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Abstract

Over the last decades, large-scale ecological projects have emerged that require col-
lecting ecological data over broad spatial and temporal coverage. Yet, obtaining rele-
vant information about large-scale population dynamics from a single monitoring
programme is challenging, and often several sources of data, possibly heterogeneous,
need to be integrated. In this context, integrated models combine multiple data types
into a single analysis to quantify the population dynamics of a targeted population.
When working at large geographical scales, integrated spatial models have the poten-
tial to produce spatialized ecological estimates that would be difficult to obtain if data
were analysed separately. In this study, we illustrate how spatial integrated modelling
offers a relevant framework for conducting ecological inference at large scales. Focus-
ing on the Mediterranean bottlenose dolphins (Tursiops truncatus), we combined
21,464 km of photo-identification boat surveys collecting spatial capture–recapture
data with 24,624 km of aerial line transect following a distance sampling protocol. We
analysed spatial capture–recapture data together with distance sampling data to esti-
mate the abundance and density of bottlenose dolphins. We compared the perfor-
mances of the distance sampling model and the spatial capture–recapture model fitted
independently to our integrated spatial model. The outputs of our spatial integrated
models inform bottlenose dolphin ecological status in the French Mediterranean Sea
and provide ecological indicators that are required for regional-scale ecological assess-
ments like the EU Marine Strategy Framework Directive. We argue that integrated spa-
tial models are widely applicable and relevant to conservation research and
biodiversity assessment at large spatial scales.

Introduction

Macro-institutions get increasingly involved in large-scale
programmes for biodiversity conservation over regional and
continental areas. Whether these policies aim at assisting
governments (e.g. the Intergovernmental Science-Policy Plat-
form on Biodiversity and Ecosystem Services), or at imple-
menting environmental management such as the European
Union directives (Habitat Directive, 92/43/EEC, 1992, or
Marine Strategy Framework Directive, MSFD, 2008/56/EC,
2008), conducting large-scale ecological monitoring is
required to establish conservation status of targeted species
and ecosystems, and to inform decision-making.

For biodiversity management decisions, conservation
sciences require assessing the ecological status of species
and ecosystems, which democratized the call for ecological

indicators (Buckland et al., 2005; Nichols & Williams,
2006). An ecological indicator can be defined as a metric
reflecting one or more components of the state of ecological
systems. An ecological indicator can either be measured
directly or result from the simplification of several field-
estimated values (Niemi & McDonald, 2004). The Marine
Strategy Framework Directive referred to the abundance/
density of targeted species (e.g. seabirds and cetaceans) as
ecological indicators to fulfil for national reporting. At large
spatial scales, logistical and financial constraints often pre-
vent a detailed coverage of the targeted population using a
single collection effort, and different monitoring programmes
coexist (Lindenmayer & Likens, 2010; Zipkin & Saunders,
2018; Isaac et al., 2019). The multiplication of monitoring
programmes over the same conservation context has fostered
the development of statistical models that can estimate
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ecological quantities while accommodating several, possibly
heterogeneous, datasets (Besbeas et al., 2002; Isaac et al.,
2019; Miller et al., 2019; Zipkin, Inouye, & Beissinger,
2019; Farr et al., 2021). Integrating data from several moni-
toring protocols can give complementary insights into popu-
lation structure and dynamics (Schaub & Abadi, 2011),
increase space and time coverage of the population (Schaub
& Abadi, 2011; Zipkin et al., 2019) and produce more pre-
cise ecological estimates (Isaac et al., 2019; Farr et al.,
2021; Lauret et al., 2021).

