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Abstract

The departure of the latest FNAL experimental average for the muon anomalous mag-

netic moment aµ = (gµ − 2)/2 measurements having increased from 4.2σ [1] to 5.0σ
[2], with respect to the White Paper (WP) consensus[3], it may indicate a hint for new

physics. As the most delicate piece of aµ is its leading order HVP part aHV P−LO
µ , meth-

ods to ascertain its theoretical value are crucial to interpret appropriately this departure

with the measurement. We therefore propose to examine closely the dipion spectra from

the η/η′ → π+π−γ decays in the Hidden Local Symmetry (HLS) context using its BHLS2

broken variant. We thus have at disposal a framework where the close relationship of the

dipion spectra from the η/η′ and τ decays and of the e+e− → π+π− annihilation can be

simultaneously considered. A special focus is put to the high statistic dipion spectra from

the η decay collected by the KLOE/KLOE2 Collaboration and η′ decay collected by the

BESIII Collaboration. It is shown that, once the Final State Interaction (FSI) effects are

accounted for, the BHLS2 framework provides a fair account of their dipion spectra. More

precisely, it is first proven that a single FSI polynomial is requested, common to both the η
and η′ dipion spectra. Moreover, it is shown that fits involving the η/η′/τ dipion spectra,

and excluding the e+e− → π+π− annihilation data, allow for a prediction of the pion

form factor data Fπ(s) which fairly agree with the usual dipion spectra collected in the

e+e− → π+π− annihilation channel. Even if more precise η/η′/τ dipion spectra would

help to be fully conclusive, this may already be considered as supporting the Dispersive

Approach results for aHV P−LO
µ .

† Maurice Benayoun has passed on September 15th, 2023.
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1 Preamble : Various Aspects of the Dispersive Approach to

the Muon HVP

The hadronic vacuum polarization (HVP) aµ ≡ (gµ − 2)/2 plays a central role in preci-

sion physics, in particular, in the Standard Model prediction of the Muon Anomalous Magnetic

Moment, but as importantly, for a precise calculation of the running electromagnetic fine struc-

ture constant αem(s) and of the electroweak mixing parameter sin2 θW (s). Thereby, accurate

predictions suffer from the non-perturbative contributions from the low–lying hadron physics

uneasy to address precisely from first principles.

Recently [2], the Muon g−2 FNAL experiment has re-estimated the previous average value

of their run 1 data sample [2] and the latest BNL measurement [4] by also considering their

run 2 and 3 data samples; this turns out to increase the statistics by a factor of ≃ 4. Moreover,

the Muon g − 2 FNAL Collaboration achieved an improvement by about a factor of 2 of their

systematics uncertainty. The derived updated average :

aexp.µ = 116592059(22)× 10−11(0.19ppm)

increases the deviation from the White Paper(WP) Standard Model consensus [3], from 4.2 σ
[1] to 5.0 σ [2]. The difference δa = aexp.µ − ath.µ is now δa = 24.4 ± 4.5 in units of 10−10,

dominated by the uncertainty agreed upon by the WP theory consensus [3]. This departure

from theoretical expectations deserves, of course, to be explored as, indeed, the overall pattern

reflected by the various model/theoretical approaches is unclear, even contradictory.

The WP Standard Model consensus for ath.µ resorts to a data–driven dispersion relation (DR)

approach, where the experimental low-energy hadron production cross-sections provide the

non-perturbative input to calculate the HVP effects. Fortunately, the problem can be restricted

to a precise knowledge of the process e+e− → γ∗ → hadrons, and for what concerns the muon

g−2, the e+e− → π+π− channel provides the dominant contribution to the model uncertainty.

Regarding its non–perturbative hadronic content, the standard DR based evaluation of the

HVP consists in deriving the contribution of each e+e− → γ∗ → hadrons annihilation channel

2



by combining the different spectra collected by the different experiments in the hadronic chan-

nel considered by means of algorithms of different levels of sophistication. The full hadronic

HVP value is then defined, for what concerns its non–perturbative content, by the sum of these

different contributions. The WP Standard Model consensus [3] is based on a combination of

two such evaluations [5, 6].

Although the main challenge is then, seemingly, the simple ππ-production process, the ex-

perimental challenge is highly complex depending on a precise understanding of the detectors

and, on the theory side, on the radiative corrections required to disentangle hadronic effects

from electromagnetic contamination. Unfortunately, the data samples provided by the different

experiments do not exhibit a satisfactory consistency – and even some can be in strong contra-

diction [7] with the others. Using the τ → π−π0ντ decay information, first proposed by [8],

has been considered to discriminate among the π+π− spectra, but did not lead to convincing

enough conclusions.

It is widely considered that all low–energy hadronic processes derive from QCD even

though, in the non-perturbative low-energy regime, tools to make valid predictions of real-

time hadronic cross sections are missing. Nevertheless, as hadron physics is accepted to derive

from QCD, it follows that the various specific hadronic decay processes are highly correlated

to each other. It is thus motivated to address these correlations, especially in order to constrain

the non-perturbative sector of the e+e− → γ∗ → hadrons annihilations.

Although we lack methods to predict a process like e+e− → π+π−, we know that QCD

implies well-defined symmetry patterns like approximate chiral symmetry, and gives rise to

Chiral Perturbation Theory (ChPT), a systematic expansion about the chiral symmetry point.

It allows one to work out reliable predictions from first principles for the low energy tail of the

QCD hadron spectrum (up to about the η meson mass).

With this in mind, an attempt to consider the e+e− → π+π− annihilation not only in relation

with the τ± → π±π0ντ decay but also with other related spectra is important; it motivates a

unified modeling1 by a version of the Resonance Lagrangian approach (RLA) – we adopted the

Hidden Local Symmetry (HLS) version [9, 10] – needed to extend Chiral perturbation theory

towards higher energy to cover the ρ, ω and φ energy range2. To practically succeed in such a

program, the original HLS model – see for instance [13] for a review – has been supplied with

appropriate symmetry breaking mechanisms with various levels of sophistication to derive the

earlier versions of the BHLS model as [14, 15, 16], or the more refined BHLS2 version [17],

updated in [18].

One thus achieved a simultaneous consistent fit of the e+e− → π+π− data from CMD-

2 [19], SND [19], KLOE [13,14,15], BaBar [16,17], BESIII [67,68] and CLEO-c [20] and the

τ → π−π0ντ decay spectral functions collected by ALEPH [21], CLEO [22] and Belle [23]

(see [14, 15, 17, 18]). This updated BHLS2 fairly recovers the known properties of the [π0, η, η′]

1Considering individual channels in isolation, as usually done, does not help much to uncover inconsistencies

between different experimental data sets sometime involving different final states.
2A precise evaluation of the photon HVP implies a precise account of the energy range

√
s ≡ [2mπ, 1.05

GeV], the largest contribution of the non–perturbative region which extends up to ≃ 2 GeV as experimentally

observed [11, 12].
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system thanks to its kinetic breaking mechanism [18].

Beside keeping the neutral vector current conserved, this breaking mechanism also gener-

ates a violation of the charged vector current conservation and a departure of F τ
π (s = 0) = 1

by a few per mil. Such an option finds a support in the own Belle fit results reported in Table

VII of their [23]; additional τ spectra are needed to conclude – see the discussion in Section 3

of [18] – as such a breaking mechanism might affect τ based predictions for the muon HVP.

Beside the π+π− annihilation channel and the τ → π−π0ντ decay spectra, BHLS2 [17, 18],

also addressed sucessfully the π+π−π0, (π0/η)γ and KK final states in the fully correlated

way represented by a single Lagrangian. A few additional radiative partial width decays are

also considered, noticeably those for π0/η/η′ → γγ, and some more V Pγ radiative decays.

In view of the significant inconsistencies of the data samples collected by some experi-

ments, the global fit approach has two advantages: first, more data are expected to reduce

the uncertainties of the HVP evaluations and, second, provides consistency checks of each

e+e− → γ∗ → hadrons data set versus the other samples collected in the same annihilation

channel or in another one.

In the present work, we go a step further by also involving the η/η′ → π+π−γ decay

modes in order to obtain additional ππ dipion spectra from experiments with systematics quite

different from those encountered in e+e− annihilations. As will be seen below, these decays

allow for a new test of the self–consistency of the DR based estimates of aµ : Indeed, the η/η′

decay spectra can provide a DR evaluation for aµ(π
+π−,

√
s < 1 GeV) which can be fruitfully

compared with those directly derived from directly integrating the e+e− → π+π− annihilation

data. One may expect that the η/η′ dipion spectra benefit from systematics largely independent

of those in the e+e− annihilation.

Beside the DR approach which gave rise to several evaluations of the muon HVP aµ listed

in the White Paper [3], the challenging Lattice QCD (LQCD) approach has been used by

several groups and produced results with relatively poor precision at the time of the White

Paper. They were not used to define the so–called WP Standard Model consensus reported

in [3] which, based on some DR estimates, provided the leading order (HVP-LO) consen-

sus aLOµ [th.] = 693.1(4.0) × 10−10. Using the LQCD approach, the BMW Collaboration

which first got [24, 3] aLOµ = (711.1± 7.5± 17.4)× 10−10 later on improved their calculation

and got aLOµ = (707.5 ± 5.5) × 10−10 [25] at clear variance with the WP consensus just re-

minded. This evaluation finds support from the new evaluations by other LQCD groups : aLOµ =
(720.0±12.4stat±9.9syst)×10−10 (Mainz/CLS 19) and aLOµ = (715.4±16.3stat±9.2syst)×10−10

(RBC/UKQCD18) [26] [78].

The lattice calculation of aLOµ thus brings the SM prediction of aµ into an acceptable agree-

ment with the experiment but generates a significant disagreement between the LQCD results

and the different data–driven dispersive results; this looks now well established. It moves the

former puzzle from data versus predictions to a puzzle between Lattice QCD and the DR ap-

proaches which deserves clarification.
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2 Introduction

In this article, we focus on the traditional way to estimate the contribution of the non–

perturbative energy region to the photon HVP which relies on dispersive methods using as

basic ingredients the e+e− annihilation cross sections to all the possible exclusive hadronic

final states collected up to
√
s ≃ 2 GeV.

The different successive broken variants of the HLS model, especially BHLS2 [17, 18],

provides a well adapted framework to address the most relevant e+e− annihilations to hadronic

channels in the crucial part of the low energy region (
√
s ≤ 1.05 GeV), namely the e+e−

annihilations to the π+π−, KK/π+π−π0/π0γ/ηγ final states; these already provide more than

80% of the muon HVP, when integrated up to the φ meson mass.

A BHLS2 based computer code was used for this analysis which considered the large num-

ber of available data samples (several dozens), more than 1400 data points and thus, practically,

the whole set of the available data samples has been exhausted. They have been listed, ana-

lyzed and discussed in full details previously, especially in the recent articles [17, 18], where

a large number of previous references can be found3. This computer code takes faithfully

into account the whole uncertainty information provided together with these data samples and,

therefore, yielding satisfactory global fit probabilities turns out to have simultaneously a satis-

factory model, a satisfactory handling data of the samples collected in several physics channels

and, also, a satisfactory dealing with their reported uncertainty information.

In this perspective, given data samples exhibiting contradictory aspects compared to most

of the others may lead to either discard them or, when meaningful, motivate several solutions

which avoids to mix up contradictory spectra; this has led us in our previous studies [17, 18]

to provide different HVP evaluations based on some of the reported dipion KLOE samples, –

namely [27, 28, 29] – on the one hand and separately on their Babar analog [30, 31] on the

other hand.

Regarding the various dipion spectra, the studies finding strong contradictions between the

so-called KLOE8 data sample [32], or the recently published SND spectrum [33], and the bulk

of the other considered data samples, have been discarded.

Comparing our own evaluations with those based on Dispersion Relations collected in [3],

one does not observe any loss in precision with any of the various reported values of the muon

g − 2; however, differences between central values can be observed, clearly related with the

contradictory properties of some data samples, especially KLOE [27, 28] versus Babar [30, 31]

reported since a long time [15, 16, 34].

As noted above, the contribution of the listed HLS channels to the HVP is large; however,

it is also worth mentioning that their contribution to the HVP uncertainty is almost negligible

compared to those of the rest of the non–perturbative region. Moreover, as the HLS approach

3 The CMD-3 Collaboration has recently published a high statistics measurement of the e+e− → π+π−

cross section [7] which deserves a specific analysis beyond the scope of the present work which is focused on a

quite different topic; nevertheless, the information provided by the CMD-3 Collaboration in their article regarding

the consistency of their spectrum with the previously collected data samples may indicate that, as it is, their

measurement is not consistent with any subset of the relevant existing data samples and thus it should hardly

accomodate a global framework like HLS; so, it should not impact the conclusions of the present work.
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implies tight connexions between the various annihilation channels, it allows performing strin-

gent consistency checks on the different data samples involving the same physics channels or,

also, the other channels addressed by the HLS Lagrangian. It is worthwhile pointing out this

important property, specific to global models like BHLS2 and also stressing that, by far, most

of the available data samples fulfill this drastic constraint.

On the other hand, as indicated in the previous Section, the updated variant BHLS2 variant

[18] of the broken HLS model [17] allows to fairly address the physics of the [π0, η, η′] system

within the HLS corpus. Indeed, beside the e+e− → (π0/η)γ annihilations, the PS decays to

γγ and the V Pγ couplings, the pseudoscalar meson (PS) mixing properties in the octet-singlet

[35, 36, 37] and quark flavor [38, 39, 40] basis parametrizations have been analyzed, leading

to a satisfactory comparison with expectations.

Among the other processes involving the properties of the [π0, η, η′] system, the η′ →
π+π−γ decay spectrum deserves a special attention. The measurements of this decay process

started long ago – as early as 1975 [41] – and several experiments have collected samples of

limited statistics [42, 43, 44, 45, 46, 47, 48, 49] motivated by a reported 20 MeV mass shift of

the ρ peak compared to its observed value in the e+e− → π+π− annihilation.

This effect was soon attributed to an interference between the η′ → ργ (ρ → π+π−)

resonant amplitude and the Wess-Zumino-Witten (WZW) anomalous η′π+π−γ contact term

[50, 51]; this so–called box anomaly was expected to occur alongside the triangle anomaly

responsible of the two–photon decays of the π0, η and η′ mesons. A basic HLS approach

including this anomalous interaction term beside the dominant η′ρ0γ coupling [52] confirmed

this guess.

However, the dipion η′ spectrum from BESIII Collaboration [53] published much later,

thanks to its large statistics (970,000 events), modified the picture : It led to conclude that

supplementing the (ρ0, ω) resonance contributions by only a contact term is insufficient to reach

a satisfactory description of the dipion spectrum.

On the other hand, the reported dipion spectrum observed in the parent η → π+π−γ decay

has undergone much less measurements. Beside former spectra4 from Layter et al. [54] and

Gormley et al. [55], WASA-at-COSY reported for a 14,000 event spectrum [56] whereas the

KLOE/KLOE2 Collaboration collected a 205,000 event spectrum [57].

