pain (care-related acute pain, daily acute, or chronic
pains). While participants with ASD would have atypical or
reduced behaviors in an everyday situation, they would express
themselves in an exaggerated way during a care situation
(175). Thus, in the future, preference should be given to
non-invasive or more naturalistic methods with minimum
manipulations or novelty.

To achieve this goal, new technologies provide some
innovative approaches (190, 211). The use of wearable devices
allows to assess a range of physiological and behavioral
reactions in individuals with ASD (214); however, to date,
these studies were not aimed to evaluate pain-evoked
responses. Neuro-feedback based strategies, which would
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join individual neurophysiological correlates of pain experience
with simultaneously recorded expressions of pain, may provide a
pathway for people with ASD to express their feelings and solicit
reflexive behaviors from social partners.

Atypical pain reactions in ASD highlights. Production of an
adaptive reaction to a painful event is indispensable to receive
adequate social support. In individuals with ASD, reactivity
to pain is often changed, leading to the absence of proper
pain management and corruption of pain cycle functioning.
The dissociation between central and autonomic responses to
pain may be a cause of alterations of pain processing in
ASD. The need for an integrative evaluation of pain responses
utilizing modern real-life technologies is necessary to address the
individualized needs of each patient.

MECHANISMS AND PERSPECTIVES

Summary of Common Mechanisms,
Involved in Both Autism Spectrum
Disorder and Pain Regulation
Many neurochemical pathways involved in determining ASD
are also known to participate to pain processing in typical
development (see; 215). The pain regulation pathways are
predominantly noradrenergic and serotonergic, but implicate
other neuromodulators including dopamine and opioids, as
reviewed in Yam et al. (35). Here we will discuss the role of some
neurotransmitters in ASD in relation to the regulation of pain.

Opioids and Gut Hormones
Endorphins are important components of endogenous pain
control (35, 208, 216). Peripherally, beta-endorphins produce
analgesia by binding to opioid receptors. At the level of CNS, mu-
opioid receptors block pain processing and activate descending
pain control circuits including the amygdala and PAG (216).
The “Brain Opioid Theory of Social Attachment” (BOTSA),
in which social and affiliative behaviors were proposed to
depend on endogenous opioid peptide levels, has been based
on similarities between social attachment and drug addiction
(217). Many symptoms of ASD seems to resemble behaviors
induced in animals or humans by opioid administration,
including: reduced socialization, repetitive stereotypies, motor
hyperactivity and especially insensitivity to pain. This has led to
the neurochemical opioid hypothesis in ASD, based on evidence
from animal models and human studies and from clinical trials
with opioid antagonists (naloxone and naltrexone), in the early
90s. Blood and cerebrospinal fluid studies have reported that
beta-endorphin levels were altered in individuals with ASD
(218–222). In children with ASD, compared to neurotypical
children, increased opioid levels were found after exposure
to painful manipulation (venipuncture), which were correlated
with autism severity (165). However, these results failed to be
replicated, that may been ascribed to measures biases (165, 219–
222).

After years of disinterest, the role of opioids in ASD could
be updated. In light of recent views on the opioid antagonists

effect (223) and findings on modifications in particular opioid
receptors in subjects with ASD (224), imbalance in the opioid
system may be proposed as one of the mechanisms of pain
sensitization, hyperalgesia and increasing of pain vulnerability
(225, 226). It has been hypothesized that chronic pain conditions
in individuals with ASD could be responsible for SIB, which
would have a calming effect through opioid release (24). SIB
may be related both to enhanced expressions of pain (227),
and to reduced pain sensitivity (228). In neurodevelopmental
disorders, SIB has been proposed to represent a nociceptive
coping behavior, mediated by altered nociception, allodynia
or hyperalgesia and neuroinflammatory mechanisms similar
to those in chronic neuropathic pain disorders (229). In a
recent review of 10 clinical trials testing opioid antagonists and
specific drugs in children with ASD, the authors concluded
that only in a sub-group with elevated endorphin levels,
naltrexone was effective in improving SIB, hyperactivity and
restlessness (223).