A recurrent objective of ecological monitoring pro-
grammes is to estimate population abundance and density
(Williams, Nichols, & Conroy, 2002), for which distance
sampling (DS, Buckland et al., 2005) and capture–recapture
(CR, Williams et al., 2002) methods are widely used. Abun-
dance reflects the estimated number of animals in a specified
area while density is a spatialized estimate that reflects the
number of animals per unit area. DS and CR methods have
strengths and weaknesses in relation to logistical and practical
issues (Hammond et al., 2021). DS methods can cover large
areas at a reasonable cost (e.g. line transect monitoring),
while CR monitoring programmes can be costly to develop
at large spatial scales because more sampling effort is
required over a longer time period to recapture individuals
(Hammond et al., 2021). Even when estimating abundance
over the same study area, DS and CR do not estimate
exactly the same quantity (Calambokidis & Barlow, 2004;
Crum, Neyman, & Gowan, 2021). DS methods estimate
abundance within a study area at the time of the survey. CR
methods are based on individual sampling and estimate the
number of animals that were present in the study area during
the time of the monitoring (Calambokidis & Barlow, 2004).
CR methods encapsulate a longer temporal extent because
multiple sampling occasions are needed to build CR histories
(Williams et al., 2002). However, when data are collected
over the same monitoring period and if animals do not move
in and out of the study area during that period, CR and DS
provide consistent estimates. Recent modelling tools have
emerged to integrate both DS and CR methods into inte-
grated population models (Kéry & Royle, 2020). DS and
spatial CR methods (SCR) allow accounting for spatial varia-
tion in abundance and density (Miller et al., 2013; Royle
et al., 2014; Camp et al., 2020), possibly at large scales
(Bischof et al., 2020). The extension to integrated spatial
models has been proposed to account for spatial variation in
abundance and demographic parameters while analysing
jointly DS data and SCR data (Chandler et al., 2018). Inte-
grated modelling holds promise for species occurring over
large areas that are likely to be the target of multiple moni-
toring protocols. Besides, working at large geographical
scales requires encapsulating spatial dimensions in the esti-
mation of ecological quantities. Integrated spatial models
allow to assess spatialized ecological inference, for example,
density of individuals. To date, integrated spatial models
have been developed and used on open populations to esti-
mate temporal variation in population dynamics and vital
rates such as survival and recruitment (Chandler & Clark,
2014; Chandler et al., 2018; Sun, Royle, & Fuller, 2019).

These applications rely on long-term datasets that are not
always compatible with conservation objectives. In many
cases, ecological information is needed quickly, and data to
investigate temporal variation are unavailable (Nichols &
Williams, 2006; Lindenmayer & Likens, 2010). Conse-
quently, the ecological inference is often restricted to closed
population indicators (e.g. abundance or population size,
density or spatial repartition of the population, distribution or
spatial extent of a population). When the temporal resolution
of monitoring programmes does not allow quantifying popu-
lation dynamics, we argue that an application of integrated
spatial models to closed populations can be useful in numer-
ous ecological contexts to deal jointly with existing monitor-
ing programmes and assess abundance and density.

In this study, we build an integrated spatial model and
demonstrate the relevance of combining DS and SCR to
build large-scale ecological indicators. We consider the moni-
toring of common bottlenose dolphins (Tursiops truncatus)
that are considered as ‘vulnerable’ by the IUCN Red List in
the North-Western Mediterranean Sea (IUCN, 2009). The
protected status of bottlenose dolphins within the French seas
(listed in Annex II of the European Habitats Directive) led to
the development of specific programmes to monitor Mediter-
ranean bottlenose dolphins within the implementation of the
European Marine Strategy Framework Directive, which
requires assessing the conservation status of this species
every 6 years over the large extent of the French Mediter-
ranean Sea (Authier et al., 2017). Increasing efforts are dedi-
cated to develop monitoring programmes in the Marine
Protected Areas (MPA) network that mainly implements
photo-identification protocols locally, while governmental
agencies perform large-scale line transect programmes to
monitor marine megafauna and fisheries. Hence, multiple
data sources coexist about bottlenose dolphins in the French
Mediterranean Sea. In this study, we analysed DS data col-
lected by aerial line transect surveys over a large area cover-
ing coastal and pelagic seas (Laran et al., 2017), which we
combined with SCR data collected by a photo-identification
monitoring programme restricted to coastal waters (Labach
et al., 2021). We compared the abundance and density of
bottlenose dolphins estimated from DS model, SCR model,
and integrated spatial models to highlight the benefits of the
integrated approach in an applied ecological situation. We
discussed the promising opportunities of using integrated
spatial models in the context of marine monitoring planning
in the French Mediterranean. Eventually, we underlined the
conservation implications of using such a model to a wider
extent to make the best use of available datasets.