As the dipion spectra reported from the recent measurements of the η/η′ → π+π−γ decays

carry high statistics, it thus becomes relevant to re–examine if (and how) they fit within the

recently defined BHLS2 framework of the HLS model, especially thanks to its kinetic breaking

(See Appendix A.5) which has already allowed for a satisfactory description of the [π0, η, η′]
system properties [18]. Moreover, even if the physics of the η/η′ mesons is interesting per

se, a better understanding of their properties is important, given their important role in the

Light-by-Light (LbL) contribution to the muon anomalous magnetic moment.

The layout of the paper is as follows. Section 3 aims at reminding the Kroll conditions [58]

which reduce the number of free parameters of the kinetic breaking mechanism from 3 to 1; it

4The numerical content of these spectra can only be derived from the paper figures.
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also reminds and corrects Lagrangian pieces relevant for the present study. Section 4 is intended

to identify the Lagrangian pieces contributing to the considered η and η′ radiative decays and

displays the involved diagrams; the BHLS2 amplitudes for these are constructed in Section 5

for the η → π+π−γ decay and in Section 6 for the η′ → π+π−γ one. The relation between the

anomalous HLS amplitudes and their Wess–Zumino–Witten (WZW) [50, 51] analogs is given

in Section 7. The derivation of the dipion mass spectrum in the η/η′ radiative decays is done

in Section 8 and the role of the final state interaction mechanism (FSI) in the η/η′ radiative

decays is thoroughly examined in Section 9.

Section 10 is the central part of the present study; Subsection 10.1 presents exhaustively

the available η/η′ → π+π−γ data samples; for this purpose it is important to note that all

the available spectra carry an arbitrary absolute normalization and that, accounting for the

η/η′ → π+π−γ partial widths implies using also an external piece of (PDG [59]) information.

A detailed study of the FSI polynomial degrees is the subject of Subsection 10.2 which reports

on the fits performed separately with the η and η′ spectra to find the appropriate degrees of the

requested FSI polynomials. This permits to perform the fits of the dipion spectra reported in

Subsection 10.3 where it is proved that a unique FSI polynomial can satisfactorily account for

both the η and η′ dipion spectra simultaneously.

Subsection 10.4 is devoted to comparing our FSI polynomial results to those reported in the

literature. The role of intermediate ρ± exchanges is emphasized in Subsection 10.5. The global

BHLS2 fits performed to simultaneously describe the dipion spectrum lineshapes examined in

the previous Subsections and the PDG information for the partial widths Γ(η/η′ → π+π−γ)
is worked out in Subsection 10.6. Finally in Section 11 one examines the issues relative

to the connection between the η/η′ → π+π−γ decays and the hadronic contribution to the

muon anomalous magnetic moment aµ. Section 12 summarizes the conclusions reached by the

present study.

In order to ease the paper reading, the main pieces of information regarding the HLS model

are briefly reminded in Appendix A.1, whereas its symmetry breaking mechanisms are briefly

summarized in Appendices A.2 to A.5. An Erratum to the previous broken version of the

BHLS2 version is the subject of Appendix B. To ease the reading of the present work, one has

also found appropriate to give the most relevant parts of the non–anomalous and anomalous

BHLS2 pieces under the Kroll Conditions – reminded just below – in Appendices C and D. A

brief numerical analysis of some parameter values returned by the fits of the η/η′ dipion spectra

is the subject of Appendix E.

3 The Kroll Conditions and VPP Lagrangian Pieces

In the FKS approach [38, 39, 40] to the [π0, η, η′] system, it has been found appropriate to

impose the Kroll conditions [58] to axial current matrix elements. Applied to the BHLS2 axial

currents, these conditions :

< 0|Ja
µ |ηb(p) >= ipµfaδab , |ηb(p) >= |bb(p) > , Ja

µ = aγµγ5a , {a, b = u, d, s} .
(1)
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lead to two non–trivial relations [18] – referred to below as A± solutions – among the λi

parameters of the generalized ’t Hooft term [60, 37] (see Appendix B); one gets :

{
Solutions A± ⇐⇒ λ0 =

√
2λ8 = ±

√
3

2
λ3

}
. (2)

which reduces the actual parameter freedom of the kinetic breaking from three to only one.

One thus should note that the Kroll Conditions tightly couple the breaking in the BHLS2

Lagrangian of the original U(3) symmetry to SU(3)×U(1) and a particular Isospin breaking

piece (via λ3 6= 0); it also lead to F τ
π (s = 0) = 1− λ2

3/2.

The ±1 factor in Equations (2) is propagated below as d±; so, A+ corresponds to d+ and A−
to d−. The non–anomalous pieces Lη′π± and Lηπ± of the BHLS2 Lagrangian acquire simplified

expressions compared to [18] :





Lπ0π± =
iag

2
(1 + ΣV )(1−

λ2
0

3
)
[
ρ− · π+

↔
∂ π0 − ρ+ · π− ↔

∂ π0
]

Lηπ± = −iag

2
[1 + ΣV ]

[
ǫ− A±

2
sin δP

] [
ρ− · π+

↔
∂ η − ρ+ · π− ↔

∂ η
]

Lη′π± = −iag

2
[1 + ΣV ]

[
ǫ′ +

A±

2
cos δP

] [
ρ− · π+

↔
∂ η′ − ρ+ · π− ↔

∂ η′
]

(3)

where :

A± = ∆A + d±λ
2
0 , (4)

exhibiting the BKY ∆A and δP is defined by :

cos δP =
1√
3

[
sin θP +

√
2 cos θP

]
, sin δP = − 1√

3

[
cos θP −

√
2 sin θP

]
(5)

in terms of θP , the third mixing angle [61] which is one among the BHLS2 fit parameters. It

has been shown in [18] that the BKY parameter ΣV can be dropped out without any loss in

generality.

One should note that, if Lπ0π± is leading order, both Lηπ± and Lη′π± are manifestly O(δ),
i.e. first order in breakings. Finally, it is worthwhile to remind that terms of order O(δ2) or

higher in amplitudes are discarded.

4 The η/η′ → π−π+γ Decays in the BHLS2 Framework

The amplitudes for the η/η′ → π−π+γ decays a priori involve the APPP , V PPP and

AV P sectors of the full BHLS2 Lagrangian [17, 18]. The interaction terms involved are dis-

played in Appendices C and D in terms of the physical pseudoscalar fields and ideal vector

fields which should be replaced by their physical partners following the method developped

in [17]. The V − γ transition couplings can be found in [17], Appendix A and the relevant
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Figure 1: The classes of tree diagrams. P stands for either of η and η′; in diagrams a and

b, the double lines stand for the neutral vector mesons (subject to mixing), in diagrams c, the

intermediate vector meson is ρ± whereas the external one is neutral. The pions are charged.

The vanishing of the AV P couplings (see text) implies that diagrams (b2) and (c1) do not

contribute to the decay amplitudes.

non–anomalous VPP couplings have been displayed, for convenience, in Section 3 just above.

The classes of diagrams a priori involved in the η/η′ decays to π−π+γ are displayed in Figure

1. Namely, diagram (a1) illustrates the APPP interaction, whereas diagram (a2) sketches the

V PPP contributions with V − γ transitions (V = ρ0, ω, φ) provided by the non–anomalous

BHLS2 Lagrangian ([17], Appendix A). These two kinds of diagrams are generally named box

anomaly terms.

Diagram (b1) sketches the diagram class involving V V P couplings; these diagrams provide

the major contribution to the η/η′ dipion spectra. As one assumes c3 = c4 thanks to former

works [15], all contributions involving AV P couplings, as those depicted in Figures (b2) and

(c1), identically vanish. Finally, the (c2) diagram class illustrates the diagrams reflecting the 2

possible choices for the π±π∓ pair, each involving an intermediate ρ± exchange.

In the following, for the η and η′ decays, the non-resonant (a1) and (a2) contributions are

gathered into the TNR partial amplitude, whereas the (b1) and (c2) resonant contributions are

given by resp. the TR1 and TR2 terms.

5 The η → π+π−γ Amplitude within BHLS2

As three kinds of diagrams contribute, the full T (η), amplitude for the η → π+π−γ decay

is written :

T (η) = TNR(η) + TR1(η) + TR2(η) (6)

9



and they include the common tensor object :

F = ǫµναβεµ(γ, q)qνp
−
αp

+
β (7)

typical of the anomalous Lagrangian piece expressions; F exhibits the obvious momentum

notations. This factor is understood in the T (η/η′) amplitude expressions here and below to

lighten writing; it is restored in the final expressions involving the differential decay widths.

As already stated, the first term in the expansion (6) gathers the non-resonant (APPP/V PPP )

contributions whereas the second and third terms collect the resonant contributions of different

structure generated via the VVP Lagrangian and commented in the Section just above.

The T η
NR term can be written (A± = ∆A + d±λ

2
0) :

TNR(η) = − ie

4π2f 3
π

[
1− 3c3

2

]
gηπ+π−γ with gηπ+π−γ = ǫ+

{
1− A±

2
− 3λ2

0

4

}
sin δP .

(8)

It is worthwhile noting that i/ The dependency upon c1−c2 drops out when summing up the

APPP and V PPP contributions, ii/ If one cancels out the symmetry breaking contributions,

TNR(η) remains non–zero and corresponds to the Wess-Zumino-Witten (WZW) term [50, 51].

On the other hand, the TR1(η) contributions to the T (η) amplitude can be written (m2 =
ag2f 2

π) :





TR1(η) = c3
iem2

8π2f 3
π

[
T 0
ρ (η)

Dρ(s)
+

T 0
ω(η)

Dω(s)
+

T 0
φ (η)

Dφ(s)

]

T 0
ρ (η) = ǫ+

2β(s)

zA
cos δP + 3

[
1− 3λ2

0

4
− A±

6
+

α(s)

3
+ 2ξ3

]
sin δP

T 0
φ(η) = −

[
2β(s)

zA

]
cos δP

T 0
ω(η) = − α(s) sin δP

(9)

where Dρ(s), Dω(s) and Dφ(s) are the indicated inverse vector meson propagators; they are

parametrized as defined in Section 9 of [17]. Equations (9) displays the dependency upon the

angles α(s) and β(s) defining the dynamical vector meson mixing (see Appendix A.4) and

upon the parameter defined by the kinetic breaking mechanism (see Appendix A.5), once the

Kroll conditions [58] are applied. It is worth remarking that ρ0 is the only resonant contri-

bution which survives when symmetry breaking terms are turned off. Moreover, the ω and φ
contributions are outside the phase space actually available in the η decay.

TR2(η), the second resonant contribution, is produced by the non-anomalous ρ±ηπ∓ cou-

pling purely generated by our breaking procedures (see Equations (3)) and by the ωρ±π∓ term

of the V V η Lagrangian piece (see Appendix C.2.2). Setting :

s±0 = (p± + q)2 , q = photon momentum ,

10



it writes: 



TR2(η) = c3
iem2

8π2f 3
π

T±
ρ (η)

[
1

D±(s+0)
+

1

D±(s−0)

]

T±
ρ (η) = ǫ− A±

2
sin δP .

(10)

The D±(s±0)’s denoting the inverse ρ± propagators; the TR2 contribution, a pure product of

symmetry breakings, cancels out when all symmetries are restored. Finally, the 3 amplitudes

pieces just defined depend on the HLS parameter c3.
At the chiral point

s = s+0 = s−0 = 0 ,

the vector meson inverse propagators fulfill [17] DV (0) = −m2
V with :

m2
ρ±

= m2 , m2
ρ0

= m2(1 + ξ3)
2 , m2

ω = m2(1 + ξ0)
2 , m2

φ = m2zV (1 + ξ0)
2 . (11)

where m2 = ag2f 2
π , the conditions α(0) = β(0) = 0 being exactly fulfilled.

6 The η′ → π+π−γ Amplitude within BHLS2

The decay process η′ → π+π−γ undergoes a quite similar treatment to those performed

for the η → π+π−γ decay in the preceding Section and, so, one will avoid duplicating on

the η′ amplitude the comments already stated on the η amplitude. The three different kinds of

contributions to the η′ decay ampitude are :

T (η′) = TNR(η′) + TR1(η′) + TR2(η′) . (12)

The first term, which gathers the APPP and V PPP contributions to the full amplitude T η′ , is

given by :

TNR(η′) = − ie

4π2f 3
π

[
1− 3c3

2

]
gη′π+π−γ with gη′π+π−γ = ǫ′ −

{
1− A±

2
− 3λ2

0

4

}
cos δP

(13)

and does not depend on c1 − c2. On the other hand, the contributions gathered in TR1(η′) are

given by :





TR1(η′) = c3
iem2

8π2f 3
π

[
T 0
ρ (η

′)

Dρ(s)
+

T 0
ω(η

′)

Dω(s)
+

T 0
φ(η

′)

Dφ(s)

]

T 0
ρ (η

′) = ǫ′ +
2β(s)

zA
sin δP − 3

[
1− 3λ2

0

4
− A±

6
+

α(s)

3
+ 2ξ3

]
cos δP

T 0
φ(η

′) = −
[
2β(s)

zA

]
sin δP

T 0
ω(η

′) = + α(s) cos δP

(14)

11



where, as for the η decay, only the ρ0 term is O(δ0 = 1) in breakings. Finally :





TR2(η′) = c3
iem2

8π2f 3
π

T±
ρ (η′)

[
1

D±(s+0)
+

1

D±(s−0)

]

T±
ρ (η′) = ǫ′ +

A±

2
cos δP .

(15)

which is purely O(δ).
The ω contribution in the η′ decay must be visible in high statistics data samples (like [53])

and worth to compare with its lineshape in the e+e− → π+π− annihilation. Regarding the φ
contribution, it is somewhat outside of the allowed phase space – by ≃ 60 MeV. Finally, the

influence of higher vector mesons, especially the first radial excitation ρ′, are outside the HLS

scope; global fit properties may reveal their actual influence, w.r.t. the broken HLS context.

7 BHLS2 and the WZW Box Anomalies

Traditionally, the amplitudes associated with the box anomalies are derived from the Wess-

Zumino-Witten (WZW) Lagrangian [50, 51] :

LWZW = −i
Nce

3π2f 3
π

ǫµναβAµTr [Q∂νP∂αP∂βP ] . (16)

where P is the bare pseudoscalar meson U(3) matrix. This Lagrangian differs from the anoma-

lous APPP Lagrangian piece of the HLS model (see Equation (86)) by the factor

[
1− 3

4
(c1 − c2 + c4)

]

.

The BHLS2 η/η
′ decay amplitudes just defined are expected to coincide with their WZW

analogs at the chiral point, where the HLS ci’s dependencies of the decay amplitudes should

cancel out. Their expressions at the chiral point (s = s+0 = s−0 = 0) are given by5 :





T (η) = − ie

4π2f 3
π

[
ǫ+

{
1− A±

2
− 3λ2

0

4

}
sin δP

]
,

T (η′) = − ie

4π2f 3
π

[
ǫ′ −

{
1− A±

2
− 3λ2

0

4

}
cos δP

]
,

T (π0) = +
ie

4π2f 3
π

[{
1− A±

2
− λ2

0

3

}
− ǫ sin δP + ǫ′ cos δP

]
.

(17)

and coincide with those which can be directly derived from the WZW Lagrangian Equation

(16) after applying the breaking procedures reminded in the Appendices.