Endogenous opioids are implicated not only in pain
downregulation, but also play a role in many high-level processes
like regulation of social behavior. Thus, imbalance of opioid
signaling in ASD may be implicated in altered pain perception
and SIB as an internal pathophysiological mechanism of opioid
tone regulation, but also may contribute to social symptoms.
However, the nature of the relationship between self-harm,
endogenous opioids and pain processing is not clear yet.

An alternative supposition has been formulated by Jonhson
et al. (230, 231), elaborating the links between opioids and
ASD. The authors proposed that autism may be related to a
genetic predisposition in sub-groups of individuals, triggered
by administration of exogenous opioid hormone/medication at
birth or during labor that interferes with the natural fetal opioid
balance. However, this hypothesis hasn’t been documented in a
large cohort of babies born to opioid-addicted mothers (232). To
note, pre-conception opioid prescription was associated with 2.43
times more for the odds of ASD compared to mothers without
prescriptions (233).

Recently, the relation between opioids and gastrointestinal
disorders, which is often comorbid in autism, has been
discussed (234–236). The gastrointestinal tract problems
in ASD include impairments in bowel mucosa function,
selective permeability, gut immune response, potentially
creating a source of chronic irritation and visceral pain
in these patients (237). Increased gastrointestinal tract
symptoms are significantly associated with post-stress cortisol
concentrations in ASD (238). Gut hormones may play an
important role in such relations (239). Among them, ghrelin,
a peptide hormone regulating appetitive behavior, reward,
stress and anxiety response (240) is decreased in children
with autism (241). Ghrelin may also be involved in pain
modulation, as central ghrelin injections increased beta
endorphin concentrations in PAG and reduced behavioral
pain responses (242). Taken together, these observations
underpin possible interactions between co-occurrence of chronic
pain, SIB and gut dysfunctions, pointing toward a role of
endogenous opioids and stress hormones in dysregulated pain
perception in ASD.
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The Gamma-Aminobutyric Acid Role
The excitatory-inhibitory misbalance in the neuronal system Is
implicated in the pathophysiology of pain (243, 244). Gamma-
aminobutyric acid (GABA) is known as the main inhibitory
neurotransmitter in the adult brain. However, during prenatal
stage, GABAergic regulation possesses excitatory role (245,
246). In typical development, GABAergic system switches from
excitatory to inhibitory function. The “GABA” hypothesis suggests
that early dysfunction of the GABAergic signaling disables
normal excitatory/inhibitory switch and is responsible for ASD-
related symptoms (247–250). This suggestion is in line with
model of “developmental heterochrony,” according to which,
autism-related traits may be explained by delays or truncation of
typical development (251). In support of this, various studies in
ASD have reported reduced GABA concentration, specifically in
visual, auditory, somatosensory areas, both in children and adults
(252–254).

Recent findings demonstrated that lack of GABA transmission
via deficiency in long-term potentiation and learning
mechanisms impacts the ability of the amygdala to form
fear memory (255) and may be responsible for autistic-
like features. Improvement in ASD symptoms related to
Bumetanide therapy (a drug promoting of GABA shift from
excitation toward inhibition) in young children (<6 years
old) was associated with normalization of GABA/Glutamate
ratios specifically in the insula cortex (256). This may relate
GABA dysfunction and the role of negative affect in socio-
emotional learning of pain perception. Two other recent
studies analyzed the relationship between GABA levels in
several brain regions and multiple aspects of sensory processing
alterations in ASD. The first study revealed that GABA
concentration in the sensorimotor cortex of adults with ASD
was lower than in neurotypical adults. In addition, GABA
levels were positively correlated with self-reported tactile
hypersensitivity in adults with ASD, but not in neurotypical
adults (257). In line with these findings, another study in
adults with ASD revealed a negative association between
left ventral pre-motor cortex GABA concentration and
the severity of sensory hyper-responsiveness scores on the
Adolescent/Adult Sensory Profile (258). To our knowledge,
no study has examined whether GABA concentrations in the
brain were associated with altered pain experiences in people
with ASD. Future work should evaluate GABA levels in the
brain pain matrix as a significant biomarker and therapeutic
target for autistic sensory processing disorder and specifically
pain processing.