Materials and methods

Monitoring bottlenose dolphins in the
French Mediterranean Sea

Common bottlenose dolphins (Tursiops truncatus) occur over
large areas throughout the Mediterranean Sea. Because moni-
toring elusive species in the marine realm is complex, multiple
monitoring initiatives have emerged to collect data about
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bottlenose dolphins in the French Mediterranean Sea. In the
context of the Marine Strategy Framework Directive, the
French government implemented large-scale aerial transects to
monitor marine megafauna (Laran et al., 2017). However, the
large spatial coverage of the aerial monitoring is impaired by
the low resolution of such data (i.e. one campaign every
6 years). Then, to collect detailed data, the French agency for
biodiversity funded a photo-identification monitoring pro-
gramme to investigate the ecological status of the bottlenose
dolphins in the French Mediterranean Sea. This coastal boat
photo-identification monitoring has been performed between
2013 and 2015. Coastal photo-identification monitoring repre-
sents a promising opportunity to produce high-resolution infor-
mation because data can be collected routinely by Marine
Protected Areas at a high time frequency.

Study area and datasets

We focused on an area of 255,000 km2 covering the North-
Western Mediterranean Sea within which we considered two
monitoring programmes about bottlenose dolphins. We used
SCR data from at-sea boat surveys over 21,464 km of the
French continental shelf. Observers performed monitoring
aboard small boats to locate and photo-identify bottlenose
dolphins all year long between 2013 and 2015, always at a
constant speed and with three observers. Taking pictures of
the dorsal fin of each individual in the group makes possible
the construction of detection history and hence the analysis
of the population through capture–recapture methods (Labach
et al., 2021). Boat surveys were restricted to the coastal
waters of France and adopted a search–encounter design cov-
ering approximately all the continental shelf every 3 months.
We divided the duration of the monitoring programmes into
eight equal sampling occasions that length for 3 months
each, following a previous analysis by Labach et al. (2021).
We also used DS data that were collected during winter and
summer aerial line transect surveys covering 24,624 km of
both coastal and pelagic NW Mediterranean Sea between
November 2011 to February 2012 and May to August 2012
(Laran et al., 2017). Two trained observers collected ceta-
cean data following a DS protocol (i.e. recording species
identification, group size, and declination angle). Aerial sur-
veys were conditional on a good weather forecast.We
divided the study area into 4356 contiguous grid cells creat-
ing a 5’ × 5’ Mardsen grid (WGS 84). To model the density
of individuals, we used depth as an environmental covariate,
which is expected to have a positive effect on bottlenose
dolphins’ occurrence (Bearzi, Fortuna, & Reeves, 2009;
Labach et al., 2021). To estimate the sampling effort of aer-
ial and boat surveys, we calculated the transect length (in km)
prospected by each monitoring protocol within each grid
cell during a time period. Typically, entire transects are split
into segments as they overlap multiple grid cells (Miller
et al., 2013). Sampling effort was therefore cell and occasion
specific in the case of the SCR model, and cell specific for
the DS model. Sampling efforts ranged from 0.047 km to
308 km per grid cell and per occasion for the photo-id data-
set, and from 1.33 to 54560 km per grid cell for the aerial

line transect dataset. We used subjective weather conditions
recorded by plane observers during the line transect proto-
cols as a discrete variable ranging from 1 to 8. The good
weather condition was expected to be positively related to
the detection probability.

Spatial integrated models for closed
populations

To integrate DS and SCR data, we used the hierarchical
model proposed by Chandler et al. (2018). However, while
initially developed for open populations and due to the lack
of temporal depth in our datasets, we adapted the model to
estimate abundance and density without accounting for
demographic parameters (Fig. 1). We performed a closed
population estimation of bottlenose dolphin density over the
2011–2015 period, assuming that (1) the population was
demographically closed during the study period, (2) all indi-
viduals were correctly identified at each capture occasion
and marks were permanent during the sampling period and
(3) no migratory events occurred during the sampling period.
Although being strong assumptions, bottlenose dolphin
deaths and recruitments between 2011 and 2015 were likely
small considering the long life cycle of bottlenose dolphins
(Bearzi et al., 2009; Hammond et al., 2021). Besides, the
Western Mediterranean bottlenose dolphin population is clus-
tered into coastal subunits, hence we neglected migration
events and movements that can occur between “French” resi-
dent groups and other populations, for example, offshore,
Spanish, Italian or Atlantic groups (Louis et al., 2014;
Carnabuci et al., 2016).We structure our integrated spatial
model around two layers with i) an ecological model that
describes the density of individuals based on an inhomoge-
neous point process (Spatial abundance section below) and
ii) two observation models that describe how the DS and
SCR data arise from the latent ecological model (capture–
recapture data and distance sampling data sections below).