5The coupling π0π+π−γ is involved in the e+e− → π0π+π− annihilation [17, 18].
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8 η/η′ Radiative Decays : The BHLS2 Dipion Mass Spectra

The amplitudes T (η) and T (η′) allowing to describe – within the full EBHLS2 framework

[17, 18] – the dipion mass spectra observed in the η/η′ radiative decays have been derived in

resp. Sections 5 and 6; both should be multiplied by the function6 F (s, s0+) (see Equation (7)).

The differential decay widths can be written :

d2ΓX

dsds0+
=

1

(2π)3
1

32M3
X

|TX F (s, s0+)|2 , X = η, η′ (18)

in terms of resp. s, the (π+π−) and s0+, the (π+γ) pair invariant masses squared of the η/η′

decay products. The accessible invariant mass spectra being functions of only s, this expression

should be integrated over s0+ :

dΓX

ds
=

1

(2π)3
1

32M3
X

∫ smax

smin

|TX F (s, s0+)|2ds0+ , X = η, η′ (19)

where :

smin/max =
M2

X + 2m2
π − s

2
∓ pπ

M2
X − s√
s

and pπ =

√
s− 4m2

π

2
. (20)

Both amplitudes T (η) and T (η′), generically referred to as TX , can be written :

TX(s, s0+) = RX(s) + CXG(s, s0+) with G(s, s0+) =
1

Dρ(s0−)
+

1

Dρ(s0+)
, (21)

having defined s0± = (q + p±)2 related by :

s0− −m2
π = (M2

X − s)− (s0+ −m2
π) .

RX(s) collects the contributions previously named TNR(X) and TR1(X) and is (by far) the

dominant term, whereas7 TR2(X) = CXG(s, s0+) is only O(δ) in breakings.

On the other hand, the [F (s, s0+)]
2 factor in Equation (19) is :

[F (s, s0+)]
2 =

s

4
(s0+ −m2

π)(s0− −m2
π)−

m2
π

4
(M2

X − s)2 (22)

and can be solely expressed in terms of s and s0+ to perform the integration shown in Equation

(19). This leads to predefine within the fitting code the following integrals :

I1(s) =

∫ smax

smin

|F (s, s0+)|2ds0+ , I2(s) =

∫ smax

smin

|F (s, s0+)|2|G(s, s0+)|2ds0+

I3(s) =

∫ smax

smin

|F (s, s0+)|2Re [G(s, s0+)] ds0+, I4(s) =

∫ smax

smin

|F (s, s0+)|2Im [G(s, s0+)] ds0+

(23)

6The notations ǫ(γ, q) for the photon polarization vector, p± and q for the pion and photon momenta are

generally understood.
7CX can be read off the relevant expressions for TR2(X) given in Sections 5 and 6.
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Actually, I1(s) can be integrated in closed form :

I1(s) =
(M2

X − s)3

3

p3π√
s

(24)

with pπ given in Equations (20). The 3 other functions should be integrated numerically within

the iterative procedure context already running to address the e+e− → π+π−π0 annihilation

data within the BHLS [15] or BHLS2 [17, 18] frameworks. One then gets :

dΓX

ds
=

1

(2π)3
1

32M3
X

[
|RX(s)|2 I1(s) + C2

XI2(s) + 2CX (Re [RX(s)] I3(s) + Im [RX(s)] I4(s))
]

(25)

In the BHLS2 approach, only leading order terms in the breaking parameters O(δ) (as the

CX term) are addressed and then terms of order O(δ2) – like the C2
X contribution – can be

neglected.

The I1(s) term in Equation (25) can be rewritten, for subsequent use in the text :

dΓ̃X

ds
= Γ0(s)|RX(s)|2 , with Γ0(s) =

s(M2
X − s)3[σπ(s)]

3

3 · 211π3M3
X

and σπ(s) =

√
1− 4m2

π

s
.

(26)

9 Final State Interaction (FSI) in the η/η′ Radiative Decays

The study in [62], also referred to hereafter as SHKMW, has placed a valuable empha-

sis on the connection between the pion vector form factor Fπ(s) – as it comes out of the

e+e− → π+π− annihilation process – and the dipion spectra from the η/η′ → π+π−γ radiative

decays. Further works have followed – see, for instance, [63, 64, 65, 66] for further references

– generally motivated by a better understanding of the η and η′ meson properties regarding their

contributions to the light-by-light (LbL) fraction of the muon anomalous magnetic moment aµ.

i) It is worthwhile to briefly outline how this connection is established [62]. The pion vector

form factor Fπ(s) and the P–wave π+π− scattering amplitude Tππ(s) are related by :

Im [Fπ(s)] = σπ(s) [Tππ(s)]
∗ Fπ(s)Θ(s− 4m2

π) , (27)

valid along the energy region where the π+π− scattering is elastic; σπ(s) has been defined

just above. Therefore, in this energy region, the pion vector form factor Fπ(s) and the elastic

scattering amplitude Tππ(s) should carry equal phases. The Heaviside function indicates that

Fπ(s) is real below the 2π threshold; the first significant inelastic channel being ωπ, the validity

range of Equation (27) practically extends up to ≃ 922 MeV, much above the η mass and

slightly below the η′ mass (by only 36 MeV). Stated otherwise, the phase equality property

holds over almost the whole HLS energy range of validity (
√
s ≤ 1.05 GeV).
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On the other hand, assuming the π+π− scattering is elastic for all s ≥ 4m2
π, the P–wave

amplitude Tππ(s) writes :

Tππ(s) =
sin δ11(s)e

iδ11(s)

σπ(s)
(28)

in terms of the P–wave phase shift δ11(s) and the solution to Equation (27) can be expressed

in terms of the Omnès function Ω(s) by :

Fπ(s) = K(s)Ω(s) , where Ω(s) = exp

(
s

π

∫ ∞

4m2
π

dz

z

δ11(z)

z − s− iǫ

)
, (29)

K(s) being some appropriate real–analytic function, required to be free of singularities over

the physical region s ≥ 4m2
π. This expression intends to factor out the non–perturbative contri-

bution to Fπ(s) which is also contained in the Ω(s) function, and so the remaining part K(s) is

expected to behave smoothly and be well approximable by a polynomial [62] along our region

of interest (up to ≃ mφ). It is shown in [63] that a first degree polynomial K(s) = 1 + αΩs
allows to reach a nice (linear) correlation up to s ≃ 1 GeV2 between the dipion spectrum from

Belle [23] and the Ω(s) functions derived from the phase shift data from [67]; a value αΩ ≃ 0.1
GeV−2 can be inferred from Figure 1 in [63]. The deterioration of the linear behavior above

s ≃ m2
φ is, actually, not unexpected because of rising inelasticities and of the high mass vector

meson influence.

ii) Assuming the pion pair emerging from the η/η′ radiative decays is purely Isospin 1 and

P–wave [56, 53], its amplitude should carry the same analytic properties than Fπ(s), i.e. they

may only differ by a real–analytic function, free of right–hand side singularities. Reference

[62] thus proposes to write the differential dipion spectra :

dΓX

ds
= Γ0(s)|AXPX(s)Fπ(s)|2 , (X = η/η′) , (30)

where Γ0(s) has been already defined in Equations (26) and the AX’s being appropriate normal-

ization constants. The PX(s) functions (PX(0) = 1) are remaining correction factors specific

of the η and η′ radiative decays which could both be analyzed within the Extended ChPT con-

text [35, 37] (see also [68]) and are free of right–hand side singularities.

As just argued regarding the pion form factor and its K(s) factor, the PX(s) functions

should satisfactorily be approximated by low degree polynomials [62]. This is what is shown

by the downmost panel in Figure 1 of [63] which, moreover, indicates that Pη(s) = Pη′(s)
should likely hold. Of course, procedures to complement this approach by symmetry breaking

effects have also to be invoked, prominently the ρ0 − ω mixing for the η′ decay process – but

not only.

iii) The issue is now to relate dΓX (Equation (30)) and dΓ̃X (Equation (26)) within the

HLS framework when no breaking is at work. Equivalently, this turns out to check whether the

RX(s)’s and Fπ(s) (can) carry the same phase in this case.
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Let us consider the pion vector form factor Fπ(s) as given in [17], discarding terms of order

O(δ) or higher in breaking parameters; keeping only tree contributions (loop corrections, like

the ρ0 − γ transition amplitude, are counted as O(δ)) and dropping out the Lp4 contributions,

one derives (m2 = ag2f 2
π , the unbroken ρ0 HK mass) :

Fπ(s) =

(
1− a

2

[
1 +

m2

Dρ(s)

])
+O(δ) . (31)

Similarly, the RX(s) functions in Equation (26) reduce to :

Rη = −ie sin δP
4π2f 3

π

(
1− 3

2
c3

[
1 +

m2

Dρ(s)

])
, Rη′ = +

ie cos δP
4π2f 3

π

(
1− 3

2
c3

[
1 +

m2

Dρ(s)

])

(32)

up to terms of O(δ) in breaking parameters,

These Equations lead us to define a no–breaking reference by requiring :

1/ The holding of the Vector Meson Dominance assumption which implies a ≡ aVMD = 2
within the generic HLS model [9, 13]. It is worthwhile reminding here (see Section 2 in [18] for

details) that the HLS parameter a is not reachable by fit, once the BKY breaking (see Appendix

A.2) is at work; indeed, all Lagrangian terms of interest for our physics depend on the product

a′ = a(1 + ΣV ) and not on each of these parameters separately; therefore one can freely fix

a = 2 and, then, the term δa = aVMDΣV is clearly8 O(δ).
2/ The universality of the ρ phase implies that Rη(s), Rη′(s) and Fπ(s) share the same

phase and, therefore, it requires the existence of an ”unbroken” value for c3 : Indeed, imposing

cref3 = 2/3 beside aVMD = 2, one can derive a satisfactory no–breaking reference as, one

obtains :

Fπ(s) = − m2

Dρ(s)
Rη = +

ie sin δP
4π2f 3

π

m2

Dρ(s)
, Rη′ = −ie cos δP

4π2f 3
π

m2

Dρ(s)
. (33)

which should be complemented by O(δ) contributions to account for real data.

The issue becomes whether the values returned for a and c3 from fits to the (real) data differ

little enough from aVMD and cref3 that their differences can be considered O(δ) effects. For this

purpose, one can refer to the latest published BHLS2 standard fit results collected in Table 10

of [18], in particular, one finds :

• a = 1.766± 0.001 which shows a deviation δa = 0.244 from aVMD = 2 corresponding

to having ΣV = 0.122,

• c3 = 0.742± 0.003 which deviates by δc3 = 0.076 from cref3 = 0.667,

focusing on the favored solution A− [18] to the Kroll conditions (see Section 3) – the A+

solution actually provides similar values. Thus, δa and δc3 look small enough to be viewed

8In the course of the fitting procedure, it is as appropriate to either choose fitting a, fixing ΣV = 0 or fix a and

fit ΣV ; we choosed the first option.
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as departures from resp. aVMD and cref3 and treated as O(δ) corrections, on the same footing

than the manifest breaking parameters. To our knowledge, it is the first time that an identified

physics condition can propose a constraint on one of the FKTUY [10] parameters, namely9 c3.

Figure 2: The δ11 phase-shift plotted as function of
√
s . Beside the data points of [69, 70], the

dashed black curve is the solution to the Roy Equations [71], the green full line shows the phase

reconstructed in [72] and red full line the BHLS2 phase-shift exhibiting the ω and φ signals.

The black stars show the smeared BHLS2 spectrum (e.g. the red curve).

iv) From what has been just argued, it is clear that, within the BHLS2 context, the η/η′ →
π+π−γ decay amplitudes TX(s) reported in Sections 5 and 6 above can actually be written :

TX(s) = BXFπ(s) +O(δ) , X = η/η′ , (34)

9Actually, another condition comes out from the data in analyses performed within the HLS context : c3 = c4.
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the BX’s being definite constants depending on the breaking parameters. Fπ(s) contains al-

ready manifest breaking terms like the ω and φ signals with, however, different weights from

their analogs in the TX(s) amplitudes10.

On the other hand, as shown in [17], yielding a fair description of the data samples for

|Fπ(s)| (see Figure 2 and Table 3 in [17]), BHLS2 also leads to a fair account of the phase-

shift δ11(s) over its whole range of validity without involving any phase-shift data sample in

its derivation. This is illustrated by11 Figure 2 which reflects the fair accord reached by the

BHLS2 prediction with the phase derived from the Roy Equations [71] or the pion form factor

phase of Reference [72] on the one hand, and the experimental phase shift data from [69, 70]

on the other hand. Moreover, the same BHLS2 spectrum smeared over 10 MeV bins – to mimic

the Cern-Munich spectrum [69] – (black star symbols) clearly shows that the ω and φ signals

cannot be manifestly observed in the existing data.

All this leads to conclude that the SHKMW modification [62] shown in Equation (30) :

Fπ(s) → AXPX(s)Fπ(s)

to account for the Final State Interaction (FSI) among the pions emerging from the radiative

η/η′ decays also applies in the global BHLS2 context. In this case, this turns out to perform the

change :

TX(s) =⇒ HXPX(s)TX(s)

when using the amplitudes constructed in Sections 5 and 6. Our notations are connected with

those in Reference [62] by writing these12 :

AX = A0
XHX , HX ≡ 1 + δX , X = η, η′ (35)

as the A0
X factors are already acccounted for in the TX amplitudes derived from the BHLS2

Lagrangian as shown below.

Then, the global character of the BHLS2 fitting context13, ensures that the non–perturbative

effects are suitably accounted for as reflected by Figure 2. Figure 3 sketches the procedure

which will be followed.

From now on, the PX(s) functions are chosen polynomials of the lowest possible degree

consistent with a satisfactory fitting. Being beyond the BHLS2 scope, theses functions are

supplemented within the fit procedure by performing the change :

TX(s) =⇒ HXPX(s)TX(s) , with PX(0) = 1 , X = η, η′ (36)

in Equation (25) above. Practically, each term in the right-hand side of Equation (25) gets a

factor of |HXPX(s)|2, the coefficients of which having to be derived by the global fit where the

[CX ]
2 term can be discarded as it is manifestly O(δ2).

10For instance, BHLS2 predicts that the coupling ratio ωππ to ρ0ππ is 3 times smaller in the η′ radiative decay

than in the pion vector form factor.
11Reprinted from Figure 10 in [17].
12Actually, to be formally exact, Reference [62] writes A = A0(1 + δ) for the η meson decay, and A′ =

A′
0(1 + δ′) for the η′ meson, as can be read around their Relations (9).
13In this case, its Reference set of data samples HR [17, 18], which already includes most of the existing pion

form factor data samples will be supplemented with the η/η′ dipion spectra.

18



η/η′

γ

π+

π−

π−

π+

BHLS2

Pη/η′

Figure 3: Diagram sketching the sharing between BHLS2 and the Final State Interaction pro-

cess in the η/η′ decays to π+π−γ. In the global fit context, TX(s), represented by the lower

blob, takes care of the non–perturbative effects. The drawing somewhat anticipates about the

PX(s) universality.