The Role of the Endocannabinoid System
In direct relation with GABA neurotransmission, cannabinoid
receptors are present in brain and peripheral neurons, the
vagus nerve, gastrointestinal lining, immune cells and skin
(259). The ECS participates in brain development, synaptic
plasticity, sensory processing and integration, stress regulation
and neuromodulation (260). This system modulates social
interactions, anxiety and social reward (261). In the context of
dysregulation of pain perception, cannabinoid receptors have
also been found to play a role in sensory transmission and

pain integration (262). Endocannabinoid system dysregulation
has been proposed as a pathophysiological mechanism of
autism (263, 264). Decreased levels of endocannabinoids were
found in children with ASD (265); see for systematic review
(266, 267) to link various symptoms in ASD (inflammation,
microglia dysfunction, and social symptoms; 268). Three recent
papers published by the same team (269–271) focused on the
modulation of the brain’s excitatory and inhibitory systems in
adults with ASD and neurotypical controls, after a single dose
of 600 mg of cannabinoids. This treatment increased levels
of GABA in the dorsomedial prefrontal cortex of controls, but
decreased GABA in that region of participants with ASD. In
light of these findings, new avenues of therapeutic intervention
in the treatment of autism have emerged, on one hand from
empirical experience of patients and members of their families,
and on the other hand, leveraging genetic and metabolic
research. In relation to the above-mentioned gut-brain axis
dysfunction in ASD, the potential for the endocannabinoids
in alleviating gastrointestinal (272) and behavioral disorders
in autism (263, 273–275) along with pain management (262)
should be explored. However, the precise mechanism of action
of cannabinoids in ASD is far from complete. For example,
the two main active components, tetrahydrocannabinol and
cannabidiol, interact divergently with cannabinoid receptors.
The former activates the receptors, whereas the latter seems
to block them (260). However, both components were found
to improve behaviors in autism (273, 276), indicating needs to
future investigations.

Thus, numerous alterations of neurochemical pathways
implicated in autism (Table 1) may provide a rich background
for integrating numerous behavioral and neurophysiological
alterations documented in pain perception, as well as in the
development of strategies for pain treatment.

Global Sensory Processing Alterations
Sensory atypicalities are recognized as diagnostic criteria in
ASD (19). 90% of individuals with ASD have atypical sensory
experiences and regulation, described as both hyper- and
hypo-reactivity, with altered responses to tactile or auditory
stimulations (75). This topic has been the focus of intensive
research over the last 10 years, including studies on pain
perception, leading to the “hypothesis of sensory dysfunction” as
a cause of altered pain sensitivity in ASD (14, 30, 32). These
anomalies affect all the sensory channels of the child and the adult
(see section “Initial Stages of Pain Signaling: From Nociceptors to
the Central Axis”) and complicate the integration and cognitive
processing of stimuli, making each pain percept unique and
poorly integrated in a general concept of the self.

Altered Central Pain Processing and Modified
Regulation of Pain Responses
A growing body of evidence delineating alterations of central
(both cortical and subcortical) and peripheral pain transduction,
transmission and processing are challenging the idea of impaired
pain processing due to a single factor, and calls for an integrative
model. To summarize the findings regarding the central brain
responses and altered pain reactivity in ASD (see section
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TABLE 1 | Summary and discussion of mechanisms involved in both ASD and pain dysregulation.