Spatial abundance

For the ecological model, we use a latent spatial point process
modelling the density of individuals and the overall abundance.
Over the study area S, an intensity function returns the expected
number of individuals at location s in S. Here, s, represents an
arbitrary point in the study area S. To account for spatial varia-
tion, we model the latent density surface as an inhomogeneous
point process. For every location s in the study area S, the
expected abundance λ is written as a log-linear function of an
environmental covariate, say habitat:

log λ sð Þð Þ ¼ μ0 þ μ1habitat sð Þ (1)

where parameters to be estimated μ0 and μ1, respectively, are
the density intercept and the regression coefficient of the envi-
ronmental covariate. For simplicity, we use depth as a habitat
covariate possibly influencing bottlenose dolphin density, and
explore a linear relationship between density and depth. The
effect of habitat covariates could be further explored (e.g. by
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considering other covariates such as sea surface temperature or
prey availability, or by accounting for non-linear effects). Then,
the estimated population size is derived by integrating the
intensity function over the study area:

E Nð Þ ¼
Z
S
λ sð Þds: (2)

As we discretized the study area, we estimated λj the intensity
process describing density for each grid cell j with j = 1, . . .,
J = 4356, hence E Nð Þ ¼ ∑J

j¼1λj. The latent ecological pro-
cess defined by equation 1 is an inhomogeneous point pro-
cess that is common to both the SCR and DS models. SCR
and DS data are linked to density λ and informed the parame-
ters of equation 1. To account for unseen individuals, we
used the data augmentation technique and augmented the
observed datasets to reach M = 20,000 individuals (Royle &
Dorazio, 2012). Each individual i is considered being (zi = 1)
or not (zi = 0) a member of the population according to a
draw in a Bernoulli distribution of probability ψ, with
zi ∼ Bernoulli ψð Þ, where ψ is the probability for individual i

to be a member of the population, with ψ ¼ E Nð Þ=M and
N ¼ ∑M

i¼1zi.

Capture–recapture data

To link capture–recapture data with the ecological process,
we built a SCR model (Royle et al., 2014). Detection history
of individuals was collected over T = 8 sampling occasions
and capture locations were recorded. Grid cells j in which
sampling effort was positive during an occasion were consid-
ered as active detectors for this sampling occasion, hence
reflecting that animals could be observed. We stored observa-
tions in a three-dimensional array y with yijt indicating
whether individual i was captured at grid-cell j during sam-
pling occasion t. We assume that observation yijt is an out-
come from a Bernoulli distribution with capture probability

pijt, yijt ∼ Bernoulli pijt zi
� �

. We model capture probability

with a half-normal detection function pijt ¼ p0exp � d2ij
2σ2SCR

� �
,

where dij is the Euclidian distance between the activity cen-
tre of individual i and the grid cell j, σSCR is the scale

Figure 1 Graphical description of the spatial integrated model (SIM) that combines spatial capture–recapture (SCR) and distance sampling

(DS) of bottlenose dolphins. The SIM is a hierarchical model with three processes: i) latent population size E(N) and density λ informed by

an inhomogeneous point process, ii) DS observation process that links the line transect dataset to the latent density surface and iii) SCR

observation process that links the detection histories to the latent density. The observation process is stochastic according to detection

probability. For DS model, the observed group size nobs is a binomial draw in the latent abundance N at the sample grid cell. For SCR model,

observing an individual
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parameter of the half-normal function and p0 is the baseline
encounter rate (Royle et al., 2014). We accounted for spatial
and temporal variation in the detection probability through
the baseline detection rate p0 that we modelled as a logit-
linear function: logit p0jt

� � ¼ δ0 þ δ1Ejt . When the sampling
effort Ejt is null, we fixed p0ijt to 0.