10 Fits of the η/η′ Radiative Decay Spectra within BHLS2

The reference set of data samples HR included within the BHLS2 framework has been

presented several times and recently in [17, 18]; it covers the six e+e− annihilation channels to

π+π−, K+K−, KLKS, π+π−π0, π0γ, ηγ, some more decay widths (in particular π0/η/η′ →
γγ) and, finally, the dipion mass spectrum in the τ → ππν decay. These represent already

the largest set of data (altogether 1366 data points) successfully submitted to a global fit, as

reflected by Table 9 in [18]; they will not be discussed here any more. It is nevertheless relevant

to remind that HR encompasses almost all existing samples except for the recent CMD-3 dipion

data as already argued in footnote 3, the KLOE08 [32], Babar [30, 31] and the recent SND [73]

dipion spectra because of the strong tension they exhibit with respect to the rest of the (more

than 60) HR samples. This issue has been thoroughly reexamined in [18].

The present study aims at including also the dipion spectra measured in the η/η′ radiative

decays within the global BHLS2 framework. However, it is certainly cautious to avoid using

simultaneously the η/η′ dipion spectra and the π+π−π0 annihilation data within global fits as

long as a specific study has not assessed some clear statement about FSI in the latter channel14

and data.

On the other hand, it is worthwhile to stress that all the published dipion spectra of the

η/η′ → π+π−γ decays carry an arbitrary normalization; so, it is important to stress that they

14The fit results reported in [17, 18] may as well indicate that FSI effects are small or effectively absorbed in

the parameter values returned by the fits. Anyway, this certainly deserves a devoted work [74].
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only provide the spectrum lineshapes measured by the various experiments. It follows from

this peculiarity that they allow to fit only the PX(s) polynomials and they are totally insensitive

to the HX parameter values; this issue will be addressed by performing global fits where the

corresponding partial widths – taken from the Review of Particle Properties (RPP) [59] – are

also considered inside the fitting procedure.

10.1 Available Dipion Spectra from the η/η′ → π+π−γ Decays

Measurements of the dipion spectrum in the η′ → π+π−γ decay started long ago – as early

as 1975 [41] – and several experiments have collected samples of various (but low) statistics

motivated by the ≃ 20 MeV shift reported for the ρ0 peak location compared to its value in

e+e− → π+π− annihilations : JADE [42], CELLO [43], TASSO [44], PLUTO [45], TPC-2γ
[46], ARGUS [47], Lepton F [48]; the Crystal Barrel Collaboration published by 1997 the

most precise spectrum [49] carrying 7400 events. The breakthrough has come from the BESIII

Collaboration [53] which published a 970 ,000 event spectrum by 2017.

The formerly collected samples have been examined and their behavior is briefly reported

below. Dealing with the uncertainty information provided with these η′ samples is generally

straightforward, except for the BESIII dipion spectrum [53] for which a spectrum for the energy

resolution is provided. It is accounted for by replacing within the minimization procedure the

genuine model function value by that of its convolution with the resolution function, assuming

the provided resolutions be the standard deviations of gaussians; the net effect of the BESIII

energy resolution information deserves to be shown (see below).

The BESIII data [57] are provided as two 112 data point spectra, the former giving the

numbers of η′ event candidates in 10 MeV bins (N i
evt), the latter the estimated numbers of

background events (N i
bkg) within the same bins. One has provided our global fitting code with

the N i
signal = N i

evt − N i
bkg spectrum; we have assumed the original distributions poissonian

and fully correlated by attributing to N i
signal an uncertainty σi =

√
N i

evt +
√

N i
bkg; it is shown

below that these specific assumptions allow a fair dealing with the BESIII spectrum [53].

On the other hand, the reported dipion spectrum observed in the parent η → π+π−γ decay

has undergone much less measurements. Beside former spectra15 from Layter et al. [54] and

Gormley et al. [55], WASA-at-COSY reported for a 14 ,000 event spectrum [56] whereas the

KLOE/KLOE2 Collaboration has collected a 205 ,000 event spectrum [57]; it should be noted

that the WASA dipion spectrum is given with only statistical errors.

It is worth stressing again that the normalization of all these spectra being arbitrary, the

theoretical (absolute) distribution scales provided by the BHLS2 Lagrangian are lost when

normalizing to the specific scale of each data set when fitting; stated otherwise these data

samples only allow to address the fit of the PX(s) functions (X = η, η′) and not of the HX

constants which are cancelled out when normalizing the model functions to the experimental

spectra.

15The numerical content of these spectra can only be derived from the paper Figures.
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10.2 η/η′ Experimental Spectra : Fits in Isolation

The first exercise is thus to explore the degree issue for the PX(s) polynomials and so, does

not need to deal with complications due to keeping the constant HX within the fit procedure.

Therefore, fits have been performed, supplementing the Reference data set of samples HR by

either of the experimental η′ or η spectra. In this Section, one only reports on using the A−
BHLS2 variant16 [18] which will be our working BHLS2 version.

Regarding the Pη′(s) polynomial, the results given in the Table just below17 focus on only

the BESIII η′ sample (112 data points) [53]; indeed, because of their statistics, all the other η′

dipion spectra, including the Crystal Barrel one [49], do not exhibit any clear sensitivity to the

Pη′ degree and may easily accomodate Pη′ ≡ 1.

Pη′(s) degree 1 2 3

χ2
BESIII (N = 112) 160 99 98

χ2
TOT (N = 1187) 1167 1097 1096

Probability 44.7% 90.6% 90.8 %

This clearly points out that, thanks to the statistics reached by the BESIII Collaboration, the

first degree for Pη′(s) can be excluded (< χ2 >= 1.43) and the third degree is obviously

useless.

Regarding the η data, complementing HR with the KLOE/KLOE2 sample (59 data points)

[57] alone or together with the WASA one (37 data points) [56], the picture returned by the

fits is much less conclusive as a first degree Pη(s) provides18 χ2(KLOE/KLOE2) = 55 and

χ2(WASA)= 45, and a second degree Pη(s) yields χ2(KLOE) = 51 and χ2(WASA)= 51 with

similar fit probabilities, both at the 90% level, as just above. The choice of minimal degree has

been preferred for Pη(s).
Therefore, in the following, when different, the polynomialsPη(s) and Pη′(s), are definitely

chosen, the former first degree, the latter second degree. The polynomial coefficients returned

by the global fits performed with the A− BHLS2 variant are discussed below and given in Table

2.

It is worthwhile noting that the degradation of the fit quality observed when assuming a

first degree Pη′(s) is essentially carried by the the BESIII η′(s) data sample itself, with a quite

marginal influence on the standard channels of the BHLS2 framework and on the η dipion

spectra. This emphasizes the robustness of the BHLS2 Lagrangian.

In order to lighten the forthcoming discussion, let us comment right now on the formerly

16Nevertheless, the most relevant results obtained using the A+ BHLS2 variant are summarized in the following

Subsections.
17The fits which provide these results have been performed with our Reference set amputated from the e+e− →

π+π−π0 annihilation data. The number of BESIII data points and the total number of fitted data points are given

by the N values within parentheses.
18 Note that χ2(WASA) is always overestimated because of an incomplete reported experimental error infor-

mation.
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collected (η/η′) dipion spectra listed in the Subsection above which have also been analyzed

within the BHLS2 context; they quite generally yield stable χ2/N values. Some of them re-

turn large χ2/N values from the global fit procedure, namely, those from TPC-2γ (69/13),

LEPTON-F (45/20) and Layter et al. (60/15). Most of these former samples, however, are

getting reasonable χ2/N values, typically 8/12 (TASSO), 15/21 (CELLO), 23/18 (PLUTO),

20/15 (ARGUS), 11/17 (CRYSTAL BARREL19), 13/14 (Gormley et al.) but have a quite neg-

ligible impact on the issues examined in the present study. Therefore one focuses on the high

statistics data samples from BESIII and KLOE/ KLOE2; the case for the WASA data set may

be nevertheless commented18.

10.3 The η/η′ Experimental Spectra : Analysis within the BHLS2 Con-

text

Table 1 collects the relevant fit quality information derived when running global fits within

the A− BHLS2 variant. The first data column gives the fit information in a global fit performed20

by discarding the η/η′ to provide the BHLS2 reference fit pattern; using the full HR, one would

have found the numbers given in the last data column of Table 9 in [18]. The second and third

data columns report on the fits performed by including η/η′ dipion spectra within the fit data

set HR under the conditions indicated in the top line of Table 1.

The fit information concerning the e+e− → π+π− annihilation data collected in scan mode

(with different detectors at the various Novosibirk facilities) is displayed in the first data line

(the exact sample content behind the wording NSK is explained in [18], for instance). The

line KLOE stands for the merging of the KLOE10 [27] and KLOE12 [28] data samples. The

spacelike pion form factor data merges the NA7 and Fermilab samples [76, 77].

Taking the first data column of Table 1 as reference, one can clearly conclude that the fit

quality obtained when using the η/η′ dipion spectra is unchanged and fairly good. Indeed, the

χ2 increase of the NSK set of scan data samples is obviously negligible and those of the ISR

data collected under the name KLOE and spacelike data are unchanged. The description of the

data samples in the other channels from BHLS2 (not shown) is also unchanged21.

Regarding the Triangle Anomaly sector, the χ2 information for the π0/η/η′ → γγ decays

are :




BHLS2 A− variant with Pη(s) 6= Pη′(s) : (χ2
π0, χ2

η, χ
2
η′) = (1.08, 0.01, 3, 33)

BHLS2 A− variant with Pη(s) ≡ Pη′(s) : (χ2
π0, χ2

η, χ
2
η′) = (0.73, 0.03, 4.77)

(37)

Thus, the RPP width [59] for π0 → γγ is reproduced at the (0.9 ÷ 1) σ level and the one for

η → γγ is reconstructed at nearly its RPP value; the width for η′ → γγ is found in the range

(1.8÷ 2.2) σ, somewhat larger but still acceptable.

On the other hand and more importantly : Comparing the second and third data columns

of Table 1 obviously substantiates the SHKMW conjecture [62] about the universality of the

19Its data point at 812.5 MeV, soon identified as outlier, being dropped out; see footnote 21 in [75].
20 The e+e− → π+π−π0 annihilation data are switched off.
21Their variations are always χ2 unit fractions.

22



χ2/Npts Fit Configuration (A−) no η/η′ Spectra Pη(s) 6= Pη′(s) Pη(s) ≡ Pη′(s)

NSK π+π− (127) 137/127 139/127 140/127

KLOE π+π− (135) 141/135 140/135 140/135

Spacelike π+π− (59) 64/59 64/59 64/59

η′ BESIII (112) × 100/112 102/112

η KLOE/KLOE2 (59) × 57/59 55/59

Total χ2/Npts 995/1075 1156/1246 1154/1246

Fit Probability 88.6 % 89.7% 90.6%

Table 1: Fit properties of selected dipion data sample sets using the A− BHLS2 variant. The

fit reported in the first data column is free of η/η′ dipion influence. The second data column

corresponds to fitting with independent Pη(s) and Pη′(s), whereas the third data column reports

on the fit where Pη(s) ≡ Pη′(s) has been imposed. The χ2/Npts value for the WASA sample,

fitted or not, is in the range18 (44− 47) for 37 data points.

PX(s) function, e.g. Pη(s) ≡ Pη′(s). One may also note the slight improvement generated

by having stated Pη(s) ≡ Pη′(s); this should be due to having provided its curvature to Pη(s)
which in turn lessens the (already marginal) tension between the KLOE/KLOE2 and BESIII

data samples.

Before going on with solely using the A− variant of the BHLS2 Lagrangian, it is worthwhile

reporting on its A+ variant behavior. Let us limit oneself to reporting on the A+ variant best fit

performed assuming Pη(s) ≡ Pη′(s) second degree; one obtains χ2/N(BESIII) = 110/112,

and the η dipion spectrum from the KLOE/KLOE2 Collaboration yields this ratio at 54/59; for

its part, the unfitted WASA sample yields 49/37. The global fit probability is 51.5% only, to be

compared to 90.6 % for the global fit performed under the A− variant reported in Table 1.

This drop in probability is noticeable and its reason deserves to be identified; indeed, the

χ2(BESIII) increases by ”only” 8 units, whereas the χ2 for the η dipion spectra are almost

unchanged compared to Table 1. Moreover, the usual BHLS2 channels also benefit from χ2’s

comparable in magnitude to their A− analogs. Surprisingly, the single place where the dis-

agreement blows up is in the γγ decays as :

(χ2
π0 , χ2

η, χ
2
η′) = (29.92, 0.34, 0.08) ,

e.g. the π0 → γγ partial width is at more than 5σ from its accepted value [59], which is by far

too large to be acceptable. Indeed, this implies that the A+ fit central value for the π0 → γγ
partial width is reconstruted at 70% of its present RPP value [59]; this should be brought in

23



Figure 4: The dipion invariant mass spectrum in the η → π+π−γ decay. The blue data points

are the KLOE/KLOE2 spectrum, the green ones display the WASA spectrum. The red curve is

the BHLS2 fit leaving free the Pη(s) polynomial. Vertical units are arbitrary.

balance with the A− variant which yields this partial width reconstructed 5% larger from the

expected value (7.8 eV).

Therefore, the A+ variant unexpectedly exhibits a strong tension between the Triangle and

Box Anomaly sectors of the BHLS2 Lagrangian, whereas the A− variant behaves smoothly

in both sectors. Therefore, from now on, one will focus on the A− variant of BHLS2 which

becomes our Reference model; results derived using the A+ variant are no longer reported

except when explicitly stated.
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Regarding the η spectra, Figure 4 shows an almost perfect account of the KLOE/KLOE2

spectrum : the BHLS2 spectrum matches the dipion spectrum from KLOE/KLOE2 [57] on the

whole energy range, except for a marginal issue in the 0.45 GeV energy region. Even if its χ2

value is acceptable, the WASA spectrum [56] may look somewhat distorted with respect to its

KLOE/KLOE2 partner, clearly favored by BHLS2 expectations18.

Figure 5: The dipion invariant mass spectrum in the η′ → π+π−γ decay. The blue data points

are the BESIII spectrum, the green ones are those from Crystal Barrel. The red curve is the fit

function, i.e. the convolution of the BHLS2 model function with the energy resolution function

assumed gaussian; the blue curve is the underlying BHLS2 model function itself. Both curves

superimpose over the whole energy range except for the ρ − ω drop–off region. Vertical units

are arbitrary.
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Regarding the η′ spectrum, Figure 5 shows a noticeably fair accord between the BHLS2

modeling and the BESIII spectrum [53] all along the energy range. The vertical green dotted

lines locate the ω mass and so the ρ−ω drop–off region, otherwise magnified in the inset. Here,

one can observe the effect of convoluting the BHLS2 model function with energy resolution

gaussians as provided by the BESIII Collaboration : It does perfectly what it is supposed to do,

i.e. soften the drop–off to its right lineshape with, moreover, a noticeable accuracy. On the rest

of the spectrum, the convoluted curve and the underlying model one superimpose on each other

within the thickness of the curves. One should also state that no tension in the ρ− ω drop–off

region is observed in the fits with any of the other dipion spectra submitted to the fit.

It is useful to consider the spectra22 :

PX(s) =

[
dΓexp(s)

d
√
s

/
dΓtheor(s)

d
√
s

]

X

PX(s) , X = η, η′ (38)

to illustrate the behavior of the PX(s) polynomials under the two assumptions discussed above.