Mechanism Description Justification Criticism

Neurochemical modulations:
Opioid system dysregulation

As endogenous opioids are an
important component of pain
downregulation, modifications of opioid
signaling in ASD may cause altered
pain perception

Increased levels of opioids observed in ASD
after painful manipulation; opioid antagonists
seems to alleviate ASD symptoms opioid
receptor dysfunction found in ASD

Elevated opioid levels were not
confirmed in subsequent studies

Neurochemical modulations:
Interrupted GABA switch

Pain perception is altered by
excitatory-inhibitory imbalance in the
developing nervous system

Various studies have reported reduced GABA
concentrations in perceptive areas in ASD

No studies demonstrate pain alleviation
in ASD with GABA agonists/antagonists
or any relation between GABA brain
levels and pain

Neurochemical modulations:
Endocannabinoid dysregulation

Endocannabinoid system dysregulation
has been proposed as a
pathophysiological mechanism of
autism

ECS participates in sensory transmission and
pain integration. Cannabinoids alleviate autistic
behavior symptoms

No studies demonstrate relation
between ECS brain levels and pain
perception in ASD

Pain processing modulations:
Global sensory processing
alteration

Atypical pain perception in autism due
to global alterations of sensory
perception mechanisms (peripheral or
central)

Sensory alterations are present in the majority
of cases and are commonly recognized as
diagnostic criteria in ASD; modifications in the
structure of nociceptive sensory endings were
reported in ASD; consistent with these findings,
allodynia, paradoxical heat sensations and
alterations in C-tactile soft touch perception are
documented in autism

Intact, hypo-, and hypersensitivity may
be observed depending on
methodology. Pain-related responses in
population with ASD are
heterogeneous. Sensory processing
patterns are known to change over
time, depending on the context in
which they are observed

Brain pain processing
modulations: Altered pain
processing and response
regulation

pain cycle imbalance in ASD: reduced
engagement of the pain matrix and
in-adequate physiological responses
disable adequate cognitive and
emotional regulation of pain perception

In ASD, decreased response of the pain matrix
might be a result of reorganization of pain
processing pathways. Altered interoceptive
abilities and self-consciousness in ASD do not
allow cognitive appraisal of all aspects of pain
and thus makes impossible proper
down-regulation, which may lead to inadequate
pain-related responses, like self-injury behavior

Descending noxious controls have
been found to be normal in autism
Little data is available on brain
processing of pain in ASD

Modulation of both pain
expression and social
feed-back:
Socio-communicational issues

Social and cognitive complications in
ASD prevent communication about
perceived pain and requests for help

According to theories regarding the role of
cognitive and emotional control of pain, altered
embodiment of emotions in ASD and atypical
pain expressions in ASD may lead to atypical
development of recruiting the help of others in
managing pain in ASD

In spite of some alterations in brain
processing. perception of vicarious pain
seems to be normal in ASD

FIGURE 3 | The pain cycle in ASD with possible impacts from suggested mechanisms, modified integrated model, adapted from Dubois et al. (23), Rattaz et al. (24),
and (277).

“Neurophysiological Processing of Pain in Autism Spectrum
Disorder”), we propose the integrated model of the pain cycle
in autism (Figure 3). Within this framework, evidence for

altered self-awareness and interoception, and reciprocal relations
between altered top-down regulation of pain processing and
pain coping in autism may lead to inadequate and deviant
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pain reactivity. By analogy with other chronic pain conditions,
we speculate that altered pain processing in the brain of
individuals within the spectrum results from reorganization
of pain pathways. This suggestion is supported by recent
findings from neuroimaging studies (62, 71, 95). However, more
research is needed to delineate causal dependencies between
these diverse processes, and to demonstrate how pre-conscious
nociception relates to conscious pain perception in subjects with
autism, given their self-awareness and interoceptive abilities.
Although the basic processes of pain down-regulation seem to
be unchanged, the capacity for conscious appraisal of pain and
the communication of pain to others might be limited in ASD,
especially in early life, when imbalances in physiological and
hormonal responses lead to dysregulation of pain management,
and probably to long-term consequences like increases in anxiety
and depression (168).

Socio-Communicative Issues
Communicational model of pain highlights the social role
of pain expression and intrapersonal reciprocity in down-
regulation of pain (277). Observed dissociation between
enhanced physiological and biological stress responses and
behavioral reactions in autism (28, 165) suggest that, at least for
some individuals, the neurochemical and brain pathways are
preserved but pain communication is altered (8, 177, 181). Based
on the various findings reported above (see section “Atypical
Pain Reactions in Autism Spectrum Disorder”) atypical motor
response and altered reciprocity may inhibit the observer’s
empathy, raising a “double-empathy issue” (278) that was
highlighted in recent publications (23, 24). As in most cases,
people with ASD have no intellectual disability (279) and
may use alternative strategies of social adaptation (280), the
potential of specific cognitive-behavioral therapy (281) for pain
understanding in autism should be explored.