The locations of the activity centre inform the density of
individuals λ. For each individual i belonging to the sampled
population, its activity centre is assigned as the result of a
multinomial draw in the predicted density in each grid cell
of the study area.

idi ∼ Multinomial 1, λ
� �

where idi is the activity centre of individual i, and λ repre-
sents the vector of the predicted density in each cell of the
study area. Due to the computational burden to sample the
4356 grid cells, we mimicked the multinomial distribution
through the ‘zeros trick’ (see R codes for details). We consid-
ered that activity centres did not change between sampling
occasions.

Distance sampling data

To accommodate distance data, we built a hierarchical DS
model (Kéry & Royle, 2016). We model the DS data condi-
tional on the underlying density surface defined by equations
(1) and (2). We considered two sampling occasions tds as
some transects were replicated. We assume that the probabil-
ity of detecting dolphins is a decreasing function of the per-
pendicular distance between the transect and dolphin group.
Because distance may not be estimated with perfection by
observers, we discretized the distance of observation in B

distance bins. Then, rjbt ¼ r0 j,tð Þexp � d2b
2η2

� �
, where η is the

scale parameter of the half-normal function, r0(j) is the prob-
ability of detection in the grid cell j and db is the observa-
tion distance between the flight transect and bin b where the
detection occurred. The distance class dj of the observed data
at grid-cell j is modelled as a multinomial/categorical draw

dj,t j nj,t ∼ Multinomial 1, πj,t
� �

with πj,t the vector of length B storing the detection probabili-
ties in each bin b at grid-cell j. The bth index being πj,b,t ¼

rj,b,t= ∑
b
rj,b,t

 !
.

We account for spatial variation in the baseline detection
rate of the detection function modelling r0 j,tð Þ as a log-linear
function of weather condition Wj,t in grid-cell j during sam-
pling occasion t:

logit r0 j,tð Þ
� � ¼ α0 þ α1Wj,t:

Besides, aerial surveys only sampled a fraction of the total
area of each grid cell (Appendix S1). We calculated Sj,t, the
proportion of the grid cell effectively sampled by aerial

surveys considering a 1200-m-wide annulus around the tran-
sect. We assumed that density within each grid cell was uni-
form and remained constant across the sampling period.
Then, Nj,t, the number of individuals sampled by aerial sur-
veys in each grid-cell j during sampling occasion t is Poisson
distributed, with λj being the density of individuals predicted
by the point process in grid cell j restricted to the proportion
of grid cell sampled, Sj,t.

Nj,t ∼ Poisson λjSj,t
� �

Then, nj,t, the observed group size detected at grid cell j dur-
ing sampling occasion t, is given by a binomial draw in the
expected number of sampled individuals, and Nj,t with proba-
bility the sum of rj,b,t , the detection probabilities within each
bin b of grid cell j during sampling occasion t.

nj,t j Nj,t ∼ Binomial Nj,t ,∑
b
rj,b,t

 !

Bayesian implementation

To highlight the benefit of integrating data for the estimation
of bottlenose dolphin density, we compared (i) the output of
the spatial DS model, (ii) the SCR model and (iii) the inte-
grated spatial model.

We ran all models with three Markov Chain Monte Carlo
chains with 100,000 iterations each in the NIMBLE R pack-
age (de Valpine et al., 2017). We checked for convergence
calculating the R-hat parameter (Gelman et al., 2013) and
reported posterior mean and 80% credible intervals (CI) for
each parameter. We considered as important the effect of a
regression parameter whenever the 80% CI of its posterior
distribution did not include 0. We also calculated the pre-
dicted density of bottlenose dolphins (i.e. λ). Data and codes
are available on GitHub (https://github.com/valentinlauret/
SpatialIntegratedModelTursiops).

Results

We detected 536 dolphins through aerial surveys clustered in
129 groups. We identified 927 dolphins over 1707 detections
in photo-identification surveys, of which 638 dolphins were
captured only once (68%), 144 were captured twice (15.5%),
149 were captured three times and up to eight times for one
individual. The maximum distance between two sightings of
the same individual was 302 km, with one individual
detected twice during the same sampling occasion at 115 km
distance.