As the bracketed term in Equation (38) fluctuates around 1 and reflects the experimental uncer-

tainty spectrum, the PX(s) spectrum looks an appropriate experimentally based evaluation of

its corresponding model function PX(s).
Figure 6 displays the P η′(s) and P η(s) spectra defined just above in the case of BESIII,

KLOE/KLOE2 and WASA spectra together with their model partners Pη′(s) (second degree)

and Pη(s) (first degree). As could be inferred from the fit properties shown in Table 1, Pη′(s)
(the red dashed curve in the inset) is also a good evaluation for P η(s).

Figure 7 also displays the P η′(s) and P η(s) spectra for the BESIII, KLOE/KLOE2 and

WASA data samples, but together with their common model fit function denoted PX(s), a

second degree polynomial. As reflected by the fit information reminded in the body of the

Figure, one has reached a fair simultaneous parametrization of the η and η′ dipion spectra by

only supplying the BHLS2 model amplitudes with a single second degree polynomial PX(s)
fulfilling PX(0) = 1.

10.4 Final State Interaction: BHLS2 Fit Results versus Others

The top bunch in Table 2 displays the values returned for the polynomial coefficients of :

Pη(s) = 1 + α1s and Pη′(s) = 1 + α′
1s+ α′

2s
2 . (39)

When using the same polynomial for the η and η′ spectra, it is second degree and denoted

PX(s). It should be noted that the coefficients for Pη′(s) (second data column) and PX(s) (third

data column) carry numerical values close to each other, i.e. at ≃ 1 σ from each other for both

the first and second degree coefficients23. In the case of having a (single) common FSI function

PX(s), the covariance is < δα′
1 δα

′
2 >= −0.746.

22It is, of course, understood that, when dealing with the BESIII η′ dipion sample, dΓtheor(s)/d
√
s is, actually,

the convolution product of the model function with the BESIII energy resolution function.
23It might be useful to provide, for completeness, the covariances when Pη(s) 6= Pη′(s) : Using obvious

notations, they are < δα1 δα
′
1 >= −0.005, < δα1 δα

′
2 >= −0.026 and < δα′

1 δα
′
2 >= −0.812.
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Figure 6: The P η′(s) and, in the inset, the P η(s) spectra (Equation (38). The full red curve

and full black curve superimposed to resp. P η′(s) and P η(s) are resp. the Pη′(s) and Pη(s)
polynomials returned by the fits. The dashed red curve in the inset is also Pη′(s), but superim-

posed to the P η(s) spectrum. Some pieces of fit information are also displayed.

Regarding the systematics : In the BHLS2 approach, the statistical and systematic uncer-

tainties provided by the experiments together with their spectra are carefully embodied within

the fitting code without any modification; so our reported uncertainties automatically merge

both kinds of experimental errors. On the other hand, the last two data lines in Table 2 clearly

illustrate that δa = a− 2 and δc3 = c3 − 2/3 remain consistent with expectations, i.e. they can
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Figure 7: The P η′(s) and, in the inset, the P η(s) spectra (Equation (38). The full red curve

superimposed on the P η′(s) and, in the inset, the P η(s) spectra is their common fit function

PX(s). The ω pole location is indicated. Some pieces of fit information are also displayed.

be regarded as O(δ) breaking parameters. The other fit parameter values are given in Table 5

displayed in Appendix E; they are scrutinized in order to detect some hint regarding the FSI

effects in the 3π channel of the BHLS2 model – where they are not implemented by now.

• j/ Regarding the Pη(s) FSI polynomial, it is worth comparing our numerical value for α1

with those available in the literature. The first published evaluation (GeV−2) of α1 is the
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Fit Parameter Value no η/η′ Pη(s) 6= Pη′(s) [A−] : PX(s) [A+] : PX(s)

α′
1 (GeV−2) × 1.388± 0.072 1.326± 0.053 0.953± 0.065

α′
2 (GeV−4) × −0.607± 0.055 −0.553± 0.048 −0.511± 0.052

α1 (GeV−2) × 1.169± 0.063 × ×

aHLS 1.789± 0.001 1.842± 0.001 1.821± 0.001 1.830± 0.001

(c3 + c4)/2 0.756± 0.005 0.773± 0.005 0.772± 0.004 0.819± 0.007

Fit Probability 88.6 % 89.7% 90.6% 51.4%

Table 2: The FSI parameter values from the A− BHLS2 variant fit. the first data column reports

on the fit performed by submitting the usual set of data samples HR to fits, excluding the e+e−

annihilation to 3π data. The second and third data columns report on the fits performed on the

same amputated HR sample set, completed with the η/η′ dipion spectra under the conditions

indicated in the top line of the Table (PX(s) = Pη(s) ≡ Pη′(s)). The fair probability values

can be emphasized. The last data column displays the fit results when using the A+ variant.

one from the WASA-at-COSY Collaboration α1 = 1.89 ± 0.25stat ± 0.59syst ± 0.02th
[56], soon followed by α1 = 1.96± 0.27fit± 0.02Fπ

[62]; more precise evaluations have

been proposed24 since (GeV−2) :

α1 = 1.32± 0.08stat ± 0.10syst ± 0.02th[57], α1 = 1.52± 0.06stat [64] . (40)

Our own evaluation – reported in Table 2 – is in good agreement (≃ 1σ) with the

KLOE/KLOE2 Collaboration result [57].

• jj/ As far as we know, there are only two evaluations for the Pη′(s) coefficients available

in the literature, the former from the BESIII Collaboration [53] :

BESIII :





α′
1( GeV−2) = 0.992± 0.039stat ± 0.067syst ± 0.163th

α′
2( GeV−4) = −0.523± 0.039stat ± 0.066syst ± 0.181th



 , (41)

the latter from the HHHK group [66]. Actually their Tables 2 and 3 propose slightly

different pairs of values with, seemingly, a preference for the latter :

HHHK :
{

α′
1 = 0.523± 0.046 GeV−2 , α′

2 = −0.138± 0.046 GeV−4
}
. (42)

24Introducing a possible a2 exchange, Reference [64] also reports for a smaller value (α1 = 1.42± 0.06stat).
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Here one is faced with a surprizing pattern : While the BESIII parametrization for PX(s)
is far from the favored A− variant one reported in Table 2, it is in quite remarkable accord

with the A+ solution displayed in the last data column of Table 2; as BESIII does not

deal with the intrinsic relationship between the Box and the Triangle Anomalies, their

modelling is not influenced by the π0 → γγ partial width issue identified in Subsection

10.3 just above. On the other hand, the HHHK parametrization displayed in Expressions

(42) is clearly at variance with both parametrizations displayed in Table 2.

As a matter of conclusion, within the BHLS2 framework, it has been shown that the con-

jecture Pη′(s) = Pη(s) is a valid statement at the (high) degree of precision permitted by

the spectra from the BESIII and KLOE/KLOE2 Collaborations. Moreover, Table 1 exhibits

fair fit probabilities and does not reveal any noticeable tension among the dipion spectra from

KLOE/KLOE2 and BESIII on the one hand and, on the other hand, the other channels embod-

ied within the BHLS2 fit procedure and their data, especially the dipion spectra collected in

e+e− annihilations25.

10.5 The TR2(η/η′) Terms in BHLS2 : The Role of ρ± Exchanges

Thanks to the breaking mechanisms [17, 18] which lead to the BHLS2 Lagrangian, the

derived η/η′ decay amplitudes involve ρ± exchanges as depicted in Figure 1 by the diagram

classes (c1) and (c2). Relying on previous works in the HLS context which have shown that

c3 = c4 is fairly well accepted by the data, this constraint is assumed; as a straightforward

consequence [9, 13] all diagrams involving direct AV P couplings – all proportional to (c3−c4)

– identically vanish and, therefore, the diagram class (c1) contributions also do. Nevertheless,

the (c2) diagram class, also O(δ) in breakings, survives and participates to the decay amplitudes

Tη′ and Tη at O(δ). Such contributions are not involved in the BHLS2 pion form factor Fπ(s)
expression [17]; they come naturally in the derivation of the amplitude T (η/η′) and are not

governed by an additional ad hoc parameter.

Even if O(δ) corrections, the TR2(η/η′) amplitudes play a noticeable role within the BHLS2

context :

• i/ They are necessary in order for the full amplitudes T (η/η′) = TNR(η/η′)+TR1(η/η′)+
TR2(η/η′) to coincide with their analogs directly derived from the WZW Lagrangian

[50, 51] at the chiral point26 s = s0+ = s0− = 0.

Indeed, at the chiral point, the intensities T±(η/η′) of the TR2(η/η′) amplitudes defined

in Sections 5 and 6 write :

TR2(η) = − iec3
4π2f 3

π

[
ǫ− A±

2
sin δP

]
and TR2(η′) = − iec3

4π2f 3
π

[
ǫ′ +

A±

2
cos δP

]

(43)

25It should be reminded that the KLOE08 [32], Babar [30, 31] and SND [73] dipion spectra have been discarded

because of their strong tension with the rest of the HR set of samples; one can refer to the analysis in [18] for

more information.
26One has previously defined s = (p+ + p−)

2, s0+ = (p+ + p0)
2 and s0− = (p− + p0)

2.
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and manifestly depend on the FKTUY parameter [10] c3. The condition for the am-

plitudes T (η′) and T (η) to coincide with those derived from the WZW Lagrangian

(see Equations (17)) is that all dependencies upon the FKTUY parameters vanish at

s = s0+ = s0− = 0; this condition cannot be fulfilled if dropping out (artificially)

the TR2(η/η′) terms from the full amplitude expressions T (η/η′).

• ii/ To identify the effects of the TR2(η/η′) terms, fits have been performed by discarding

them in the full amplitudes and rather fit using T (η/η′) = TNR(η/η′) + TR1(η/η′). The

fits have been performed by imposing the constraint Pη(s) = Pη′(s) and return the results

collected in the next Table.

TR2(η/η′) (off/on) off on

χ2
BESIII (N = 112) 122 102

χ2
KLOE/KLOE2 (N = 59) 57 55

χ2
TOTAL (N = 1246) 1187 1154

Probability 73.0% 90.6 %

The χ2 values indicate that TR2(η) can be safely neglected, but also that discarding

TR2(η′) is not safe. The PX(s) parametrization returned by the fit is :

{
A−/no TR2 : α′

1 = 0.437± 0.039 GeV−2 , α′
2 = −0.573± 0.007 GeV−4

}
,

(44)

closer to the HHHK results [66] reminded in Expressions (42) than to those in Table 2.

Therefore, it is clear from the results collected in Table 2 and the other presented ones

that :

1/ The η dipion spectrum is essentially insensitive to using or discarding the TR2 term

in its parametrization,

whereas

2/ The η′ dipion spectrum parametrization is significantly degraded if its TR2 com-

ponent is dropped out. This absence may explain the reported failure of the so–called

”model–dependent” fit in [53].

As a summary, one may conclude that, once the FSI effects and the O(δ) TR2 contribution

predicted by the kinetic breaking of BHLS2 [18] are considered, the average χ2 per data point

for the η/η′ dipion spectra can be considered optimum (< χ2 >≃ 1). Thus, at the level of

precision permitted by the presently available η [57] and η′ [53] dipion spectra, additional con-

tributions beyond those of the basic vector meson nonet – like the higher mass vector mesons

[53] or the a2(1320) exchanges [64] – need not be invoked.
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10.6 Dealing with the Absolute Scale of the η/η′ dipion spectra

Having determined the η/η′ dipion spectrum lineshapes by fitting their common FSI fac-

tor PX(s) (X = η/η′), it remains to derive the value of the HX’s (X = η/η′) to also have

their absolute magnitudes. As already noted the value of the HX constants can be derived by

introducing the accepted values [59] for the Γ(η/η′ → π+π−γ) partial widths into the fitting

procedure. This can be (and has been) done and global fits have been performed in order to get

the optimum values for the {Hη, Hη′ , PX(s)} triplets.

Fit Parameter NSK+KLOE NSK+KLOE NSK+BaBar NSK+BaBar

fit PX(s) only fit PX(s) & HX fit PX(s) only fit PX(s) & HX

Hη × 0.789± 0.017 × 0.797± 0.017

Hη′ × 0.671± 0.017 × 0.682± 0.015

α′
1 (GeV−2) 1.326± 0.053 1.309± 0.055 1.248± 0.058 1.241± 0.041

α′
2 (GeV−4) −0.553± 0.048 -0.562± 0.047 -0.535± 0.048 −0.560± 0.037

1010 × aµ(ππ) 490.09± 0.89 490.15± 0.89 494.98± 0.91 494.85± 0.88

(χ2/N)BESIII 102/112 99/112 101/112 99/112

(χ2/N)KLOE/KLOE2 55/59 53/59 55/59 53/59

(χ2/N)TOTAL 1154/1246 1149/1248 1346/1381 1341/1383

Fit Probability 90.6 % 92.3% 55.9% 59.4%

Table 3: Main global fit results involving the KLOE+NSK and BaBar+NSK samples collected

in e+e− → π+π− annihilations. On top are displayed the parameters involved in the FSI

functions (see text for details) followed by the contribution to aµ(ππ) of the [2mπ, 1.0 GeV]

energy range. The lowest bunch provides statistical information relative to the corresponding

global fits.

However, regarding the η/η′ → π+π−γ decays, each of the published dipion spectra is

solely given by its lineshape; concerning their normalization, they are tightly related to their

partial widths. It happens that the single available ”measurement” for each of these decays is

the corresponding RPP piece of information [59]. In this case, as just argued, the values for HX

(X = η/η′) can be derived through the fitting code appropriately modified to take the partial

widths into account, but also algebraically once the fit to determine the PX(s) (X = η/η′)
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function has been performed. In this case one has, using obvious notations :

[
Γ(η/η′ → π+π−γ)

]
RPP

≡
∫ [

dΓX(s)

d
√
s

]

exp.

d
√
s = H2

X

∫ [
dΓX(s)

d
√
s

]

BHLS2

[PX(s)]
2d
√
s ,

(45)

the integrals being performed over the whole energy range of the X = η/η′ decays and the fit

values for the Γ(η/η′ → π+π−γ) partial widths coincide with the RPP pieces of information.

Two cases have been considered regarding the specific e+e− → π+π− annihilation sample

combinations involved; the first one is {HR + η/η′} which corresponds to global fitting with

the {KLOE, NSK, BESIII, CLEO-c} combination. Correspondingly, the second case involves

the {BaBar, NSK, BESIII, CLEO-c} sample combination. The relevant fit results regarding

FSI are summarized in Table 3.

The average χ2 per point of the η and η′ dipion spectra are clearly insensitive to using

either of the KLOE or BaBar e+e− → π+π− annihilation data within the global fit procedure.

The global fit probabilities are instead quite different and correspond to our previous BHLS2

results [17, 18]. This insensitivity to the KLOE versus BaBaR issue is well reflected by the fit

results collected in the top part of Table 3: None of the PX and HX parameter central values is

observed to differ by more than 1σ in the various fit configurations.

Similarly, as the different PX(s) parameter values derived from fitting with the various

sample combinations look statistical fluctuations, differences observed between fitting only

PX(s) or the (PX(s)&Hη/η′) triplet look statistical fluctuations. Moreover, defining δX =
HX − 1 and focussing, for instance, on the KLOE+NSK combination, one gets :

δη = −0.211± 0.017 , δη′ = −0.329± 0.017 (46)

which correspond to resp. δ and δ′ as defined by Stollenwerk et al. [62] for which these authors

derived the values δ = −0.22 ± 0.04 and δ′ = −0.40 ± 0.09; these are clearly identical to our

δη and δη′ respectively. As a last remark, it should be noted that, once PX(s) is determined –

which implies that both
dΓX(s)
d
√
s

and both BHLS2 functions are known, Equation (45) implies

that both HX are not free but are algebraically related.