Perspectives
Do core autism symptoms (sensorial and social) initially cause
altered pain perception and expression, which are then worsened
by comorbidities and atypical social modulation experiences? Or
does pain processing in both neurotypical and ASD individuals
share common vulnerabilities that lead to association of ASD
symptoms and pain dysregulation? Would it be possible to
compensate or prevent alteration of the pain modulation as
early as ASD is diagnosed? General heritability of ASD is
approximately 80% (282). Among the numerous genes associated
with ASD, some have also recently been implicated in pain
processing (283, 284). These genes are involved in various
cytomolecular mechanisms controlling of C-fiber excitability
thresholds, or glutamate pathways (27) and induce alteration
in pain processing, in both animal and human models (5) if
muted. However, findings in animal models of autism report
wide divergence of pain perception and responses (27), pointing
out the possible impact of epigenetic factors on relevant genetic
alterations of ASD. To note, most animal models are monogenic
mutation models, in contrast with human. Additional research
is needed to better understand the common genetic and

biomolecular pathways (283, 284), and propose innovative and
preventative therapeutics.

Pain processing develops with age, starting during gestation,
and matures with social experiences throughout life (285, 286).
Given that ASD is considered a developmental condition,
future research need to address this developmental aspect,
proposing longitudinal studies, including early therapeutics and
preventative strategies.

Social development interacts with pain management. Positive
social experiences impact pain modulation and may alleviate pain
perception. Oppositely, negative social experiences as isolation,
bullying, and social rejection among others, may aggravate
perceived pain. Such “psychological” pain itself produces similar
brain response in pain matrix as does physical pain (287, 288) and
have been associated with SIB in ASD (289). That bidirectional
aspect of social interactions on pain perception and expression in
ASD should be more explored.

Mechanisms and perspectives highlights. Numerous
mechanisms involved in ASD pathogenesis have been proposed
to explain the alterations in pain processing. Among them,
alterations in neurotransmitters and neuropeptides (opioids,
endocannabinoids, GABA), in global sensory processing, in
brain response, together with socio-communicational issues
are thought to be associated differently in individuals with
ASD contributing to both autism core symptoms and pain
dysregulation. In an attempt to integrate these mechanisms,
we propose our all-inclusive model of the pain cycle in autism.
However, a number of open questions still remains, requiring
an integrative approach to resolving the paradox of pain in
ASD.

CONCLUSION

The research of pain in ASD is complex. Recent findings in
alterations of brain pathways, summarized as an integrated
model of the pain cycle in autism (Figure 3), suggest more
than nociceptor and neuronal dysfunctions and implicate altered
self-awareness and interoception, which interact with top-down
regulatory pathways for processing and coping with pain. Both
peripheral and central deviations in pain signal processing are
documented in autism. The high variability in pain-related
responses in this population makes the group-based approach
challenging. To date, other- and self-rated pain assessments
aren’t sufficient to characterize the specificity of pain-related
processes in autism and to drive interventions. New technologies,
already used in emotion recognition research in ASD, joined
with continuous physiological activity screening, may provide
more quantitative and integrative approaches to specify what
is atypical in expressions of pain in people with ASD. Future
directions may address the role of these various alterations
at different stages of pain signaling and regulation in ASD
symptomatology and may yield promising candidates for global
therapy, social improvements and behavioral amelioration. The
importance of adequate, objective and multiple approaches
for the assessment of pain in individuals with autism is
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essential not only for health outcomes but also to prevent the
worsening of social disorders. A better understanding of the
complexity and individuality of pain regulation may resolve
the paradox of pain in autism, leading to the development
of individualized pain management strategies, and with novel
therapeutic approaches.
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