We estimated 2451 dolphins (2337; 2566) with the inte-
grated spatial model over the study area (Table 1), 11531
dolphins (10132; 12997) with the DS model and 1834 dol-
phins (1745; 1926) with the SCR model (Table 1). Density
intercepts of the integrated spatial model (μ0 = −0.85
(−0.90; −0.79)) and SCR model (μ0 = −1.18 (−1.81;
−1.07)) were lower than the intercept of the DS model
(μ0 = 0.95 (0.82; 1.08)).
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DS model estimated a positive effect of shallow waters
(μ1 = 0.18 (0.12; 0.25), Table 1) similar to the effect esti-
mated by the integrated spatial model (μ1 = 0.32 (0.26;
0.38), Table 1). However, the SCR model did not detect an
effect of depth on density (μ1 = 0.28 (−0.47; 1.22), Table 1).
Then, both integrated and DS models predicted higher densi-
ties of bottlenose dolphins in the coastal seas than in the
pelagic seas, whereas the SCR model predicted no effect of
depth on dolphin density.

Boat sampling effort exhibited a positive effect on detec-
tion probability for both the SCR model (β1 = 0.58 (0.53;
0.62)) and the integrated spatial model (β1 = 0.58 (0.54;
0.62), Table 1). For the integrated spatial model and the DS
model, the detection probability increased when the weather
condition improved (integrated spatial model: α1 = 1.64
(1.15; 2.10), DS: α1 = 1.86 (1.52; 2.21), Table 1).

Discussion

Integrated spatial model benefits from both
distance sampling and capture–recapture
data

With our integrated spatial model, we estimated bottlenose
dolphin abundance within the range of what was found in
previous studies in nearby areas (Gnone et al., 2011; Lauri-
ano et al., 2014), and found that densities were more likely
to be higher in coastal areas (Bearzi et al., 2009). A striking
result was the higher abundance estimated by DS compared
to abundance estimated by the integrated and SCR models,
which estimates were also found in previous studies analys-
ing the same datasets in isolation. Using CR data only,
Labach et al. (2021) estimated 2350 dolphins (95% confi-
dence interval: 1827; 3135) inhabiting the French continental
coast where our integrated model predicted 2451 dolphins
(95% confidence interval: 2306; 2602). Analysing DS data,
Laran et al. (2017) estimated 2946 individuals (95% confi-
dence interval: 796; 11,462) during summer, and 10,233
(95% confidence interval: 4217; 24,861) during winter where
our DS model estimated 11,531 (95% confidence interval:
9784; 13,478) all year long. Recent aerial campaigns per-
formed in 2018–2019 on the same study area and following

the same distance sampling protocol do not suggest a sea-
sonal difference in bottlenose dolphins’ abundance (Laran
et al., 2021).

We see several reasons that might explain the discrepancy
in estimates obtained from SCR and DS models. First,
although the Mediterranean bottlenose dolphins’ population
is clustered in coastal sub-units (Carnabuci et al., 2016),
groups can be encountered offshore (Bearzi et al., 2009). In
the DS dataset, large dolphin groups were detected in the
pelagic seas at the extreme south of the sampling design
(Appendix S1). These groups could either be i) occasional
pelagic individuals belonging to coastal populations and that
are mainly resident outside our study area (e.g. Balearic and
South-Western Sardinia), or ii) resident pelagic populations
that are not sampled by coastal photo-id surveys (Louis
et al., 2014). Second, SCR data were restricted to the French
continental coast and did not sample dolphin populations that
exist elsewhere in the study area, for example, in Corsica,
Liguria and Tuscany (Carnabuci et al., 2016). Despite this
geographic sampling bias in the capture–recapture data, SCR
models should predict the existence of Corsican and Italian
populations if the relationship between density and habitat in
equation (1) was correct and consistent throughout the study
area. Predicting abundance outside the range of the data used
could lead to biased estimates if the habitat–density relation
is not correctly specified (Hammond et al., 2021; Lee-Yaw
et al., 2021). As the photo-id surveys did not sample greater
depths, our SCR model is likely to underestimate abundance
because the relation linking dolphin density to depth was not
correctly specified. Thus, we emphasised the relevance of
aerial surveys that collected data in the pelagic seas, which
helps to quantify the habitat–density relationship. To perform
a detailed analysis of the NW Mediterranean bottlenose dol-
phin populations, one should consider additional environ-
mental covariates to better capture spatial variation in
density (e.g. sea surface temperature, distance to coast or
200 m contour, Lambert et al., 2017). Besides, because Sar-
dinian and Balearic populations and offshore groups can be
sampled in the aerial surveys, the DS model drives upwards
abundance compared to the SCR model which is unlikely to
account for animals that are members of the Southern neither
the Eastern nor offshore populations.