11 η/η′ Decays : The Muon Anomalous Magnetic Moment

The renewed interest27 in the η/η′ physics is intimately related to dealing with the Light-by-

Light contribution to the anomalous magnetic moment (AMM) of the muon. As shown above

and previously in [18], the BHLS2 approach can address accurately several topics related with

the η/η′ physics and its results are supported by fair probabilities; these probabilities faithfully

reflect the actual behavior of each of the data samples within the global framework as the error

information provided with it is embodied without any ad hoc enlargement inside the fitting

code.

27See, for instance, [63, 78] and the references collected therein.
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11.1 Accuracy of the FSI Parametrization

It has been shown above that a single FSI polynomial PX(s) allows to address simultane-

ously both the η/η′ → π+π−γ decays within the BHLS2 framework and that second degree

is quite satisfactory. The PX(s) parametrizations derived using the A± variants of BHLS2 dis-

played in Table 2 are based on the choice of the largest set of data samples collected in almost

all physics channels covering the HLS energy region (e.g. up to the ≃ φ mass region) and

consistent with each other. It was also shown that the A− parametrization is the best favored

but, nevertheless, one found it relevant to also provide the A+ parametrization despite its (sole

real) identified failure with the π0 lifetime (or partial width) that A+ reconstructs at more than

5σ from its commonly accepted value [59].

Data Set < χ2
ππ > α′

1 α′
2 Prob. (%)

Xτ + KLOE08 + η/η′ 1.57 1.294± 0.053 −0.379± 0.049 61.4%

Xτ + BaBar + η/η′ 1.20 1.249± 0.076 −0.522± 0.0.69 39.6%

Xτ + NSK + η/η′ 0.98 1.314± 0.054 −0.606± 0.052 96.6%

Xτ + KLOE + η/η′ 0.99 1.341± 0.054 −0.525± 0.050 92.4%

HR + η/η′ 1.07 1.326± 0.053 −0.553± 0.048 90.6%

Xτ + η/η′ × 1.453± 0.060 −0.792± 0.065 96.3%

Table 4: The FSI parameter values from the A− BHLS2 variant fit. The first column indicates

which is the data set combination submitted to the global fit. < χ2
ππ > indicates the average

χ2 of the timelike Fπ(s) data points of the sample named in the first column. α′
1 and α′

2 are the

coefficients of resp. the first and second degree terms of PX(s). The last data column displays

the probability of the corresponding global fit.

In this Section, one aims to emphasize the reliability of the A− parametrization by exam-

ining carefully how the PX(s) parameter values evolve while using the various dipion spectra

collected in e+e− annihilations which are known to exhibit – sometimes severe – inconsisten-

cies among themselves.

A possible bias in the parametrizations reported in Table 2 being the choice of the dipion

data samples holds for the fits because of their mutual consistency, this issue is examined first.

For this purpose, it is useful to define (or remind the definition) of some sets of data samples in

order to ease the reading.

Basically, the data samples20 common to the sets of data samples presently embodied

within the BHLS2 based fit procedure are the {(π0/η)γ, KLKS , K+K−} e+e− annihilation

channels, the dipion spectra from the τ decay provided by the ALEPH, CLEO and BELLE
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Collaborations and the pion and kaon spacelike spectra from NA7[76] and Fermilab [77]; let

us, for clarity, name this basic set Xτ .

Regarding the available e+e− → π+π− annihilation spectra, one has distinguished four

groups28 (two of which being, actually, one sample ”groups”) : 1/ The scan data collected

under the name NSK (see [16] for its content), 2/ the KLOE (≡ KLOE10+KLOE12) [27, 28]

ISR data sample group, 3/ the KLOE08 ISR sample [32] and 4/ the Babar one [30, 31]. For

definiteness, the largest set of data samples found consistent with each other and referred to

here and before [17, 18] as HR gathers the sets Xτ , NSK and KLOE just listed. Finally, the set

of dipion spectra from the η/η′ → π+π−γ decays [53, 57] is referred to as η/η′.

Figure 8: The curve displayed in the left-side panel (a) is the pion form factor predicted by

fitting the data sample set {Xτ +η/η′} and, superimposed, the unfitted pion form factor spectra

(including those from BaBar). The right-hand side panel (b) shows the pion form factor derived

from fitting the full {HR+η/η′} data sample set which includes the KLOE and NSK pion form

factors (but not the BaBar spectrum). See the text for comments.

The four top lines in Table 4 display the coefficient values of the first (α′
1) and second degree

(α′
2) terms of the FSI polynomial PX(s); as indicated in its first column, the corresponding

fits differ from each other only by the exact content of e+e− → π+π− annihilation spectra

sample set submitted to the minimization procedure. Whatever the fit quality, reflected by its

28As the more recent dipion spectra from BESIII [79, 80] and Cleo-c [20] accomodate easily any of the groups

we are listing, they would not be conclusive and have been put aside for clarity; regarding the SND20 spectrum

[33] deeply analyzed in our [18], we have proceeded likewise.
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corresponding < χ2
ππ > value and its probability, the different values derived for α′

1 as for α′
2

are not distant by more than (1 ÷ 2)σ from each other. It should also be remarked that the

parameter values derived in the fit for {HR + η/η′ } – which includes the KLOE and NSK

data sets together – are intermediate between those involving the KLOE and NSK sample sets

separately. Therefore, the large spread of probabilities between the fits involving NSK and/or

KLOE and those rather involving BaBar or KLOE08, does not produce a significant change in

the determination of the common η/η′ FSI function PX(s).
The last line in Table 4 displays the PX(s) coefficients returned by a fit excluding the

e+e− → π+π− annihilation spectra. The linear term coefficient α′
1 is never found distant by

more than ≃ 2σ from the other corresponding values displayed in the same Table. In contrast,

the curvature coefficient α′
2 exhibits a ≃ (4 ÷ 5)σ departure regarding the other reported fit

values. Relying on Figures 6 and 7, one expects the second degree term (α′
2) to mostly affect

the ρ0 − ω energy region. This piece of information renders interesting to compare the pion

form factor predicted by the fit of the {Xτ + η/η′} set29 with the e+e− → π+π− annihilation

data and the fit results derived when fitting the {HR + η/η′} set. This is the purpose of Figure

8.

Comparing the curve in both panels of Figure 8, the overall agreement between both fits is

fairly good, except for the magnitude at the very ρ0 peak location which may look somewhat

underestimated30 by the η′ dipion spectrum. Instead, the drop–off location and its intensity are

fairly well predicted by the {Xτ + η/η′} sample set.

This behavior deserves to be confirmed by new precise η′ dipion spectra, complementing

[53]. Indeed, within the BHLS2 framework, the η′ decay provides a mechanism 100% inde-

pendent of the e+e− → π+π− annihilation process and, nevertheless, this does not prevent

its prediction for Fπ(s) to exhibit a fair accord with the (fully independent) e+e− → π+π−

annihilation spectra. This accord may support a possible effect beyond the Standard Model

which might affect the e+e− annihilation channel below the φ meson mass to reconcile the DR

approach with the FNAL measurement [2].

Regarding the FSI function PX(s), awaiting for other theoretical estimates of it, one can

conclude that our favored PX(s) parametrization 31 derived from fitting (HR + η/η′) provides

already a reliable PX(s) and benefits from resp. a ≃ 3% and ≃ 10% precision for resp. the

linear and the curvature terms.

29Supplemented by the phase information between the ρ and ω propagators or by the product of branching

fractions B(ω → e−e+)× B(ω → π+π−) available in the RPP [59].
30Nevertheless, the lineshape is in good correspondance with those of the KLOE12 spectrum included in the

{HR + η/η′} sample set, but slightly smaller than the others.
31 The PX(s) polynomial may well be interpreted as the lowest order terms of the Taylor expansion of a more

complicated function which does not behave as fast as a power law; for instance, one has checked that the function

U(s) = 1 + 0.5 log (1 + 4s) (i.e. with no free parameter) gives results identical to those derived using the second

degree polynomials PX(s). Indeed the probability returned by the fit of the {HR + η/η′} data sample set is then

91.7%, and the average χ2’s per data point are quite favorable : For instance, 1.08 for NSK, 1.04 for KLOE, 0.92

for the BESIII η′ spectrum and 0.90 for the η spectrum from KLOE/KLOE2 .
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Figure 9: aµ(ππ,
√
s < 1.0 GeV) in units of 10−10 for various data sample combinations. The

top two data points display the values derived by a direct integration of all the dipion spectra

(when including BaBar, KLOE is excluded). The point tagged by KNT19 [6] is a usual (exter-

nal) reference; the following point is derived using BHLS2 with the indicated (largest) content

of e+e− → π+π− spectra. The two following points show our fit results for two indicated

combinations of data samples; within parentheses, one also displays the results obtained by

also including the η/η′ samples within the global fit procedure. The small magnitude of the

BHLS2 derived uncertainties should be noted (see text). The downmost entry in this Figure

exhibits the prediction derived for aµ(ππ,
√
s < 1.0 GeV) when all annihilation to dipion data

are discarded from the fit. The growth of its uncertainty reflects the drastic reduction of the

statistics involved in the corresponding fit.
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11.2 The η/η′ Spectra and HVP Estimates

The purpose of Figure 9 is to figure out the overall picture of the estimates for aµ(ππ,
√
s <

1.0 GeV) which emerges from the present work. The top bunch data points displays the values

for aµ(ππ,
√
s ≤ 1 GeV) in units of 10−10 derived by direct integration of the dipion data taking

all dipion spectra, but either excluding the Babar spectrum or excluding the KLOE spectra; the

reason to proceed this way is related with inconsistencies occuring when fitting the pion form

factors [18] as reported since a long time [34].

The point showing the KNT19 result [6], the usual reference [3], is followed by the evalua-

tion derived from the BHLS2 global fit involving Xτ +KLOE+NSK+BABAR) sample set

which contains the same e+e− → π+π− dipion spectra32 as KNT19. The central values derived

for aµ(ππ,
√
s ≤ 1 GeV) are substantially identical, reflecting the fact that the normalization

uncertainty treatment used to derive the KNT19 evaluation is similar to our own [81]. The

BHLS2 uncertainty is however much improved (by a factor of ≃2), as can be expected from

having performed a (more constraining) global fit; indeed, within a global context, in contrast

with KNT19 and others who treat the dipion spectra in a standalone mode, one benefits from

also involving the τ dipion spectra and all non-ππ final state spectra which play as an increased

statistics for all the channels involved by the underlying HLS context, in particular the ππ one.

Therefore, comparing KNT19 and our evaluation illustrates that the BHLS2 Lagrangian ap-

proach does not generate biases and that the difference of the central values is essentially due

to the data samples chosen to derive motivatedly physical conclusions.

The top two data points of the lowest bunch substantiate numerically the amplitude of the

tension beween using Xτ + KLOE + NSK and Xτ + BABAR + NSK; both agree with

the direct integration results and exhibit a ≃ 5.4 × 10−10 distance beween their evaluations of

aµ(ππ,
√
s ≤ 1 GeV). In both cases, the first number displayed is the evaluation derived by a

standard BHLS2 fit and is 100% consistent with the results published in [18]; the number within

parentheses instead displays the result obtained when adding the η/η′ data set defined above to

resp. Xτ+KLOE+NSK and Xτ+BABAR+NSK. One should note that the fit probabilities

are unchanged when adding the η/η′ data set and reflect fairly good fits : 88.7% → 90.6% for

Xτ + KLOE + NSK(+η/η′), 47.2% → 55.9% for Xτ + BABAR + NSK(+η/η′). This

illustrates that there is no tension between the e+e− → π+π− dipion spectra and those derived

from the (η/η′) decays as the probability difference between the fits involving the two data

sample sets is not degraded by including the (η/η′) samples.

11.3 η/η′ Based Evaluations of the HVP

If, as conjectured long ago [62], an accurate enough determination of the FSI function

PX(s) can be provided (by Extended ChPT [35, 36, 37], possibly), dipion spectra from the

η′ decay may provide a new way to estimate the dipion contribution to the muon HVP up to

≃ 1 GeV. The present work has shown that phenomenology is able to provide already a FSI

function PX(s) carrying a noticeable precision and, moreover, it has also been shown that a

32It should be reminded that the corresponding fit probability is low [18] (11.4%), reflecting the KLOE–BaBar

tension.
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unique FSI function accomodates easily the available η and η′ high precision dipion spectra

simultaneously.

Indeed, within the BHLS2 context [17, 18], the amplitudes for the η/η′ → π+π−γ decays

and for the e+e− → π+π− annihilation proceed from the same Lagrangian and do not call

for a special treatment of their common dominant neutral ρ meson signal. Moreover, once the

FSI effects are factored out, the derivation of both amplitudes from the same Lagrangian is

unchanged.

On the other hand, discrepancies revealed by comparing with each other the dipion spectra

collected in scan mode (NSK) and the various samples collected in ISR mode by KLOE [32,

27, 28] and Babar [30, 31] has not found a really satisfactory solution; the recent SND20 [33]

– and even more, presumably, the new CMD3 [7] data – seems rather to darken the picture.

Therefore, getting high statistics dipion spectra independent of the e+e− annihilation mech-

anism, carrying different kinds of systematics, may helpfully contribute to a more satisfactory

understanding of the crucial π+π− contribution to the muon HVP.

For the time being, the limited number of high statistics η [57] and η′ [53] dipion spectra

allows to already derive the prediction for aµ(ππ,
√
s < 1.0 GeV) displayed in the bottom of

Figure 9, namely :

aµ(ππ,
√
s ≤ 1 GeV) = (484.98± 1.93)× 10−10 (47)

with a 96.3 % fit probability, and is distant from its estimate based on fitting HR data sample

set33 by 2.6σ. Therefore, additional high statistics η/η′ data samples can put more light on the

issue, clearly located in the ρ0 − ω invariant mass region.

12 Concluding Remarks

The present work has shown that, beside the already reported e−e+ annihilation spectra,

some decay modes (especially the P → γγ ones) or τ dipion spectra [17, 18], BHLS2 can

encompass the dipion spectra from the η and η′ decays; however, to reach this result, one has

to invoke the so–called Final State Interaction (FSI) mechanism – not a part of the HLS model

– as inferred by the SHKMW group in [62].

Supplying BHLS2 with a FSI function, one has thus obtained a fairly good simultaneous fit

of the η and η′ dipion spectra together with the e+e− annihilations into π+π−/KK/π0γ/ηγ fi-

nal states and the τ± → π±π0ντ decay usually addressed by BHLS2 framework in our previous

[17, 18].

This proves that, once the FSI mechanism is accounted for, the BESIII η′ spectrum [53] does

not need more information that those already present in BHLS2 to get a satisfactory picture;

the picture is found as fair for the η spectrum reported in [57] – and, actually, even for those

in [56]. The role of charged ρ meson – a natural feature of BHLS2, [18], never considered

elsewhere – has been shown to provide a fair treatment of the η′ → π+π−γ dipion spectrum.