Table 1 Parameter estimates for the spatial integrated model (SIM), spatial capture–recapture (SCR) model and distance sampling (DS)

model. For each parameter, we display the posterior mean and its 80% credible interval (CI)

SIM SCR model DS model

Parameter Mean 80% CI Mean 80% CI Mean 80% CI

Estimated population size N 2451 2337, 2566 1834 1745, 1926 11531 10132, 12997

Intercept of density μ0 −0.85 −0.90, −0.79 −1.18 −1.81, −1.07 0.95 0.82, 1.34

Effect of depth on density μ1 0.32 0.26, 0.38 0.28 −0.47, 1.22 0.18 0.12, 0.25

SCR scale parameter: σSCR 531 156, 903 2458 500, 5920

SCR p0 parameter: Intercept δ0 −12.54 −12.93, −12.16 −12.77 −13.53, −12.11
SCR p0 parameter: Effect of at-sea sampling effort δ0 0.58 0.54, 0.63 0.58 0.53, 0.62

DS scale parameter: σDS 3.21 1.09, 8.51 4.16 7.14, 9.44

DS r0 parameter: Intercept α0 3.32 2.80, 3.87 1.15 0.79, 1.51

DS r0 parameter: Effect of weather condition α1 1.64 1.15, 2.1 1.86 1.52, 2.21
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Overall, both DS and SCR data affected the estimates of
the integrated spatial model. Using SCR data brought more
information about population size (e.g. more detections, more
individuals) than the DS data to inform the intercept of den-
sity (μ0), making the integrated spatial model abundance esti-
mate closer to the SCR model estimate (Table 1; Fig. 2).
However, the DS data that were collected throughout the
range of the habitat predictor informed the slope of the inho-
mogeneous point process (μ1), that is, the effect of depth on
dolphin density. Then, in the integrated spatial model, the
SCR data informed the estimated population size and the DS
data informed spatial repartition of individuals by correcting
for the geographic sampling bias in the SCR data. The inte-
grating approach helped to reduce the sampling limitations
of each dataset and can improve the ecological inference as
illustrated here about bottlenose dolphins.

Conservation implications for monitoring
bottlenose dolphins in the French
Mediterranean Sea and beyond

When the conservation goal is to assess abundance in an
area at a specific time, line transect surveys may be a cost-
effective choice. However, if one’s goal is to estimate the
number of animals in an area over a longer period, CR
methods could be more appropriate but have cost implica-
tions that may exceed those of conducting a line transect
survey (Crum et al., 2021; Hammond et al., 2021). Despite
differences in ecological inference, DS and CR are comple-
mentary methods depending on the conservation motivations
and funding. To date, assessing the bottlenose dolphin popu-
lation of the French Mediterranean Sea for the EU reporting
only focuses on the DS data (Laran et al., 2017). Aerial sur-
veys provide crucial information on marine megafauna taxa,
and on human pressures to fill several criteria of the Marine
Strategy Framework Directive (Laran et al., 2017; Pettex
et al., 2017; Lambert et al., 2020). However, funding con-
straints make aerial monitoring hardly applicable at a high
frequency, and it is planned to be implemented every
6 years. In parallel, the French office for biodiversity devel-
ops and supports local monitoring programmes in the French
MPA network to perform photo-id data continuously; such
detailed datasets represent an important asset to inform the
abundance of marine mammals populations (Evans & Ham-
mond, 2004). Ecological indicators required by the Marine
Strategy Framework Directive for bottlenose dolphins would
benefit from integrating aerial line transect with more data
when available (Lauret et al., 2021). In addition, the French
Research Institute for Exploitation of the Sea (i.e. IFRE-
MER) collected yearly bottlenose dolphins’ data during line
transects surveys for pelagic fisheries (Baudrier et al., 2018).
Ultimately, several monitoring programmes will be available
for bottlenose dolphins in the Mediterranean context and
integrated spatial models makes it possible to include exist-
ing datasets that have been discarded so far to inform public
policies (Cheney et al., 2013; Isaac et al., 2019).