33It is interesting to note that the distance between this prediction and the solution derived using NSK+KLOE

is almost equal to the distance between the NSK+KLOE and NSK+BaBar solutions.
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This turns out to state that most of the parameters needed to write out the relevant decay am-

plitudes are not free but numerically shared with the other channels embodied within the same

BHLS2 framework. This is an additional step in the proof that a unified Effective Lagrangian

can fairly describe the low energy physics up to and including the φ mass region.

The additional parameters, needed to achieve a good description of these η/η′ decay spectra

are those involved by the FSI mechanism34. One has first shown that the η and η′ dipion spectra

are well fitted with specific low degree FSI polynomials supplementing the amplitudes derived

from the BHLS2 Lagrangian. In a second step, it has been proved that, actually, a same second

degree FSI polynomial PX(s) is involved in the considered η and η′ decays as inferred in [62].

As already noted, the ρ± exchange implied by the kinetic breaking defined in [18] is shown to

enhance the global fit quality. The polynomial coefficients have been derived from our fits with

fair precision and found that they remain stable when varying the fit conditions (see Table 4).

It should be noted that the picture revealed by comparing both panels of Figure 8 strikingly

suggests that the traditionally used dipion spectra carry a lineshape favored by the η′ dipion

spectrum and that higher statistics on this can be a helpful tool in the present controversy con-

cerning the Dispersive (DR) approaches and LQCD. Moreover, the systematics affecting the η′

dipion spectrum are certainly independent of those involved in the e−e+ → π+π− annihilation.

At its level of accuracy, the present η′ dipion spectrum [53] rather favors the DR prediction,

as shown in Figure 9; however better statistics and a finer binning in the ρ0 − ω energy region

looks mandatory for a competing estimate of the muon aµ(π
+π−,

√
s < 1.0 GeV). This may

motivate to enlarge the available η′ dipion sample by analyzing the already existing data or to

collect new samples at other detectors.
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Appendices

A Brief Outline of the HLS/BHLS2 Approach

For the reader convenience, it looks worth to avoid too much cross–references and briefly

collect here the various ingredients which participate to the definition and working of our sym-

metry broken Hidden Local Symmetry (HLS) model which are spread out into several ref-

erences. The HLS model admits a non-anomalous sector [9] and, beside, an anomalous one

34One may notice the parameter free FSI choice given in footnote 31 which might have to be further explored.
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[10] — see also [13]. To make this approach a successful tool in its physical realm, the HLS

model should undergo, symmetry breaking mechanisms. The salient features of the broken

version named BHLS2 which underly the present study can be found, reminded or defined, in35

[17, 18]. As it grounds the present study, the anomalous sector of the HLS model [10, 13] is

mostly discussed in the body of the text.

A.1 The Unbroken Non-Anomalous HLS Lagrangian

The non–anomalous HLS Lagrangian is a generalization of the ChPT Lagrangian [82, 83]

which can be written [13] :

Lchiral =
f 2
π

4
Tr

[
∂µU ∂µU †] = −f 2

π

4
Tr

[
∂µξL ξ†L − ∂µξR ξ†R

]2
, (48)

where fπ (= 92.42 MeV) is the pion decay constant and :

ξR/L(x) = exp [±iP (x)/fπ] =⇒ U(x) = ξ†L(x)ξR(x) , (49)

when working in the so-called unitary gauge which removes a scalar field term in the definition

of ξR/L(x); P (x) is the usual pseudoscalar (PS) field matrix. Ignoring in this reminder the weak

sector [13, 17], the HLS approach turns out to replace in Equation (48) the usual derivative by

the covariant derivative :

DµξR/L = ∂µξR/L − igVµξR/L + ieξR/LAµQ , (50)

where Aµ is the photon field, Q = Diag[2/3,−1/3,−1/3] the quark charge matrix and Vµ is

the vector field matrix; the expressions for P and36 V are the usual ones – fulfilling the U(3)
flavor symmetry – and can be found in [13, 84, 15], for example. In this way, the first HLS

Lagrangian piece named LA is derived from Equation (49). However, a second piece – LV –

can be defined which vanishes in the inverse substition Dµ → ∂µ. The two pieces write :

LA = −f 2
π

4
Tr

[
DµξL ξ†L −DµξR ξ†R

]2
, LV = −f 2

π

4
Tr

[
DµξL ξ†L +DµξR ξ†R

]2
. (51)

and the full non–anomalous HLS Lagrangian writes :

LHLS = LA + aLV , (52)

where a is a free parameter specific of the HLS approach [13]. This (unbroken) HLS La-

grangian can be found expanded in [84].

35For full details the interested reader is referred to these articles, where former references can also be found.
36In the V matrix the ρ, ω and φ fields correspond to the so–called ideal fields.
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A.2 Breaking the HLS Lagrangian I : The BKY Mechanism

The first breaking mechanism for the HLS Lagrangian has been proposed in [85]; one uses

a modified version of it given in [84] in order to avoid identified undesirable properties of the

original proposal [86]. Originally, the BKY mechanism was intended to only break the U(3)
symmetry of the HLS Lagrangian; it has been extended following the lines of [87] to also cover

isospin breaking effects.

Defining L = DµξL ξ†L and R = DµξR ξ†R, the (modified and extended) BKY breaking is

implemented in the BHLS2 framework by modifying Equations (51) as follows :

LA = −f 2
π

4
Tr [(L− R)XA]

2 , LV = −f 2
π

4
Tr [(L+R)XV ]

2 , (53)

where the constant matrices XA/V provide departures from the unit matrix; they have been

parametrized as XA/V =Diag(qA/V , yA/V , zA/V ). In practice, one prefers setting qA/V = 1 +
(ΣA/V +∆A/V )/2 and yA/V = 1+(ΣA/V −∆A/V )/2. As zA and zV are affecting the ss entries,

their departure from 1 can be (and are found) large compared to qA/V and yA/V – which refer

to resp. the uu and dd entries [15, 17, 18].

Within the BHLS2 context opened in [17], it has been shown that the diagonalization of the

vector meson mass term implies ∆V = 0; on the other hand, it has also been proved [17] that

ΣV is actually out of reach and can be fixed to zero without any loss of generality. Therefore

the BKY breaking mechanism introduces 3 free parameters : zA and ∆A tightly related with

the ratio fK/fπ and zV with the Higgs–Kibble φ meson mass.

A.3 Breaking the HLS Lagrangian II : The Covariant Derivative (CD)

Breaking

The main ingredient in the HLS approach is the covariant derivative as displayed in Equa-

tion (50), complemented when relevant by W and Z0 terms [13]. Thus, a relevant breaking

mechanism can be chosen affecting the covariant derivative itself; this can be done by replac-

ing Equation (50) by :

DµξR/L = ∂µξR/L − ig
[
V I
µ + δVµ

]
ξR/L + ieξR/LAµQ , (54)

where δVµ can be chosen to break the U(3)V symmetry in a controlled way. Breaking the

universality of the vector coupling g is an interesting tool; a priori one may think that breaking

nonet symmetry (i.e. along the Gell–Mann matrix T 0) can be performed independently of

breaking the SU(3)V symmetry (i.e. along the Gell–Mann matrix T 8); the diagonalization of

the vector meson mass term as well as the expected values of the pion and kaon form factors at

the chiral point prevent such a freedom of choice [17].

Identifying the field combinations associated with each of the canonical Gell–Mann Ta

U(3) matrix basis, one is led to define the following components which can participate to δVµ

42



separately or together :




δV 0
µ =

ξ0√
2

[√
2ωI

µ + ΦI
µ

3

]
Diag[1, 1, 1] ,

δV 8
µ =

ξ8√
2

[
ωI
µ −

√
2ΦI

µ

3
√
2

]
Diag[1, 1,−2] ,

δV 3
µ =

ξ3√
2

[
ρ0I√
2

]
Diag[1,−1, 0] ,

(55)

in terms of the usual ideal field combinations; the CD breaking term is

δVµ = δV 0
µ + δV 8

µ + δV 3
µ .

The (free) breaking parameters ξ0, ξ8 and ξ3 are only requested to be real in order that

δVµ is hermitian as V I
µ itself. Clearly, δV 0

µ defines a breaking of the nonet symmetry down to

SU(3)V × U(1)V , δV 8
µ rather expresses the breaking of the SU(3)V symmetry, while δV 3

µ is

related to a direct breaking of Isospin symmetry in the vector sector.

As mentioned just above, it happens that the ξ parameters introduced by Equations (55)

should fulfill [17] ξ0 = ξ8 and so, that the CD breaking only involves 2 new free parameters.

This means that within BHLS2, one cannot solely break nonet symmetry which should be

accompanied by a SU(3) breaking of same intensity.

A.4 Breaking the HLS Lagrangian III : Dynamical Vector Meson Mixing

The unbroken HLS Lagrangian already exhibits couplings for ρI/ωI/φI → K+K−/K0K
0

transitions; this property is naturally transfered to all its broken versions. This implies that, at

one loop order, the ρ0/ω/φ squared mass matrix exhibits non–diagonal entries and thus, the

ideal vector fields are no longer mass eigenstates.

At one loop order, the squared mass matrix of the ρ0/ω/φ system can be written :

M2(s) = M2
0 (s) + δM2(s) , (56)

where the dependence upon the momentum squared s flowing through the vector lines is made

explicit. After the BKY and CD breakings just sketched, the vector mesons masses write37 :





m2
ρ0 = m2 [1 + ΣV + 2 ξ3] ,

m2
ω = m2

[
1 + ΣV +

4

3
ξ0 +

2

3
ξ8

]
= m2 [1 + ΣV + 2 ξ0] ,

m2
Φ = m2 zV

[
1 +

2

3
ξ0 +

4

3
ξ8

]
= m2 zV [1 + 2 ξ0] .

(57)

37One should note that within BHLS2 the charged and neutral ρ mesons carry different masses as m2
ρ± =

m2 (1 + ΣV ).
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in terms of the various breaking parameters; ΣV has been kept for convenience. The M2
0 (s)

matrix occuring in Equation (56) thus writes :

M2
0 (s) = Diag(m2

ρ0 +Πππ(s), m
2
ω, m

2
φ) . (58)

and is diagonal; Πππ(s) is the pion loop and includes the ρπ+π− coupling squared.

The expression for δM2(s) is slightly more involved. Having defined the (ρ0, ω, φ) renor-

malized fields, generally indexed by R (i.e. those which diagonalize the vector meson mass

term), one can derive the V i
R → Vj

R transitions (i, j = ρ0, ω, φ). For this purpose, having

defined Π±(s) and Π0(s), resp. the amputated charged and neutral kaon loops, the transition

amplitudes (i, j = ρ0, ω, φ) write :

δM2
i,j(s) = giK+K−g

j
K+K−Π±(s) + gi

K0K
0g

j

K0K
0Π0(s) (59)

where the gKK coupling constants are displayed in Section 10 of [17].

The physical ρ0, ω, φ are the eigenvectors of the full squared mass matrix M2(s); they are

related to their renormalized partners by :




ρR

ωR

ΦR




=




1 −α(s) β(s)

α(s) 1 γ(s)

−β(s) −γ(s) 1







ρPhys

ωPhys

ΦPhys




(60)

The 3 complex angles occuring here are combinations of the δM2(s) matrix elements and of

the eigenvalues of the full M2(s) matrix, as displayed in Subsection 10.2 of [17].

It is worth remarking that the dynamical mixing just sketched has provided the first solution

[14, 15] to the long standing puzzle ”e+e− versus τ” [88, 89, 90] as it generates a s–dependent

difference between the ρ± −W± and ρ0 − γ transition amplitudes.

A.5 The Kinetic Breaking and the [π0, η, η′] System

This Section mostly aims at reminding notations used in the body of the paper; these essen-

tially deal with the pseudoscalar meson (PS) sector of the HLS model.

The full pseudoscalar meson kinetic energy term of the BHLS2 Lagrangian [18] writes :

L′
kin = Tr [∂PbareXA∂PbareXA] + 2 {Tr [XH∂Pbare]}2 . (61)

where Pbare is the PS bare field matrix. The first term is already broken by the BKY mechanism

applied to the LA HLS Lagrangian piece (see Equation (53) in Appendix A) and the second

one expresses the so–called kinetic breaking generalizing the ’tHooft mechanism [60]. It has

been shown in [18] that an appropriate choice for the XH matrix is :

XH = λ0T0 + λ3T3 + λ8T8 (62)
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in terms of the canonical U(3) Gell-Mann matrices (T0 = I/
√
6, Tr[TaTb] = δab/2) with real

λi coefficients in close correspondence with the CD breaking term δV affecting the vector

sector (see Appendix A.3). This choice manifestly allows for Isospin Symmetry breaking,

nonet symmetry breaking (the so–called ’t Hooft term [60]) and SU(3) breaking.

It is useful to introduce the vector of PS fields :

Vany = (π3
any, η

0
any, η

8
any) where any = (bare, R1, R) (63)

to clarify the component indexing.

The diagonalization of the kinetic energy Equation (61) which leads from the bare PS

fields to their renormalized partners (hereafter indexed by R) is performed in 2 steps. The

intermediate step (from bare to to R1 fields) turns out to diagonalizing Tr [∂PbareXA∂PbareXA]
and to define the W transformation matrix :

W =




1 −∆A√
6

− ∆A

2
√
3

−∆A√
6

B A

− ∆A

2
√
3

A C




(64)

which depends on the BKY breaking parameter ∆A and via :

A =
√
2
zA − 1

3zA
, B =

2zA + 1

3zA
, C =

zA + 2

3zA
(65)

on the other BKY breaking parameter zA (see Appendix A.2 above).

In order to achieve the diagonalization of the (full) kinetic energy term of the BHLS2 La-

grangian, one still has to define the linear transform which relates the intermediate R1 and final

R renormalized PS fields (see Equation (28) in [18]). Given the (co-)vector :

at = ( λ3, λ0B + λ8A, λ0A+ λ8C) , (66)

one can then prove [18] that Equation (61) becomes canonical (at first order in breakings) when

expressed in terms of the VR fields defined by :

Vbare = W ·
[
1− 1

2
a · at

]
· VR . (67)

However, the VR fields are not still the PS mass eigenstates denoted by the triplet (π0, η, η′).
One expects these physical states to be related with the VR fields via a 3–dimensional rotation

and thus 3 angles. Adopting the Leutwyler parametrization [91], one has :



π3
R

η8R

η0R




=




1 −ǫ −ǫ′

ǫ cos θP + ǫ′ sin θP cos θP sin θP

−ǫ sin θP + ǫ′ cos θP − sin θP cos θP







π0

η

η′




(68)
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to relate the R fields which diagonalize the kinetic energy to the physical (i.e. mass eigen-

states) neutral PS fields. The three angles (ǫ, ǫ′ and even θP ) are assumed O(δ) perturbations;

nevertheless, for clarity, the so-called third mixing angle [61] is not treated as manifestly small.

On the other hand, the ”angles” ǫ and ǫ′ are related with the light quark masses and it is

worth stating that they are expected likesign (see the discussion in [18]).