We acknowledge that our model has limitations due to
several ecological features lacking, for example, spatial

autocorrelation, effect of other environmental covariates,
accounting for non-linear covariate effect and group beha-
viour of bottlenose dolphins that may generate non-

Figure 2 Estimated density surfaces of bottlenose dolphins (Tur-

siops truncatus) for the three models. Lighter colour indicates more

individuals per area unit. Both spatial integrated model (SIM) and

distance sampling model (DS) predicted higher density in coastal

seas, while spatial capture–recapture model (SCR) predicted homo-

geneous density across the study area. Note that density scales

are different between the maps, indicating a higher overall popula-

tion size for the DS model than for SIM and SCR model.
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independent individual detection probabilities. One might
also consider extending the activity centre process to include
a movement model of individuals (Gowan, Crum, & Roberts,
2021). Moreover, ecological closure assumptions we assumed
are likely to be violated but we assumed the bias introduced
bias would be minimal. However, we emphasize that inte-
grated spatial models are highly relevant considering the
future monitoring planning by the French biodiversity agency
that will perpetuate the coexistence of photo-identification
with aerial line transect. Analysing the collected data in an
integrated framework will lead to a more comprehensive
understanding of how the monitoring programmes can work
together and what exactly it is that they achieve in unison. It
is our hope that the ability of integrating different datasets
contributes to the ongoing monitoring efforts developed in
the Mediterranean context and fits within the scope of what
managers expect from statistical developments to inform
environmental policies (Lauret, 2021).

Line transect and capture–recapture surveys are widely
used monitoring methods to assess the population dynamics
of marine mammals (Hammond et al., 2021). Our work pro-
vides a promising modelling baseline to deal with the bot-
tlenose dolphin evaluation but also opens perspectives for
other conservation challenges about marine species that are
subject to similar monitoring situations in the French
Mediterranean context (e.g. fin whale and seabirds) and else-
where.

Last, adding complementary long-term datasets to the aerial
surveys would make it possible to access the demographic
parameters (e.g. recruitments and survival (Chandler et al.,
2018)), which would represent a major opportunity for the
knowledge about French Mediterranean bottlenose dolphin
populations and to produce reliable conservation status. The
use of integrated spatial models for the French Mediterranean
bottlenose dolphin population also enables to extend the mod-
elling approach exploring seasonality in density and to mea-
sure immigration and dispersal between bottlenose dolphin
populations (Zipkin & Saunders, 2018). Finally, precising the
assessment of bottlenose dolphin conservation status could
ultimately lead to mitigation programmes in the context of the
Marine Strategy Framework Directive, for example, marine
protected areas implementation such as the Bottlenose dol-
phins Natura 2000 area in the French Gulf of Lion.

Spatial integrated models as a promising
tool for conservation

When establishing species conservation status for large-scale
environmental policies, discarding some datasets from the
analysis can reduce the reliability of the ecological estima-
tion (Bischof, Brøseth, & Gimenez, 2016). Using multiple
datasets into integrated spatial models helps to overcome
some limitations present when using separated information
sources (e.g. limited spatial or temporal survey coverage,
Zipkin & Saunders, 2018; Isaac et al., 2019). However, cau-
tion should be taken as integrating data require additional
modelling assumptions, for example, assuming population
closure over a longer time period in our case (Dupont et al.,

2019; Fletcher et al., 2019; Farr et al., 2021; Simmonds
et al., 2020). Integrated spatial models are flexible tools that
can include more than two datasets (Zipkin & Saunders,
2018), and various types of data that enlarge the scope of
usable information (presence–absence (Santika et al., 2017),
count data (Chandler et al., 2018) and citizen science data
(Sun et al., 2019)). Recent and current developments of
SCR models widen perspectives to extend integrated spatial
models to account for unidentified individuals, or to better
describe animal movement (Milleret et al., 2019; Jiménez
et al., 2020; Turek et al., 2021). Over the last decades, the
spatial scope of conservation efforts has greatly increased,
and the analytical methods have had to adapt accordingly
(Zipkin & Saunders, 2018). Integrated spatial models are a
promising tool that can be used in multiple situations where
several data sources coexist, especially for large-scale conser-
vation policies.
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