B Erratum : The VPP/APP interaction pieces in BHLS2

It is worthwhile to list the V PP and APP interaction terms of the BHLS2 Lagrangian,

corrected when needed, related with the present study, i.e. the charged and neutral pion fields,

the η and η′ mesons. We have :

Lπ−π+ = ie
[
1− a

2
(1 + ΣV )

]
A · π− ↔

∂ π+ +
iag

2
(1 + ΣV ) [1 + ξ3] ρ

0
I · π− ↔

∂ π+

Lπ0π± =
iag

2
(1 + ΣV )(1−

λ2
3

2
)
[
ρ− · π+

↔
∂ π0 − ρ+ · π− ↔

∂ π0
]

Lηπ± = −iag

2

[{
1

2
√
3
∆A +

λ3λ̃8

2

}
cos θP −

{
1√
6
∆A +

λ3λ̃0

2

}
sin θP + ǫ

]

[1 + ΣV ]
[
ρ− · π+

↔
∂ η − ρ+ · π− ↔

∂ η
]

Lη′π± = −iag

2

[{
1√
6
∆A +

λ3λ̃0

2

}
cos θP +

{
1

2
√
3
∆A +

λ3λ̃8

2

}
sin θP + ǫ′

]

[1 + ΣV ]
[
ρ− · π+

↔
∂ η′ − ρ+ · π− ↔

∂ η′
]

(69)

The last 2 Lagrangian pieces superseed the corresponding formulae displayed in Equations

(45) of [18]; they were given for completeness but unused. In the present study they should be

considered.

In the expressions above, the kinetic breaking parameters occur; beside λ3, one also has :

λ̃0 = λ0B + λ8A , λ̃8 = λ0A + λ8C (70)

where A, B and C have also been reminded in the Appendix A.5 just above. On the other hand

we have chosen, here to keep the ΣV parameter for clarity. However in [18] it has been shown

that it is out of reach and can be fixed to zero without any loss of generality.

C A± Solutions : The AAP and V V P Lagrangians

It is worthwhile displaying the anomalous BHLS2 Lagrangian pieces associated with the

so–called triangle anomalies, having imposed the Kroll Conditions [58], examined in full de-

tails in [18] and briefly sketched in Section 3. Using obvious notations, these anomalous pieces
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are derived from [10, 13] :




LV V P = − Ncg
2

4π2fπ
c3ǫ

µναβTr[∂µVν∂αVβP ]

LAAP = − Nce
2

4π2fπ
(1− c4)ǫ

µναβ∂µAν∂αAβTr[Q
2P ]

LAV P = − Ncge

8π2fπ
(c4 − c3)ǫ

µναβ∂µAνTr[{∂αVβ, Q}P ]

(71)

The phenomenology examined so far with the broken variants of the HLS model never led to

consider a non-zero c3 − c4; therefore, one assumes c3 = c4 which turns out to discard LAV P

Lagrangian piece.

Unless otherwise stated the neutral vector fields displayed here are the so-called ideal com-

binations generally named ρI , ωI and φI . The transformation which connects the bare vector

fields to their physical partners is treated in [17] and briefly reminded in Appendix A above.

We also remind here the definition for δP :

{
sin δP =

1√
3

(√
2 sin θP − cos θP

)
, cos δP =

1√
3

(√
2 cos θP + sin θP

)
(72)

and (d± ≡ ±1) :

A± = ∆A + d±λ
2
0 . (73)

used below.

C.1 The AAP Lagrangian

The AAP Lagrangian defined in the header just above where Q is the quark charge matrix

and P the U(3) symmetric matrix of the bare pseudoscalar fields is given for definiteness.

Defining :





gπ0γγ =
1

6

{
1− 5

6
A± − λ2

0

3

}

− ǫ

18zA

{
5zA sin δP +

√
2 cos δP

}
− ǫ′

18zA

{√
2 sin δP − 5zA cos δP

}
,

gηγγ = − ǫ

6
−

√
2

18zA
cos δP +

1

12

{
A± +

5

6
(3λ2

0 − 4)

}
sin δP

gη′γγ = −ǫ′

6
−

√
2

18zA
sin δP − 1

12

{
A± +

5

6
(3λ2

0 − 4)

}
cos δP

(74)

the coupling constants for the physical mesons P0γγ (P0 = π0, η, η′) are given by:

GP0γγ = −3αem

πfπ
(1− c4)gP0γγ , (75)
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and the AAP Lagrangian can also be written :

LAAP0
= GP0γγ P0 ǫ

µναβ∂µAν∂αAβ for each of P0 = π0, η, η′ . (76)

C.2 The V V P Lagrangian

The V V P Lagrangian is given by :

LV V P = − 3g2

4π2fπ
c3 ǫ

µναβTr [∂µVν∂αVβP ] , C = −Ncg
2c3

4π2fπ
, (77)

C.2.1 The V V π Lagrangians

The V V π Lagrangians relevant for our phenomenology are given by :

LV V P (π
±) =

C

2
ǫµναβ

{[(
1 +

2ξ0 + ξ8
3

)
∂µω

I
ν +

√
2

3
(ξ0 − ξ8)∂µφ

I
ν

]
×
[
∂αρ

+
β π

− + ∂αρ
−
β π

+
]
}

(78)

and :

LV V P (π
0) =

C

2
ǫµναβ

{
G0∂µρ

I
ν∂αω

I
β +G1

[
2∂µρ

−
ν ∂αρ

+
β + ∂µρ

I
ν∂αρ

I
β + ∂µω

I
ν∂αω

I
β

]

+G2∂µφ
I
ν∂αφ

I
β +G3∂µρ

I
ν∂αφ

I
β

}
π0

(79)

where : 



G0 =

[
1− λ2

0

3
+

2ξ0 + ξ8
3

+ ξ3

]

G1 = −A±

4
+

1

2
[ ǫ′ cos δP − ǫ sin δP ]

G2 = − 1

zA
√
2
[ ǫ′ sin δP + ǫ cos δP ]

G3 =

√
2

3
(ξ0 − ξ8)

(80)

Actually, one imposes ξ0 = ξ8, so that, always, G3 = 0.
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C.2.2 The V V η Lagrangian

The V V η Lagrangian is given by :

LV V P (η) =
C

2
ǫµναβ

{
K1∂µρ

−
ν ∂αρ

+
β +K2∂µρ

I
ν∂αρ

I
β +K3∂µω

I
ν∂αω

I
β +K4∂µφ

I
ν∂αφ

I
β

+K5∂µω
I
ν∂αφ

I
β +K6∂µρ

I
ν∂αω

I
β

}
η

(81)

Having defined38 :

{
H2 =

1

8

[
3λ2

0 − 4
]

, H3 = −
√
2

6zA
[(3 + 2ξ0 + 4ξ8)]

}
(82)

the V V η couplings become :





K1 = 2H2 sin δP , K2 = (H2 − ξ3) sin δP

K3 =

[
H2 −

2ξ0 + ξ8
3

]
sin δP , K4 = H3 cos δP

K5 = −(ξ0 − ξ8)

3zA

[
2 cos δP + zA

√
2 sin δP

]
, K6 =

A±

2
sin δP − ǫ

(83)

Actually, similarly to just above, the K5 term drops out in the practical BHLS2 context.

C.2.3 The V V η′ Lagrangian

The V V η′ Lagrangian is given by :

LV V P (η
′) =

C

2
ǫµναβ

{
K ′

1∂µρ
−
ν ∂αρ

+
β +K ′

2∂µρ
I
ν∂αρ

I
β +K ′

3∂µω
I
ν∂αω

I
β +K ′

4∂µφ
I
ν∂αφ

I
β

+K ′
5∂µω

I
ν∂αφ

I
β +K ′

6∂µρ
I
ν∂αω

I
β

}
η′

(84)

the V V η′ couplings being :





K ′
1 = −2H2 cos δP , K ′

2 = −(H2 − ξ3) cos δP

K ′
3 = −

[
H2 −

2ξ0 + ξ8
3

]
cos δP , K ′

4 = H3 sin δP

K ′
5 = −(ξ0 − ξ8)

3zA

[
−zA

√
2 cos δP + 2 sin δP

]
, K ′

6 = −A±

2
cos δP − ǫ′

(85)

38Referring to [18], the Kroll condtions turns out to fix H1 = 0.
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where also the K ′
5 term drops out in the practical BHLS2 context, where ξ0 = ξ8. The Hi

functions occuring here have been defined in our previous paper and have been reminded in the

Subsection just above – H1 vanishes thanks to having requested the Kroll Conditions.

One should also note that the V V η′ couplings are related to the V V η couplings and can be

derived herefrom by making in the V V η couplings :

{sin δP → − cos δP and cos δP → sin δP} .

D A± Solutions : The APPP and V PPP Lagrangians

Beside the Lagrangian pieces associated with the triangle anomalies reminded in the Ap-

pendix just above, those associated with the so-called box anomalies play an important role in

the η/η′ → π+π−γ decays and in the e+e− → π+π−π0 annihilation thoroughly considered in

our [18]. We find it helpful to provide their expressions while the Kroll conditions are applied.

The APPP and V PPP Lagrangian pieces introduce a new HLS parameter (c1 − c2) not fixed

by the model and should be derived from fits.

As for the V V P interactions reminded in Appendix C, the neutral vector fields occuring in

the V PPP interaction Lagrangian are their ideal combinations; they should be expressed in

terms of physical vector fields as developped in [17] in practical applications.

D.1 The APPP Lagrangian

The APPP Lagrangian is given by :

LAPPP = D ǫµναβAµTr [Q∂νP∂αP∂βP ] , D = −i
Nce

3π2f 3
π

[
1− 3

4
(c1 − c2 + c4)

]
, (86)

Regarding the phenology we address, the relevant APPP Lagrangian piece to be considered

is :

L1
APPP = DǫµναβAµ

{
gγπ0∂νπ

0 + gγη∂νη + gγη′∂νη
′} ∂απ

−∂βπ
+ , (87)

in terms of fully renormalized PS fields. Requiring the A± Kroll conditions, these gγP cou-

plings can be written :





gγπ0 = −1

4

[
1− A±

2
− λ2

0

3
− ǫ sin δP + ǫ′ cos δP

]

gγη =

[
1− A±

2
− 3λ2

0

4

]
sin δP
4

+
ǫ

4

gγη′ = −
[
1− A±

2
− 3λ2

0

4

]
cos δP

4
+

ǫ′

4

(88)

keeping only the leading order terms in breakings.

50



D.2 The V PPP Lagrangian

The V PPP anomalous HLS Lagrangian is :

LV PPP = −i
Ncg

4π2f 3
π

(c1 − c2 − c3)ǫ
µναβTr[Vµ∂νP∂αP∂βP ] (89)

where the ci are the FKTUY parameters not fixed by the model. Nc is the number of colors

fixed to 3.The V and P field matrices are the bare ones.

The relevant part of LV PPP within the present context is :




LV P0π+π− = Eǫµναβ
{[
g0ρπ∂νπ

0 + g0ρη∂νη + g0ρη′∂νη
′] ρIµ

+
[
g0ωπ∂νπ

0 + g0ωη∂νη ++g0ωη′∂νη
′] ωI

µ + g0φπ∂νπ
0 φI

µ

}
∂απ

−∂βπ
+

with E = −i
3g(c1 − c2 − c3)

4π2f 3
π

(90)

in terms of the physical pseudoscalar fields. Keeping only the A± solutions and the leading

order breaking terms, the couplings just defined are :




g0ρπ0 =
1

4

[
A±

2
+ ǫ sin δP − ǫ′ cos δP

]

g0ρη =
1

4

[
1 + ξ3 −

3

4
λ2
0

]
sin δP

g0ρη′ = −1

4

[
1 + ξ3 −

3

4
λ2
0

]
cos δP

(91)

and : 




g0ωπ0 = −3

4

[
1 +

2ξ0 + ξ8
3

− 1

3
λ2
0

]

g0ωη =
3

4

{
ǫ− A±

2
sin δP

}

g0ωη′ =
3

4

{
ǫ′ +

A±

2
cos δP

}

g0φπ = −
√
2

4
[ξ0 − ξ8] , g0φη = 0, g0φη′ = 0 .

(92)

As pseudoscalar meson form factor values at origin imply [17] ξ0 = ξ8, one observes that no

term involving φI survives at leading order in breakings.

E Brief Analysis of the BHLS2 Parameters Values

Table 5 collects the model parameter values of the BHLS2 Lagrangian. In order to figure

out the effect of the e+e− → π+π−π0 annihilation data on the numerical results, its first data
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column (replicated from Table 10 in [18]) displays the fit parameter values derived when they

are considered, whereas the second data column provides the same information when they are

excluded from the fit procedure. The third and fourth data columns report the fit results when

the η/η′ dipion spectra are included within the set of data samples HR amputated from the

3-pion data.

Fit Parameter with 3π spectra no η/η′/3π Spectra Pη(s) 6= Pη′(s) Pη(s) ≡ Pη′(s)

aHLS 1.766± 0.001 1.789± 0.001 1.842± 0.001 1.821± 0.001

g 6.954± 0.002 6.334± 0.001 6.236± 0.001 6.379± 0.001

(c3 + c4)/2 0.742± 0.003 0.756± 0.005 0.773± 0.005 0.772± 0.004

θP (degrees) −15.59± 0.8 −16.471± 0.295 −17.614± 0.282 −17.433± 0.282

λ0 0.285± 0.009 0.325± 0.008 0.339± 0.008 0.334± 0.008

zA 1.406± 0.004 1.416± 0.015 1.418± 0.005 1.415± 0.005

zV 1.420± 0.001 1.375± 0.007 1.304± 0.001 1.320± 0.001

∆A × 102 12.94± 4.91 12.191± 4.05 10.173± 5.39 10.249± 5.428

ǫ × 102 3.62± 0.30 5.383± 0.440 6.456± 0.439 6.385± 0.411

ǫ′ × 102 0.17± 0.27 −3.623± 0.711 −6.809± 0.581 −7.021± 0.475

ξ0 × 102 −6.838± 0.018 1.178± 0.018 1.119± 0.013 −0.538± 0.014

ξ3 × 102 1.496± 0.150 6.082± 0.153 6.070± 0.136 5.609± 0.137

Fit Probability 83.5 % 88.6 % 89.7% 90.6%

Table 5: Fit parameter values based on the A− BHLS2 variant : The first data column reminds

the parameter values when including the 3π spectra, the second one provides the same infor-

mation when the 3π spectra are discarded from the fit procedure. The third and fourth data

columns display the fit results when the η/η′ spectra are incluced and the 3π spectra excluded.

Beside providing the parameter values themselves, the issue here is to reach an educated

guess about Final State Interaction effects in the e+e− → π+π−π0 annihilation process : Could

FSI in this channel be numerically invisible or is it absorbed effectively by the other model

parameters?

First of all, the last line in Table 3 clearly shows that one always reaches fair accounts of
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the spectra submitted to the BHLS2 global fit. Regarding the parameters collected in the top

bunch of the Table, one observes value differences beyond the reported fit uncertainty, however

with magnitudes consistent with reasonable systematic effects.

The lower bunch of parameters looks rather confusing. Indeed, regarding ǫ, ǫ′ and ξ3, the

pieces of information derived by the three fits excluding the 3-pion data are consistent with

each other and not with the first column result. The values for ξ0 look confusing and may only

indicate large systematics. Therefore, there is no obvious hint for significant FSI effects in

the e+e− → π+π−π0 annihilation process; nevertheless, this certainly deserves devoted works

[74].
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